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ABSTRACT

The COVID-19 virus’s high transmissibility has resulted in the virus’s rapid spread throughout the world,
which has brought several repercussions, ranging from a lack of sanitary and medical products to the
collapse of medical systems. Hence, governments attempt to re-plan the production of medical products
and reallocate limited health resources to combat the pandemic. This paper addresses a multi-period
production-inventory-sharing problem (PISP) to overcome such a circumstance, considering two consum-
able and reusable products. We introduce a new formulation to decide on production, inventory, delivery,
and sharing quantities. The sharing will depend on net supply balance, allowable demand overload, un-
met demand, and the reuse cycle of reusable products. Undeniably, the dynamic demand for products
during pandemic situations must be reflected effectively in addressing the multi-period PISP. A bespoke
compartmental susceptible-exposed-infectious-hospitalized-recovered-susceptible (SEIHRS) epidemiologi-
cal model with a control policy is proposed, which also accounts for the influence of people’s behavioral
response as a result of the knowledge of adequate precautions. An accelerated Benders decomposition-
based algorithm with tailored valid inequalities is offered to solve the model. Finally, we consider a re-
alistic case study - the COVID-19 pandemic in France - to examine the computational proficiency of the
decomposition method. The computational results reveal that the proposed decomposition method cou-
pled with effective valid inequalities can solve large-sized test problems in a reasonable computational
time and 9.88 times faster than the commercial Gurobi solver. Moreover, the sharing mechanism reduces
the total cost of the system and the unmet demand on the average up to 32.98% and 20.96%, respectively.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

years. This has rapidly spread worldwide after initial exposure
in China [1-3]. As of the beginning of the pandemic, all gov-

The world has been experiencing severe disasters ranging from ernments faced high demand for medical products/resources to

natural (e.g., hurricanes, floods, tornadoes, pandemics, etc.) to
man-made disasters (e.g., terror, error, etc.). Recently, the world
has been tolerating a crucial pandemic due to the emergence of
the SARS-CoV-2 virus (COVID-19, hereafter) over the past three

* Area: Production Management, Scheduling and Logistics. This manuscript was
processed by Associate Editor Ivanov.
* Corresponding author at: Department of Industrial Engineering and Innovation
Sciences, Eindhoven University of Technology, Eindhoven 5600MB, the Netherlands.
E-mail addresses: behnam.vahdani@imt-atlantique.fr (B. Vahdani),
m.mohammadil@tue.nl (M. Mohammadi), simon.thevenin@imt-atlantique.fr (S.
Thevenin), patrick. meyer@imt-atlantique.fr (P. Meyer), alexandre.dolgui@imt-
atlantique.fr (A. Dolgui).

https://doi.org/10.1016/j.0mega.2023.102909

control the virus's spread and cure patients in critical situations.
Hence, countries worldwide agreed to increase the production of
medical products and equipment ranging from medical masks to
ventilators, developing health protocols, raising awareness through
social media, and correcting misconceptions [4-6]. They were also
aware that such an action plan necessitates re-planing medical
products’ production system and re-allocating/sharing limited
health resources among different centers/regions to combat the
pandemic as supply chain viability measures [7-12]. The success
of such an action plan highly depends on two main problems: a
precise enough estimation of the demand for medical products;
and an efficient logistics network to produce, stock, distribute, and
share such products [13-16].

0305-0483/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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As far as the estimation of the demand is concerned, there are
various forecasting procedures, which can provide a precise pre-
diction of the progression of the pandemic, including agent-based
models [17], metrological and meta-population models [18], com-
partmental epidemiological models [19-24], time-series methods
[25,26], machine learning [27], and deep learning approaches [28].
Except for compartmental epidemiological models, the other ap-
proaches are highly dependent on data availability, while in the
early stages of a pandemic, data is either unavailable or unreli-
able [29]. Furthermore, long-standing data cannot be provided due
to the emergence of new variants of the virus. Also, they can-
not reflect various government policies, including better treatment
or public awareness programs [30]. In this regard, these methods
cannot consider a specific target to guarantee the achievement of
sketched control policies, such as reducing the number of deaths
or system costs [31]. However, to implement control policies, in-
tegrating compartmental epidemiological models with the optimal
control problem (OCP) is a powerful approach, which can cope
with a significant number of the listed barriers [32-37]. More im-
portantly, another advantage of epidemiological models is the pos-
sibility of computing an endemic equilibrium point by a dynamic
optimization approach [38].

Despite all the advantages outlined for epidemiological models
with OCP, researchers are less likely to utilize this approach due
to the complexity of its implementation, especially in modeling
the COVID-19 pandemic. What is more, although limited studies
have applied this methodology, their findings cannot be used to
plan logistics activities directly. Indeed, the considerations linked
to their interaction with optimization models for logistics plan-
ning have not been taken into account because the presented mod-
els have only considered the aspect of epidemiology. As an illus-
tration, we need a specific approach for identifying and estimat-
ing the demand for each piece of treatment equipment when try-
ing to manage the supply, production, distribution, and sharing
of items like ventilators, medical clothes, and ordinary and ICU
beds.

Albeit a precise-enough estimation of demand aids in re-
planning production and distribution decisions for medical prod-
ucts, it is nearly impossible to meet all demands due to limitations
in proper infrastructures and facilities’ production capacity. As a
result, a sharing system between healthcare facilities can signifi-
cantly impact the effective utilization of available inventory. In this
regard, there are various approaches to provide a sharing mech-
anism, including queuing theory [39-41], simulation [42], agent-
based algorithms [43], dynamic optimization [44]|, game theory
[45], and data envelopment analysis [46]. In contrast, optimiza-
tion models have been less employed due to their complexity. Al-
though limited studies have been conducted to provide ventilator
and patient-sharing systems among healthcare facilities with the
emergence of the COVID-19 pandemic, a broad range of concerns
has been neglected in these studies that should be taken into ac-
count to increase their effectiveness. As an illustration, neglect-
ing supply and production limitations can lead to serious doubts
about the feasibility of the system’s results. Moreover, some med-
ical equipment, such as ventilators and ICU beds, can be reused
after an almost certain period as a lead time, which is about two
weeks during the COVID-19 pandemic. So, this characteristic must
be considered to update the inventory level in healthcare facili-
ties, which may consequently affect the sharing decisions. What
is more, a functional sharing system should provide the possibil-
ity that healthcare facilities can receive a certain amount of de-
mand over their capacity. Such that they can fulfill this excess de-
mand through service sharing instead of just accepting the demand
based on a fixed capacity. In this regard, considering a broad range
of factors are necessitated, including net supply balance, allow-
able demand overload, maximum sharing capacity, unmet demand,
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and adjusting inventory level relying on a reuse cycle for reusable
equipment.

According to the above-mentioned description, we address the
two problems (i.e., precise-enough estimation of the dynamic de-
mand and planning an efficient logistics network to produce, dis-
tribute, and share medical products) through a comprehensive
two-stage framework. In the first stage, we suggest a SEIHRS model
with the OCP for controlling the dynamicity of the demands of
consumable and reusable products. Through the OCP, various con-
trol policies, including raising awareness via spreading information
and improving normal and critical treatments for hospitalized peo-
ple, are examined. The second stage deals with modeling a new
multi-period production-inventory-sharing problem (PISP), where
a broad range of decisions are made, including supply, production,
distribution, inventory, and sharing.

The contributions of this study are fivefold. First, we introduce
a comprehensive optimization framework to combat a pandemic.
Second, we develop a tailored SEIHRS model with a control policy
to handle the demand dynamicity. Third, we formulate the multi-
period PISP under the equipment reuse cycle. Fourth, we offer an
accelerated Benders decomposition algorithm to solve the problem.
Fifth, we render new valid inequalities in the context of the multi-
period PISP, which are based on the real demand, the inventory
levels, and the unmet demand. The proposed optimization frame-
work is finally applied to a realistic case study of the COVID-19
pandemic in France for the first time.

The remainder of the paper is organized as follows.
Section 2 offers a comprehensive investigation concerning associ-
ated studies in the literature. Section 3 presents the description
of the SEIHRS epidemiological model with the OCP. Section 4 pro-
poses the multi-period PISP formulation. Section 5 presents the
valid inequalities along with an accelerated Benders decomposition
algorithm. Section 6 describes the case study and provides compu-
tational results and a set of sensitivity analyses. Section 7 provides
managerial insights and implications. Finally, this study is con-
cluded, and future research directions are proposed in Section 8.

2. Literature review

The current study concentrates on two main phases: 1) dis-
ease progression modeling and 2) logistics planning, especially fo-
cused on sharing/re-allocating mechanisms, to offer a comprehen-
sive framework to combat the COVID-19 pandemic. In the follow-
ing, the relevant studies of the literature are reviewed and dis-
cussed to better position the current work and its contributions
compared to the literature. First, Table 1 classifies the relevant pa-
pers according to different criteria. Next, the studies of each phase
are separately discussed in the following subsections.

2.1. Phase 1—Disease progression modeling under the COVID-19
pandemic

Considering the advantages and disadvantages listed in the
previous section for disease progression modeling methods, only
studies that have used epidemiology models are examined in
this section. Although the COVID-19 pandemic just emerged three
years ago, a significant number of studies have been conducted
to predict transmission dynamics and formulate disease progres-
sion via epidemiology models. In this regard, three review articles
have been presented [29,30,47,48], wherein epidemiological mod-
els such as susceptible-infected-recovered (SIR) and susceptible-
exposed-infectious-recovered (SEIR) have been mostly employed.
In this regard, the corresponding studies can be separated into two
categories: the first category covers simply epidemiological models,
while the second incorporates OCP into epidemiological models.
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Table 1
Classification of the relevant papers*.
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Ref. Phase 1 Phase 2

Characteristics

Sol.

EM-wo-OCP  EM-w-OCP Sup. Prod. Dist./] Demand

Resource Inv. Shr. Re-use Appr.

Identical Distinct Shr. Periodic

Overload

Unmet Type Type Cap. Cap. Cap.

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75] v N
[76] v v
[77] N

This study Vv Vv Vv

N N N S S NS SN SN SN

L

LK
LK

W

HEU.
GRB.
v v MH
CPlex
AnyLogic
GRB.
BD

Stochastic
Robust

Stochastic
Dynamic Multi
Dynamic Multi
Stochastic Vv J
Dynamic ~ Multi / N N N

Single
Multi
Single

A S
LA

*EM-w/wo-OCP: Epidemiological model with/without OCP; Sup.: Supply; Prod.: Production; Dist.: Distribution; Shr.: Sharing; Inv.: Inventory; Cap.: Capacity; Sol. Appr.:

Solution approach.

In the first category, Anand et al. [49] proposed a modified SIR
model (MSIRM) with a case study in India, where infected indi-
viduals were tested and quarantined. Cooper et al. [50] proposed
an MSIRM with a dynamic susceptible population, where the pro-
posed model was examined on different datasets, including China,
South Korea, India, Australia, Italy, and the USA. Chen et al. [51] ad-
dressed an MSIRM with a case study in China, in which recovery
and transmission rates were time-dependent. Abou-Ismail [52] ap-
plied SIR and SEIR models and offered a susceptible-quarantined-
quarantined-confirmed (SUQC) model. Wangping et al. [53] ex-
tended the SIR model with a case study in Italy, where the trans-
mission rate was time-dependent, and the Markov Chain Monte
Carlo method was employed to estimate the basic reproductive
number. Ifguis et al. [54] applied the SIR model for a case study
in Morocco. Calafiore et al. [55] developed an MSIRM based on
a case study in Italy, where their contributions focused on de-
termining the proper number of infected people and enhancing
identification and prediction processes. He et al. [56] proposed a
modified SEIR model (MSEIRM) with a case study in China, where
a particle swarm optimization algorithm was used to adjust the
SEIR’s parameters. Moreover, they examined the system’s behavior
regarding seasonality and stochastic infections. Moreover, in order
to forecast the basic reproduction number and pandemic spread
rate, Liao et al. [57] developed an integrated strategy compris-
ing a SIR model and a polynomial regression algorithm as a ma-
chine learning method. Indeed, the SIR model’s parameters were
estimated using the machine learning algorithm. Similarly, Alanazi
et al. [58] applied machine learning methods to estimate the pa-
rameters of a SIR model. Bagal et al. [59] applied the SIR model for
analyzing various lockdown scenarios in India. Chen et al. [60] pro-
posed a SIR model under an uncertain process by means of uncer-

tain differential equations, where the proposed model was inves-
tigated in a case study of China. Kyurkchiev et al. [61] proposed
new modifications for SIR and SEIR models, wherein intervention
polynomial factor was applied to consider various scenarios for
the contagious disease deployment. Zisad et al. [62] incorporated
a neural network model into an SEIR model to enhance the pre-
diction accuracy, where the neural network was utilized to predict
the quarantined population.

Alenezi et al. [63] proposed a time-dependent SIR model for a
case study in Kuwait. Hassen et al. [64] proposed an MSIRM called
SIR-Poisson to forecast the number of infected individuals follow-
ing a Poisson distribution. The accuracy of the proposed model was
examined in Maghreb’s central regions, including Algeria, Tunisia,
and Morocco. Prodanov [65] introduced an iterative approxima-
tion algorithm to estimate the parameters of the SIR model. Ala’raj
et al. [78] applied ARIMA models to adjust the parameters of a
modified susceptible-exposed-infected-recovered-deceased (SEIRD)
model under time-dependent birth and death rates. What is more,
Efimov and Ushirobira [66] proposed an MSEIRM by taking into ac-
count societal feedback on disease and confinement aspects as well
as time-dependent parameters. Singh and Gupta [67] developed a
generalized SIR model consisting of miscellaneous time-dependent
patterns of emerging, peak amplitude, and dwindling. Also, they
considered a logistic growth model to formulate infection spread.
Lépez and Rodo [68] proposed a time-dependent SEIR model for
a case study in Spain and Italy, where infection spread during the
latent period was considered under various proportions of contain-
ment.

In the second category, few studies have been conducted due
to the complexity of reflecting OCP factors. Das and Samanta
[69] suggested an MSIRM based on a fractional-order framework,



B. Vahdani, M. Mohammadi, S. Thevenin et al.

in which OCP was applied to investigate the effectiveness of a so-
cial distance policy, where lockdown was one of the policy’s parts.
Saha et al. [70] suggested a modified SEIRS model that accounts for
the influence of information on adequate precautions on people’s
behavioral responses. They used OCP to minimize disease burden
by implementing two control policies: boosting disease awareness
through information and improving treatment for hospitalized pa-
tients. Saha and Samanta [71] suggested an MSEIRM in which OCP
was used to assess the efficacy of social distancing and proper hy-
giene policy on raising awareness.

Research gaps and questions According to the literature, increas-
ing awareness about disease symptoms by spreading information
and enhancing treatments to hospitalized patients in different
stages of the COVID-19 pandemic substantially impacts medical
products demand, including hydro-alcoholic gels, masks, medical
clothes, ordinary and ICU beds, and ventilators. On this subject, the
demand for each of the mentioned medical products is associated
with a specified part of the target population. As an illustration, all
susceptible individuals must use masks and hydro-alcoholic gels
to prevent the spread of the virus regarding public health proto-
cols. Also, hospitalized individuals in general wards need ordinary
beds, and hospitalized individuals in ICUs require ICU beds and
ventilators. Moreover, all hospitalized individuals in general wards
and ICUs need medical clothes. Therefore, reflecting these concerns
to formulate a realistic disease progression model is necessitated
for identifying and estimating the demand for each piece of treat-
ment equipment. Needless to say, sketching a meaningful interac-
tion between the estimation phase of demand for mentioned prod-
ucts and the planning phase of logistics activities, including pro-
duction, distribution, and sharing, is undeniable. Regarding the ex-
plained research gaps, the main research questions are (1) How can
we estimate demands for different medical products according to
changes in disease progression? (2) How can we use estimated de-
mand to plan logistics activities? (3) Does considering dynamic de-
mand lead to more accurate planning for logistics activities?

2.2. Phase 2—Logistics planning: sharing/re-allocating mechanisms

Resource re-allocation or sharing is a reputable concept that has
applications in diverse domains, including judicial services [79],
closed-loop supply chain [80], bike-sharing [81], and humanitarian
logistics operations [82]. However, there are a limited number of
studies in the context of mathematical modeling of sharing mech-
anisms in healthcare systems. It is interesting to know that these
limited studies have also been formed due to the emergence of the
COVID-19 pandemic.

As the first papers dealing with the COVID-19 pandemic issues,
Mehrotra et al. [72] proposed a ventilator sharing framework to
combat the COVID-19 pandemic under demand uncertainty, where
a central agency allocated ventilators to various regions under
safety stock and inventory levels. In the sharing process, surplus
ventilators were returned to the central agency from the regions
and redistributed by the central agency with and without lead
time according to the demands of other regions in which demand
uncertainty was handled by stochastic programming. Parker et al.
[73] proposed two sets of mathematical models to redistribute the
COVID-19 patients as demands, and beds and nurses as resources
among healthcare facilities regarding inventory level. Also, a robust
optimization approach handled the demand uncertainty, and the
objective functions minimized the total surge capacity and nurse
overflow. Blanco et al. [74] proposed a single product-sharing sys-
tem among healthcare facilities in the COVID-19 pandemic regard-
ing inventory and capacity levels, where a stochastic program-
ming approach handled the demand uncertainty. Also, they ex-
amined four objective functions that stand for different aspects
of the unmet demand. Rozhkov et al. [76] proposed a simulation
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model to analyze a production-inventory problem in a multi-layer
supply chain system with perishable products during the COVID-
19 pandemic, where two supply chain reactive strategies were
considered, including order cancellation and excess inventory. On
this subject, they modeled the pandemic dynamics and its dis-
ruptions by an agent-based forecast model as a separate system
and analyzed its outcomes on the demand, supply, and capacities
of the considered supply chain system. Li et al. [75] proposed an
epidemiological model to formulate a coupled supply chain and
disease network during the COVID-19 pandemic, where the pro-
posed SEIHRS model worked alongside a production-inventory dy-
namic programming model. They considered four significant feed-
back functions to provide realistic circumstances of the COVID-19
pandemic and its disruptions, including disease-dependent capac-
ity, disease-dependent demand, shortage-dependent transmission,
and shortage-dependent fatality.

Research gaps and questions According to the literature, the sup-
ply and production of medical equipment have not been studied.
Also, these plans are generally considered for one product type,
while different products require different considerations. In this re-
gard, some medical equipment, such as ventilators and ICU beds,
can be reused after a certain period. So, this specification needs
to be reflected to compute the inventory level of healthcare facili-
ties and sharing decisions. Additionally, in real-world applications,
sometimes healthcare facilities have a certain level of participation
in the sharing process despite having excess capacity. Therefore, it
seems necessary to consider a limited capacity for sharing process.
What is more, a practical sharing system ought to allow health-
care facilities to accommodate some demand that exceeds their ca-
pacity so that they might share services to meet this surplus de-
mand rather than simply accepting it based on a predetermined
capacity. Regarding the explained research gaps, the main research
questions are (1) How can we reduce health system costs and un-
met demand by planning production, distribution, and sharing? (2)
How does reusable products’ reuse cycle affect production to shar-
ing decisions? (3) How do consumable and reusable products plan
from production to distribution in a multi-period healthcare sys-
tem?

Finally, with the intention of demonstrating research gaps and
our contributions better, Table 1 is provided.

3. Epidemiological model

This section develops a SEIHRS epidemiological model with OCP
(see Fig. 1) to estimate the demands of consumable and reusable
products. As a new extension, hospitalized patients are separated
into two groups. The first group represents the patients in gen-
eral wards who need regular hospital beds and typical treatments.
The second group comprises patients under severe conditions who
require ICU beds, ventilators, and critical treatments. In addition,
as the physical condition of the patients in the first group dete-
riorates, they are transferred to the second group. More impor-
tantly, in retrospect, people show different behavior towards minor
and intense symptoms of corona disease. For example, most peo-
ple do not pay attention to minor symptoms and postpone visiting
physicians, while this is usually the opposite in relation to intense
symptoms. In addition, as people become more aware of the con-
sequences of delaying the start of needed treatment, this attitude
usually changes. Furthermore, during the COVID-19 pandemic, due
to the insufficient knowledge of scientists about the origin of this
disease, many of the treatments used have been based on their ex-
perience with similar diseases in the past. Therefore, with the pas-
sage of time, conducting numerous clinical trials, increasing aware-
ness of the complications of the disease, and how patients respond
to the prescribed drugs, the treatments required in minor and in-
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Fig. 1. The proposed SEIHRS model.

tense conditions have been adjusted. Consequently, various control
policies are considered to reflect such circumstances.

3.1. Main assumptions and notations

The main assumptions to develop the SEIHRS epidemiological
model are as follows: 1) As symptomatic infected population den-
sity rises, so does the accumulation of information, but over time
it reaches saturation; 2) The recovery condition is not permanent
and a number of recovered individuals return to the susceptible
ones; 3) This model does not take into account the diseases’ natu-
ral histories, such as the incubation and latency periods; 4) Every
member of the population engages in social interaction; 5) Every
member of the population has the same health traits, such as im-
mune response, immunity, etc.; and 6) All afflicted individuals are
contagious and disseminate the illness among the susceptible indi-
viduals.

The list of the notations of the proposed mathematical model is
provided as Table 2.

The susceptible people become exposed once they encounter
infected individuals who are asymptomatic, symptomatic, or hos-
pitalized under normal or critical treatments via the term ($1A +
Bol + B3HN + B4HC)S.

The exposed individuals are then divided into either asymp-
tomatic or symptomatic segments regarding probabilistic p and
(1 - p), respectively if any disease symptoms have been recog-
nized in the infected individuals [70]. Similarly, symptomatic in-
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dividuals are separated into either normal or critical hospitalized
people with probabilities (1 —c¢) and c, respectively, if they need
supervised care in the hospital. Furthermore, the recovery condi-
tion is not permanent and a number of recovered individuals re-
turn to the susceptible segment, further with a constant rate &.

Although raising awareness persuades susceptible individuals
to change their behavior and protect themselves from contagion,
every person would not become cautious adequately forever due
to various reasons ranging from financial matters to personality
characteristics. Hence, a proportion of susceptible individuals adopt
precautionary measures and alter their conventional habits, where
these alterations depend not only on the number of susceptible in-
dividuals but also on the awareness density. Furthermore, the rate
of information dissemination is solely determined by the num-
ber of symptomatic people. In this regard, let u;k be the rate at
which the susceptible individuals’ behavior changes to prevent dis-
ease spread as a result of appropriate disease prevention proceed-
ings (e.g., social distancing, cleanliness, and self-isolation). In addi-
tion, %’q, is a saturation function that represents how information
grows among symptomatic infected individuals [70,83].

3.2. The proposed SEIHRS model

The developed SEIHRS model for COVID-19 is a system dynam-
ics model, where susceptible individuals acquire essential informa-
tion concerning the disease and recommendations to avoid it. The
infected individuals diverge into asymptomatic and symptomatic
segments; however, due to the latency in the appearance of the
symptoms, the possibility of converting asymptomatic individuals
to symptomatic ones is considered. Additionally, symptomatic in-
dividuals are divided into minor and intense symptoms, which re-
quire normal and critical treatments. Furthermore, as the physical
state of the patients in the first group deteriorates, they are trans-
ferred to the second group. Also, a number of hospitalized people
can recover with necessary care, although they can become sus-
ceptible again due to the nature of the virus. Hence, the proposed
system seeks to examine how to control the spread of the disease
by investigating factors such as raising awareness about precau-
tionary measures and offering better treatments. In this regard, the
proposed SEIHRS model of Fig. 1 is mathematically formulated as
the system of Eq. (1):

% = A — (BiA+ Bol + BsHN + B4HC)S — dS + ER —uikSZ - S(0) > 0,

dE

T = (B1A + Bal + B3HN + B4HC)S — (k+d)E  E(0) >0,

Y kpE-mA—(@+6)A A =0,

dI

a:x(]—p)E+nA—a)I—(d+62)I 1(0) > 0,
dg—tN = w(1—0)l—(d+8)HN - yHN—6HN  HN(0) = 0, (1)
% = wcl — (d + 64)HC — y,HC+OHN  HC(0) > 0,

drR

G = VHN+7HC—ER—dR+uikSZ  R(0) = 0,

dz pl

&= Trq % 20=z0

This system represents the equilibrium of input and output
flows at each state, which depends on time and simulates its fluc-
tuation and dynamicity. In this regard, the first equation of the sys-
tem (1) displays the number of susceptible people at time t. It cal-
culates the difference between the total population, and the num-
ber of recovered individuals who return to susceptible ones, as the
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Table 2
Notations of the proposed SEIHRS model.
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Notation Description

Parameters

A Total population at the beginning of the pandemic

B/ B Disease contagion rates per contact by asymptomatically/symptomatically infected individuals

B3/PBa Disease contagion rates per contact by individuals hospitalized under normal/critical treatments

d Natural death rate of individuals

81/82 Particular death rate among asymptomatically/symptomatically infected individuals

83/84 Particular death rate among individuals hospitalized under normal/critical treatments

P Probability of being asymptomatically infected among exposed individuals

c Probability of being hospitalized under critical treatments among symptomatically infected individuals

K, 1, 0, Y1, V2 Conversion rates from exposure to infected, asymptomatic to symptomatic, symptomatic to hospitalized, and normal and critical
hospitalized to recovered individuals

& Return rate of recovered individuals to be susceptible again

ap Depreciation rate of information in the course of time due to the physical fading of memory regarding sequels

k Information interaction rate

D q Information growth rate and the unresponsiveness rate to information

Variables

State variables

N(t) Total population at time t

S(t) Number of susceptible individuals at time ¢t

E(t) Number of exposed individuals at time ¢t

A(t), I(t) Number of asymptomatically/symptomatically infected individuals at time ¢t

HN(t), HC(t) Number of hospitalized individuals under normal/critical treatments at time t

R(t) Number of recovered individuals at time t

Z(t) Awareness density because of the spread of information provided by social media platforms and educational campaigns concerning

awareness programs to illustrate precaution measures (Z(t) = 0 if lack of symptomatic infected individuals)

Control variables

uy Response intensity to the information

Uy Awareness intensity of normal symptoms
us Awareness intensity of intense symptoms
Uy Response intensity to normal treatments
Us Response intensity to critical treatments

input flows; the number of susceptible individuals who become
exposed, the number of susceptible individuals who die, and the
number of susceptible individuals who follow health protocols, as
the output flows. The second equation of the system (1) indicates
the number of exposed people at time t. It calculates the differ-
ence between the number of susceptible individuals who become
exposed, as the input flow; the number of exposed individuals who
die, and the number of exposed individuals who become infected,
as the output flows. The third equation of the system (1) indi-
cates the number of asymptomatically infected people at time t. It
computes the difference between the number of exposed individu-
als who become asymptomatically infected, as the input flow; the
number of asymptomatically infected people who die naturally and
unnaturally, and the number of asymptomatically infected people
who become symptomatically infected, as the output flows. The
fourth equation of the system (1) indicates the number of symp-
tomatically infected people at time t. It calculates the difference
between the number of exposed individuals who become symp-
tomatically infected, and the number of asymptomatically infected
people who become symptomatically infected, as the input flows;
the number of symptomatically infected people who die naturally
and unnaturally, and the number of symptomatically infected peo-
ple who become hospitalized, as the output flows.

The fifth equation of the system (1) indicates the number of
hospitalized individuals under normal treatments at time t. It cal-
culates the difference between the number of symptomatically in-
fected people who become hospitalized under normal treatments,
as the input flow; the number of hospitalized individuals under
normal treatments who die naturally and unnaturally, the number
of hospitalized individuals under normal treatments who become
recovered, and the number of hospitalized individuals under nor-
mal treatments who transfer to ICUs, as the output flows. The sixth
equation of the system (1) indicates the number of hospitalized in-
dividuals under critical treatment at time t. It calculates the differ-
ence between the number of symptomatically infected people who

become hospitalized under critical treatments, and the number of
hospitalized individuals under normal treatments who transfer to
ICUs, as the input flows; the number of hospitalized individuals
under critical treatments who die naturally and unnaturally, and
the number of hospitalized individuals under critical treatments
who become recovered, as the output flows. The seventh equa-
tion of the system (1) indicates the number of recovered individ-
uals at time t. It calculates the difference between the number of
hospitalized individuals under normal and critical treatments who
become recovered, and the number of susceptible individuals who
follow health protocols, as the input flows; the number of recov-
ered individuals who die naturally, and the number of recovered
individuals who return to susceptible, as the output flows. Finally,
the eighth equation of the system (1) indicates the awareness den-
sity at time t. It calculates the difference between the information
growth, as the input flow, and the information depreciation, as the
output flow.

For the calculation of the basic reproduction number %, and
the endemic equilibrium point, interested readers are referred to
Appendix A. Furthermore, the stability analysis of the %, equilibria
is provided in Appendix B.

3.3. The optimal control problem - OCP

As discussed earlier, the main goal of the proposed SEIHRS
model is to examine how to control the propagation of the dis-
ease by implementing a number of policies as control variables.
Needless to say, managers are always looking for feedback from
the system after the implementation of these interventions so that
they can have precise control over them. In addition, it should not
be forgotten that the implementation of these interventions always
imposes costs on the system. This matter becomes more important
when in the conditions of a pandemic; the available funds must be
spent more obsessively. Therefore, an approach should be adopted
that guarantees the achievement of the goal in addition to con-
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sidering the mentioned limitations. However, the proposed SEIHRS
model alone cannot provide the possibility of achieving the listed
considerations. In this regard, OCP can be incorporated into the
proposed system of equations (1) to determine control variables,
satisfy the defined constraints of the devised system, and at the
same time minimize the total costs of the system as a performance
criterion.

In this regard, we considered two main policies, (1) raising
awareness between susceptible and symptomatic infected people
concerning minor and intense symptoms via spreading informa-
tion, when the susceptible may observe precaution measures, and
the symptomatic infected can seek treatment without disregard-
ing their symptoms [70], and (2) improving normal and critical
treatments for hospitalized individuals in general and ICU wards
due to the increase of knowledge about virus behavior. In this re-
gard and referring to Fig. 1, symptomatic infected individuals are
divided into two categories. The first category visits medical cen-
ters with the mildest symptoms and receives normal treatment.
The second category requires critical treatment due to ignoring the
slightest symptoms, which exacerbates their health condition. This,
in turn, leads to saturating general and ICU wards in medical cen-
ters. Therefore, let %ﬁf’ and %;2?’ be saturation functions for
general and ICU wards, where ¢ and &, are acceptance rates of
minor and severe symptoms by infected individuals with intensi-
ties u, and uz and saturation constants {(1 and ;2*1. Due to the
unknown of COVID-19, treatments will be developed over time as
more knowledge becomes available. This has an impact on disease
progression and mortality rates. However, the ratio of patients to
existing equipment is quite high, which leads to saturation in the

system. In light of this reality, let Sii“;;}{%’v and 8‘1‘”+5£1)j;c be satura-

tion treatment functions, where &3 and &4 are normal and critical
treatment rates with intensities u4 and us and saturation constants
¢7'and g0

In this OCP, five control variables u;(t), i=1,..., 5 (ui(t) €
[0, 1]) are defined. In control variable u4(t), values 0 and 1 signify
no reaction and the complete response of susceptible individuals
to information, respectively. For control variables u,(t) and us(t),
value O signifies when a person is unaware of his or her normal
or intense symptoms and does not seek medical advice, respec-
tively; and value 1 represents complete awareness of symptoms.
Finally, control variables u4(t) and us(t), values 0 and 1 signify no
response and complete response to normal and critical treatments
in general and ICU wards, respectively. Hence, in order to deter-
mine the optimal response to minor and intense symptoms and
optimal normal and critical treatments, an objective function is
considered, which minimizes the system'’s total costs including the
cost of spreading awareness among susceptible and symptomatic
infected individuals and the cost of normal and critical treatments
in hospitals. The region of the control interventions can be defined
as (2):

M = {u (), uz (t), u3 (), ua(®), us (t) [ ui(t) € [0, 1,
i=1,..5te[0 T} (2)

where Ty is the final time to implement the control policies, and
u;(t) fori=1,...,5 are bounded and measurable variables. Hence,
with the intention of formulating the explained control policies,
the following control problem is proposed with initial condi-
tions S(0) > 0, E(0) >0, A(0) >0, I(0) > 0, HN(0) > 0, HC(0) > 0,
R(0) >0 and Z(0) > 0.

Jlug (8), ua (t), us(t), ug(t), us(t)]
T
- / "[wil(t) + waHN(E) + wsHC(t) + wati2 (£)
0

+Wsu3 (t) + w3 (t) + woud(t) + weu(t)]dt (3)
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s.t.:
ds
Fri A — (B1A + Bol + B3HN + B4HC)S — dS + ER — uq (£)kSZ,
dE
i (B1A + Bl + B3HN + B4HC)S — (k + d)E,
dA
i kpE — (n+d+68p)A,
dI _ 8]U2(t)1 82U3(t)1
P k(1—=p)E+nA— (w+d+8)— tal 1tol
dHN gup(t)I  esuy(t)HN
G = w(1—-c)—(d+683+y1 +60)HN + 120l 1+ GHN
dHC euz ()l equs(t)HC
Tl wcl — (d + 84 + y2)HC + 6HN + 1160~ 1+ GHC
dR _ 83U4(t)HN €4U5(t)HC
P y1HN + y,HC — ER — dR + uq (t)kSZ + 13 GHN 1+ CHC
dz pl
a = Tra Y @

The first term in the objective function (3) calculates the cost
when symptomatic infected individuals consult a medical profes-
sional concerning normal and intense symptoms and seek neces-
sary medical care without disregarding symptoms. The second and
the third terms calculate the costs of hospitalized people in general
and ICU wards, respectively. The fourth term calculates the cost of
spreading awareness among susceptible individuals. The fifth and
sixth terms compute the productivity loss due to mild or intense
illness, respectively. Finally, the seventh and eighth terms calculate
the opportunity loss, such as productivity loss, resulting from hos-
pitalization to general and ICU wards, respectively. Remarkably, the
square of the control variable reveals the intensity of side effects
of awareness programs and treatment policies [31,32,38,84,85]. The
positive parameters w;, i=1,...,8 are importance weights and
balance the units of the integrand.

Theorem 3. The control system (3) and (4) has optimal control vari-
ables such that J(u3, u3, uf, u}, uf) = min[J(uy, up, us, Uy, us)].

Proof. A mathematical proof has been provided in Appendix C. O

Finally, Appendix D provides the way to obtain optimal con-
trol variables. Noteworthy, as far as the pandemic is not over,
S(t), A(t), I(t), HN(t), and HC(t) help to estimate the demand
of medical products corresponding to each segment of the popu-
lation. For instance, considering the COVID-19 pandemic, the de-
mands for hydro-alcoholic gels and masks over time can be esti-
mated by S(t); HN(t) + HC(t) can represent the demand for med-
ical clothes over time; the demand for ordinary beds over time
can be estimated by HN(t); and finally, the demands for ICU beds
and ventilators over time can be estimated by HC(t). More im-
portantly, at the endemic equilibrium point, the demand for the
above-mentioned products and equipment can be estimated using
obtained optimal state variables (S*, HN* + HC*, HN*, and HC*) re-
sulting from the optimal system.

4. The proposed PISP model

This section formulates a logistics network that includes a set
of suppliers and manufacturers that provide medical products and
equipment, as well as a set of demand points/hospitals (hereafter,
we only use the term hospitals as the demand and cure points
of the population). The manufacturers and hospitals are clustered
in a given number of regions, in such a way that the hospitals
of a given region receive medical products and equipment from
the manufacturers located in the same region. A set of medical
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products and equipment are considered, which are divided into
consumable and reusable products. Manufacturers produce medi-
cal products and equipment using raw materials provided by sup-
pliers and distribute them only among the hospitals of their cor-
responding region. Due to demand fluctuations and capacity limi-
tations in manufacturers and suppliers, hospitals might encounter
shortages. Hence, an applicable sharing system among hospitals in
each region is developed, wherein hospitals with surplus products
can transfer the extra portion to the hospitals with extra demands.
In addition, hospitals can receive a higher percentage of their pa-
tients’ actual demands and respond to them through the sharing
system. More importantly, a lead time is defined for reusable prod-
ucts according to their occupancy times in ICU wards. This is in-
deed in line with real-world practice, where these products be-
come free and reusable over a certain period of time, and they will
be reconsidered as available inventory.

Before entering the details of the proposed mathematical
model, assumptions and necessary notations are described.

4.1. Assumptions and notations

The main assumptions of the defined problem are as follows:
1) The capacity of suppliers, manufacturers, and hospitals is lim-
ited; 2) The sharing capacity of any hospital, and the total sharing
capacity over all regions are limited; 3) ICU beds and ventilators
can be reused after a certain period as the occupancy time; 4) The
shortage of medical products in hospitals is allowable, which is
reflected by unmet demand; 5) Hospitals with surplus inventory
can transfer the extra portion to hospitals with extra demands;
6) Hospital’s unmet demand is met using the net supply balance
and sharing from other hospitals; 7) Hospitals with extra inventory
cannot receive products from the sharing process; 8) The sharing
approach enables hospitals to get a greater proportion of their pa-
tients’ actual demands and address them; and 9) The demand for
medical products in hospitals is uncertain and has a dynamic pat-
tern, which is estimated by the developed SEIHRS model with OCP.

The list of the notations of the proposed mathematical model is
provided as Table 3.

4.2. The PISP formulation

This section proposes the multi-period PISP formulation as a
mixed-integer linear programming model using the notations de-
scribed in Table 3, where the demand for consumable and reusable
products are estimated from the proposed SEIHRS model (4).

4.2.1. Objective function
The objective function of the multi-period PISP formulation is
presented as (5) which minimizes the total costs of the system.

minZ =YY 0w+ Y > SComYpme + > 9 > TChimlUpjme

jeJ teT peP meK teT peP je] meK teT

Y PCmXpme + D Y Y TComm @by

peP meK teT peP meKm’eH teT

FX 3 TCmmShy + > Y Y IComlpme + CU % Spax

peP meH m’eH teT peP meKUH teT
(5)

The objective function (5) includes eight different terms includ-
ing: 1) fixed ordering costs for suppliers, 2) fixed production setup
costs at manufacturers, 3) variable transportation costs between
suppliers and manufacturers, 4) variable production costs at man-
ufacturers, 5) variable transportation costs between manufacturers
and hospitals, 6) variable sharing costs among hospitals, 7) vari-
able inventory holding costs at manufacturers and hospitals, and
8) unmet demand costs, respectively.
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4.2.2. Constraints

In the following, the constraints of the proposed multi-period
PISP model are explained. The first set of constraints, i.e. (6)-(12),
formulate the amount of unmet demand as well as the amount of
raw materials and products among suppliers, manufacturers, and
hospitals.

Smax = Spmt VpePmeHteT (6)
> upime <Upwje  VjelpePteT (7)
meK
> Upjme = VoXpm  YpePmeKteT 8)
jel
Xpme < QpmY pmt VpePmeKteT (9)

>y <Xpmeot +lpmer VielpePmekim),teT  (10)

m’eH; (m)

Sm+ Y. (h)T< Y qh, VielpePmeHi(m).teT

m’eH;(m) m’ek;(m)
m'#m
(11)
> b, <Ghx VielpePm eH(m)teT (12)

meK; (m)

In this regard, constraint (6) calculates the maximum unmet de-
mand among all hospitals. Constraint (7) represents supplier ca-
pacities and ensures that only suppliers that have already set up
can supply raw materials. Constraint (8) represents the balance
of raw materials quantity transferred from suppliers to manufac-
turers and the production quantity in manufacturers. Next, con-
straint (9) guarantees the production capacity of manufacturers for
each product type at each period. Furthermore, constraint (10) en-
sures that the production quantity transferred from each manufac-
turer to hospitals at the beginning of each period can not exceed
the production quantity of the previous period and the inventory
at the beginning of the preceding period. In addition, constraint
(11) ensures that supplied and shared products via each hospital
during each period cannot exceed the amount of product deliv-
ered to that hospital. Finally, constraint (12) guarantees that the
delivery quantity of any type of product from all manufacturers
to each hospital in each period cannot exceed the hospital’s maxi-
mum supply capacity.

The second set of constraints, i.e. (13)—(17), monitor the inven-
tory level of different products at manufacturers and hospitals.

Ipmt :Ipm_t_] +Xpm,t-1 — Z qg:m, Vie I, De P,me K,(m), teT
meH;(m)

(13)

Ipmt = Iglrﬁx

VpePmeM,teT (14)

Ipmt = Ipm.t—l + Z Qf,,tfm — &pm,t-1 + Z (Sﬁ;/t,;])_

m’ek;(m) m’eH;(m)
m'#m
— Y ()t VielpeP.meHi(m).teT  (15)
m’eH;(m)

m'#m
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Table 3
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Notations of the proposed multi-period PISP model.

Notation

Description

Sets & Indices

mm eM Set of nodes, including manufacturers and hospitals in all regions

K&H Set of manufacturers and hospitals in all regions

K;(m) Subsets of manufacturers in region i; K = |JK;(m)

1
H;(m) Subsets of hospitals in region i; H = |JH;(m)
1

jel set of suppliers of raw materials

peP Set of medical products, including two sets of consumable P’ (hydro-alcoholic gel, mask, medical clothes, and ordinary beds) and
reusable P” (ICU beds and ventilator)

teT Set of time periods

Parameters

L Lead-time periods as the occupancy time, at which the reusable products are reconsidered as available inventory

Vp Conversion rate of raw materials to manufacture product p

Dpme Demand for product p in hospital m at period t

Upj Capacity limitation for product p at supplier j

pm Capacity limitation for product p at manufacturer m

0C; Ordering cost of product p at supplier j

SCpm Production cost of product p at manufacturer m

PCym Unit production cost of product p at manufacturer m

TChjm Transportation cost per unit of product p from supplier j to manufacturer m

cu Unit cost of unmet demand at hospitals

Igm Initial inventory of product p at manufacturer/hospital m at the beginning of the planning horizon

ICom Unit inventory holding cost of product p at manufacturer/hospital m

I Maximum inventory capacity for product p at manufacturer/hospital m

G Maximum sharing capacity for product p at hospital m

TQ, Total sharing capacity for product p over all regions

Wp Allowed demand surplus (%) for product p at hospitals that can be met through the sharing system

TComm' Unit transportation cost of product p shared among hospitals m and m’ during the sharing process

Decision variables

Wit 1 if an order is placed to supplier j at period t; 0 otherwise

Ypme 1 if product p is set up for production in manufacturer m at period t

bpme Net service balance of product p in hospital m at the beginning of period t before transferring the products in the sharing process;
bpme = by + by, where bl and by, are positive and negative parts of net service balance bpm: (i.e., by, = max{0, bpm} and by,
= min{0. bpmc})

Um 1 if byme > 0; O otherwise

Xpmt Production quantity of product p in manufacturer m in period t

Upjme Quantity of raw material for product p transferred from supplier j to manufacturer m in period t

qﬁfm, Quantity of product p transferred from manufacturer m to hospital m’ at the beginning of period t

Tome Inventory of product p in node m at the end of period t

Zpme Available quantity of product p to be supplied by hospital m in period t to satisfy its internal demand and external sharing

e poskive e megacve s of Shonbd arodocs o S (0" TGS ot 1 o N e

mm’ - > “mm’ mm’ - *“mm’
Spmt Amount of unmet demand of product p in hospital m at the end of period t
Smax Maximum unmet demand among all hospitals

Ipm[ = Ipm.t—l + Z Qﬁffm _gpm,t—l + Z (spr 1)7

m’eK;(m) m’eH; (m)
m'#m
— > (kT VielpeP'.meH(m).teT:1<t<L
m’eH;(m)
m'#m

(16)

Ipmt =Ipm,[—1 + Z qﬁ,t/ gpmt 1+gpmt L+ Z (Spt 1)7

m’ek;(m) m’eH;(m)
m'#£m
— > (et VielpeP'.meHi(m).teT,L<t
m’eH;(m)

m'#m

(17)

In this regard, constraint (13) represents product inventory in
each manufacturer at the beginning of each period. Constraint
(14) represents the storage capacity of facilitates, including man-
ufacturers and hospitals, for each product type and period. Con-
straint (15) represents product inventory in each hospital at the
beginning of each period for the consumable products. Constraint
(16) represents product inventory in each hospital at the beginning

of periods 2 to L for the reusable products. Constraint (17) repre-
sents product inventory in each hospital from the beginning of pe-
riod L-onwards for reusable products regarding the reuse cycle.

The rest of the constraints, i.e. (18)-(28), are defined to form
the sharing system.

Dpme < ¢! +ﬂp)gpmt VpeP meH(m),teT (18)
> gm<TQ, VpePteT (19)
meH

gomt <lpm¢ Viel,peP,meH(m),teT (20)
bpmt = 8pmt —Dpme Viel,pe P meHy(m),teT (21)

Spmt = —bpme — Z Sﬁ,m Viel,pePmeH;(m),teT (22)

m’eH;(m)
m'#£m
by <TQpUm Viel,pePmeH(m),teT (23)

bome = TQp(Um —1)  VielpePmeHi(m),teT (24)
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> (hy)t<bh, VielpePmeH(m)teT (25)
m’eH; (m)

m'#m
bl = (sh.)T  Viel.peP.m.m eH(m).teT:mz#m' (26)
bome < (Sh)™  VielpePmm eHy(m).teT:m#m' (27)
(sh)T<Ghx VielpePmm eH(m).teT:m#m (28)

For this aim, constraint (18) ensures that each hospital’s de-
mand for each product type in each period is met by the amount
of hospital supply and the allowable demand overload ratio. Con-
straint (19) guarantees that all hospitals’ total available supply
for any product cannot exceed the total supply capacity of that
hospital. Constraint (20) guarantees that the supply quantity of
each product type in each period via each hospital cannot ex-
ceed the hospital inventory at the beginning of the period. Con-
straint (21) represents the net supply balance of each product in
each hospital before sharing. Constraint (22) states that each hos-
pital’s unmet demand for any product is met using the net sup-
ply balance and product sharing from other hospitals. Constraints
(23) and (24) impose that only one of b;gmt and b;m[ becomes
nonzero. Constraint (25) guarantees that the total product trans-
ferred from each hospital to other hospitals should not exceed that
hospital’s maximum transferable capacity. Constraint (26) ensures
that each hospital with extra supply can offer an outgoing capacity
transfer. Constraint (27) ensures that a hospital with extra supply
can not receive an incoming capacity transfer. Constraint (28) pre-
vents product sharing across regions. Finally, constraints (29) de-
termine the types of decision variables.

t t
Upjme, Xpmt ngm,, Ipme, 8pme» b;mt’ (S%mr)Jr, Spmt Smax = 0
t
anm” bpmt cR

— t —
bpm[’ (551111’) <0

Vm, Wje, Ypme € {0, 1}

(29)

5. Benders decomposition

This section offers an accelerated Benders decomposition (ABD)
algorithm [86] to solve the proposed PISP model. Benders decom-
position divides the original problem into a master problem and
several sub-problems such that each of which is generally eas-
ier to solve than the original problem. The sub-problems’ vari-
ables are estimated by applying linear programming duality. The
remaining variables are in the master problem, as well as an artifi-
cial variable that describes a lower bound (upper bound) on the
sub-problems’ objective function for a minimization (maximiza-
tion) problem. Afterward, a cutting plane algorithm solves the re-
sultant model, where the values of the master problem’s variables
are first determined. Then, the sub-problems are solved with these
variables determined at each iteration. A feasibility cut is added
to the master problem if the sub-problems are infeasible and un-
bounded; else, an optimality cut is added. If sub-problems are fea-
sible, an upper bound can be obtained, and if the optimal solution
is obtained by solving the master problem, a lower bound can be
obtained. The process is repeated until an optimal solution is de-
tected or the optimality gap falls below a specified threshold. What
is more, in order to enhance Benders decomposition’s performance,
a number of acceleration methods are applied.

10

Omega 120 (2023) 102909
5.1. Valid inequalities

This section introduces a set of new valid inequalities that can
be applied to strengthen the linear programming relaxation of the
PISP formulation. The first class of inequalities depends on the
products’ type (i.e., consumable and reusable). Three factors are
considered in the valid inequalities for consumable products (i.e.,
Inequality (30)): inventory level, unmet demand quantity, and ag-
gregated demand at hospitals. In addition to these factors, the valid
inequalities of reusable products (i.e., Inequalities (31) and (32))
encompass the released inventory level due to the reuse cycle.

2t DL Smz )L )

meH;(m) meH;(m) meH;(m) h<t'<t

mer'<1— > Zlernt’) Viel,peP,t,heT;1<h<t

meK;(m) h<t'<t

(30)

S bt Y Smz= Y. Y mey(lf > Zypmt’)

meH;(m) meH;(m) meH;(m) h<t’'<t meK;(m) h<t'<t
VielLpeP',t,heT;1<t<L 1<h<t (31)
Z Ipmh + Z Spmt + Z me,t—L >
meH;(m) meH;(m) meH;(m)
Z Z Dpme (1 - Z Z .met’>
meH;(m) h<t’'<t mekK;(m) h<t'<t
Viel,peP',t,heT;L<t,L<h<t (32)

Inequality (30) validates that the aggregated demand between
periods h to t is typically fulfilled either from available inventory
at hospitals through direct supply or sharing or from backlog if the
required inventory is not available. Inequalities (31) and (32) rep-
resent a similar concept, except that after period L, the inventory
level of reusable products is increased by the amount of demand
at period t — L, which can be employed to fulfill demands through
direct supply or sharing.

Moreover, since the primary master problem in this study only
contains logical constraints upon ypy: and a limited number of op-
timality cuts, the master problem contributes to a supply chain
with a restricted number of equipped suppliers and manufactur-
ers in the initial iterations of the Benders algorithm. As a result,
the lower bounds for early master problems are negligible. More
importantly, only a tiny portion of demands can be fulfilled in sub-
problems with few equipped facilities, imposing a high cost of un-
met demand on the problem. In order to reduce this repercussion,
the second class of inequalities is in charge of this task. In this re-
gard, since suppliers provide raw materials to manufacturers and
manufacturers make finished products, we must set up at least
one supplier and manufacturer, which is guaranteed by inequali-
ties (33) and (34). Finally, inequality (35) validates that the unmet
demand of product p in hospital m during each period cannot ex-
ceed the product’s demand in that hospital.

2> w1 (33)
je teT

ZZZ}’pmt >1 (34)
peP meK teT

Spmt <Dpm¢e VpePmeHteT (35)
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5.2. Knapsack inequalities

The knapsack inequality is added to the master problem to ac-
celerate the branch-and-bound process in the solver. Indeed, the
convergence speed of Benders decomposition can be improved by
adding the following cuts, which assist progressive solvers like
Gurobi in deriving a range of valid inequalities [87]. Consequently,
the following cuts (36) are added in iteration n+ 1 of the master
problem.

LB" < Z ZOCjot + Z Z Zscpm}’pmt +

jeJ teT peP meK teT

(36)

where LB" signifies the best specified lower bound found so far,
and ¢ is an additional variable representing the total cost except
ordering and setup costs. Finally, the PISP Benders reformulation is
provided in Appendix F.

6. Computational experiments

This section presents the computational results of the devised
framework to deal with pandemic situations under dynamic de-
mand. For this aim, Section 6.1 designs a set of experiments based
on a real case study, the COVID-19 pandemic in France. Next,
Section 6.2 provides a comparative analysis between the proposed
ABD algorithm and the Gorubi solver without (GRB) and with
the valid inequalities (GRB_VI). The comparison between GRB and
GRB_VI helps to investigate how much the valid inequalities have
been effective in reducing the computational time of the Gurobi
solver. Finally, a set of comprehensive sensitivity analyses are pre-
sented in Section 6.3 to investigate the behavior of the proposed
PISP model to any changes in its input parameters.

6.1. Experimental design and case study

This section designs a set of experiments for evaluating the de-
vised framework’s performance in dealing with the COVID-19 pan-
demic in France, where the demands of consumable and reusable
products are determined using the proposed SEIHRS model. The
experiments are derived from a real case study, the COVID-19 pan-
demic in France. In this case study, a set of six medical products
and equipment are considered, which are divided into consum-
able and reusable products, including masks, hydro-alcoholic gel,
medical clothes, and ordinary beds as consumable products, and
ICU beds and ventilators as reusable ones. Among 13 metropolitan
and 5 overseas regions of France, this case includes 12 regions, and
each region has a given number of factories, hospitals, and popula-
tion as depicted in Fig. 2. Furthermore, there exist 12 suppliers to
supply raw materials throughout France. For each region, we nom-
inate a set of geographically dispersed hospitals throughout the re-
gion, and each may also integrate a set of other local/smaller hos-
pitals. In the case of integrating multiple hospitals, the capacity of
the representative hospital will be the sum of the capacity of inte-
grated hospitals. Each main hospital or a group of hospitals is re-
sponsible for fulfilling the demand of a populated area under their
coverage. Accordingly, the dynamic demand of products at each
hospital (i.e., Dpm¢) is obtained by running the proposed system
dynamics model (4) for that area, where the total population and
death rates are the mean values for covered populated areas, and
the population is the sum of the populations in those areas. More-
over, we assume that the disease does not spread among different
regions and the proposed SEIHRS model is executed separately for
each region. Detailed information on all other parameters in the
SEIHRS model and PISP formulation is provided in

Figure 3 illustrates the outcomes of the SEIHRS model in de-
termining the state variables for two distinct hospitals that be-
long to two different regions. It is worth mentioning that these
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results only represent the first peak of the disease. As can be ob-
served, the dynamicity of the state variables in the two hospi-
tals are significantly different, and they do not follow a specific
distribution. These issues demonstrate the necessity of employing
epidemiological-based system dynamics models (i.e., the SEIHRS
model) to determine the demand. As a result, the policy-makers in
each region should plan separately based on their production and
sharing capacities. Needless to say, this knowledge leads to better
utilization of the capacity. What is more, national policy-makers
may also arrange to transfer excess capacity to other regions.

Remarkably, since the basic reproduction number Ry is ob-
tained greater than 1 for the case study, the endemic equilib-
rium point of the pandemic cannot be obtained by solving the
system of Eq. (A.6). Hence, it can be realized that the optimal
values of the state variables cannot be used to estimate the de-
mand for masks and hydro-alcoholic gels (5*), ordinary beds (HN*),
ICU beds and ventilators (HC*), and medical clothes (HN* + HC*).
Therefore, the cumulative value of each of the state variables
(S(t), HN(t), HC(t), HN(t) + HC(t)) in a week represents the de-
mand for medical products in each period of the PISP model.

To test the performance of the proposed ABD algorithm, a set
of 25 test problems are derived from the case study, wherein the
numbers of regions, suppliers, manufacturers, and hospitals are
fixed, but the period increases from 4 weeks to 52 weeks. Since
the SEIHRS model is run for each hospital for a time horizon of 365
days and it is also impossible and illogical to plan the PISP daily,
each period of the PISP model represents a week and the demand
of each period is the cumulative demand of the whole week.

The PISP model and the ABD algorithm were coded in Python
3 using the Gurobi library, and all experiments were done on a
server containing four Intel XEON processors with 5 GB of RAM
running at 2.3 GHz. Furthermore, two stopping criteria are consid-
ered when executing the accelerated Benders decomposition algo-
rithm and the Gurobi solver: 1) a gap of 1% and 2) a CPU time
of 7200s. For the ABD algorithm, the first criterion is the gap (%)
between the obtained lower-bound and upper-bound at each iter-
ation of the algorithm; and for the Gurobi solver, it is the gap (%)
between the best-found solution and the current obtained solution.

6.2. Numerical results

This section provides a comparative analysis of the performance
of the proposed ABD algorithm with the GRB and GRB_VI. Table 4
shows the results of this comparison for 25 test problems (i.e.,
column “|T|” as the number of periods), in terms of both objec-
tive function values (i.e., columns “Obj. Values”) and computational
time (i.e., columns “Time (s)”). In columns “Obj. Values”, the val-
ues are proportional to the objective function value of the first test
problem, which has been shown as “X” in Table 4.

As can be seen in Table 4, all three methods have been able
to obtain optimal solutions for test problems up to 26 time pe-
riods except the test problem with 20 periods; however, this has
occurred in less computational efforts for the ABD algorithm com-
pared to both GRB and GRB_VI. Furthermore, the GRB_VI has been
also faster compared to the GRB in the mentioned test problems. In
addition, the ABD algorithm has been able to obtain a gap of less
than 1% for all test problems before reaching the maximum allow-
able CPU time of 7200s, even for larger test problems. It has also
happened for the GRB_VI for almost all test problems except the
last four test problems. Indeed, the proposed valid inequalities help
the mathematical model to be solved faster, and they obtain better
results under limited computational efforts. However, they are still
ineffective when solving large-sized test problems for |T| > 46.

On the other hand, the GRB has been unable to obtain the op-
timal solution for test problems with 20 and > 28 periods, among
which for test problems with |T| > 42 a feasible solution has not
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Fig. 2. The case study information on each region.

been even obtained within the limited computational effort of
7200s. It is also clear that there is a considerable difference be-
tween the computational time of GRB and GRB_VI compared to the
ABD algorithm, which indicates the effectiveness of the proposed
ABD algorithm in solving the PISP.

More importantly, to demonstrate the efficiency of the sharing
mechanism, two critical evaluation criteria have been examined
for all test problems, namely the total cost of the system and the
maximum unmet demand. These evaluations have been reported
in columns “Obj.” and “Smax” under “Sharing impacts (%)”, respec-
tively, where positive and negative values, respectively, show the
increase and the decrease percentages in the corresponding val-
ues. For this aim, the ABD algorithm has been used to solve all
test problems under two options: 1) sharing and 2) without shar-
ing. In the second option, the parameter Gnax is fixed to O to
prohibit the hospitals from sharing products. As can be seen, the
sharing mechanism reduces the total system costs and unmet de-
mand in all test problems except for test problems with a smaller
number of periods. For instance, the total cost of the system is in-
creased by 15.71% and 2.35% for test problems |T| =4 and |T| =6,

respectively. The unmet demand is also increased for test problems
IT| = {4, 6, 8, 10}. The reason for these exceptional increases in the
total cost of the system goes back to the fact that in primer peri-
ods, the demand for medical products increases sharply up to pe-
riod t = 10 (when the peak of the pandemic occurs in most of the
populated areas), consequently, the maximum unmet demand in-
creases as well. In such situations, since the planning horizon is
short, the system increases the inventory levels with the hope to
fulfill the demand in all possible ways (i.e., direct or sharing ful-
fillment), while this increase is not that significant to absorb the
effect of the unmet demand cost in the objective function. There-
fore, the maximum unmet demand and the total cost of the sys-
tem increase. However, when a higher number of periods are con-
sidered, the system allows for a significant increase in the inven-
tory levels even in primary periods to fulfill the demand, as well
as the fact that the extra inventory is allowed to be shared in
further periods. In addition, this phenomenon indirectly decreases
the total cost where the system prefers a higher transfer quan-
tity of products in the lower frequency of supplier and manufac-
turer setups. Indeed, the system’s increase in transportation costs

12
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Fig. 3. The outcomes of the SEIHRS model showing the dynamic demands.
Table 4
ABD vs. GRB & GRB_VI and the impact of sharing.
|T| Obj. values Time (s) Sharing impact (%)
ABD GRB GRB_VI ABD GRB GRB_VI Obj. Srmax
4 1.0X 1.0X 1.0X 9 28 18 15.71 25.99
6 2.0X 2.0X 2.0X 15 56 50 2.35 31.81
8 2.8X 2.8X 2.8X 74 1586 1220 -10.83 14.03
10 3.8X 3.8X 3.8X 56 750 623 -21.95 9.64
12 4.4X 4.4X 4.4X 129 2313 2005 -29.83 -9.77
14 5.3X 53X 53X 178 1548 1248 —35.08 -21.06
16 6.3X 6.3X 6.3X 412 5217 4350 —38.32 —29.07
18 6.9X 6.9X 6.9X 463 3560 3019 —40.61 —32.58
20 8.1X 33.4X 8.1X 558 7200* 2750 —42.02 —35.16
22 8.7X 8.7X 8.7X 623 5661 2572 —42.79 —35.31
24 9.3X 9.3X 9.3X 1131 6183 3334 —43.12 —35.20
26 10.3X 10.3X 103X 1228 6607 2873 -43.19 —36.44
28 11.5X 42.6X 11.5X 2002 7200* 6800 —42.94 —35.95
30 25.4X 44.8X 25.4X 2315 7200* 665 —42.50 —35.35
32 13.1X 473X 13.1X 2505 7200* 1316 —41.74 —34.68
34 27.9X 49.6X 27.9X 2580 7200* 1553 —40.95 —30.01
36 29.5X 52.0X 29.5X 2692 7200* 1661 —40.15 —29.22
38 35.1X 54.3X 35.1X 2858 7200% 1662 -39.26 —28.42
40 17.7X 56.7X 17.7X 3034 7200* 2044 -38.33 -27.61
42 59.1X o 101.6X 3669 * 7200* -37.36 —26.81
44 61.6X o 104.5X 5413 o 7200 -36.32 -26.03
46 64.1X o o 5665 o o —35.31 —25.28
48 66.6X o o 6029 * o -34.23 —24.55
50 69.0X o o 6743 * o —33.32 —23.85
52 71.5X o o 7126 o o -32.33 -23.21
Average: —32.98 —20.96

* Time limit of 7200 s reached.
** No feasible solution after 7200 s.
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Table 5
Comparison between ABD & GRB & GRB_VI.

Omega 120 (2023) 102909

|T| Obj. values (%) Time (ratio)
ABD vs. GRB ABD vs. GRB_VI GRB_VI vs. GRB ABD vs. GRB ABD vs. GRB_VI GRB_VI vs. GRB
4 0.00 0.00 0.00 3.16 2.02 1.56
6 0.00 0.00 0.00 3.73 333 1.12
8 0.00 0.00 0.00 2143 16.49 1.30
10 0.00 0.00 0.00 13.40 11.13 1.20
12 0.00 0.00 0.00 17.93 15.54 1.15
14 0.00 0.00 0.00 8.70 7.01 1.24
16 0.00 0.00 0.00 12.66 10.56 1.20
18 0.00 0.00 0.00 7.69 6.52 1.18
20 -75.91 0.00 —75.91 * 4.93 *
22 0.00 0.00 0.00 9.09 4.13 2.20
24 0.00 0.00 0.00 5.47 2.95 1.85
26 0.00 0.00 0.00 5.38 2.34 2.30
28 -72.89 0.00 —72.89 * 3.40 *
30 —43.34 0.00 —43.34 * 13.29 *
32 -72.25 0.00 —72.25 * 22.73 *
34 —43.88 0.00 —43.88 * 24.79 *
36 —43.28 0.00 —43.28 * 25.75 *
38 —35.45 0.00 —35.45 * 24.69 *
40 —-68.81 0.00 —68.81 * 28.60 *
44 *k 741.04 * * ok * *
48 o o o o . ok
50 kK *k *k *k *k *k
52 *k *%k * % *k *%k k%
Average (in case of optimality of GRB): 9.88 7.46 1.48
Average (in case of optimality of GRB_VI): N/A 12.12 N/A

* Time limit of 7200 s reached.
** No feasible solution after 7200 s.

is more tolerable/affordable compared to the increase in setup
costs.

Regardless of the system’s total cost increase, the sharing mech-
anism has led to a significant decrease of 32.98% and 20.96% on
average in the total cost and the maximum unmet demand, re-
spectively. Furthermore, these savings in the majority of the test
problems are significantly more than the average reported sav-
ings. These maximum savings belong to test problems with |T| ~
24. After a detailed investigation, we figured out that the maxi-
mum savings happen in test problems wherein the system experi-
ences the pandemic’s peak demands. This, in turn, demonstrates
the effectiveness and outstanding capabilities of the proposed
framework to handle the sharp increase in demands whenever
required.

Moreover, Table 5 provides a pairwise comparative analysis be-
tween the proposed ABD algorithm, the GRB, and the GRB_VI, in
terms of both the objective function gap (%) and the computational
time ratio. In columns “Obj. Values”, negative values indicate that
the first algorithm has obtained a lower objective function com-
pared to the second algorithm (i.e., first algorithm vs. the second
algorithm) under a limited computational time of 7200s. In col-
umn “Time (ratio)”, the values represent how many times the first
algorithm is faster than the second algorithm. The column “ABD vs.
GRB” of “Obj. Values” reveals that, under the limited computational
time of 7200s, the proposed ABD algorithm can obtain much better
solutions in terms of objective function values compared to GRB
with an average of —57% (i.e., the solutions of ABD algorithm are
57% better than the solutions of GRB without valid inequalities).
Looking at column “ABD vs. GRB_VI” in “Obj. Values” figures out
that both ABD and GRB_VI obtain the optimal solutions for test
problems with |T| = {4 — 40}, but with a much less computational
time for the ABD algorithm. For two test problems |T| = {42, 44},
the GRB_VI has not been able to obtain the optimal solution, but
its best-found solutions compared to the optimal solutions of ABD
are in gaps of 41.82% and 41.04%, respectively.
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Moreover, column “GRB_VI vs. GRB” in ‘Obj. Values” shows that
the valid inequalities are indeed effective and help the GRB to ob-
tain even optimal solutions for test problems |T| = {20, 28 — 40}
under the limited computational time of 7200s. The columns “Time
(ratio)” present interesting results on the speed of the three meth-
ods. As can be seen, the proposed ABD algorithm is always faster
than GRB_VI, and GRB_VI is also faster than GRB. It is worth men-
tioning that the paired comparison between the two methods in
terms of speed has been reported whenever both methods have
reached the optimal solution under the limited computational time
of 7200 s. In summary, for the test problems for which the GRB
has obtained the optimal solution (i.e., |T| = {4 — 18,22 — 26}), it
was observed that the ABD is on average 9.88 and 7.46 times
faster than GRB and GRB_IV, respectively. Considering the same
test problems, the GRB_VI is on average, 1.48 times faster than
GRB. It reveals that the valid inequalities accelerate the GRB on the
average up to 1.48 times faster when obtaining the optimal solu-
tions. For another set of test problems (i.e., |T| = {4 — 40}) where
the GRB_VI has obtained the optimal solution, the proposed ABD
algorithm is, on average, 12.12 times faster than GRB_VI.

6.3. Sensitivity analyses

This section renders a broad range of sensitivity analyses to val-
idate and illustrate the capabilities of the developed model and the
solution approach. This investigation encompasses three main cat-
egories: 1) sensitivity of the objective function value, the inventory,
and the sharing of products to input parameters, 2) inter-relation
between the total demand, inventory, and sharing, and 3) capacity
utilization. These three categories are explained in the following
subsections, respectively.

6.3.1. Sensitivity to input parameters
This section provides a broad sensitivity analysis of three main
criteria including the objective function value (i.e., the total cost of
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Fig. 4. The impact of the cost of unmet demand on total cost, inventory, and sharing.

the system), the total amounts of inventory, and sharing with re-
spect to changes of certain input parameters including the cost of
unmet demand (CU), the demand of products (D), maximum shar-
ing capacity (Gmax), inventory holding cost (ICH), and allowable de-
mand overload ratio (u).

Figure 4 shows how unmet demand cost affects the three men-
tioned criteria. Figure 4(a) indicates that if CU increases, the total
costs also increase. In fact, with a 35% of increase in the cost of
unmet demand, it was observed that supply, manufacturing, distri-
bution, and sharing expenses outweigh the overall cost of unmet
demands. However, by increasing this cost from 35% to 60%, the
costs of unmet demands surpass the system’s other expenses. Fi-
nally, by increasing this cost by more than 60%, the system reaches
its maximum capacity and achieves a state of equilibrium. At this
stage, a slight decrease can be seen in the system'’s total cost. The
reason for this decrease goes back to the fact that after increas-
ing the cost of unmet demand higher than 60%, the last term of
the objective function that calculates the total cost of the unmet
demand (i.e., CU x Smax) becomes the dominant term of the objec-
tive function. Accordingly, the model puts a higher effort into min-
imizing this term. Therefore, a sudden fall happens in the max-
imum number of unmet demands (Smax). This decrease is signif-
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icant and, overall, leads to a decrease in the total cost of the
system.

In terms of the changes in the total inventory of products in the
system, Fig. 4(b) illustrates that as the cost of unmet demand in-
creases, the system seeks to minimize mortality by increasing the
production of hospital wards-related items such as medical clothes,
ordinary beds, ICU beds, and ventilators. As a result, these items’
inventory levels increase. Simultaneously, individuals are attempt-
ing to take better care of themselves by observing public health,
which is related to a rise in the usage of health products, such as
masks and hydro-alcoholic gel, which will boost consumption and
reduce the remaining inventory of these products. In connection
with the changes in the total quantity of product sharing, Fig. 4(c)
articulates that the sharing of all products has increased with the
increase in the cost of unmet demand. This increase is entirely
meaningful for ventilators and medical clothing. Indeed, the sys-
tem decides to transfer the increased level of product inventory
(seen in Fig. 4(b)) via sharing mechanism to fulfill the demand as
much as possible to absorb the increase of unmet demand cost.
Therefore, the system has attempted to fulfill demand by utiliz-
ing all available capacities. In addition, the considerable increase
in the sharing of medical clothes is due to the demand for this
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Fig. 5. The impact of demand on total cost, inventory, and sharing.

product being impacted by hospitalized individuals in general and
ICU wards.

Figure 5 shows how changes in demand D affect the three cri-
teria. As can be seen in Fig. 5(a), if D increases, the total costs
also increase. This trend is logical due to rising supply, production,
distribution, and sharing expenses across various facilities. Also,
Fig. 5(b) illustrates that the inventory of masks and hydro-alcoholic
gels has reduced due to increased consumption of these products
in response to rising demands. Other products - which are the
essential products for curing patients - are facing an increase in
their total inventory, which reflects the system’s behavior when
the demand increases for such essential products. Indeed, the sys-
tem produces more and stores more to fulfill the demand for es-
sential products. For the reusable products (i.e., ICU beds and ven-
tilators), the inventory also experiences a special increase, which
is the return of these products to the utilization cycle. Finally, it
might be claimed from Fig. 5(c) that there is an increasing-then-
decreasing oscillation cycle in terms of the total sharing of prod-
ucts. Indeed, initially, the system strives to compensate for its lack
of capacity by sharing, but once there is no more capacity to share,
the system begins to boost product supply and production, result-
ing in less sharing.
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Figure 6 shows how changes in the maximum sharing capacity
Gmax affect the three concerned criteria. As can be seen in Fig. 6(a),
raising the maximum sharing capacity lowers the total cost of the
system. This trend has two primary explanations. The first is that
as sharing capacity grows, more sharing is allowed through the
system (see Fig. 6(c)). Consequently, the supplies and the produc-
tions are set up with lower frequency to effectively use the cur-
rent capacity, mainly from the sharing mechanism. Another reason
is that certain hospitals serve as intermediate distribution centers.
In reality, due to the geographic structure of each region, hospitals
in each region may either acquire products from manufacturers or
distribute their excess products in the established sharing mech-
anism to other hospitals. This issue becomes even more pressing
when this procedure lowers the cost of shipping items by eliminat-
ing the need to order products from manufacturers and allowing
products to be moved between hospitals at significantly cheaper
transportation costs (i.e., due to lower distance).

Moreover, as the sharing capacity rises in Fig. 6(b), the total in-
ventory level also climbs because the system can now store more
products and share them through the system. Also, as can be ob-
served, the ventilator and ICU beds have greater inventory levels
than other products being impacted by two reasons; first, these
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Fig. 6. The impact of maximum sharing capacity on total cost, inventory, and sharing.

products are expensive to be produced, so the system attempts to
store these products as much as affordable by the system; second;
these products may be reused after a predefined lead time. When
looking at Fig. 6(c), it is evident that as the capacity for sharing
grows; more products are allowed to be shared since sharing is
typically less expensive compared to manufacturing, especially for
expensive products (e.g., beds and ventilators). In this regard, the
bigger the capacity, the less the influence on the sharing of low-
cost products (e.g., masks, hydro-alcoholic gels, and medical cloths)
because the cost of manufacturing is affordable compared to the
cost of sharing for these products.

Figure 7 shows how changes in the inventory holding cost ICH
impact the three mentioned criteria. As Fig. 7(a) depicts, the total
cost of the system rises monotonically with the increase of ICH.
This is because the cost of holding products in hospitals and the
objective function have a direct linear connection. What is more in
Fig. 7(b), when inventory holding costs rise, more expensive prod-
ucts (e.g., medical clothes, beds, and ventilators) will have lower
inventory levels since the ICH is a fraction of the production cost
PC (see Table G.8).

Furthermore, for products with a lower production cost, the to-
tal inventory level rises. This pattern may be seen in hospitals that
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have greater holding costs. Indeed, they would prefer not to keep
inventory in the system and instead use the sharing mechanism
to satisfy their demand. On the other hand, this behavior enables
other hospitals with lower holding costs to keep additional inven-
tory to satisfy their demand. Finally, Fig. 7(a) illustrates that raising
the cost of inventory in the hospital lowers product sharing. This
is due to hospitals’ unwillingness to keep inventory to participate
in the sharing process and preferring to get products only as much
of their demand directly from the manufacturers.

Figure 8 illustrates the impact of allowable demand overload ra-
tio n on the three mentioned criteria. Based on Fig. 8(a), as the u
increases and consequently more and more amounts of products
are allowed to be stored extra than the actual demand, the pos-
sibility of fulfilling demand surpluses through the sharing mech-
anism increases accordingly. As a result, the supply and produc-
tion setups happen with a lower frequency, and their fixed setup
costs decrease consequently. Furthermore, the transportation cost
of direct transferring of products from manufacturers to hospitals
decreases. All these result in lower total costs of the system. More-
over, Fig. 8(b) reveals that hospitals are more likely to employ the
sharing mechanism and to decrease the total inventory of products
as the overload ratio rises. As a result, hospitals strive to maintain
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Fig. 7. The impact of inventory holding cost at hospitals on total cost, inventory, and sharing.
Table 6
Impact of disease parameters on the demand for products.
Demand for ... B B B3 Ba e K n (If ..) p (If ...) o (If ...) c&6(If..) 11&1,
Demand for ... B B B3 Ba ¢ K n (If ...) p (If ...) w (If ...) c&6(If..) 71&1;
Masks & Hydro-alcoholic gel - - - - + - (If B2 > B1) - (B1> B2) — (B3. s > ) —(Ba> B3) +
+ (B2 > B1) +(B1 < B) + (B3, Ba < B2) +(Ba < Bs)
Medical clothes + + + + + + - +
Ordinary bed + + + + + + - + - -
ICU bed & Ventilator + + + + + + - + - -

their inventory levels to a minimum. In addition, when the allow-
able demand overload ratio rises in Fig. 8(c), the total sharing for
all products intends to be increased. Remarkably, this trend is par-
ticularly apparent in consumable products because these products
cannot be reused. As a result, since the inventory level of these
products is derived from both production and sharing amounts, the
excess demand is met entirely through the sharing system.

6.3.2. Inter-relation between cost, inventory, and sharing

This section seeks the inter-relation between the total demand
and the total inventory and sharing of the products in the sys-
tem. Indeed, the goal is to investigate how different hospitals man-
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age the inventory level and the sharing of products based on their
particular amount of demand. In this regard, Fig. 9(a) depicts the
quantity of total demand as well as the proportional level of total
inventory and total sharing to the total demand over a period of
3 months (i.e., |T| = 12), wherein the results of the even periods
have been depicted for the sake of simplicity. As can be observed
in Fig. 9(a)(a), there is a modest decrease in the total demand as
the pandemic progresses, which is logical since we have only a sin-
gle peak of demand at the early stages of the pandemic in our case
study, and as long as the pandemic progresses, the demand de-
creases due to the control of the pandemic. In addition, due to a
drop in the number of susceptible individuals after the pandemic
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Fig. 8. The impact of allowable demand overload ratio at hospitals on total cost, inventory, and sharing.

peak, the inventory-to-demand ratio in Fig. 9(a)(b) for masks and
hydro-alcoholic gels is falling. However, this ratio is higher for ICU
beds and ventilators due to the rise in hospitalized individuals in
general and ICU wards. As a result, the hospitals have attempted
to fulfill the demand by storing more products. Furthermore, the
sharing-to-demand ratio in Fig. 9(a)(c) indicates that the hospital
is able to engage in the product-sharing procedure owing to the
required inventory level.

In order to show how different hospitals manage their in-
ventory and sharing, three different hospitals have been selected
that behave differently in managing their inventory and sharing.
The hospital of Fig. 9(b) refuses to engage in the sharing mech-
anism since no input (Fig. 9(b)(c)) and output (Fig. 9(b)(d)) shar-
ing happens in this hospital. Consequently, the inventory level
(Fig. 9(b)(b)) of the hospital remains at its minimum for the ma-
jority of the products. This indicates that the demand and the sup-
ply of products from manufacturers are in an implicit equilibrium.
In a second hospital depicted in Fig. 9(c), the situation is differ-
ent. In fact, this hospital faces an inventory shortage owing to high
demand and the possibility of receiving surplus demand. In this
situation, the hospital fulfills its demand (Fig. 9(c)(a)) simultane-
ously from its inventory (Fig. 9(c)(b)) as well as the input sharing
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(Fig. 9(c)(c)) coming from other hospitals, and it shares no prod-
ucts with others (Fig. 9(c)(d)). Finally, another hospital is available
with excess products as Fig. 9(d). This hospital fulfills its demand
(Fig. 9(d)(a)) only from its own inventory (Fig. 9(d)(b)) and shares
the excess products with other hospitals (Fig. 9(d)(c)).

6.3.3. Supply and production capacity utilization

An interesting investigation in this study has been done in
Fig. 10 to see how much of the supply and production capacities
have been utilized over the first three months (i.e., |T| = 12) of the
pandemic.

For this curiosity, Fig. 10(a) depicts the percentage of suppliers
that contributed to the fulfillment of the raw materials required
to produce the medical products. As can be seen, from the early
periods of the pandemic, at least 50% of the suppliers have been
used, and this percentage goes up to full utilization of 100% from
the sixth week of the pandemic (i.e.,, the moment that the pan-
demic approaches its peak). Furthermore, Fig. 10(b) and (c) depict
the percentage of manufacturers that contributed to the produc-
tion of medical products and their capacity percentage utilization,
respectively. Knowing that manufacturers are involved in the sys-
tem with an initial inventory, the whole number and the whole
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Fig. 9. Inter-relation between

capacity of the manufacturers are not used in the early weeks of
the pandemic; however, the involvement of the manufacturers in-
creases as far as the pandemic progresses. Furthermore, Fig. 10(c)
shows that the manufacturers do not always utilize their maxi-
mum production capacity for certain products (e.g., masks, hydro-
alcoholic gels, medical clothes, and ordinary beds). However, they
produce a higher rate of the more essential products (i.e., ICU beds
and ventilators).

7. Managerial insights

Based on the findings of Section 6.3, this section provides a list
of managerial insights for the health policy-makers to better plan
for possible future health pandemics.

The first managerial implication of the proposed model relates
to its ability to act as both business and mortality models. The be-
havior of the model changes by changing the unmet demand cost.
Although the proposed model has a cost objective function, ma-
nipulating the unmet demand costs switches the proposed model
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Week
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cost, inventory, and sharing.

from a cost-oriented model to a more mortality-oriented model. In
fact, there is a turning point for this switch when increasing the
unmet demand, the proposed model goes from cost-oriented plan-
ning to mortality-oriented planning. For the current case study, the
switch happens when increasing the unmet demand cost up to
35%. Managers should also notice that increasing the unmet de-
mand will also affect the level of inventory and sharing. Therefore,
requirements should be met when switching the behavior of the
model. In terms of the inventory of products, two different phe-
nomena happen. As the cost of unmet demand increases, the sys-
tem seeks to minimize mortality by increasing the production of
hospital ward-related items such as medical clothes, ordinary beds,
ICU beds, and ventilators. As a result, these items’ inventory levels
increase. On the other hand, when experiencing a high unmet de-
mand cost, individuals are attempting to take better care of them-
selves by observing public health, which is related to a rise in the
usage of health products, such as masks and hydro-alcoholic gel,
which will boost consumption and reduce the remaining inventory
of these products.
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Another important observation is the impact of demand varia-
tion on the sharing mechanism. We observed that the amount of
sharing is a concave function of the demand. The results show that
there are concave cycles in the total sharing amount of products
when changing the demand. Initially, when increasing the demand,
the system attempts to mitigate the risk of capacity shortage in
some hospitals through sharing mechanism, but once the maxi-
mum sharing capacity is reached, the system begins to satisfy the
demand by producing and supplying new products, which results
in less sharing. This phenomenon highlights the impact of shar-
ing mechanisms between hospitals to better respond to the surging
product demand. As a matter of fact, sharing mechanisms provide
both cost and responsiveness advantages. In terms of cost, sharing
of products between neighboring hospitals reduces the transporta-
tion costs of transferring newly produced products from manufac-
turers to geographically far hospitals. On the other hand, this shar-
ing mechanism helps to increase the responsiveness and agility of
hospitals to their demands. In fact, due to usually less distance be-
tween neighboring hospitals compared to regional manufacturers,
some hospitals can act as intermediate suppliers. In this situation,
some hospitals should be allowed to store more products to re-
spond to the shortage of farther hospitals more rapidly.

It is worth mentioning that the demand is not an indepen-
dent parameter but a function of disease parameters in the epi-
demiological model. Any changes in these parameters would ei-
ther increase or decrease the demand for products, under spe-
cific conditions. Table 6 shows how increasing the disease pa-
rameters increase (“+”) or decreases (“—") the demand for prod-
ucts under specific conditions. Accordingly, any changes in dis-
ease parameters can be mapped to the changes in the objective
function value, inventory, and sharing of products through the de-
mand intermediate parameter. By manipulating the disease param-
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eters, health policy-makers can change product demand and at-
tempt better production-inventory-sharing planning.

We observed that as long as the inventory holding cost in-
creases, the inventory level of less critical products (e.g., mask,
hydro-alcoholic gel) increases while the inventory level of critical
products (e.g., beds and ventilators) decreases. It was revealed if
the unit inventory holding cost exceeds the unit of manufacturing
setup cost, the inventory of critical products decreases. In this sit-
uation, the system also discourages the sharing mechanism (due
to the lack of inventory), consequently leading to a higher level
of unmet demand. Therefore, there is an important interplay be-
tween the inventory holding cost and the amount of product shar-
ing. Accordingly, among different cost elements in the system, it is
recommended to keep the inventory holding cost at its minimum
level to encourage the sharing of products between hospitals. With
this observation together with the role of intermediate supply of
some hospitals, policy-makers may provide the geographically cen-
tral hospitals with a higher inventory capacity and less inventory
holding cost, and the farther hospitals (from the manufacturers)
with less inventory holding capacity. This allows for storing more
products in central hospitals with a lower inventory holding cost,
and these hospitals share the excess product with farther ones. In
this case, the distribution system goes from an isolated structure,
where hospitals order and fulfill separately, to a more hierarchical
and collaborative system, where hospitals order and fulfill collabo-
ratively.

8. Conclusions
The COVID-19 pandemic has posed a variety of challenges to

human civilizations, emphasizing the necessity for a decision-
making framework to address them. In this study, we have pre-
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sented a novel comprehensive framework that includes three
phases of demand controlling, production-distribution-sharing
planning, and solution methodology, wherein various specific con-
cerns of the health pandemic have been reflected, particularly the
COVID-19 pandemic. In the first phase, we proposed a SEIHRS epi-
demiological model with the optimal control problem for handling
the dynamicity of the demands of consumable and reusable prod-
ucts. In the second phase, we have introduced and formulated a
multi-period production-inventory-sharing problem in terms of a
mixed-integer linear programming model. Finally, an accelerated
Benders decomposition algorithm with a set of tailored valid in-
equalities has been proposed to solve the proposed model.

Although the framework has been partially adjusted to deal
with the COVID-19 pandemic, it can surely be applied to deal with
subsequent pandemics as well. The second phase, in particular, is
a contrivance for planning supply, manufacturing, distribution, and
sharing decisions that may be implemented directly or with min-
imal adjustments in a variety of populated areas. The computa-
tional results show that the proposed accelerated Benders decom-
position algorithm is efficient in handling large-sized test prob-
lems. In this regard, it was observed that the proposed decompo-
sition method coupled with effective valid inequalities could solve
large-sized test problems in a reasonable computational time and
9.88 times faster than the Gurobi solver. In addition, the effective-
ness of the valid inequalities was also reported that helping the
proposed model to be solved 1.48 times faster using the Gurobi
solver. Moreover, the sharing mechanism reduces the total cost
of the system and the unmet demand, on average, up to 32.98%
and 20.96%, respectively. Furthermore, the two parameters of max-
imum sharing capacity and allowable demand overload ratio are
two valuable factors at hand for managers to regulate inventory
and sharing decisions in the proposed sharing mechanism, which
significantly influences the system’s total cost and unmet demand.

Some ideas for expanding the current study on the predic-
tion and planning stages can be explored. The application of ma-
chine learning algorithms to estimate the parameters of the SEIHRS
model during the prediction phase can improve demand predic-
tion accuracy. The proposed SEIHRS model is a single-region-based
model wherein the evolution of the pandemic in each region is
modeled in isolation and no interaction between regions is con-
sidered. This assumption is similar to the situation when all re-
gions are under a quarantine restriction and no inter-regional dis-
placement or immigration happens. Therefore, as a new research
direction, we propose to develop a multi-regional epidemiological
model with inter-regional interactions [8].

In the planning phase, although we have planned the produc-
tion, distribution, and sharing of the products according to the ex-
isting geographical borders for various regions, redistricting models
may be applied to define regions, which also improves the efficacy
of the sharing mechanism. Furthermore, the cost of unmet demand
for all products is treated the same in this study, despite the fact
that there is a substantial difference between the lack of ventila-
tors and the absence of masks. As a result, using a cost function
rather than a parameter can help improve the planning results.

Last but not least, developing an integrated optimization frame-
work would be another research direction that is worthy of inves-
tigation. The current work considers that the disease parameters
are constant during the planning horizon and no vaccination takes
place. Therefore, a new framework can be developed to incorpo-
rate these two aspects. To do so, the proposed optimization model
can be integrated with the SEIHRS model in an interactive way to
develop a myopic model. In this model, the SEIHRS model and the
optimization model interact in each period, and a vaccination rate
can be added to the SEIHRS model. Furthermore, from one period
to another, disease parameters can also vary.
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Appendix A. Basic reproduction number

In what follows, the basic reproduction number %,
and the endemic equilibrium point are calculated by
solving the isoclines, where two equilibrium points can

be considered including disease-free equilibrium point
Eq(S0,0,0,0,0,0,0,0) = (%,0, 0,0,0,0,0,0) and endemic equi-
librium point E*(S*, E*, A*, I*, HN*, HC*, R*,Z*). The basic repro-
duction number %, is an indicator for the study of contagious
disease dynamics. If %, > 1, the outbreak is anticipated to con-
tinue, and the outbreak is going to end otherwise (i.e., %, <
1). In order to calculate %, we applied the proposed method
by Van den Driessche and Watmough [88]. For this purpose,
let x= (E,A,I, HN,HC) and constitute %, $H(x), and v(x), where
$H(x) refers to the segments in which new infection terms are
introduced, and v(x) refers to the remainder of the segments.
Accordingly, we have:

dx
2 =90 —v) (A1)
(B1A + B2l + B3HN + B4HC)
0
H(x) = 0 (A2)
0
0
(k+d)E
—kpE + (n+d+681)A
v(x) = | —k(1-p)E—-nA+ (@ +d+8)l (A3)

—w(1-0o)+(d+68+y; +0)HN
—wcl + (d + 84 + y,)HC — OHN

In what follows, the equivalent linearized matrices of $(x) and
v(x) at disease-free equilibrium Ey = (S9,0,0,0,0,0,0,0) can be
constructed as (A.4) and (A.5), respectively.

B1So  B2So  B3So  PBaSo
0 0 0 0

F = (Ds(x))(Eo) = (A4)

[eNeoNeNoeNo)

0 0 0 0
0 0 0 0
0 0 0 0
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k+d 0 0 0 0
—Kp n+d+ 6 0 0 0
V = Dvx)(E) = | —k(1=p) -n w+d+8; 0 0 (A.5)
0 0 —w(1-c) d+83+y1+6 0
0 0 —wcl -6 d+384+ s

Consequently, regarding matrices F and V, the basic reproduction number is equal to the special vector of FV~1. Moreover, the endemic
equilibrium point is obtained by solving the system of Eq. (A.6).

A — (B1A* + ByI* + B3sHN* + B4HC*)S* — dS* 4+ ER* — u kS*Z* = 0,
(B1A* + BoI* + BsHN* + B4HC*)S* — (k + d)E* = 0,

KkpE*— (n+d+81)A* =0,

k(1= p)E*+nA* — (@ +d+8)F =0,

w1 —o)l* —(d+83+y1 +0)HN* =0,

wcl* — (d + 84 + y2)HC* + OHN* = 0,

y1HN* + Y, HC* — ER* — dR* + ukS*Z* = 0,

—apZ*=0

(A6)

-
T+ql*

After solving the system of Eq. (A.6), a unique equilibrium point is obtained when the basic reproduction number is greater than
one (Ry > 1). However, values smaller than one for the basic reproduction number (Ry < 1) cause the non-occurrence of an endemic
equilibrium. Therefore, the following statement can be deduced. The system of equations (1) has a disease-free equilibrium point
Ey(S0,0,0,0,0,0,0,0,0) for any values of parameters. And for Ry > 1, the system has a unique endemic equilibrium E*(S*, E*, A*, I*,
HN*, HC*, R*, Z*).

Appendix B. Stability analysis
Local and global stability conditions of the equilibria are analyzed as follows. For this aim, we analyze the local and global stability

conditions for the disease-free equilibrium point. Let &g =k +d, @1 = +d+81, ax =w +d+ 8, az3 =d +deltas + y1 +0, 0y =d + 34 +
¥». The Jacobian matrix J of system (1) is considered as follow:

an 0 -Bi1S  —BS  —BS —BaS ¢ —U1KS
B1A + B2l + BsHN + B4HC —0 B1S BaS BsS BaS 0 0
0 Kp -0y 0 0 0 0 0
_ 0 k(1-p) n -0y 0 0 0 0
j= (B.1)
0 0 0 w(l-c) -—o3 0 0 0
0 0 0 wcC 0 —a3 0 0
U1kZ 0 0 0 " V2 —(5 + d) U]ks
0 0 0 ﬁ 0 0 0 —dg

where o7 = 7(/31A + /321 + ﬂgHN + ,34HC) —d—ukZ.
B1. Local stability of Ey

Jacobian matrix at the disease-free equilibrium point Eg = (A/d, 0,0,0,0,0,0,0,0), which is shown by JIE, is constructed and solved
with Python to obtain eigenvalues of J|Ey, where Sy = A/d. In this regard, we have eight eigenvalues, where A; = —d, Ay = — (&€ +d),
A3 = —ag, and other five eigenvalues can be obtained from the roots of the following equation:

M+ + QAT+ QA2 +QA+Q5=0 (B.2)

Regarding the values of parameters in Table G.8, by solving the above equation with Python, we can conclude that Qs is positive for
Rg < 1. So for Ry < 1, the characteristic equation has roots with negative real parts only when Q,, Qs3, Q4 > 0, and we have the following
theorem.

Theorem 1. Disease-free equilibrium point Eq of system (1) is locally asymptomatically stable for Ry < 1 when Q, Q3, Q4 > 0 hold.

B2. Global stability of Eg

Theorem 2. Disease-free equilibrium point Ey of the system (1) is globally asymptomatically stable when p < d and u kA < agd hold.

Proof. Let us consider the Lyapunov function as follows:

V1=(S—So—soln(%))+E+A+I+HN+HC+R+Z (B.3)
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where V; is a positive definite function for all (S,E, A, I, HN, HC, R, Z) other than the disease-free equilibrium point. Time derivative of V;
along the solution of the system (1) is calculated as follows:

% - (- %0)[1\ — (B1A+ Bol + B3HN + B4HC)S — dS + ER — uy (£)KSZ]

+(ﬂ]A+ﬂ21+ﬂ3HN+ﬂ4HC)S—d(E +A+I+HN+HC+R) —S]A— 821

—63HN — §4HC — r‘;:R-l-U]kSZ-l— LI —apZ

1+ql
= A—d(E+A+I+HN+HC+R)_51A—821—83HN—(S4HC—%4—6{50—55%}?4-11]’(502
pl A 1
+qu—GOZS (g_d)(S_SO)'*'(p—d)I-F H(U]kA—ao d)z
d ) 1
= _E(S_SO) + (P—d)1+ a(U]kA —dy d)Z (B4)

Therefore, ddlrl <0 when p<d and uikA < agd hold. Also, ddlg =0 when S=Sy and E=A=1=HN=HC=R=Z7=0. Regarding
LaSalle’s invariance principle [89], Ey is globally asymptomatically stable when Ry < 1, and when the considered parametric limitations
are satisfied. Similarly, the local and global stability of E* can be examined. O

Appendix C. Proof of Theorem 3

Proof. The optimal control interventions exist when the following conditions are satisfied:

» The solution space of system dynamics (1) with control variables u;, i=1,...,5 in n # ¢.

o The state system is a linear function of control variables, whose coefficients depend on state variables and time, where set rn is convex
and closed.

o Integrand of (3): L is convex on n and L(S, E, A, I, HN, HC, R, uq, Uy, U3, Ug, Us) > f(uq, Uy, U3, Ug, Us), where f(uq, Uy, us, ug, Us) is contin-
uous, and || (uy, Uy, u3, Ug, us) ||~ 1f(uyq, U, U3, Ug, Us) — oo, when || (ug, Uy, Uz, U, Us)|| — co. Indeed, ||.|| indicates the L (0, Tf) norm.
Regarding system dynamics (1), the total population is N=S+E+A+1+HN+HC+R. Hence, ‘fT’;’ = A —dN - §1A— 851 — 53HN —

84HC < A —dN, and 0 < N(t) < N(0)e~% + 4. (1 — e~dt), where N(0) = S(0) + E(0) +A(0) +1(0) + HN(0) + HC(0) + R(0). Also, when t —
o0, we have 0 < N(t) < 4. In addition, ¥ = %Iql —apZ < pl — apZ. So, ¥ + apZ < %, and 0 < Z(t) < Z(0)e~%! + (i)—Ad(l — e~%t), Also, when
t — oo, we have 0 < Z(t) < 50—1;.

The solution of system dynamics (1) is bounded for each of the control variables in m, and the right-hand side functions are also locally
Lipschitzian. The Picard Lindel6f theorem demonstrates that the first condition is met [90].

Regarding the definition, the control set m is convex and closed. The second condition is likewise met because all of the equations in
(1) are represented as linear equations in uf,i=1,..., 5, whose state variables are dependent on coefficients. Furthermore, the convex
property of integrand L(S, E, A, I, HN,HC, R, Z, uy, uy, U3, Uy, Us) is guaranteed by the quadratic nature of all control variables. Also, we have
L(S.E.A,I.HN,HC, R, uy, uy, u3, ug, us) = wil + wHN + w3HC + wau? + w5u§ + wetid + wou2 + wgu2 > wau? + wsud + weu2 + wouj + wgu.

Let il = min(wy, Ws, W, W7, wg) > 0 and f(uy., up, u3, g, us) = u(u? + u5 + u2 + uj + u2). Hence,

L(S,E,A,I,HN,HC,R, Z, uq, uy, U3, Ug, Us) > f(uq, Uy, U3, Uy, Us)

In this regard, f is continuous and || (uq, uy, Uz, U, us)|| =1 f(uq, uz, us, s, Us) — oo, when || (uq, Uy, us, Ua, Us)|| — oo. Hence, the third
condition is also met. Therefore, we can conclude that there are control variables uf, i =1,...,5 with the condition J(uj, uj, uj, uj, uf) =
min[J(uq, uy, us, Uy, us)] [38,91]. O

Appendix D. Optimal control variables

In what follows, in order to obtain optimal control variables, the Hamiltonian function is formulated by introducing adjoint variables
A=A, A0, ..., Ag) € R8, and minimized by applying Pontryagin’s Maximum Principle [92], which has been explained in Appendix E.

Theorem 4. If S*, E*, A%, I*, HN*, HC*, R*, Z* are optimal state variables, and u}, i=1,...,5 are optimal control variables of system (3) and
(4), there are adjoint variables A = (A1, Aq, ..., Ag) € R8 that satisfy the canonical system of Eq. (D.1):
dA

T; = A1 (B1A + Pol + BsHN + B4HC + d + uy kZ) —

A2 (B1A + B2l + B3HN + B4HC) — AquikZ,

dA

th = A (k+d) —A3(kp) — Aa(k (1 - p)),

dAs

s A (B1S) — A2(B1S) + As(n +d + 1) — Aa(n),
£ 00 (BoS) = 2 (BaS) + 1 <w+d+8 IS Lo B )—

T ECENN RN CEN e
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As(a)(l o+ %) —Aﬁ(a)c+ %) —Ag( P )

1+ &2 (1+&D?2 (1+4qD)?
d)\s E3lUy
- = A -\ A —_— ) — D.1
q = Wt (B~ haBS) + hs(d 85ty 0+ i ) (D1)
E3lUy
26(0) — A ( + 7)
6(0) —A7( 1 A+ GHN)?
O Wy 4 M (BeS) M2 (BiS) +ho(d 4 8a ket i )
at =~ 3 1(P4 2(P4 6 4+ V2 (1 + C4HC)?
E4lls
b S )
7(¥2 1 LHO)?
dA
G = MEFME D,
dA
G = M WkS) = A7 (uikS) + As(ao)
Regarding the transversality conditions A;(Tf) =0, i=1,...,8, optimal control variables u;, i=1,...,5 are obtained as:
wi = min { max O,M},l}, (D.2)
2W4
8]1*
——— (A4 —As5)
u% = min { max O,W},l}, (D.3)
2W5
82[*
5 (A4 —Ae)
u} = min { max O,W},l}, (B4)
2W6
83HN*
o (As — A7)
w; = min { max ] 0, 1+ ¢5HN } 1}, (D.5)
2W7
84HC*
= (A6 — A7)
uz = min | max {0, 1F¢4AC } 1 } (D.6)
2wg
Proof. Let S*, E*, A%, I*, HN*, HC*, R*, Z* be optimal state variables, and uf, i=1,...,5 be optimal control variables of system (1) that
minimize objective function (3). With the help of Pontryagin’s Maximum Principle and defined adjoint variables A;, i=1,...,8, we have
di pH dA 9 dA oA dA 9 dA oA di 9H  dn 9l di A . .
p=- :._TI;' = —OH o4 = —0—’7 B =—2 = - = — ol <28 = 3 which lead to obtain Eq. (D.1). In regard
to the transversality conditions A;(T;) =0, i=1,...,8 and optimality conditions, we have:
oA .
87u1|u] = u] = O
oH . .
a—u]|u1 = U} = 2wauf — A kSZ + A7kSZ =0 (D.7)
uw = I(S*Z*()\q — )\7)
1= 2W4
oA )
a—uz|u2 =u;=0
9H . .
Wh,lz = U = 2wsU} +Ag(—&1l/1 + &) + As(eql/ 1+ 5D =0 (D.8)
2
eI )
——— J(Ag — A
u*_(1+§1l* (Mg — As)
2= 2W5
o .
37u3|Ll3 = U3 = O
0H . .
8T|u3 =uj = 2wt} + Aa(—&2I/1+ &I) + Ae(2l/1+ 521) =0 (D.9)
3
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(1225 ) =)

* 1+ §21*
n= 2W6
on
M|U4 = U4 = 0
0H . .
87114|U4 =Uy = 2W7u4 + )\.5(—83HN/1 + §3HN) +)\.7(83HN/1 + ;::,HN) =0
e3HN* )
————— (A5 — A
v (]+§3HN* (hs = A7)
4= 2W7
I I
8—us|u5 =ut =0
0H . .
87u5|Ll5 =Ug = 2W3u5 + )\,5(—84HC/1 + §4HC) + )\.7(84HC/1 + C4HC) =0
e4HC* )
— (g — A
o (1+§4HC* (As — A7)
> 2wg

Omega 120 (2023) 102909

(D.10)

(D11)

Now, we can deduce the following optimal control variables from these observations and the properties of control set r:

0 g ZO-h)
2W4
it [5pt1k52$4—)\7) " Oskszgx;m .
o KSZ (O — A7)
[5pt]1 S Tk
811* )
() ha = 4s)
0 if  1ral <0
2ws
811* ) 811*
. _ o) (A = As) ( =) (ha — 2s)
“ 7 s ]+€112w5 ir 0= 1+C112W5 =1
eI
Ay — A
[5pt]1 if (T gr) %29 -1
2W5
&yI* )
( <) (Aa — 2e)
0 if 1ol <0
2W6
82[* ) 82[*
. _ ) (Aa — Ae) (=) (ha — 6)
S s 1Hﬂzwe it 0= 1Hﬂzwe =1
&yI*
—— ) (Ag— A
[5pt]1 if (”CZ’*)( e -1
2wg
83HN*
————— (A5 — A
0 if (1+§3HN*)( i & <0
2W7
&3HN* ) &3HN*
. _ 7 ) (As — A7) (7*)()»5—17)
;= 5p o L+ AN i 0 1+GHN
p 2W7 2W7
83HN*
(7 (As — A7)
. 1+§3HN*)
[5pt)1 if W, > 1
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84HC*
———)(Ag — A
0 if (Tgcs) e =) <0
2Wg
e4HC* ) e4HC*
. ) (e - h) (2 ) (s — 2
U = 1 5 L GaHC o< 1TGHC p (D.16)
2W8 2W8
84HC*
(=55 ) (e — A7)
. 1+§4HC*)
[5pt]1 if 2w -1

which is corresponding to (D.2)-(D.6). O

As mentioned earlier, Pontryagin’s Maximum Principle helps to obtain optimal controls (uj, uj, u3, uj, uf). In this regard, the impacts
of the application of one or all control variables to obtain the minimal cost have been examined one by one. So, the control system in
Egs. (3) and (4) is solved with respect to the mentioned parameters. On this subject, a number of combinations of control variables are re-
flected, including [uq, (uq,us), (uq, uz), (uy, uy), (U, us), (Ug, Us, U3, Uy, Us)]. The computational simulation for all combinations is executed
by Python. Next, the Forward-backward sweep method is employed to find the optimal control variables, where the optimal and adjoint
state systems are solved by forward and backward in time, respectively. Afterward, in order to update the optimal controls by Hamiltonian
for the optimality of the system, the steepest descent method is employed. This procedure carries on until the convergence [93].

Appendix E. Pontryagin’s maximum principle

Proof. We derived the necessary conditions for the optimal control problem for system (3) and (4) by using Pontryagin’s Maximum Prin-
ciple [91,92]. Let H be the Hamiltonian function, which is defined as (E.1) and (E.2):
H(S,E,A, I, HN,HC, R, Z, uy, uy, U3, Ug, Us, 1)
:L(S,E,A,I, HN, HC, R,Z,U],Uz,U3,U4,U5) (E])
ds dE dA di dHN dHC dR dz
H“E +Aza +)‘3E +)‘4E +/\5—dt +A6—dt +)‘7E +)‘SE
Hence,

H = wil + WoHN + w3HC + Waui? + wsu3 + wel3 + wyui + weti?
+M[A = (BiA+ Bal + B3HN + B4HO)S — dS + €R — uy (t)kSZ]
+ 22 (BrA + Bl + B3HN + B4HO)S — (k + d)E]
+ A3k pE —nA — (d+51)A]

+Aa[k (1= p)E+nA—wl—(d+8) - T oy

[
[
[
T as[(1 — )l - (d + 85)HN — yHN — gHN + 142OT ‘93”“(”HN]
[
[
[

ey ()1 82113(1')1]
(E.2)

1+§1I 1+C3HN
82”3(t)1 84U5(f)HC
Ag|wcl — (d + 84)HC — y»,HC + OHN - :I
+As|wcl — (d + 64) y2HC + +1+§21 1 C.HC
83U4(t)HN 84”5([)HC:|

1+ $3HN 1+ ¢4HC

+A7|y1HN + y,HC — ER — dR + u1kSZ +

+Ag

T+ql _GOZ]

]
Appendix F. The PISP Benders reformulation

Let th, Ypme, and Up be the vectors of fixed Wie, Ypmt, and vy, variables, respectively. Based on the notation of Table F.7, the Benders
sub-problem can be written as follows:

minZ =Y 3" 3" TCoimpjme + Y 2 2 PComXpme + D > Y Y TComm Gy

peP je] meKt €T peP meK teT peP meKm’eH teT
XYY TCmmshy + Y D Y IComlpmt + CU X Siax (E1)
peP meH m’eH teT peP meKUH teT
s.t.: Constraints (6), (8), (10)-(22), (25)-(29), and
> pjm <UpjWje  VjelpePteT (F2)

mek
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Table F.7
Vectors of the dual variables associated with the Benders sub-problem constraints.
Not. Desc. Not. Desc.
o {opmt =0lpe P meH teT} B {Bipe =0lje)pePteT}
P {Ppme eRl[pe PmeH, t T} n {npm =0lpe P meKteT}
A {Aipm1 = O0lpePiel meK(m)} A {Aipme = OlpePiel,meki(m),teT;t>1}
T {Tipme > 0lp e Piiel, me Hy(m).t €T} T {Tipm1 € R|pePicl, meK(m)}
b4 {Tipme eR|pePiclmeki(m),teT:t>1} € {€pme = 0|pe P me M.t eT}
* {pipm1 € R|p e P,iel, me Hj(m)} ¢ {pipm eR|pe P iel, meH(m),teT;t>1}
¢ {(Z’)i’pm[e]R|peP”,ieI,meH,(m);l <t<lL} @ {¢i”;m[e]R|peP”.ieI,meHi(m),teT;t>L}
Q {Qpme >0|peP,meHteT} ® {wp =0|pePteT}
X {Xipme = Olp e Pi € I =, m € Hi(m),t € T} y {Yipme = 0lp e Piel,meHi(m),t e T}
w {Wipm: € R|[pe Piiel, me Hy(m),t €T} R {Ripmt € R|[pePiel,me Hj(m),t € T}
% {Vipme = 0lpe P.iel.me Hiy(m).t e T} Vv {Vim =2 0lpePic . meHi(m),t T}
Z {Zipmt =0lpePiel, meHj(m),t €T} z {Z{pmtzO\peP,iel,meH;(m),teT}
z" {Zi’;mte]RIpsP.iel.msH,-(m),teT} N {Nipmmt =0lpePiel,m,m' € Hi(m),t e T;m#m'}
N’ {/\/i’pmm,tzO\peP,iel,m,m’eHi(m),teT;m;ém’} M {Mipmme €R|lpePiel,mm eHi(m),teT;m#m'}
M (M €RIPePiclmm e Hi(m),t e T;m# m'} M7 My = 0lp e Piiel,m,m’ € Hi(m),t € Tym # m'}
H {Hipmm¢ = 0|pePicl,m,m' € Hi(m).t € T;m #m'}

Xpmt < QpmYpm: VpePmeKteT (E3)

bl <TQplm VielpeP.meH(m).teT (F4)

bome =TQp(Im—1) Viel.peP.meHi(m).teT (F5)
The Benders master problem can be written as follows:

minZ =Y "% "0Ciwjr+ Y > > SComYpme + ¢ (E6)

jeJ teT peP meK teT

s.t.: Constraints (30)-(35) and (36), and

- ZpeP > men 2oter DpmeCtpme — st] > meH 2oteT Uijjtﬂjpt - ZpeP 2 mek 2-ter QomY pme M pme

+ el ZmeKi(m) ZpeP Igm (”ipmJ - }‘ipm.l) - ZpeP 2 omeM 2_teT Ig'n%xfpmr
+ 2 ier 2_pep 2omeH;(m) 12m¢fpm.1 + 3 pep 2omen 2ter Dpmt pme — 3 pep D oper TQpwpt
- Ziel ZpeP Zm’eHi(m) ZteT G?nﬁfxipm’t + Zia Zpel’ Zm’eHi(m) ZIET metWipmt (E7)
= Diel 2pep 2mret;(m) 2teT 1 QpVm Zipme + Dicr 2opep 2omvet(m) 2oter 1Qp(Um — 1)Zl’lpmt
- Zisl ZpsP ZmeHi(m) Zm’eHi(m) ZtsT Gglrngl‘Pmm’t <¢
m'#£m
Vi, B, 2,001,107, 71,7, €,$1.0.¢.¢". L0, X, YW RVV Z Z Z'NN MM M H) ePy
=0 (E8)

where V signifies the polyhedron specified by the constraints of the problem, and Py implicates the set of extreme points of V. Constraint
(E.7) represents the optimality cut which can be generated consecutively in accordance with Bender’s sub-problem solution and the vectors
of the dual variables.

Appendix G. Details of the case study’s data
Detailed information on all other parameters in the SEIHRS model and PISP formulation is provided in Table G.8. The majority of the
parameters are based on real data except for the setup costs and the supply and production capacities which have been estimated based

on expert opinion. Except for the death rates as well as the population in each set of populated areas, other parameters of the SEIHRS
model are considered similar for the whole of France [52,94,95].
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Table G.8

Input data.
Parameter Value Parameter Value Parameter Value
I 12 y [0.1,0.5] ® 0.02
J 12 0oC (€) [15,000, 20,000] 7 0.5
M 233 L (week) 2 V2 0.3
K 33 B 3.70E-11 p 0.01
H 200 B2 1.48E-10 q 1
P 6 B3 7,00E-12 ap 0.06
PC (€) [0.5.20,000] Ba 7.00E-12 c 0.2
SC (€) [500, 5M] ¢ 3.00E-10 & 0.1
TC (€ /100km) [5%, 10%] x PC K 0.6 € 0.1
IC (€) [5%, 20%) x PC k 0.002 & 0.9
Q#) [100, 1M] ¢ 0.1 € 0.9
Imax o (#) [20, 10M] n 0.15 & 0.05
Imex L (#) [4.10,000] 81 1.00E-04 & 0.05
U#) [3000, 30, 000] 8, 5.00E—04 I 0.01
G (#) [400, 20, 000] 85 2.00E-04 & 0.01
°#) [10%, 20%] x [max 84 6.00E—04
(%) [10,30] 0 0.2
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