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In developing countries, untreated sewage exposes people to alarming water pollution levels, yet there is limited knowledge about the effectiveness of wastewater treatment investments.

I leverage the national inventory of sewage treatment plants in India and various granular datasets on river water quality measures, as well as geo-localized information on child births and deaths, to identify robust effects of wastewater treatment installations. To do so, I use estimators robust to staggered adoption within a difference-in-differences design and compare urban areas that started wastewater treatment from 2010 onwards and urban areas where such treatment was planned or under construction in 2020. I show that after starting wastewater treatment, levels of fecal coliforms decreased by 50%, and downstream mortality under the age of six months declined by 20%. A back-of the-envelope calculation suggests that starting wastewater treatment earlier -from 2010 onwards -in urban areas later selected into treatment -after 2020 -would have prevented over 40,000 child deaths in downstream sub-basins.

Introduction

In developing countries, the lack of sanitation infrastructure and water facilities exposes the population to alarming inland water pollution levels. Although access to clean water is vital, the literature on the impacts of major public infrastructure investments on downstream ambient water quality in developing countries is generally thin and mixed [START_REF] Olmstead | Water pollution control in developing countries: Policy instruments and empirical evidence[END_REF]. Implementation and operational challenges -arising from energy demands, the need for skilled workers, and capital requirements -make the efficacy of wastewater treatment facilities uncertain. Moreover, due to our limited understanding of exposure to untreated sewage, the health benefits of mitigating river water pollution via wastewater treatment remain ambiguous. Assessing the benefits of wastewater treatment investments in developing countries is important, particularly because public funding competes with other basic needs.

This paper examines the effect of urban sewage treatment on water quality and downstream infant mortality in India using granular data of the hydrological network. My identification strategy relies on a difference-in-difference (DID) approach and event-study specifications, while comparing urban areas that started wastewater treatment from 2010 onwards to those with only planned or under-construction plants as of 2020. More precisely, I adopt the estimator developed by Gardner [2022], which is robust to heterogeneous treatment effects within a staggered difference-in-differences design. While treatment is at the urban area level, water pollution is measured within and up to 100km downstream of the urban areas. Infant mortality is gauged from children born in downstream sub-basins, encompassing river segments located within 100km downstream of river segments crossing the urban areas.

The Indian context is particularly relevant for three reasons. First, India is one of the most polluted countries in the world, where untreated sewage remains the main source of water pollution. This pollution has direct implications for public health, as waterborne diseases linked to fecal pathogens are major contributors to mortality rates, especially among infants. Second, a lot of public investments have recently been directed toward building sewage treatment plants (STPs). 1 According to the governement, around 30% of urban wastewater is treated in 2020. Yet, many plants do not function at maximum capacity and others do not meet the prescribed environmental standards.

The unreliability of access to electricity (due to frequent power shortages), the lack of qualified labor, and the lack of funding in maintenance and operation activities raise concerns about the functioning of current plants [CPCB, 2007]. Third, while wastewater treatment is initially planned for and by 1 Sewage treatment plants are designed to intercept and treat sewage through piping infrastructure and treatment plants before its discharge into lakes, rivers, and streams.

urban areas, assessing its effects on downstream areas, where most of the population is marginalized, offers insight into the potential mitigation of social inequalities regarding pollution. I compile one of the most comprehensive database on wastewater treatment and water quality in India at the urban level. I use the national inventory of sewage treatment plants conducted in 2020-21 and attribute plants to nearby urban areas. In this dataset, 273 urban areas started wastewater treatment from 2010 onwards whereas 185 urban areas had a wastewater treatment plant still at the project stage or under construction in 2020. The datasets are matched using both river segments and hydrological sub-basins boundaries. Combining different data sources on water quality, I build a panel of 313 monitoring stations located on river segments within and downstream up to 100km of these urban areas over the period 1991-2020. I also geolocalize a birth history panel of around 90,000 children born over the period 1991-2019 in sub-basins downstream of these urban areas.

The study has two primary results. First, I find that treating wastewater in an urban area decreased average fecal coliform levels within and downstream of this area by 50%. This result is consistent across several estimators robust to heterogeneous effects when treatment varies over time, namely [START_REF] Gardner | Two-stage differences in differences[END_REF] estimator, [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF]'s estimator and the stacked regression approachs. Event-study regressions suggest that the decrease in the levels of fecal coliforms intensifies over time, which may be explained by the opening of new treatment plants or increased compliance with environmental standards. For robustness, I further show that wastewater treatment decreases maximum levels of pollution measured by biological oxygen demand (BOD) and dissolved oxygen (DO), two other organic pollution measures.

Second, I find that wastewater treatment decreased the mortality under the age of six months in downstream sub-basins. Mortality decreases by 7.7 children per 1000 after operating sewerage treatment, which corresponds to a 19% decrease with respect to the average mortality under six months over the period 1991-2019. This results controls for child-, mother-, household-and weatherlevel determinants of health, as well as place of birth and year fixed effects. Findings are robust to the use of other staggered treatment estimators and to a specification including mother fixed effects, controlling for unobserved family characteristics that could be correlated with both water quality and infant mortality. Heterogeneity analysis shows that boys and children in the lowest wealth quintiles benefited the most from wastewater treatment.

Finally, robustness tests support these findings, ruling out alternative explanations such as selective migration of mothers into treated sub-basins or differences in household behaviors related to water treatment, open defecation or exclusive breastfeeding practices. I further show that mortality decreased downstream but not upstream of the urban areas treating wastewater, which supports the assumption that no other policy has taken place locally at the same time. Falsification tests on air pollution provides supportive evidence that other environmental policies are not systematic confounders of wastewater treatment and that health impacts found in this study are attributable to water pollution.

Applying my results to a back-of-the-envelope calculation, over 40 000 deaths would have been prevented if wastewater treatment had been implemented since 2010 in urban areas where the treatment was still not operational in 2020. The estimated annual benefits of wastewater treatment, if it were implemented across the most important urban areas, total around twice the costs, which underscores the cost-effectiveness of treating urban sewage in India.

The paper contributes to three strands of the literature. First, to the best of my knowledge, this study provides the first national estimates of how sewerage treatment plants affect ambient water pollution concentrations in a developing country. In the USA, [START_REF] Keiser | Consequences of the clean water act and the demand for water quality[END_REF] find that grants distributed to municipal wastewater treatment plants from the 1972 Clean Water Act (CWA) reduced most water pollution types [START_REF] Flynn | A watershed moment: The clean water act and infant health[END_REF] observe that these reductions occured only downstream from facilities required to upgrade their technology. While recent literature evaluates industrial water pollution control in China [START_REF] Zhang | The real effect of legal institutions: Environmental courts and firm environmental protection expenditure[END_REF][START_REF] He | Watering down environmental regulation in china[END_REF] and in India [START_REF] Do | Can environmental policy reduce infant mortality? evidence from the ganga pollution cases[END_REF][START_REF] Duflo | The value of regulatory discretion: Estimates from environmental inspections in india[END_REF][START_REF] Joshi | Oversized solutions to big problems: The political economy of partnerships and environmental cleanup in india[END_REF], assessment of domestic pollution control remains scarce in low and middle income countries. In India, [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF] find that water regulations, over the period 1986-2005, had on average no effect on water pollution in cities covered by the National River Conservation Plan. I extend this analysis by focusing on operational sewage treatment plants in the last decade. My findings show that recent sewage treatment plants has significantly improved water quality in India, with the effects intensifying over time. The study suggests that there is a strong potential for wastewater treatment in developing countries, which face much higher levels of pollution than developed countries.

This paper also provides the first estimate of how urban wastewater treatment affects health outcomes in India. In Peru, [START_REF] Bancalari | Can white elephants kill? unintended consequences of infrastructure development in peru[END_REF] estimates that unfinished sewerage infrastructure increased early-life mortality. Recent evidence suggests that sewerage infrastructures highly contributed to the decline of mortality in the advanced economies during the late nineteenth century [START_REF] Kesztenbaum | Sewers' diffusion and the decline of mortality: The case of paris, 1880-1914[END_REF][START_REF] Alsan | Watersheds in child mortality: The role of effective water and sewerage infrastructure, 1880-1920[END_REF][START_REF] Chapman | The contribution of infrastructure investment to britain's urban mortality decline, 1861-1900[END_REF][START_REF] Harris | Urban sanitation and the decline of mortality[END_REF][START_REF] Gallardo-Albarrán | Sanitary infrastructures and the decline of mortality in germany, 1877-1913[END_REF] 2 . My paper differs from these studies by investigating health effects in areas downstream of sewage treatment plants, thus isolating wastewater treatment from other co-variates like sewage disposal access. This study is closely related to the study by [START_REF] Flynn | A watershed moment: The clean water act and infant health[END_REF] on the impact of the Clean Water Act on birth weight in the USA. In a context where water pollution is much lower,3 and clean water and healthcare provision are much higher than in India, [START_REF] Flynn | A watershed moment: The clean water act and infant health[END_REF] show that CWA grants to municipal wastewater treatment plants increased average birth weight by 8 grams in counties downstream of the plants. By examining urban sewage treatment in India, my empirical findings highlight the considerable benefits of treating wastewater in developing countries, many of which experiencing high mortality damages from pollution exposure [START_REF] Landrigan | The lancet commission on pollution and health[END_REF].

Finally, this study builds on the literature emphasizing the health costs of ambient microbiological water pollution. In Indonesia, [START_REF] Garg | not so) gently down the stream: River pollution and health in indonesia[END_REF] estimate that the use of upstream rivers for bathing and sanitation practices accounts for up to 7.5% of all diarrhoea-related deaths downstream each year.

In Bangladesh, [START_REF] Buchmann | The lifesaving benefits of convenient infrastructure: Quantifying the mortality impact of abandoning shallow tubewells contaminated by arsenic in bangladesh[END_REF] estimate that households, who suddenly abandonned water infrastructure contaminated by arsenic, saw 28% greater child mortality driven by diarrheal disease.

In South Asia, diseases related to ambient microbiological water pollution represent a significant cause of child mortality. The findings of my study advocate for targeted investments in wastewater treatment to improve public health. These benefits are close to those obtained by local chlorination campaigns, as the recent [START_REF] Kremer | Water treatment and child mortality: A meta-analysis and cost-effectiveness analysis[END_REF]'s meta-analysis estimates the effect of water treatment on child mortality to be a reduction of about 30% in the odds of all-cause under-5 mortality in lowor middle-income countries.

The paper proceeds as follows. Section 2 documents the mechanisms through which untreated sewage affects health as well as the Indian context regarding water pollution regulation and sewerage infrastructures. Section 3 describes the data. Section 4 presents the empirical approach and identification strategy. Section 5 shows the main results relating to the impact of wastewater treatment on water pollution and downstream infant health. Section 6 presents robustness checks. Section 7 discusses the implications of the effects on infant mortality, and section 8 concludes.

Background and institutional context

Effects of domestic wastewater pollution on health outcomes

The discharge of untreated sewage in rivers poses significant public health concerns as it contaminates water supplies and recreational areas.

Fecal pathogens (bacteria, parasites or viruses) present in wastewater are directly harmful to human health. Pathogens transmission from water to humans can occur through different channels:

drinking contaminated water or eating unsafe food,4 contact with polluted water when bathing or recreational use, and transmission by insects that breed in the water.

Contamination by fecal microorganisms is responsible for the high disease burden in children, particularly acute diarrheal mortality [START_REF] Liu | Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals[END_REF],5 morbidity [START_REF] Wolf | Impact of drinking water, sanitation and handwashing with soap on childhood diarrhoeal disease: updated meta-analysis and meta-regression[END_REF] and chronic stunting [START_REF] Guerrant | The impoverished gut-a triple burden of diarrhoea, stunting and chronic disease[END_REF]. Because of this high disease burden and these risks, the World Health Organization (WHO) recommends and sets regulatory guidelines at 0 per 100 mL for fecal coliforms in drinking water [START_REF] Who | Guidelines for drinking-water quality: first addendum to the fourth edition[END_REF]. Though not generally pathogenic, fecal coliforms -bacteria found in the intestines of warm-blooded animals -serve globally as an indicator of potential fecal contamination in water.

Given these concerns about water quality, the dietary choices for infants, such as breasfeeding, play a crucial role for infant health. For this reason, the WHO recommends six months of exclusive breastfeeding partly because children who are exclusively breastfed have a lower risk for gastrointestinal infections and mortality. Before six months, infants' digestive systems are still developing and there is an increased risk of gastrointestinal infections if solids or other non-breastmilk foods are introduced. Around six months, many babies' digestive systems are developed enough to process solid foods, including potential allergens. However, while the importance of breastfeeding in low-income and middle-income countries is well recognised, only 37% of children younger than six months of age are exclusively breastfed in these countries [START_REF] Victora | Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect[END_REF].

In India, millions of people lack access to clean water, meaning that they use either an unimproved water source or an improved source that is contaminated with fecal matter (World Health Organization).6 Even where piped water systems are available, they frequently do not meet WHO's recommended standards [START_REF] Rayasam | Extraintestinal pathogenic escherichia coli and antimicrobial drug resistance in a maharashtrian drinking water system[END_REF], and water supply is intermittent [START_REF] Amrose | Safe drinking water for low-income regions[END_REF]. While water purifiers have become popular in urban households with recent technological advances and increased affordability, many rural areas face challenges in accessing disinfected water.

Despite the high risk of fecal pathogen infection through drinking water, the practice of exclusive breastfeeding has not been fully adopted across India. Data from the National Family Health Survey (NFHS-IV, 2015-2016) show that 55% of Indian mothers exclusively breastfeed their infant under age six months. Many children in that age group consume other liquids, such as plain water, in addition to breastmilk. Indian infants under six months of age, a period crucial for digestive system development, face an increased risk of infections from contaminated water if they are not exclusively breastfed. The CPCB sets the wastewater discharge standards for the entire country.7 At the state level, SPCBs are responsible for monitoring the performance of all wastewater discharging entities (buildings, industries, large and small-scale sanitation systems). However, there are not in charge of the construction and operation of wastewater treatment facilities.

Water pollution regulations and monitoring

Sewage treatment plants in India

In the Constitution of India, the responsibility of large-scale sanitation is delegated to the states, under purview of the Ministry of Housing and Urban Affairs (MoHUA -formerly Ministry of Urban Development) [START_REF] Reymond | Governance arrangements for the scaling up of smallscale wastewater treatment and reuse systems-lessons from india[END_REF]. MoHUA is the largest funder of the sanitation sector [START_REF] Wankhade | Urban sanitation in india: key shifts in the national policy frame[END_REF]. Urban Local Bodies (ULBs) and Water Supply and Sewerage Boards (WSSBs) are given the responsibility of devising and implementing sanitation strategies at the city level. To improve standards of living, a running water-supply has been established in most of the cities, towns and even in some villages over the past four decades in India. This has, in turn, led to flush-latrines and much larger use of water in homes for bathing, washing of clothes and utensils etc, generating significant amount of wastewater. Due to the lack of resources, sewerage did not get much attention and has lagged far behind water supply until the turn of the century.

In 2007, India had 234 Sewage Treatment Plants (STPs), of which 84 were inspected by the Central Pollution Control Board team [CPCB, 2007]. During this period, the efficacy of the water treatment process raised some concerns. Many of these STPs were not functioning adequately, primarily due to operational and maintenance shortcomings. Out of the inspected plants, only 8 received a 'good' performance rating, while 30 were rated 'satisfactory.' Capacity utilization was often inadequate, many plants lacked an alternative power source, and underqualified labor compromised the performance of the plants. The CPCB report emphasizes the urgent need to prioritize wastewater treatment to reduce pollution and preserve water resources.

For over 15 years, ULBs have gradually worked on setting up sewage treatment plants to address the pollution and public health challenges posed by untreated sewage. Various international agencies and the central government have provided financial and technical assistance to ULBs for constructing and upgrading STPs. In addition, the National Green Tribunal (NGT), established in 2010 under the National Green Tribunal Act, has played a pivotal role in pushing for environmental conservation and sustainable development in India, including in the domain of wastewater management and sewage treatment.

Since 2007, the number of sewage treatment plants has more than quadrupled. From 522 operational STPs in 2015, the count rose to 1,093 by 2020. However, the installed capacity of municipal wastewater treatment plants represents less than 30% of the estimated urban wastewater generated in 2020 and many plants do not function at maximum capacity or do not meet the prescribed effluent water quality standards. In the context of rapid urbanization and population growth, water treatment will become an increasingly important challenge in India competing with meeting other basic needs. Evaluating the effectiveness of current treatment plants is an opportunity to optimally plan its development. Furthermore, while wastewater treatment is initially planned for and by urban areas, assessing its effects on downstream areas, where most of the population is marginalized, offers insight into the potential mitigation of social inequalities regarding pollution. Since the plants are not geolocalized. I manually match each of them to a polygon based on the 2001 villages census [START_REF] Meiyappan | India village-level geospatial socio-economic data set: 1991[END_REF]. I then merge neighboring polygons, that forms a unique urban area. This indicates that many urban areas invested (or plan to invest) in one or several water treatment plants. Current work consists in providing exact plant geolocation based on Google Maps identification (Figure 1). So far, I have identified 564 of the 1631 stations that are correctly located in the urban areas.

Water quality

I use water pollution readings from four data repositories: the Global Environment Monitoring System for Freshwater database, the India-Water Resource Information System platform, the published database from [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF] and the public database from the Central Pollution Control Board (CPCB). Appendix D.2 describes details and steps taken to clean these data.

The resulting geolocalized water quality dataset covers 2,505 monitoring stations on rivers (2,110 stations), lakes (331 stations) and canals (64 stations) over the period 1978-2020. The monitoring is done on a monthly or quarterly basis in surface waters, however the most recent database (provided by the CPCB for the post-2015 period) is available only at the annual scale and provides the maximum and minimum pollution measurements for the year. Subsequently, all measurements are aggregated at the annual level.

In the analysis, the main indicator of water pollution is the level of fecal coliforms, which is consistenly measured to monitor the level of fecal contamination in water and the presence of pathogens harmful to human health (see Section 2). Biochemical oxygen demand (BOD) and dissolved oxygen (DO), which characterize pollution by organic matter, are also studied. High values of fecal coliforms and BOD are indicative of heavy pollution, while DO levels are inversely proportional to pollution.

As observed in the USA by [START_REF] Keiser | Consequences of the clean water act and the demand for water quality[END_REF], dissolved oxygen levels follow a roughly normal distribution, while fecal coliforms and biological oxygen demand are more skewed (Figure A5).

Over the period 1990-2020, no major change in average pollution is observed for any of the three organic indicators across the oldest river water monitoring stations. Figure A2 extends the trends of these pollutants studied up to 2005 by [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF]. Over the full period, water pollution measured by fecal coliforms and biological oxygen demand levels are on average above the thresholds used by the Indian government to define water fit for bathing. The health of the population exposed to the high pollution levels is particularly at risk. Figure A3 represents the annual means of average fecal coliform level over the full sample of monitoring stations, according to their location within urban areas reported in the STP inventory (N=518), downstream up to 100km of an urban area reported in the STP inventory (N=469) and other monitoring stations (N=1518). India's rivers flowing through urban areas -as reported in the sewage treatment plants inventory -and their downstream couterparts are the most heavily polluted surface water across India.

Health measures

I use the two latest rounds of the National Family Health Survey (NFHS-4 and NFHS-5), conducted respectively in 2015-16 and in 2019-21. 9 The NFHS is a large, nationally representative survey that collects data from women aged 15 to 49. Respondents report birth histories, including deaths and stillbirths. NFHS also includes information on household assets and provides the geo-coordinates of groupings of households that participated in the survey, known as NFHS clusters.

The main outcome variable is mortality within the first six months of life, as children aged 0 to 6 months are particularly vulnerable to gastrointestinal infections since their digestive system is not yet fully developed (See Section 2). According to the information collected on food consumption among the children under two years old in the NFHS-4 and NFHS-5 surveys, more than half of the children aged 4 to 6 months are not exclusively breastfed and received plain water during the day and night before the survey (Figure 3). This implies that most children, before reaching six months of age, are at a high risk of infections from drinking water if it is contaminated with fecal pathogens.

In the sensitivity analysis, I explore several alternative variables related to mortality temporality.

For each birth history panel of NFHS-4 and NFHS-5, I create a binary indicator based on whether child i born in year y died within the first six months of life.10 Children born during the COVID-19 pandemic in 2020 and 2021 are excluded from the analysis. For readability, I scale mortality variables per 1,000 live births.

Health determinants included in the analysis are at the child level, mother level, and household level. Child determinants include indicators for the child being a female, being part of a multiple birth, being the first born, being the fourth child or more. Determinants at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household-level determinants include indicators related to wealth quintiles.

Hydrological network HydroSHEDS

I matched each urban area polygon, which contains at least one sewage treatment plant, to both the river network and hydrological sub-basins boundaries from HydroSHEDS [START_REF] Linke | Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution[END_REF]. First, I identify water quality monitoring stations located on river segments crossing urban areas and located up to 100km downstream. 11 Second, I identify NFHS cluster coordinates located inside sub-basins polygons containing river segments downstream urban areas. In the following sections, I use the expression "main basin" to identify the entire river basin to which a river segment or a sub-basin belongs to (see Figure 2). Appendix E provides details of the matching process.

Other data

Weather data

I use gridded weather datasets from the Indian Meteorological Department (IMD) that provides high resolution daily rainfall and temperature (minimum and maximum) datasets spanning 1951-2020. First, I add up the amount of precipitation that falls within a 20 km radius of each monitoring station and NFHS cluster in a year. Second, I compute the daily average temperature within a 20 km radius of each site, and then calculate the annual mean of this average temperature for each monitoring station and NFHS cluster.

Demographic growth

To measure population, I use WorldPop gridded population estimates [WorldPop and Center for International Earth Science Information Network (CIESIN), 2018]. The dataset offers an estimated total number of people per grid-cell at a resolution of 3 arc (approximately 100m at the equator) for the years 2000,2005,2010,2015,2020. I then compute total population per urban area polygon for each of the available datasets and linearly interpolate between years.

Empirical strategy

The empirical strategy first tests for a decrease in water pollution within and downstream of urban areas that initiated wastewater treatment from 2010 onwards. Second, it assesses the subsequent impact on infant health in downstream sub-basins.

To estimate the causal effect of wastewater treatment on water quality and health outcomes, I exploit variation from the treatment timing across urban areas. The foundation of my approach is to compare changes in outcomes downstream urban areas where wastewater treatment started from 2010 onwards relative to changes in outcomes downstream urban areas where wastewater treatment is planned or under construction in 2020 (the end of the study period). The restriction of the treated group to urban areas that started wastewater treatment from 2010 onwards (and not earlier) is motivated by the similarity in annual population density (both mean and median) between the two groups of urban areas, as illustrated in Figure A4. As generated wastewater is proportional to the population, it suggests that domestic water pollution trends and downstream water-related infant mortality trends should respectively be parallel in both groups of urban areas. 12 The parallel trend assumption is further validated by comparing the annual mean of the main outcomes and examining event-study specifications in subsequent analyses.

I have identified 273 urban areas that began wastewater treatment from 2010 onwards and 185 urban areas where wastewater treatment is in project in 2020. In the following sections, "treated" observations will refer to pollution and health outcomes related to urban areas that have started wastewater treatment from 2010 onward, and "control" observations will refer to pollution and health outcomes related to urban areas where wastewater treatment is in project in 2020. For infant mortality outcomes, it is crucial that the child was born and spent its initial months in the NFHS cluster where the mother was interviewed. I then exclude all children who are born from visiting mothers or who are born at a time where the mother did not live in the residence corresponding to the NFHS cluster. Table A1 andTable A2 provide descriptive statistics for respectively water pollution and infant mortality panels.

Both the water pollution and infant mortality panels are unbalanced and do not precisely overlap in their coverage of urban areas. Some monitoring stations are in urban areas without a corresponding downstream NFHS cluster, such as when the urban area is near the sea, and some of the births occurred downstream urban areas where water quality is not monitored. To enhance the accuracy of the treatment effect estimate and mitigate selection bias,13 I apply two restrictions to the full sample before analysis: (i) if there is an outcome data (water pollution measure or birth) from a monitoring station or NFHS cluster related to an urban area after it has started wastewater treatment, then that monitoring station or NFHS cluster is only included if it has at least one data point before the urban area starting wastewater treatment; (ii) if the urban area doesn't treat wastewater in 2020, then the monitoring station or the NFHS cluster is only included if it has at least two outcome data points. A monitoring station or a NFHS cluster is only included in the subsequent regressions if it has outcome data for the specific dependent variable of that given regression. Table 1 summarizes The difference-in-differences methodology relies on the assumption of parallel trends between the treatment and control groups. A simple comparison of the evolution of the annual mean of the two main outcomes variables, the logarithmic transformation of fecal coliforms levels and the mortality under six months, between the treatment and control groups already encouragingly shows signs of parallel pre-trends (Figure A6 and Figure A7).

Water pollution specifications Difference-in-differences

Recent literature has shown that standard two-way fixed effect regression estimates are subject to bias when effects are heterogeneous across units and time. Such estimates can be severely biasedand may even be incorrectly signed -when treatment effects change over time within treated units [De Chaisemartin andd'Haultfoeuille, 2020, Goodman-Bacon, 2021].

To solve this issue, I use the estimator proposed by [START_REF] Gardner | Two-stage differences in differences[END_REF] that is robust to heterogeneous effects in the case of a staggered difference-in-differences design where treatment effects vary over time. The estimator is determined by fitting a regression of the outcome on group and time fixed effects in the sample of untreated observations. This regression then predicts the counterfactual outcome for treated observations. Provided there is common support for group and period fixed effects, implying the existence of treatment and comparison units in each group and period, we can identify fixed effects using solely the untreated groups and periods. The treatment effect estimates are then simply derived by subtracting the counterfactual from the actual outcome of those observations. This approach is equivalent to the one proposed by [START_REF] Borusyak | Revisiting event study designs: Robust and efficient estimation[END_REF] methodology. This estimator offers flexibility for specifications such as triple-differences or models allowing for group-specific linear trends [START_REF] De Chaisemartin | Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey[END_REF].

I estimate the regressions: 14

Not (yet) treated:

ln(F coli) iaby = X iy γ + δ i + η by + ϵ iaby Full sample: ln(F coli) iaby -δ i -η by = βT ay + X iy γ + µ iaby (1)
14 I use the R package from [START_REF] Butts | did2s: Two-stage difference-in-differences[END_REF] where ln(F coli) iaby is the log of fecal coliforms at monitoring station i located within or downstream urban area a in main basin b and year t. T ay is a binary indicator variable that switches on and stays on for all subsequent years when sewerage treatment started in the urban area a.15 X iy includes the logarithmic transformation of the sum of precipitation that fell within a 20 km radius of the monitoring station i in year y. Monitoring station fixed effects (δ i ) control for time-invariant characteristics of each monitoring station and the surrounding location. To account for any secular trends in water quality across years, which may vary across main river basins (b), I include main basin-year fixed effects η by . Lastly, standard errors are clustered at the urban area level.

Event-study

The underlying assumption for Equation 1 to be causal is the parallel trends assumption. To empirically test the parallel trends assumption and explore dynamic effects, I conduct an event-study analysis in which I replace the treatment indicator in Equation 1 with yearly lead and lag treatment indicators. [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] show that, in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. As for the static difference-in-differences specification, I use the [START_REF] Gardner | Two-stage differences in differences[END_REF] estimator to estimate the regression:

Not (yet) treated: ln(F coli) iaby = X iy γ + δ i + η by + ϵ iaby Full sample: ln(F coli) iaby -δ i -η by = -10≤τ ≤6 τ ̸ =-1 β τ 1[T a,y-τ = 1] + X iy γ + µ iaby (2)
Here τ indexes years since urban area a started sewerage treatment. I use a window of 10 years before and six years after starting treatment and bin all other observations outside the event-study window into the window endpoints. The year before treatment (τ = -1) is the reference year. For τ ≥ 0, β τ estimates the cumulative effect of τ + 1 years within or downstream an urban area that started sewerage treatment. For τ < 0, β τ is a placebo relative to period prior sewerage treatment.

Infant Health specifications

Difference-in-differences

To assess the effect of upstream wastewater treatment on infant mortality, I employ the same wastewater treatment timing as mentioned above. This specification, however, emphasizes downstream outcomes, aiming to separate the health effects of wastewater treatment from other factors like sewage disposal access. I employ a difference-in-differences methodology, drawing upon the Gardner [2022]'s estimator, as described in the following specification:

Not (yet) treated: M ortality icamy = X iy γ + δ c + η y + θ m + ϵ icamy Full sample: M ortality icamy -δ c -η y -θ m = βT ay + X iy γ + µ icamy (3)
M ortality icamy is a binary indicator set to one if child i, born in month m of year y, and whose mother participated in the NFHS cluster c survey within 100km downstream of urban area a, died within the first six months of life. T ay is a binary indicator variable that switches on and stays on for all subsequent years when sewerage treatment started in the urban area a. X iy includes controls 

Event-study

Mirroring the water pollution approach, I empirically test the parallel trends assumption and explore dynamic effects using the subsequent event-study specification :

Not (yet) treated: M ortality icamy = X iy γ + δ c + η y + θ m + ϵ icamy M ortality icamy -δ c -η y -θ m = -6≤τ ≤6 τ ̸ =-1 β τ 1[T a,y-τ = 1] + X iy γ + µ icamy (4)

Robustness specifications

For robustness checks, I use the estimator proposed by and [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF], as well as the stacked regression approach. Both methods are robust to heterogeneous treatment effects in cases where treatment is binary and staggered.

According to the methodology of [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF], groups are aggregated into cohorts that start receiving the treatment at the same period. I use the never-treated groups as controls.

With the stacked regression approach, each treated unit is matched to "clean" (i.e. not-yettreated) controls and there are separate fixed effects for each set of treated units and its control, as in [START_REF] Cengiz | The effect of minimum wages on low-wage jobs[END_REF] among others. [START_REF] Gardner | Two-stage differences in differences[END_REF] shows that this approach estimates a convex weighted average of the average treatment effect on the treated (ATT) under parallel trends and no anticipation, although the weights are determined by the number of treated units and variance of treatment within each stacked event, rather than by economic considerations [START_REF] Roth | What's trending in difference-in-differences? a synthesis of the recent econometrics literature[END_REF].

Results

Wastewater treatment and Water Pollution

I find large decline in most pollutants after operation of wastewater treatment.

Fecal coliforms

The first analysis examines the relationship between wastewater treatment and average fecal coliforms levels.16 

Main results Table 2 presents results on average fecal coliforms levels for a variety of specifications and the estimators by [START_REF] Gardner | Two-stage differences in differences[END_REF], [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF], and classic TWFE estimator.

Column 1 compares measures of fecal coliforms in monitoring stations within or downstream ag-glomerations that started wastewater treatment from 2010 onwards to urban areas where wastewater treatment was proposed or under construction in 2020 by estimating equation 1. Column 2 adds weather controls to this specification. The log-transformed results imply that operating sewage treatment plants decreased fecal coliforms levels within and downstream urban areas by around 53%, a result that is significant at the 5% level.

The results are robust to regressions using urban area fixed effects. Columns 3 and 4 of Table 2 present results from estimating the specification using urban area fixed effects while controlling for the distance along the river network between the monitoring station and the urban area. The Stacked Difference-in-Differences (Stacked DD) methodology estimates are on a similar order of magnitude (Table B1). The estimate of Column 2 implies a decrease by 50% significant at the 10% level.

Figure 4 summarizes the results across all the specifications and estimators. The estimators robust to heterogeneous treatment effects when treatment varies over time provide consistent results.

Only the classic TWFE estimate is of a slightly smaller order of magnitude and non-significant at the 10% level. Negative weights may be part of the reason for the difference as Figure B2 shows that 7% of treated observations receive negative weights in the TWFE regression reported in Column (2) of Table 2. Across all robust estimators and specifications using monitoring station fixed effects or urban area fixed effects, the decrease of fecal coliforms levels after wastewater treatment is as high as 50%.

Dynamic specification Figure 5 presents dynamic effects of wastewater treatment on ambient

water pollution according to the [START_REF] Gardner | Two-stage differences in differences[END_REF] methodology. The event study, as described in

Equation 4 aids in diagnosing potential endogeneity in the timing of the rollout by examining preexisting trends in water pollution. Prior to the commencement of sewage treatment in an urban area, there appears to be no discernible trend in pollution, supporting the parallel trends assumption. In the post-treatment period, the coefficients are negative and decrease over time which suggests that the decrease in fecal coliforms levels intensifies over time. The opening of new treatment stations or increased compliance with environmental standards could explain this finding.

Alternative estimators based on the [START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] methodology and the simple twoway fixed effects provide similar results (Figure B1).

Other measures of organic water pollution

I examine here the other two water pollutants, biochemical oxygen demand (BOD) and dissolved oxygen (DO), which indicate organic matter pollution and are consistently reported by the Indian water agencies. Contrary to fecal coliforms and BOD levels, DO levels are inversely proportional to pollution. Maximum measures of fecal coliforms and BOD levels, as well as minimum measures of DO levels, indicate the highest organic water pollution exposure over the year, while minimum of fecal coliforms and BOD levels and maximum of DO levels correspond to the lowest organic water pollution exposure.

Table 3 presents results using Equation 1for each minimum and maximum measure of the three organic pollutants over the year. Columns ( 1) and ( 2) show that maximum fecal coliforms and maximum BOD levels decreased significantly after the operation of wastewater treatment and Column

(3) that minimum DO level increased. According to the [START_REF] Gardner | Two-stage differences in differences[END_REF] estimate, the maximum of BOD decreased by 23% and the minimum of DO increased by 0.35mg/L, which represents around 6% of the mean over the period. Since sewage is not the only source of BOD and DO pollution, the presence of other sources of pollution near urban areas, which are untreated by wastewater treatment plants, might account for the less pronounced decrease in these pollutants compared to fecal coliforms.

Another possible explanation for the disparity in reduction magnitudes is that wastewater treatment plants are more effective in reducing fecal coliform levels than the other pollutants.

Moreover, while the operation of wastewater treatment significantly affected the maximum organic pollution levels, it seemingly had no impact on the minimum pollution levels throughout the year, as shown in Columns 4 to 6. This suggests that water quality during periods of minimal pollution might already be at a threshold where any further improvement from wastewater treatment would be minor or negligible. with respect to the mortality over the period 1991-2019.

Wastewater treatment and Infant Health

Mortality Results

Main results

Columns 3 and 4 of Table 4 present results from estimating the specification using urban area fixed effects while controlling for the distance along the river network between the NFHS cluster and the urban area. The estimates are consistent with the results of the baseline specification.

Table B2 presents consistent results with the Stacked Difference-in-Differences (Stacked DD)

estimator.

Figure 6 summarizes the results across the specifications with NFHS clusters or urban area fixed effects and the four estimators.

Table B3 presents results that employ mother fixed effects, controlling for unobserved family characteristics that could be correlated with both water quality and infant mortality. In each regression, the sample is restricted to mothers downstream treated urban areas who gave birth at least to one child before treatment and one child post-treatment and mothers downstream control urban areas who gave birth to at least two children. Overall the coefficients are less precise, partly reflecting a reduction in statistical power as a result of the fewer observations, however the magnitude of the estimates do not change in comparison with Table 4. Finally, Figure B4 compares the estimates of equation 3 for mortality rates from neonatal mortality (child died before one month) to infant mortality (child died before one year) at the monthly level. While results are consistent for the different variables, mortality under four and six months are most significantly affected. This result is likely due to children aged 4 to 6 months being more sus-ceptible to gastrointestinal infections, given their still-developing digestive systems (See Section 2).

Dynamic specification

Additionally, from 4 months onwards, many mothers no longer exclusively breastfeed and introduce complementary foods to their children, which increases the risk of contamination (Figure 3).

Other health outcomes

During each NFHS interview, anthropometric measurements, blood tests, and information on the health of children under 5 years are collected, either performed by the NFHS interviewer or reported by the mother. However, as NFHS surveys are cross-sectional, few health variables, apart from mortality, can be studied in a panel at the NFHS cluster level. Using NFHS cluster fixed effects is important because it controls for unobserved birthplace characteristics such as access to healthcare services, road infrastructure, and the neighborhood. Variables related to other health outcomes do not permit the detailed study of the effect of wastewater treatment on health with the same precision as mortality variables (See Appendix C).

Robustness checks

Certain factors could challenge the benefits of wastewater treatment on mortality in children under six months, especially when questioning the independence of the treatment's timing. Plausible confounders must affect downstream sub-basins differently only after the urban area starts wastewater treatment.

Composition and Births

There may be concerns that the composition of mothers somehow changes. In other words, it is possible that the mothers giving birth after wastewater treatment begins in upstream urban areas possess different characteristics in ways that could explain some of the variation in health outcomes. To test if individuals sort into treated communities, I explore how demographic and maternal characteristics evolve after that wastewater treatment starts upstream the treated sub-basins.

I investigate how wastewater treatment impacts the controls used in the mortality regressions.

Tables B4, B5 and B6 estimate equation 3 on respectively child, mother and household controls.

Figures B5, B6, B7 and B8 present the event-studies according to Equation 4.

The only variable influenced by wastewater treatment is the one indicating that the mother has received a higher education. This result suggests a potential migration of mothers with higher education levels to the treatment areas, a logical outcome if the reduction in pollution becomes noticeable or known. To verify that this migration is not the reason why mortality decreases after wastewater treatment, I run the regression following Equation 3 by excluding from the main sample all children born to mothers with the highest education levels. Table B7 presents the results excluding children born from mothers with higher education with the [START_REF] Gardner | Two-stage differences in differences[END_REF], the Sun and Abraham

[2021] and the classical TWFE methodologies, as well as Table B8 with the stacked regression approach. Figure B9 summarizes the results. The magnitude of the estimates does not change. The [START_REF] Gardner | Two-stage differences in differences[END_REF]'s estimate suggests a decrease of 7.3 children per 1000. The mortality decrease in downstream sub-basins after wastewater treatment begins in urban areas is not attributable to the potential migration of highly-educated mothers.

These tests provide supporting evidence that the mortality results are unlikely to be explained by sorting pattern of mothers into treated sub-basins.

Effect on upstream areas

There might be concerns about other local policies coinciding with water treatment. From 2014 to 2019, the Government of India initiated the Schachh Bharat Mission (SBM) or Clean India Mission at the country-level to achieve an "open-defecation free" India through construction of toilets. If toilet construction coincided with wastewater treatment, improved sanitation could be a potential confounder in the observed decrease in mortality.

Table B10 replicates the regressions from Table 4, focusing on mortality in sub-basins upstream of urban areas. The estimates are non-significant (and positive), suggesting that the reduction in mortality occurred only downstream of the urban areas. These findings suggest that the reduction in infant mortality can be attributed to improvements in water quality in the sub-basins downstream urban areas that started wastewater treatment.

Figure B10 summarizes the results across the specifications with NFHS clusters or urban area fixed effects and the four estimators.

Parental behavior

The potential transmission of fecal pathogens is significantly influenced by drinking water treatment,

hygienic practices like open defecation, and exclusive breastfeeding. Fecal coliforms, like other bacteria, can typically be inhibited in growth by boiling water, treating with chlorine, or using UV disinfection. The World Health Organization recommends exclusively breastfeeding infants up to the age of 6 months to protect them from potential infections (See Section 2).

Given the cross-sectional nature of NFHS interviews, which are used to construct the birth history panel, there is no control over various parental behaviors related to water treatment, toilet use, or liquids given during childbirth for the entire panel. These variables are recorded based only on behavior at the date of the interview. These comparisons suggest that the mortality results are not driven by differences in parental behavior.

Falsification test on air pollution

As falsification test, I estimate the effect of starting wastewater treatment on air pollution measured by the minimum, mean and maximum PM 2.5 annually from 1998-2020. I use urban area and year fixed effects, while clustering standard errors at the state level.

Table B11 shows that air pollution, measured by minimum, mean and maximum PM 2.5 over the year, did not respond to wastewater treatment within urban areas.

This is supportive evidence that other environmental policies related to air quality are not systematic confounders of wastewater treatment and that health impacts are attributable to water pollution and not to a change in air quality. 

Discussion

Cost-Benefit Analysis of Wastewater Treatment all over India

This exercise relies on several assumptions and estimates sourced from existing literature. I try to be conservative in the benefit estimation while more liberal in the cost estimation.

Mortality Benefit Together with my estimate on the change in mortality (Table 4), the mortality benefit of wastewater treatment is quantified using value of statistical life (VSL). The VSL approach is commonly used by policymakers to evaluate the benefits of life-saving regulations. Given the scarcity of VSL estimates for developing countries, I adopt the methodology from Barwick et al.

[2023], which quantifies the mortality benefits from China's air quality monitoring program. This approach employs a benefit transfer method, deriving the VSL for Chinese residents from U.S.-based VSL estimates and the income elasticity of VSL. The subsequent calculations adjust this method to fit the Indian context, referencing the same literature but using the income ratio between India and U.S.. [START_REF] Ashenfelter | Estimating the value of a statistical life: The importance of omitted variables and publication bias[END_REF] estimate that the VSL in the U.S. is $2.3 million, which can be considered as a lower bound. [START_REF] Narain | Methodology for valuing the health impacts of air pollution: discussion of challenges and proposed solutions[END_REF] suggest a transfer elasticity of 1.2 for transferring the VSL from U.S. to a developing country. Combined with a 1 : 36 income ratio between India and U.S., the VSL for population in India amounts to INR 3.5 million in 2015. 19 The Gardner [2022]'s estimate in Column (2) in Table 4 suggests that wastewater treatment reduced total mortality by 7.7

children per 1,000 live births. According to 2020 WorldPop estimates, an average of 228,000 people resides downstream of urban areas where wastewater treatment was reported for either current or planned operations. With a crude birth rate of 16.5 per 1,000 inhabitants, wastewater treatment is estimated to reduce deaths by approximately 1,756 annually downstream of these urban areas. In the period 2008-09, the CPCB identified 908 urban areas, each with a population surpassing 50,000 residents, for evaluation regarding urban wastewater generation.

The mortality benefit from reduced deaths stands at INR 5,600 billion (about $88 billion) annually. 20 This likely represents a lower-bound estimate of the benefits from wastewater treatment for several reasons. First, the VSL estimate is a conservative value of $2.3 million for the U.S. Second, the mortality benefits focus on places located downstream of urban areas that treat wastewater, without considering the benefits within the urban areas themselves. Third, the benefit calculation does not factor in morbidity benefits, quality-of-life enhancements, productivity improvements due to better health, or benefits of diminished pollution on aquatic ecosystems and related activities, such as fish farming. Fourth, even though the count of urban areas with populations exceeding 50,000 is based on 2008 estimates, rapid urbanization and population growth suggest a larger number of urban areas now generate substantial amounts of wastewater. 

Cost of wastewater treatment

Conclusion

This paper examines the role of wastewater treatment in improving water quality and mitigating the negative health impacts of downstream pollution. I focus on the recent operations of sewage treatment plants in India. Using detailed river water quality datasets, along with geo-localized data on child births and deaths, the analysis shows that recent wastewater treatment installations have been costeffective. Fecal coliform levels within and downstream urban areas that started sewage treatment from 2010 onwards decreased by 50%. Mortality under the age of six months decreased by 19% in sub-basins downstream urban areas that started wastewater treatment compared to those located downstream urban areas where plants were not operational as of 2020. The estimates suggest that, if wastewater treatment were implemented across the majority of urban areas in India, the mortality benefits would be approximately twice the combined costs of both implementing the sewage treatment and its ongoing operation and maintenance.

From a policy standpoint, India still holds potential to realize health benefits through enhanced wastewater treatment. As of 2020, the capacity of municipal sewage treatment plants covered less than 30% of the total urban wastewater estimate.

Given that water pollution is not monitored either within nor downstream each urban area, this paper advocates for the enforcement of water quality monitoring as a means to better control water pollution. To ensure global access to safe and affordable drinking water, better information is needed.

This can be achieved through enhanced risk-based monitoring by national agencies and water service providers [START_REF] Charles | Invited perspective: beyond national water quality surveys: improving water quality surveillance to achieve safe drinking water for all (sustainable development goal 6.1)[END_REF]. There is especially an urgent need for reducing widespread exposure to fecal contamination through drinking water services in low-and middle-income countries [START_REF] Bain | Monitoring drinking water quality in nationally representative household surveys in low-and middle-income countries: cross-sectional analysis of 27 multiple indicator cluster surveys 2014-2020[END_REF]. To provide a better risk management to reduce fecal contamination, cross-sectional water quality data can also be collected in household surveys and can be used to examine risk factors for contamination.

India's experience offers valuable insights for other developing countries that are facing alarm-treatment is often inadequate or does not exist. Additionally, those most vulnerable to pollution often lack the resources to engage in avoidance behaviors. Operating sewage treatment plants is a cost-effective tool to help households mitigate health damages from water pollution. However, the choice of technologies for the treatment and disposal of sludge and residues is currently debated, depending on the potential for water reuse [START_REF] Patel | Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources[END_REF][START_REF] Minier | Can sewerage be considered safe management of human feces?[END_REF]. 10 Tables Notes: Columns 1A and 2A tabulate the total number of urban areas in each year, while columns 1C and 2C tabulate the number of urban areas that treat wastewater in each year. Column 1B tabulates the total number of monitoring stations in each year, while column 1D tabulates the number of monitoring stations located within or downstream an urban area that treats wastewater in this year. Column 2B tabulates the number of NFHS clusters downstream an urban area in each year, while column 2E tabulates the number of NFHS clusters downstream an urban area that treats wastewater in this year. Column 2C tabulates the number of children born downstream an urban area in each year, while column 2F tabulates the number of children born downstream an urban area that treats wastewater in this year. I subject the full sample to two restrictions before analysis, both of which applied here. (i) If there is an outcome data (water pollution measure or birth) from a monitoring station or NFHS cluster related to an urban area after it has started wastewater treatment, then that monitoring station or NFHS cluster is only included if it has at least one data point before the urban area starting wastewater treatment. (ii) If the urban area doesn't treat wastewater in 2020, then the monitoring station or the NFHS cluster is only included if it has at least two outcome data points.

Figures

A monitoring station or a NFHS cluster is only included in the subsequent regressions if it has outcome data for the specific dependent variable of that given regression. (2)

(3) (4)

(5) (6)

Estimator : Gardner ( 2022 Notes: Panel A compares the summary statistics between monitoring stations within or downstream urban areas where wastewater treatment started between 2010 and 2020 and monitoring stations within or downstream urban area where wastewater treatment is in project in 2020 before wastewater treatment started in the sample (before 2010), while Panel B compares the summary statistics since 2010 when the first operation of sewage treatment plants were observed in the data. The unit of observations is the monitoring station level. Contrary to fecal coliforms and biological oxygen demand (BOD) levels, dissolved oxygen (DO) levels are inversely proportional to pollution. Notes: Panel A compares the summary statistics between children born downstream urban areas where wastewater treatment started between 2010 and 2020 and children born downstream urban area where wastewater treatment is in project in 2020 before wastewater treatment started in the sample (before 2010), while Panel B compares the summary statistics since 2010 when the first operation of sewage treatment plants were observed in the data. Mortality before 6 months is the number of deaths among children less than six months old, scaled per 1,000 births. The unit of observations is the child level. 2) compares mortality among female and male children while the model in columns (3) and (4) compares mortality among low wealth (first or second) quintile and high wealth (third, fourth and fifth) quintile children. All models include NFHS cluster fixed effects, birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Extended controls are the same as in the baseline regressions, except that the child female control is excluded in columns (1) and (2). Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***). Notes: The table presents the coefficients of the estimators according to the stacked difference-in-diferences methodology. The model in columns ( 1) and ( 2) includes monitoring station fixed effects and main basin-by-year fixed effects while the model in columns ( 3) and ( 4) includes urban area fixed effects and controls for the river distance between the monitoring station and the urban area. Columns ( 2) and ( 4) add controls for precipitation and temperature. Standard errors are clustered at the urban area level. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***). 2) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. In each regression, mothers downstream treated urban areas gave birth at least to one child before treatment and one child post-treatment and mothers downstream control urban areas gave birth to at least two children. Child controls include indicators for the child being a female, being a multiple birth, and only for columns (3) and (4) being the first born, being the fourth or more born. Mother controls include indicators for the mother being under 18 years old when the child is born, being over 35 years old when the child is born. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***). Low weight-for-height is known as wasting. It usually indicates recent and severe weight loss, because a person has not had enough food to eat and/or they have had an infectious disease, such as diarrhoea, which has caused them to lose weight. A young child who is moderately or severely wasted has an increased risk of death, but treatment is possible. A child with a WHZ below -2 SD is considered to be wasted.

B Robustness

Hemoglobin level/Anemia : Anemia defined as low levels of blood hemoglobin, can be caused by diets lacking iron, vitamin B12, and folic acid, all of which are necessary for the production of red blood cells. Intestinal parasites also contribute to low blood hemoglobin in developing country settings [START_REF] Geruso | Neighborhood sanitation and infant mortality[END_REF] In children, a hemoglobin level below 11mg/L corresponds to anemia.

Table C3 presents descriptive statistics for children age 0-59 months for whom weight-for-height and hemoglobin level were measured by the NFHS interviewers and/or diarrhea in the last two weeks was reported by the mother. This compares children according to upstream water treatment at the date of the interview and not at the date of birth as in mortality regressions. The means suggest that children living in NFHS clusters downstream of urban areas that treat wastewater suffer less from acute malnutrition. There is no noteworthy difference in hemoglobin levels or anemia. Means for the incidence of diarrhea, fever and cough suggest that children in areas downstream of wastewater treatment are sicker than others. However, these results should be treated with caution due to the problems with survey-reported diarrhea, as highlighted by [START_REF] Geruso | Neighborhood sanitation and infant mortality[END_REF].

In the end, other health variables do not allow us to reliably assess the effect of wastewater treatment, due to biases associated with the reporting of morbidity variables and low statistical power. Notes: Columns 1A and 2A tabulate the total number of urban areas in each year, while columns 1C and 2C tabulate the number of urban areas that treat wastewater in each year. Columns 1B and 2B tabulate the number of NFHS clusters downstream an urban area in each year, while columns 1E and 2E tabulate the number of NFHS clusters downstream an urban area that treats wastewater in this year. Columns 1C and 2C tabulate the number of children born downstream an urban area in each year, while columns 1F and 2F tabulate the number of children born downstream an urban area that treats wastewater in this year. I subject the full sample to two restrictions before analysis, both of which applied here. (i) If there is a birth in a NFHS cluster related to an urban area after it has started wastewater treatment, then that NFHS cluster is only included if it has at least one data point before the urban area starting wastewater treatment. (ii) If the urban area doesn't treat wastewater in 2020, then the NFHS cluster is only included if it has at least two outcome data points. A NFHS cluster is only included in the subsequent regressions if it has outcome data for the specific dependent variable of that given regression. [2021] and classic TWFE methodologies. The model in columns (1) and (2) uses a binary treatment indicator for whether or not the urban area upstream the NFHS cluster where anthropometric measures for the child are taken treat wastewater for more than half the child's life while the model in columns (3) and (4) uses the binary treatment indicator that indicates whether the urban area upstream treat wastewater since the birth year of the child. All models include urban area, birth month and birth year fixed effects. Stunted and Low birth weight variables are scaled to generate coefficients that indicate impacts on rates × 1,000 (cases per 1,000 children). For birth weight regressions, the controls are the same than for mortality regressions. For HAZ regressions, the controls are the following. Child controls include indicators for the child being a female, being the first born and child age in months. Mother controls include indicators for the mother having primary education, having secondary education, having higher education, being muslim, being nor hindu neither muslim, belonging to scheduled caste, belonging to scheduled tribe, belonging to other backward caste (OBC). Household controls include indicators for wealth quintiles. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***). Notes: Panel A compares the summary statistics between children born downstream urban areas where wastewater treatment started between 2010 and 2020 and children born downstream urban area where wastewater treatment is in project in 2020 based on interviews conducted in the NFHS-4 survey over the period 2015-2016, while Panel B compares the summary statistics in 2019 based on NFHS-5 interviews. The unit of observations is the child level. Wasted, anemic, diarrhea, fever and cough variables indicate rates × 1,000 (cases per 1,000 children). Treatment is based on the interview year and not on the birth year considered for infant mortality regression.

C.4 Figures and Tables

D.1.2 Merging at the urban area level

I manually matched each sewage treatment plant (STP) according to the administrative descriptors provided in the CPCB inventory (state, town and an accompanying string description of location)

to the India Village-Level Geospatial Socio-Economic (IVLGSE) Data Set [START_REF] Meiyappan | India village-level geospatial socio-economic data set: 1991[END_REF].

This dataset provides village/town level boundaries from the official cadastral maps published by the Survey of India for 2001.

Of the 1631 STPs reported in the inventory, I match respectively 1606 STPs to the boundary of a town or of a village in the IVLGSE dataset. In total, 848 village/town polygons contain at least one STP.

To account for the evolution of administrative boundaries over time and for the fact that wastewater from a town may be treated in a nearby area, I aggregated the data by merging the boundaries of neighbouring polygons containing STPs up to a distance of 2km27 .

This final merging results in 684 urban areas. The average area of one of these urban areas is 56km 2 , while the median is 15km 2 .

Of these 684 urban areas determined from the list of 1631 STPs reported in the national inventory, I exclude 109 urban areas that have at least one operational STP in 2020, but commissioned year is missing for one of them which doesn't allow to determine the year in which wastewater treatment began. Keeping only urban areas for which the year of commission of operational STP is known or urban area without operational STP, the dataset contains 575 urban areas.

Current work consists in providing exact plant geolocation based on Google Maps identification (Figure 1). So far, I have identified 564 of the 1631 stations that are correctely located in the urban areas.

D.2 Water quality D.2.1 Data sources

This section provides additional information on the data then explains how I extract and clean it.

I use water pollution readings from four data repositories: the GEMS database28 , the India-WRIS platform 29 , the published database from [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF] and the public database from the Central Pollution Control Board (CPCB) 30 . First, I identify all the river segments crossing each urban area polygon boundaries. Only 25 urban areas out of 684 are not crossed by rivers. In total, 4928 distinct rivers segments cross urban areas with a mean length of 4.8 kilometers. I construct chains of downstream rivers segments from an urban area up to 100km.

I match each monitoring station to a river segment. Based on the matching of urban areas to river segments, I can then identify monitors that located within or downstream urban areas up to a river distance of 100km 2 . Figure D11 illustrates for example the matching of river segments and monitoring stations to urban areas containing STPs in Uttar Pradesh.

Second, I define the sub-basins downstream an urban area as the ones containing the corresponding downstream river segments. I then identify NFHS clusters located in sub-basins downstream urban areas. Figure D12 maps for example the sub-basins containing STPs in Uttar Pradesh, the related downstream sub-basins and the NFHS clusters within these sub-basins. 

  Indian environmental regulations on water quality have been implemented since 1974 by the Water (Prevention and Control of Pollution) Act. The Indian government has created central and state agencies of the Ministry of Environment, Forest and Climate Change (MoEFCC) to prevent, control and abate environmental pollution. These agencies, the Central Pollution Control Board (CPCB) and the State Pollution Control Boards (SPCBs), are responsible for developing the India National Water Plan. The CPCB establishes water usage criteria across five categories (Figure D1). The first three categories correspond to drinking water and outdoor bathing, and they depend on four water quality indicators: total coliform count, pH level, Biological Oxygen Demand (BOD), and Dissolved Oxygen (DO) content. Total coliform count encompasses fecal coliform numbers. Fecal coliforms are specifically monitored to indicate fecal contamination in water. Both BOD and DO gauge organic pollution levels. BOD measures the quantity of oxygen required by the decomposition of organic waste in water. High values (mg/L) are indicative of heavy pollution. DO is similar to BOD except that it is inversely proportional to pollution. These indicators are consistently monitored within India's water quality monitoring network to detect public health risks for those exposed to surface waters. Overall, Indian rivers are heavily polluted due to the discharge of untreated sewage, industrial effluents, and agricultural runoff. While human activities are the main sources of water pollution, weather can also play a role in the concentration of pollutants. Precipitation can decrease pollution by diluting the concentration of pollutants or increase water pollution by bringing new pollutants into the river, especially in the case of flooding. Temperature also plays an important role because of its influence on water chemistry, as the rate of chemical reactions generally increases at higher temperatures. In 2015, 70% of rivers monitored (275 out of 390) were identified as polluted by the CPCB based on assessment of BOD monitored during the years 2009-2012. The report identifies the discharge of untreated domestic wastewater from the urban centres as the main source of pollution.

  Figure D2 summarizes the responsibilities in the large-scale sanitation sector.

  inventory of sewage treatment plants I use the national inventory of sewage treatment plants (STPs) released in March 2021 by the Central Pollution Control Board (CPCB). This inventory was carried out during 2020-21 by the State Pollution Control Boards and the Pollution Control Committees. This inventory focuses on urban sewage treatment plants that are built under the decision of Urban Local Bodies (ULBs) and Water Supply and Sewerage Boards (WSSBs). The inventory lists 1,631 STPs all over India. 8

  the number of urban areas, monitoring stations, NFHS clusters and births of the regression samples by year. The water regressions sample covers 67 treated urban areas (135 operational sewage treatment plants) and 75 control urban areas. The infant mortality regressions sample covers 134 treated urban areas (214 operational sewage treatment plants) and 138 control urban areas. Appendix F maps state by state all the urban areas, monitoring stations and NFHS clusters included in the main regressions.

  for child-level, mother-level, household-level and weather determinants of health. Child controls include indicators for the child being a female, being part of a multiple birth, being the first born, being the fourth child or more. Controls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)).Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation that fell in the year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. δ c controls for all NFHS cluster time-invariant characteristics while θ m and ζ y capture respectively birth month and birth year fixed effects. Standards errors are clustered at the urban area level.

  Figure 7 presents the dynamic effects of wastewater treatment on mortality. I observe no significant pre-trends in the pre-treatment period. Alternative estimators based on the Sun and Abraham [2021] methodology and the simple two-way fixed effects provide similar results (Figure B3). Heterogeneity I continue the mortality analysis by examining subgroup responses. I repeatedly split the sample into two using respectively child sex and the wealth quintile distribution of households, wherein I study children into the first two quintiles and the last three quintiles separately.

  In 2021, the CPCB estimated that sewage generation from urban centers stood at 72,368 megaliters per day (MLD). Costs associated with implementation, operation, and maintenance differ significantly based on the treatment technology used. Specific requirements -including land area, energy consumption, chemical needs, and skilled labor levelsvary depending on the technology. Based on the implementation costs of 25 sewage treatment plants between 2009-2017, the capital cost for treating 1 MLD averages INR 40 million. 21 This estimated cost represents an upper bound for the capital outlay of 1 MLD. It encompasses expenses related to sewage collection, treatment, and disposal systems and exceeds any capital cost detailed for specific technologies in the CPCB [2013]'s report. The total implementation costs for urban wastewater generated in 2020 come to approximately INR 2,900 billion (about $45 billion). 22 For annual operation and maintenance costs, I rely on the upper-limit values from the CPCB [2013]'s report. These costs break down to INR 0.5 million/MLD for power, INR 0.2 million/MLD for repairs, INR 0.9 million/MLD for chemicals, and INR 3.4 million/MLD for manpower, totaling approximately INR 5 million/MLD in overall annual operation and maintenance expenses. As a result, the yearly expense for operating and maintaining sewage treatment for all of India's urban wastewater is approximately INR 362 billion (about $5.7 billion).. Taken together, a likely upper bound of the total costs is INR 20 1756*908*3.5 ∼ 5.6 million 21 I gathered data about infrastructure projects implemented by the Government, either through traditional procurement or Public Private Partnership (PPP), by webscraping the Department of Economic Affairs website in June 2021: https://www.pppinindia.gov.in/iipdf_projects 22 72,368*40=2,900,0003,262 billion in its first year (accounting for implementation) and INR 362 billion annually thereafter.The estimated annual benefits and costs of wastewater treatment if it were implemented across most important urban areas -at least INR 5,600 billion of health benefits relative to the associated costs of maximum INR 3,262 billion -underscores the cost-effectiveness of treating urban sewage in India.
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 1 Figure 1: Example of geolocation of sewage treatment plants on Google Maps
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 2 Figure 2: Map of main basins according to the HydroSHED basins at Pfafstetter level 12
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 4 Figure 4: DiD water pollution results summary
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 5 Figure 5: Pollution Event Study
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 6 Figure 6: DiD mortality results summary
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 7 Figure 7: Mortality Event Study

  The table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF],[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] and classic TWFE methodologies. Dependent variables are annual monitoring stations measures. In each regression, treated monitoring stations have at least one observation pre-treatment and one observation post-treatment and control monitoring stations have at least two observations. Contrary to fecal coliforms and biological oxygen demand (BOD) levels, dissolved oxygen (DO) levels are inversely proportional to pollution. All specificationq include controls for precipitation and temperature, monitoring station fixed effects and main basin-by-year fixed effects. Standard errors are clustered at the urban area level. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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 A3 Figure A3: Annual means of average fecal coliforms in the surface water quality dataset
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 B1 Figure B1: Pollution Event Study with Alternative Estimators
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 B3 Figure B3: Mortality Event Study with Alternative Estimators
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 B4 Figure B4: Effect on Mortality -Comparison from neonatal mortality to infant mortality at the monthly level
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 B5 Figure B5: Event study on child controls with Gardner estimator
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 B6 Figure B6: Event study on mother controls with Gardner estimator
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 B7 Figure B7: Event study on mother controls with Gardner estimator (continued)
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 B8 Figure B8: Event study on household controls with Gardner estimator
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 B9 Figure B9: DiD mortality results summary excluding children born from mother with higher education
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 B10 Figure B10: DiD Upstream mortality results summary
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 C1 Figure C1: Density of birth weight
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 D2 Figure D2: Government agencies responsible for urban wastewater management in India (in January 2019). (Source: Reymond et al. [2020])
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 D7 Figure D7: Histogram of the first year in which urban areas started operating sewerage treatment plants (STPs)
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 D12 Figure D12: Map of sub-basins containing STPs and downstream-related NFHS clusters in state Uttar Pradesh

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Table 4 displays the effects on mortality for children under six months of age, with Based on Gardner [2022]'s estimate in Column 2, mortality decreases by 7.7 children per 1000 following the initiation of upstream wastewater treatment, which corresponds to a decrease by 19%

	results robust across various specifications. Column 1 compares children born in NFHS clusters
	located downstream urban areas that started wastewater treatment from 2010 onwards to children

born in NFHS clusters located downstream of urban areas where wastewater treatment was proposed or under construction in 2020 by estimating equation 3. Column 2 adds child, mother, household and weather controls to this specification.

Table A3

 A3 

	presents heterogeneity results according to child gender and household wealth for Equa-
	tion 3. Decrease in mortality is larger among boys and children from low wealth (first and second)
	quintiles.

Table B9

 B9 presents summary statistics of water treatment, open defecation practices, toilet sharing, and liquids given to children under the age of 6 months at the interview date. Panel A pertains to children born in 2015-2016 (NFHS-4) and Panel B to those born in 2019 (NFHS-5). Observations are available for approximately 600 children in both the control and treatment (200 pre-treatment and 400 post-treatment) groups respectively according to NFHS-4, and for about 360 children in each group per NFHS-5. Due to low statistical power, no major differences are found between the two groups regarding parental behavior towards water treatment, open defecation, or exclusive breastfeeding.

7.1 Mortality burden of late treatment

  From 2010From to 2019, approximately 5.3 , approximately 5.3 million births took place in control sub-basins. 17 Using the[START_REF] Gardner | Two-stage differences in differences[END_REF]'s estimate of 7.7 prevented deaths per 1,000 births in treated sub-basins (Table4), a back-of-the-envelope calculation implies that over 40,000 deaths could have been prevented if wastewater treatment was implemented earlier.18 

I can calculate the total number of child deaths that could have been prevented if wastewater treatment was implemented since 2010 in control urban areas.

Table 1 :

 1 Presentation of the main regression samples

			Fecal coliforms levels				Infant mortality		
		All	All	Treated	Treated	All	All	All	Treated	Treated	Treated
		urban	monitoring	urban	monitoring	urban	NFHS	births	urban	NFHS	births
		areas	stations	areas	stations	areas	clusters		areas	clusters	
	Year	(1A)	(1B)	(1C)	(1D)	(2A)	(2B)	(2C)	(2D)	(2E)	(2F)
		42	56	0	0	215	878	1250	0	0	0
		38	52	0	0	229	1101	1662	0	0	0
		49	66	0	0	242	1212	1827	0	0	0
		46	62	0	0	244	1335	2112	0	0	0
		55	75	0	0	258	1509	2549	0	0	0
		61	87	0	0	252	1513	2648	0	0	0
		63	91	0	0	247	1622	2966	0	0	0
		62	91	0	0	251	1660	3069	0	0	0
		56	79	0	0	261	1719	3271	0	0	0
		59	85	0	0	257	1807	3588	0	0	0
		66	99	0	0	253	1709	3333	0	0	0
		78	125	0	0	263	1831	3886	0	0	0
		68	102	0	0	257	1802	3751	0	0	0
		71	114	0	0	255	1805	3764	0	0	0
		60	91	0	0	257	1785	3740	0	0	0
		74	118	0	0	254	1819	3793	0	0	0
		78	122	0	0	257	1822	3883	0	0	0
		90	154	0	0	260	1846	4035	0	0	0
		98	178	0	0	255	1852	3912	0	0	0
		106	194	3	3	263	1850	3926	15	106	184
		101	195	6	17	258	1814	3780	25	191	355
		110	209	8	20	261	1835	4035	39	254	493
		101	196	17	33	261	1866	4058	53	392	788
		106	192	24	46	258	1828	3900	68	510	1061
		110	206	29	64	245	1468	2990	83	562	1064
		110	214	34	73	230	1030	2089	92	442	905
		116	236	44	88	235	1020	2030	101	474	950
		127	256	57	119	230	1011	2096	119	524	1087
		133	273	64	133	202	759	1330	111	473	856
		115	243	55	115						
	Total		4261		711			89273			7743

Table 2 :

 2 Effect on Fecal coliforms levels

	Dependent Variable:		Log(Average Fecal coliforms)	
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	-0.5245 * *	-0.5302 * *	-0.5492 * *	-0.5535 * *
		(0.2361)	(0.2359)	(0.2247)	(0.2280)
	Estimator : S & A (2021)	-0.5041 * *	-0.4953 * *	-0.5383 * *	-0.5310 * *
		(0.2342)	(0.2342)	(0.2336)	(0.2325)
	Estimator : TWFE	-0.3718	-0.3651	-0.4252	-0.4209
		(0.2854)	(0.2783)	(0.2940)	(0.2902)
	Weather controls		X		X
	River distance			X	X
	Urban area FE			X	X
	Monitoring station FE	X	X		
	Year-Main basin FE	X	X	X	X
	Observations	4,261	4,261	4,261	4,261
	Period	1991-2020 1991-2020 1991-2020 1991-2020
	Number of Stations	313	313	313	313
	Number of Urban areas	142	142	142	142

Notes:

The table presents the coefficients of the estimators according to the

[START_REF] Gardner | Two-stage differences in differences[END_REF]

,

[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] 

and classic TWFE methodologies. Dependent variables are annual monitoring stations measures. In each regression, treated monitoring stations have at least one observation pre-treatment and one observation post-treatment and control monitoring stations have at least two observations. The model in columns (1) and (2) includes monitoring station fixed effects and main basin-by-year fixed effects while the model in columns (3) and (4) includes urban area fixed effects and controls for the river distance between the monitoring station and the urban area. Columns (2) and (4) add controls for precipitation and temperature. Standard errors are clustered at the urban area level. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

Table 3 :

 3 Effect on organic pollution measures

		Max DO	
	Lowest pollution	Log(Min Fcoli) Log(Min BOD)	
		Min DO	
	Highest pollution	Log(Max Fcoli) Log(Max BOD)	(1)
		Dependent Variable:	

Table 4 :

 4 Effect on Downstream Mortality

	Dependent Variable:	Child died before the age of six months
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	-7.132 * *	-7.724 * *	-5.367	-5.750 *
		(3.463)	(3.423)	(3.416)	(3.369)
	Estimator : S & A (2021)	-8.531	-10.19	-7.374	-8.929
		(7.069)	(6.977)	(7.090)	(6.970)
	Estimator : TWFE	-9.496 * * *	-10.49 * * *	-6.968 * *	-7.497 * *
		(3.383)	(3.378)	(3.360)	(3.302)
	Extended controls		X		X
	Urban area FE			X	X
	NFHS Cluster FE	X	X		
	Birth year FE + Birth month FE	X	X	X	X
	Observations	89,273	84,916	89,273	84,916
	Period	1991-2019 1991-2019 1991-2019 1991-2019
	Number of NFHS Clusters	2387	2348	2387	2348
	Number of Urban areas	272	272	272	272
	Mean of Dep. Variable	40.863	41.182	40.863	41.182

Notes:

The table presents the coefficients of the estimators according to the

[START_REF] Gardner | Two-stage differences in differences[END_REF]

,

[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] 

and classic TWFE methodologies. The model in columns (1) and (2) includes NFHS cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for the child being a female, being a multiple birth, being the first born, being the fourth or more born. Controls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

Table A1 :

 A1 Water summary statistics

		Means	Difference	p-value	N. Obs.
		Control	Treated		(t-test)	Control	Treated
	Panel A. 1991-2009						
	Log(average fecal coliforms)	5.259	6.046	0.787	0	737	1,
	Log(min fecal coliforms)	3.375	4.058	0.683	0	737	1,
	Log(max fecal coliforms)	5.731	6.513	0.782	0	737	1,
	Log(min BOD)	-0.220	0.108	0.328	0	1, 170	1,
	Log(max BOD)	1.018	1.291	0.273	0	1, 170	1,
	Min DO (mg/L)	6.183	5.550	-0.633	0	1, 144	1,
	Max DO (mg/L)	8.576	8.085	-0.491	0	1, 144	1,
	Log Rainfall	27.956	27.805	-0.151	0	1, 217	1,
	Air Temperature (°C)	25.548	24.886	-0.662	0	1, 217	1,
	Panel B. 2010-2019						
	Log(average fecal coliforms)	5.820	6.343	0.523	0	1, 193	1,
	Log(min fecal coliforms)	4.245	4.848	0.604	0	1, 193	1,
	Log(max fecal coliforms)	6.267	6.790	0.523	0	1, 193	1,
	Log(min BOD)	0.197	0.352	0.154	0	1, 627	1,
	Log(max BOD)	1.202	1.507	0.305	0	1, 626	1,
	Min DO (mg/L)	5.690	5.128	-0.562	0	1, 554	1,
	Max DO (mg/L)	8.144	7.595	-0.549	0	1, 554	1,
	Log Rainfall	27.993	27.886	-0.108	0	1, 638	1,
	Air Temperature (°C)	25.199	24.954	-0.245	0.008	1, 638	1,

Table A2 :

 A2 Mortality summary statistics

		Means	Difference	p-value	N. Obs.
		Control	Treated		(t-test)	Control	Treated
	Panel A. 1991-2009						
	Mortality before 6 months	41.950	45.224	3.275	0.028	35, 781	39,
	Child female	0.477	0.467	-0.009	0.012	35, 781	39,
	Child multiple birth	0.013	0.013	-0.0001	0.925	35, 781	39,
	Child first born	0.327	0.342	0.015	0	35, 781	39,
	Child birth order sup 4	0.195	0.174	-0.021	0	35, 781	39,
	Mother under 18 at birth	0.090	0.083	-0.008	0	35, 781	39,
	Mother older 35 at birth	0.017	0.013	-0.004	0	35, 781	39,
	Mother no educ	0.569	0.497	-0.072	0	35, 781	39,
	Mother primary educ	0.156	0.166	0.010	0	35, 781	39,
	Mother secondary educ	0.252	0.308	0.056	0	35, 781	39,
	Mother higher educ	0.022	0.029	0.006	0	35, 781	39,
	Mother hindu	0.737	0.798	0.060	0	35, 781	39,
	Mother muslim	0.184	0.130	-0.054	0	35, 781	39,
	Mother scheduled caste (SC)	0.205	0.261	0.056	0	33, 369	38,
	Mother scheduled tribe (ST)	0.148	0.053	-0.094	0	33, 369	38,
	Mother other backward caste (OBC)	0.455	0.465	0.010	0.007	33, 369	38,
	Mother not SC, ST or OBC	0.193	0.221	0.029	0	33, 369	38,
	HH wealth lowest quintile	0.272	0.136	-0.136	0	35, 781	39,
	HH wealth second quintile	0.256	0.237	-0.019	0	35, 781	39,
	HH wealth middle quintile	0.220	0.240	0.020	0	35, 781	39,
	HH wealth fourth quintile	0.157	0.203	0.046	0	35, 781	39,
	HH wealth highest quintile	0.095	0.184	0.089	0	35, 781	39,
	Log Rainfall	27.807	27.549	-0.258	0	35, 781	39,
	Air Temperature	24.670	24.950	0.280	0	35, 781	39,
	Panel B. 2010-2019						
	Mortality before 6 months	36.357	32.347	-4.010	0.038	16, 943	18,
	Child female	0.479	0.473	-0.007	0.207	16, 943	18,
	Child multiple birth	0.016	0.016	0.00003	0.981	16, 943	18,
	Child first born	0.347	0.366	0.019	0	16, 943	18,
	Child birth order sup 4	0.170	0.150	-0.020	0	16, 943	18,
	Mother under 18 at birth	0.036	0.027	-0.009	0	16, 943	18,
	Mother older 35 at birth	0.040	0.035	-0.004	0.029	16, 943	18,
	Mother no educ	0.352	0.279	-0.074	0	16, 943	18,
	Mother primary educ	0.148	0.140	-0.009	0.019	16, 943	18,
	Mother secondary educ	0.433	0.474	0.040	0	16, 943	18,
	Mother higher educ	0.066	0.108	0.042	0	16, 943	18,
	Mother hindu	0.725	0.782	0.057	0	16, 943	18,
	Mother muslim	0.196	0.156	-0.040	0	16, 943	18,
	Mother scheduled caste (SC)	0.221	0.268	0.046	0	15, 830	18,
	Mother scheduled tribe (ST)	0.164	0.053	-0.112	0	15, 830	18,
	Mother other backward caste (OBC)	0.439	0.466	0.027	0	15, 830	18,
	Mother not SC, ST or OBC	0.175	0.214	0.038	0	15, 830	18,
	HH wealth lowest quintile	0.294	0.139	-0.155	0	16, 943	18,
	HH wealth second quintile	0.248	0.229	-0.019	0	16, 943	18,
	HH wealth middle quintile	0.206	0.240	0.034	0	16, 943	18,
	HH wealth fourth quintile	0.160	0.205	0.045	0	16, 943	18,
	HH wealth highest quintile	0.093	0.188	0.095	0	16, 943	18,
	Log Rainfall	27.833	27.576	-0.256	0	16, 943	18,
	Air Temperature	24.759	25.130	0.371	0	16, 943	18,

Table A3 :

 A3 Effect on Mortality -Heterogeneity analysis

	Dependent Variable:	Child died before the age of six months
		Female	Male	Low wealth High wealth
				quintile	quintile
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	-6.279	-9.013 *	-12.19 *	-6.470
		(4.611)	(5.266)	(6.348)	(4.472)
	Estimator : S & A (2021)	-9.996	-12.51	-22.54 * *	-7.484
		(9.754)	(7.667)	(11.06)	(6.077)
	Estimator : TWFE	-8.153 *	-12.12 * *	-13.07 * *	-10.28 * *
		(4.230)	(4.983)	(6.105)	(4.000)
	Extended controls	X	X	X	X
	NFHS Cluster FE	X	X	X	X
	Birth year FE + Birth month FE	X	X	X	X
	Observations	50,152	55,853	47,661	58,344
	Period	1991-2019 1991-2019	1991-2019	1991-2019
	Number of NFHS Clusters	3004	3002	2454	2897
	Number of Urban areas	307	307	297	307
	Mean of Dep. Variable	37.566	44.062	49.516	34.022

Notes:The table presents the coefficients of the estimators according to the

[START_REF] Gardner | Two-stage differences in differences[END_REF]

,

[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] 

and classic TWFE methodologies. The model in columns (1) and (

Table B1 :

 B1 Effect on Fecal coliforms levels

	Dependent Variable:		Log(Average Fecal coliforms)	
		(1)	(2)	(3)	(4)
	Stacked regression	-0.4963	-0.4954 *	-0.5746 *	-0.5570 *
		(0.3015)	(0.2963)	(0.3076)	(0.3037)
	Weather controls		X		X
	River distance			X	X
	Urban area FE			X	X
	Monitoring station FE	X	X		
	Year-Main basin FE	X	X	X	X
	Observations	15,950	15,950	15,950	15,950
	Period	1991-2020 1991-2020 1991-2020 1991-2020
	Number of Stations	307	307	307	307
	Number of Urban areas	139	139	139	139

Table B2 :

 B2 Effect on MortalityThe table presents the coefficients of the estimators according to the stacked difference-in-diferences methodology. The model in columns (1) and (2) includes NFHS cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for the child being a female, being a multiple birth, being the first born, being the fourth or more born. Controls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area.

	Dependent Variable:	Child died before the age of six months
		(1)	(2)	(3)	(4)
	Stacked regression	-11.68 * * *	-12.79 * * *	-8.588 *	-9.779 * *
		(4.383)	(4.333)	(4.409)	(4.265)
	Extended controls		X		X
	Urban area FE			X	X
	NFHS Cluster FE	X	X		
	Birth year FE + Birth month FE	X	X	X	X
	Observations	238,065	225,579	238,065	225,579
	Period	1991-2019 1991-2019 1991-2019 1991-2019
	Number of NFHS Clusters	2386	2344	2386	2344
	Number of Urban areas	272	272	272	272
	Mean of Dep. Variable	36.813	37.167	36.813	37.167
					Asterisks denote
	p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).				

Notes:

Table B3 :

 B3 Effect on Mortality with mother fixed effects The table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF] methodology and the canonical TWFE model. The model in columns (1) and (3) includes NFHS cluster fixed effects while the model in columns (

	Dependent Variable:	Child died before the age of six months
		(1)	(2)
	Estimator : Gardner (2022)	-6.464	-7.646
		(7.012)	(7.025)
	Estimator : S & A (2021)	-19.84	-18.53
		(12.14)	(12.17)
	Estimator : TWFE	-11.26 *	-11.32 *
		(6.332)	(6.375)
	Extended controls		X
	Urban area FE	X	X
	Birth year FE + Birth month FE	X	X
	Observations	55,618	55,618
	Period	1991-2019	1991-2019
	Number of NFHS Clusters	2249	2249
	Number of Urban areas	266	266
	Mean of Dep. Variable	42.882	42.882

Notes:

Table B4 :

 B4 Effect on Child controls

	Dependent Variable:	Child female Child multiple Child first Child birth
			birth	born	order sup 4
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	4.674	4.169	13.60	-6.773
		(9.809)	(3.033)	(9.773)	(9.147)
	Estimator : S & A (2021)	13.70	7.328	10.48	14.44 *
		(15.58)	(5.126)	(18.11)	(8.045)
	Estimator : TWFE	4.510	3.787	23.44 * * *	-10.62
		(9.400)	(2.769)	(8.864)	(9.111)
	NFHS FE	X	X	X	X
	Birth month FE	X	X	X	X
	Birth year FE	X	X	X	X
	Observations	89,273	89,273	89,273	89,273
	Period	1991-2019	1991-2019	1991-2019	1991-2019
	Number of NFHS Clusters	2387	2387	2387	2387
	Number of Urban areas	272	272	272	272
	Mean of Dep. Variable	473.60	14.260	341.90	176.66
	Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and Abraham [2021]
	and classic TWFE methodologies. All models include NFHS cluster fixed effects, birth year and birth month fixed
	effects. Dependent variables are scaled to generate coefficients that indicate impacts on rates × 1,000 (number per
	1,000 children). Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*),
	< 0.05 (**), or < 0.01 (***).				

Table B5 :

 B5 Effect on Mother controlsThe table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF],[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] and classic TWFE methodologies. All models include NFHS cluster fixed effects, birth year and birth month fixed effects. Dependent variables are scaled to generate coefficients that indicate impacts on rates × 1,000 (number per 1,000 children). Standard errors are in parentheses and clustered by urban area.

	Mother	OBC	(10)	3.515	(8.221)	0.7417 Table B6: Effect on Household controls (12.21) 4.256
	Mother Mother Dependent Variable: tribe (9) 0.6248 (5.167) schedule schedule caste (8) -7.480 (7.852) Estimator : Gardner 4.303 -1.078 Estimator : S & A	(5.115) HH wealth HH wealth HH wealth HH wealth -0.6210 (4.452) lowest second fourth highest (1) (2) (3) (4) (9.243) -6.145 -6.396 4.134 8.141 -0.9390 (7.074) (8.386) (7.960) (6.789) (7.216) -1.106 -3.014 22.67 * -6.993
	Mother Estimator : TWFE not hindu (7) 2.759 (2.771) nor muslim NFHS Cluster FE	2.705	(4.046)	2.957 (7.640) (2.704) -6.046 (6.689) X	(12.28) 1.441 (7.709) X	(12.00) 4.331 (7.111) X	(7.678) -0.8002 (5.936)
	Mother Birth month FE muslim (6) 3.199 (5.211) Birth year FE Observations	13.69 * * *	(4.914)	0.6318 X X 89,273 (4.766)	X X 89,273	X X 89,273	89,273
	Mother Nb NFHS Clusters higher educ (5) 34.88 * * * (10.02) Nb Urban areas Mean of Dep. Var.	17.25 * *	(8.607)	30.96 * * * 2387 272 (9.137) 221.00	2387 272 243.44	2387 272 176.03	2387 272 135.12
	Mother Mother Mother Mother < 0.05 (**), or < 0.01 (***). 18 35 educ educ (1) (2) (3) (4) -1.017 -4.581 -19.86 -18.51 underage overage primary secondary	(4.661) (4.143) (12.13) (15.11)	3.650 -0.4641 -10.62 -21.20	(5.979) (4.807) (10.86) (13.46)	-0.2059 -3.444 -18.57 * -11.93	(4.383) (4.094) (10.71) (14.39)	Asterisks denote p-value < 0.10 (*),
	Dependent Variable:			Estimator : Gardner		Estimator : S & A		Estimator : TWFE

Notes:

Table B7 :

 B7 Effect on Downstream Mortality excluding children born from mother with higher education The table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF] methodology and the canonical TWFE model. The model in columns (1) and (2) includes NFHS cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for the child being a female, being a multiple birth, being the first born, being the fourth or more born. MControls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary or secondary education education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area.

	Dependent Variable:	Child died before the age of six months
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	-6.994 *	-7.341 *	-5.353	-5.379
		(3.736)	(3.756)	(3.560)	(3.628)
	Estimator : S & A (2021)	-8.968	-10.14	-7.968	-9.106
		(7.597)	(7.577)	(7.609)	(7.579)
	Estimator : TWFE	-10.12 * * *	-10.71 * * *	-7.697 * *	-7.973 * *
		(3.527)	(3.625)	(3.397)	(3.458)
	Extended controls		X		X
	Urban area FE			X	X
	NFHS Cluster FE	X	X		
	Birth year FE + Birth month FE	X	X	X	X
	Observations	84,224	80,040	84,224	80,040
	Period	1991-2019 1991-2019 1991-2019 1991-2019
	Number of NFHS Clusters	2339	2298	2339	2298
	Number of Urban areas	270	270	270	270
	Mean of Dep. Variable	41.817	42.129	41.817	42.129
	Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).			

Notes:

Table B8 :

 B8 Effect on Downstream Mortality excluding children born from mother with higher education The table presents the coefficients of the estimators according to the stacked difference-in-diferences methodology. The model in columns (1) and (2) includes NFHS cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for the child being a female, being a multiple birth, being the first born, being the fourth or more born. Controls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary or secondary education education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area.

	Dependent Variable:	Child died before the age of six months
		(1)	(2)	(3)	(4)
	Stacked regression	-12.60 * * *	-13.54 * * *	-8.905 *	-9.832 * *
		(4.673)	(4.701)	(4.619)	(4.568)
	Extended controls		X		X
	Urban area FE			X	X
	NFHS Cluster FE	X	X		
	Birth year FE + Birth month FE	X	X	X	X
	Observations	238,065	225,579	238,065	225,579
	Period	1991-2019 1991-2019 1991-2019 1991-2019
	Number of NFHS Clusters	2336	2292	2336	2292
	Number of Urban areas	270	270	270	270
	Mean of Dep. Variable	36.813	37.167	36.813	37.167
					Asterisks denote
	p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).				

Notes:

Table B9 :

 B9 Parental behavior summary statistics -Children aged 0-6 months Notes: Panel A compares summary statistics for children aged under 6 months at the time of the NFHS-4 interviews, while Panel B compares summary statistics for children born in 2019 and aged under 6 months at the time of the NFHS-5 interviews. The unit of observations is the child level.

			Means			N. Obs.
		Control	Pre-Treated	Post-Treated	Control	Pre-treated	Post-treated
	Panel A. Interviews 2015-2016					
	Child age in months	3.421	3.279	3.496	604	204
	Water and sanitation behavior					
	Water treatment	0.291	0.238	0.215	632	210
	Open defecation	0.509	0.419	0.445	632	210
	Shared toilets	0.177	0.139	0.169	310	122
	Liquids given to the child					
	Currently breastfed	0.957	0.946	0.958	601	202
	Plain water	0.441	0.436	0.485	610	202
	Juice	0.052	0.064	0.063	610	202
	Milk	0.180	0.203	0.211	610	202
	Baby formula	0.026	0.064	0.029	610	202
	Soup	0.051	0.054	0.046	610	202
	Other liquid	0.048	0.045	0.034	610	202
	Panel B. Interviews 2019					
	Child age in months	3.255	4	3.358	365	3
	Water and sanitation behavior					
	Water treatment	0.349	0	0.330	378	3
	Open defecation	0.216	0	0.174	379	3
	Shared toilets	0.101	0.333	0.129	297	3
	Liquids given to the child					
	Currently breastfed	0.947	1	0.960	361	3
	Plain water	0.400	0	0.292	365	3
	Juice	0.088	0	0.045	365	3
	Milk	0.167	0	0.154	365	3
	Baby formula	0.071	0	0.053	365	3
	Soup	0.085	0	0.053	365	3
	Other liquid	0.071	0	0.065	365	3

Table B10 :

 B10 Effect on Upstream Mortality The table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF],[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] and classic TWFE methodologies. The model in columns (1) and (2) includes NFHS cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for the child being a female, being a multiple birth, being the first born, being the fourth or more born. Controls at the mother level include indicators for the mother being either under 18 years old or over 35 years old at the time of the child's birth, educational attainment (primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste (OBC)). Household controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

	Dependent Variable:	Child died before the age of six months
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	2.841	3.131	3.128	3.983
		(2.849)	(2.734)	(2.535)	(2.515)
	Estimator : S & A (2021)	-1.804	-1.225	-0.2068	0.5038
		(5.414)	(5.531)	(5.056)	(5.197)
	Estimator : TWFE	1.990	2.518	3.062	3.853
		(2.841)	(2.789)	(2.499)	(2.459)
	Extended controls		X		X
	Urban area FE			X	X
	NFHS Cluster FE	X	X		
	Birth year FE + Birth month FE	X	X	X	X
	Observations	144,495	140,162	144,495	140,162
	Period	1991-2019 1991-2019 1991-2019 1991-2019
	Number of NFHS Clusters	3814	3814	3814	3814
	Number of Urban areas	177	177	177	177
	Mean of Dep. Variable	41.005	41.195	41.005	41.195

Notes:

Table B11 :

 B11 Effect on Air pollution

	Dependent Variable:		PM 2.5	
		Minimum	Mean	Maximum
		(1)	(2)	(3)
	Estimator : Gardner (2022)	0.0332	0.0745	0.0911
		(1.114)	(1.119)	(1.130)
	Estimator : S & A (2021)	-0.4437	-0.4425	-0.4521
		(0.4109)	(0.4117)	(0.4085)
	Estimator : TWFE	0.0921	0.1375	0.1597
		(1.055)	(1.063)	(1.077)
	Urban area FE	X	X	X
	Year FE	X	X	X
	Observations	10,442	10,442	10,442
	Period	1998-2020 1998-2020 1998-202O
	Number of Urban areas	454	454	454
	Mean of Dep. Variable	50.173	51.318	52.410

Notes:

The table presents the coefficients of the estimators according to the

[START_REF] Gardner | Two-stage differences in differences[END_REF]

,

[START_REF] Sun | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[END_REF] 

and classic TWFE methodologies. All models include state fixed effects and year fixed effects. Standard errors are in parentheses and clustered by state. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

Table C2 :

 C2 Effect on Height-for-Age Z-score (HAZ) and Birth Weight The table presents the coefficients of the estimators according to the[START_REF] Gardner | Two-stage differences in differences[END_REF], Sun and Abraham

	Dependent Variable:	HAZ	Stunted	Birth weight Low birth weight
			(HAZ < -2)		(weight < 2.5kg)
		(1)	(2)	(3)	(4)
	Estimator : Gardner (2022)	0.0362	9.755	-30.59	21.75
		(0.1025)	(34.09)	(33.75)	(23.54)
	Estimator : S & A (2021)	0.2898	-7.539	-48.76 *	29.15
		(853.9)	(264,286.5)	(29.07)	(20.37)
	Estimator : TWFE	0.0737	-0.1370	-47.69 *	28.77
		(0.1088)	(30.75)	(24.32)	(17.84)
	Extended controls	X	X	X	X
	NFHS Cluster FE	X	X	X	X
	Birth year FE + Birth month FE	X	X	X	X
	Observations	10,913	10,913	10,924	10,924
	Period	2010-2019	2010-2019	2010-2019	2010-2019
	Number of NFHS Clusters	1542	1542	1634	1634
	Number of Urban areas	202	202	222	222
	Mean of Dep. Variable	-1.5063	397.97	2,772.3	185.74

Notes:

Table C3 :

 C3 Morbidity summary statistics -Children aged 0-59 months

			Means			N. Obs.	
		Control	Pre-Treated	Post-Treated	Control	Pre-treated	Post-treated
	Panel A. Interviews 2015-2016						
	Child age in months	29.646	29.700	29.747	6, 125	1, 887	3, 758
	Weight-for-Height Z-score	-1.029	-0.981	-0.957	5, 677	1, 695	3, 517
	Child is wasted	218.425	209.440	192.778	5, 677	1, 695	3, 517
	Hemoglobin level (g/L)	104.718	104.394	104.755	5, 380	1, 604	3, 303
	Child is anemic	615.799	591.646	607.024	5, 380	1, 604	3, 303
	Child had diarrhea	89.335	94.480	103.945	6, 123	1, 884	3, 752
	Child had fever	128.434	145.280	144.812	5, 824	1, 769	3, 508
	Child had cough	111.073	139.205	130.597	5, 771	1, 760	3, 484
	Panel B. Interviews 2019						
	Child age in months	30.022	29.661	30.132	2, 575	109	1, 283
	Weight-for-Height Z-score	-0.915	-0.976	-0.886	2, 333	99	1, 154
	Child is wasted	217.317	181.818	199.307	2, 333	99	1, 154
	Hemoglobin level (g/L)	100.850	99.107	101.283	2, 186	84	1, 086
	Child is anemic	715.005	666.667	720.074	2, 186	84	1, 086
	Child had diarrhea	79.705	110.092	79.501	2, 572	109	1, 283
	Child had fever	154.129	200	171.311	2, 446	100	1, 220
	Child had cough	121.237	140	151.115	2, 425	100	1, 211

However,[START_REF] Anderson | Reexamining the contribution of public health efforts to the decline in urban mortality[END_REF] find little evidence that sewage treatment explains the decline in infant and diarrheal mortality observed during the period 1900-1940 in 25 major American cities.

FigureA1compares the levels of fecal coliforms over the period 1985-2001 in India versus in the USA. On average, pollution in India is more than 20 times higher than in the United States.

Unsafe food is food mixed or washed with contaminated water or food from the river that is not cooked such as shellfish -for example mussels or oysters -which concentrate the microorganisms in their flesh.

Diarrhea is the second leading cause of death in children 1-59 months of age[START_REF] Liu | Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals[END_REF].

According to the WHO, unimproved water sources include unprotected wells, unprotected springs, surface water (e.g. river, dam or lake), vendor-provided water, bottled water (unless water for other uses is available from an improved source) and tanker truck-provided water. Improved water sources include household connections, public standpipes, boreholes, protected dug wells, protected springs and rainwater collection. See https://www.who.int/ news-room/fact-sheets/detail/drinking-water.

BOD below 30 mg/l without dilution is the standard for discharge of treated sewage from sewage treatment plants and general standard for effluent discharge from effluent treatment plants to rivers/streams.

Of 1,631 STPs listed in the inventory, 1,093 STPs are operational, 102 are non-operational, 274 are under construction and 162 STPs are proposed for construction.

The National Family Health Survey is India's version of the Demographic and Health Survey (DHS).

I exclude all children born within 6 months of the interview date.

The length of the area affected by microbiological water pollution depends on the river's discharge and the disappearance rate of fecal bacteria, the latter resulting from combined actions of various biological and physico-chemical parameters (e.g. nutrients depletion, sunlight intensity, and temperature decrease) and from possible deposition to sediments[START_REF] Servais | Fecal bacteria in the rivers of the seine drainage network (france): sources, fate and modelling[END_REF].

The largest urban areas, such as Delhi, Bangalore, Chennai, Hyderabad, and Pune, began wastewater treatment before 2010. I assume that the trends in outcomes downstream of these areas differ from those downstream of urban areas where treatment is still under construction or proposed as of 2020.

For instance, there might be a selection bias if urban areas begin monitoring water quality only after initiating wastewater treatment.

Year of starting treatment in urban area a corresponds to the first year in which a sewage treatment plant is commissioned in a.

I use the average of the minimum and the maximum of the fecal coliforms measures. Since 2015, the CPCB doesn't provide annual mean measurements (only the minima and maxima are available). The correlation between mean values and average values of fecal coliform up to 2014 (up to 0.9914) suggests that average values are good proxies of mean values.

I estimate the number of live births per year in each downstream sub-basin by computing the WordlPop total population in each sub-basin and using the Indian crude birth rate (per 1,000 people) provided by the World Bank (https://genderdata.worldbank.org/indicators/sp-dyn-cbrt-in/?geos=IND&view=trend)

5.6 * 10 6 * 7.7/1000 ∼ 40, 000

Income ratio = 1,590/ 56,763 ∼ 2.8 % according to the GDP per capita (constant

US$) given by the World Bank (https://data.worldbank.org/indicator/NY.GDP.PCAP.KD?end=2015&locations=IN-US&name_ desc=false&start=2015). VSL for India = 2.3/(1.2*35)mill = 55k$ or INR 3.5 mill based on the exchange rate in 2015 $1 = INR 64 given by OECD (https://data.oecd.org/conversion/exchange-rates.htm).

(7.743) NFHS Cluster FE X X X X X X X X X X Birth month FE X X X X X X X X X X Birth year FE X X X X X X X X X XObservations 89,273 89,273 89,273 89,273 89,273 89,273 89,273 84,916 84,916 84,916 Nb NFHS Clusters

I create a buffer of 1km around each polygon and merge intersecting polygons.

https://gemstat.org/, accessed in March 2021

https://indiawris.gov.in/wris/#/RiverMonitoring, accessed in March 2021

http://www.cpcbenvis.nic.in/water_quality_data.html, accessed first in March 2021 and in February 2022

Notes:The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river segments located within 100km downstream of segments that cross the urban areas listed in the sewage treatment plant inventory.

for useful feedback. A special thank goes to Jean Riotte, for his clear explanation on water geochemistry. This work has been funded by a French government subsidy managed by the Agence Nationale de la Recherche under the framework of the Investissements d'avenir programme reference ANR-17-EURE-001.
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 [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF](India) and [START_REF] Keiser | Consequences of the clean water act and the demand for water quality[END_REF] (USA) data) Figure A2: Measures of pollution from [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF] extended over the period [2005][2006][2007][2008][2009][2010][2011][2012][2013][2014][2015][2016][2017][2018][2019][2020] 

C Other Health Outcomes

As NFHS surveys are cross-sectional, few health variables, apart from mortality, can be studied in a panel at the NFHS cluster level. Using NFHS cluster fixed effect is important because it controls for unobserved birthplace characteristics such as access to healthcare services and road infrastructure.

Birth weight and height-for-age z-score, which measures chronic malnutrition, are the only health variables that can be studied in a panel according to NFHS cluster and birth year. Table C1 presents the regression samples, which are subject to the same restrictions as the mortality sample. (i) If there is a birth in a NFHS cluster related to an urban area after it has started wastewater treatment, then that NFHS cluster is only included if it has at least one data point before the urban area starting wastewater treatment. (ii) If the urban area doesn't treat wastewater in 2020, then the NFHS cluster is only included if it has at least two outcome data points.

C.1 Birth weight

Literature shows that maternal exposure to fecal pathogens can reduce the quality of maternal nutrition during gestation, in turn reducing uterine growth and birth weight [START_REF] Prendergast | Stunting is characterized by chronic inflammation in zimbabwean infants[END_REF][START_REF] Spears | Exposure to open defecation can account for the indian enigma of child height[END_REF][START_REF] Coffey | Neonatal death in india: birth order in a context of maternal undernutrition[END_REF]]. In the US, [START_REF] Flynn | A watershed moment: The clean water act and infant health[END_REF] show that CWA grants to municipal wastewater treatment plants increased average birth weight by 8 grams in counties downstream of the plants.

In NFHS surveys, birth weight was recorded from either a written record or the mother's report.

Figure C1 shows that birth weight in the sample is not normally distributed and presents big peaks at rounded values every 500 grams. This rounding raises concerns about a loss of precision which may mask substantial differences or trends in the data.

In columns (3) and (4) of Table C2, I examine birth weight given in grams and the number of children with low birth weight (inferior to 2.5kg). Following Equation 3, I use as treatment variable the same binary indicator than in mortality regressions that is equal to one if the upstream urban area treats the wastewater in the birth year of the child. According tot he [START_REF] Gardner | Two-stage differences in differences[END_REF]'s estimator, I observe no significant result. Surprisingly, the estimates are negative. Column 3 suggests a 30g reduction in birth weight after wastewater treatment. This result is possibly due to the poor precision of the birth weight report described in the previous paragraph, and is therefore inconclusive.

C.2 Chronic malnutrition

A related pathway from exposure to fecal pathogens to death is poor net nutrition, which is calories consumed net of calories lost to diarrheal disease and parasites as well as expended in combating infections. If wastewater treatment is reducing deaths via infection, malnutrition should also be reduced.

I use height-for-age z-score (HAZ), the number of standard deviations (SD) above or below the gender-and age-specific median height-for-age to measure chronic malnutrition. Low height-for-age is known as stunting. It is the result of chronic or recurrent undernutrition. Stunting can be due to repeated fecal contamination that, through an inflammatory response, increases the small intestine's permeability to pathogens while reducing nutrient absorption. Chronic malnutrition holds children back from reaching their physical and cognitive potential [START_REF] Black | Maternal and child undernutrition and overweight in low-income and middle-income countries[END_REF]. A child with an HAZ below -2 SD is considered to be stunted. Since HAZ and the proportion of stunted children reflect long-term exposure, I distinguish children born downstream of treated areas between those who have lived more than half their lives with treatment and those who have lived less than half their lives with treatment. Figure C2 presents the HAZ distribution in the sample and suggests that children who have lived more than half their lives with treatment suffer less from chronic malnutrition than others.

In columns (1) and (2) of Table C2, I examine chronic malnutrition measured respectively by the height-for-age z-score (HAZ) and the number of stunted children with a binary indicator equal to one if the child has lived more than half his life with upstream wastewater treatment. The results are inconclusive, possibly due to a reduction in statistical power.

C.3 Description of other health outcomes

Water pollution by untreated sewage, and in particular contamination by faecal pathogens, has other health effects that need to be measured to assess the extent of wastewater treatment. NFHS data allow us to study three other morbidity variables, which correspond to short-term symptoms:

Diarrhea : Fecal pathogens cause gastrointestinal diseases of which a major symptom is diarrhea.

Acute malnutrition : Weight-for-height z-score (WHZ), the number of standard deviations (SD) above or below the gender-and age-specific median weight-for-height, measures acute malnutrition.

D Data Details

D.1 Sewage Treatment Plants

D.1.1 Description of the national inventory

The 2020 national inventory of sewage treatment plants (STPs) highlights the gap between sewage generation and treatment capacity, estimating that less than 28% or urban wastewater is actually treated by the STPs. For each STP, the report tabulates the installed treatment capacity, the capacity actually used, the capacity complying to discharge norms prescribed by the Central Pollution Control Board (CPCB), as well as treatment technology and potential reuse of wastewater 23

Among the 1,632 STPs listed in the inventory 24 , I identify 1,097 operational STPs, 103 nonoperational STPs, 270 STPs under construction and 150 STPs proposed for construction 25 .

The total installed capacity reported in the inventory is 36,710 megaliters per day (MLD). The operational capacity corresponds to 26,910MLD. Out of the operational 26,314MLD capacity with non-missing used capacity values, 19,252MLD (73%) is actually utilized.

Among the 1,097 operational STPs, compliance status of 754 STPs is available and only 553 STPs, having a combined capacity of 12,264 megaliters per day (MLD), are found complying with the consented norms prescribed by the CPCB. Figure D4 shows the installed capacity and actual utilization according to the compliance status of the 1,045 operational STPs reported in the inventory with non-missing used capacity.

In the end, only 8,583 MLD of actually treated wastewater is found to be in compliance with the norms, which means that only around 12% of the total wastewater generated by urban areas is treated in accordance with the CPCB standards 26 .

Various technologies are employed for the treatment of urban wastewater. Figure D5 23 Some data is missing, and the reporting of this information is not uniform across all states. Full code for pdf data extraction and data cleaning for the analysis is replicable on R. 24 The inventory reports 1,631 STPs and I identify one row corresponding to two STPs commissioned in different years with information for installed capacity each year: row 38 of state Karnataka.

25 I am not able to determine the operation status of 12 STPs. 26 The CPCB estimates that 72,368MLD is generated from urban centres.

In this section, I describe steps taken to make the four repositories comparable. The WRIS data comes from the Central Water Commission monitoring water quality at 390 locations covering all the major river basins of India 33 . Data from WRIS are all related to rivers.

Ambient Monitoring in

Measures of Water Pollution and Sample Exclusions.

The GEMS, WRIS and [START_REF] Greenstone | Environmental regulations, air and water pollution, and infant mortality in india[END_REF] databases provide monthly measures, while the CPCB data are aggregated at the yearly level. For consistency, I then aggregate all the monitoring station readings at the yearly level.

To limit the influence of outliers, I winsorize data below the 2.5th percentile and above the 97.5th percentile. It means that for each reading below the 2.5th percentile of the distribution of readings, I recode the result to equal the 2.5th percentile and for each reading above the 97.5th percentile of the distribution of readings, I recode the result to equal the 97.5th percentile.

D.2.2 Measurement error

To check if water quality measures were performed correctly, I use methods from the geochemistry theory.

In first approximation, the use of charge imbalance (CI) is regularly used to check the quality of 
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water analyses [START_REF] Federation | Standard methods for the examination of water and wastewater[END_REF]. The charge balance is based on the principle of electrical neutrality, meaning that the equivalent concentration of positively charged ions, the cations, is equal to the equivalent concentration of negatively charged ions, the anions. Major anions, such as bicarbonates (HCO - 3 ), carbonates (CO 2- 3 ), chlorides (Cl -), fluoride (F -), nitrate (N O3 -) and sulfates (SO 2- 4 ), as well as major cations, such as calcium (Ca 2+ ), magnesium (M g 2+ ), sodium (N a + ) and potassium (K + ), usually represent most of the dissolved ions in water, so the sum in milliequivalents of major cations and anions should be nearly equal.

However, when a large charge imbalance exists, there is no indication whether the error is caused by a cation or an anion. A second constraint is helpful to identify the constituent most likely in error.

That's why I use an approximation of the electrical conductivity method proposed by [START_REF] Mccleskey | Electrical conductivity method for natural waters[END_REF] as a quality control method for checking water analyses. If measures were performed correctly, both the anion and cation sums should be approximately 1/100 of the measured electrical conductivity value. If either of the two sums does not meet this criterion, that sum is suspect. I can only compare the respective sums of anions and cations to the electrical conductivity for the data from the WRIS platform because the other data do not give the concentrations of all major anions. As the anions correspond to the elements characterizing the pollution (notably the nitrates), it is specifically important that there is no significant measurement error on the anion concentrations.

Of the 8907 annual station-level measurements from the WRIS platform, about half (4312) are complete and allow the calculation of major ion sums. Of these, 70% (2986) seem to be good quality data as the anion sum is approximately 1/100 of the measured electrical conductivity value with a tolerance of 20%. However, it means that 30% of the data could be unreliable.

Spatially, it appears that the measurements in eastern India are not assessable and those in the south are of particularly good quality (Figure D9).

Temporally, there is no significant difference in the quality of the measurements, which is counterintuitive as one might have expected an improvement in the measurements over time (Figure D10).

D.3 Health data

The National Family Health Survey, equivalent to the Indian Demographic Health Survey, uses a stratified two-stage sampling design. First, enumeration areas (EAs) are randomly selected from census files, stratifying by state and urban/rural residence. Within the selected EAs, herein referred to as clusters, households are randomly selected for interviewing. Within these households, all women of reproductive age (15-49 years) are interviewed. Enumerators also collect coordinates of the cluster location allowing me to link the NFHS data to other geo-coded data at the cluster level. To maintain confidentiality of respondents, NFHS randomly displaces the coordinates of the clusters up to 2 km in urban areas and up to 5 km in rural areas, with a further 1% of rural clusters displaced up to 10 km. The direction of displacement is randomly chosen, with the caveat that coordinates are not displaced outside of the state. This displacement introduces classical measurement error. However, in this study, which uses the difference-in-differences method, there is no reason for the error to be greater in the treatment group than in the control group, and it is not a priori a cause for concern. 

D.4 Data figures

E Spatial Matching Across Datasets

Conducting the analysis of this paper requires linking several datasets thanks to the hydrological network HydroSHEDS [START_REF] Linke | Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution[END_REF].

E.1 HydroSHEDS

HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales, [START_REF] Linke | Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution[END_REF]) offers a suite of geo-referenced datasets in raster and vector format, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information.

HydroSHEDS version 1 is derived primarily from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second (approximately 90 meters at the equator) resolution and has been developed by World Wildlife Fund (WWF), in partnership or collaboration with universities and institutions 34 .

I use two HydroSHEDS products to perform the spatial matching of sewage treatment plants to water quality monitoring stations and child births, that are respectively HydroRIVERS and Hy-droBASINS.

HydroRIVERS represents a vectorized line network of all global rivers that have a catchment area of at least 10 km 2 or an average river flow of at least 0.1 m 3 /sec, or both. I use the phrase "river segment" to describe what HydroSHEDS calls a "HyrivID". A "HyrivID" is a unique identifier code for a specific line segment in HydroSHEDS. On average a HyrivID is 4.2 kilometers long.

HydroBASINS represents a series of vectorized polygon layers that depict sub-basin boundaries at a global scale. I use the highest level of sub-basin breakdown, that corresponds to the Pfafstetter level 12. I use the word "sub-basin" to describe what HydroSHEDS calls a "HybasID". A "HybasID" is a unique identifier code for an individual sub-basin polygon in HydroSHEDS. At the Pfafstetter level 12, a HybasID has an average area of 130.6 km 2 . I use the phrase "main basin" to identify the entire river basin that a sub-basin belongs to 35 (see Figure 2). 34 McGill University, Montreal, Canada; the U.S. Geological Survey (USGS); the International Centre for Tropical Agriculture (CIAT); The Nature Conservancy (TNC); the Australian National University, Canberra, Australia; and the Center for Environmental Systems Research (CESR), University of Kassel, Germany 35 In HydroSHED, the main basin is identified with the "MainBas" column that provides the HybasID of the most downstream sink, i.e. the outlet of the main river basin. 

E.3 Matching figures