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a b s t r a c t 

The COVID-19 virus’s high transmissibility has resulted in the virus’s rapid spread throughout the world, 

which has brought several repercussions, ranging from a lack of sanitary and medical products to the 

collapse of medical systems. Hence, governments attempt to re-plan the production of medical products 

and reallocate limited health resources to combat the pandemic. This paper addresses a multi-period 

production-inventory-sharing problem (PISP) to overcome such a circumstance, considering two consum- 

able and reusable products. We introduce a new formulation to decide on production, inventory, delivery, 

and sharing quantities. The sharing will depend on net supply balance, allowable demand overload, un- 

met demand, and the reuse cycle of reusable products. Undeniably, the dynamic demand for products 

during pandemic situations must be reflected effectively in addressing the multi-period PISP. A bespoke 

compartmental susceptible-exposed-infectious-hospitalized-recovered-susceptible (SEIHRS) epidemiologi- 

cal model with a control policy is proposed, which also accounts for the influence of people’s behavioral 

response as a result of the knowledge of adequate precautions. An accelerated Benders decomposition- 

based algorithm with tailored valid inequalities is offered to solve the model. Finally, we consider a re- 

alistic case study – the COVID-19 pandemic in France – to examine the computational proficiency of the 

decomposition method. The computational results reveal that the proposed decomposition method cou- 

pled with effective valid inequalities can solve large-sized test problems in a reasonable computational 

time and 9.88 times faster than the commercial Gurobi solver. Moreover, the sharing mechanism reduces 

the total cost of the system and the unmet demand on the average up to 32.98% and 20.96%, respectively. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The world has been experiencing severe disasters ranging from 

atural (e.g., hurricanes, floods, tornadoes, pandemics, etc.) to 

an-made disasters (e.g., terror, error, etc.). Recently, the world 

as been tolerating a crucial pandemic due to the emergence of 

he SARS-CoV-2 virus (COVID-19, hereafter) over the past three 
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ears. This has rapidly spread worldwide after initial exposure 

n China [1–3] . As of the beginning of the pandemic, all gov- 

rnments faced high demand for medical products/resources to 

ontrol the virus’s spread and cure patients in critical situations. 

ence, countries worldwide agreed to increase the production of 

edical products and equipment ranging from medical masks to 

entilators, developing health protocols, raising awareness through 

ocial media, and correcting misconceptions [4–6] . They were also 

ware that such an action plan necessitates re-planing medical 

roducts’ production system and re-allocating/sharing limited 

ealth resources among different centers/regions to combat the 

andemic as supply chain viability measures [7–12] . The success 

f such an action plan highly depends on two main problems: a 

recise enough estimation of the demand for medical products; 

nd an efficient logistics network to produce, stock, distribute, and 

hare such products [13–16] . 
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As far as the estimation of the demand is concerned, there are 

arious forecasting procedures, which can provide a precise pre- 

iction of the progression of the pandemic, including agent-based 

odels [17] , metrological and meta-population models [18] , com- 

artmental epidemiological models [19–24] , time-series methods 

25,26] , machine learning [27] , and deep learning approaches [28] . 

xcept for compartmental epidemiological models, the other ap- 

roaches are highly dependent on data availability, while in the 

arly stages of a pandemic, data is either unavailable or unreli- 

ble [29] . Furthermore, long-standing data cannot be provided due 

o the emergence of new variants of the virus. Also, they can- 

ot reflect various government policies, including better treatment 

r public awareness programs [30] . In this regard, these methods 

annot consider a specific target to guarantee the achievement of 

ketched control policies, such as reducing the number of deaths 

r system costs [31] . However, to implement control policies, in- 

egrating compartmental epidemiological models with the optimal 

ontrol problem (OCP) is a powerful approach, which can cope 

ith a significant number of the listed barriers [32–37] . More im- 

ortantly, another advantage of epidemiological models is the pos- 

ibility of computing an endemic equilibrium point by a dynamic 

ptimization approach [38] . 

Despite all the advantages outlined for epidemiological models 

ith OCP, researchers are less likely to utilize this approach due 

o the complexity of its implementation, especially in modeling 

he COVID-19 pandemic. What is more, although limited studies 

ave applied this methodology, their findings cannot be used to 

lan logistics activities directly. Indeed, the considerations linked 

o their interaction with optimization models for logistics plan- 

ing have not been taken into account because the presented mod- 

ls have only considered the aspect of epidemiology. As an illus- 

ration, we need a specific approach for identifying and estimat- 

ng the demand for each piece of treatment equipment when try- 

ng to manage the supply, production, distribution, and sharing 

f items like ventilators, medical clothes, and ordinary and ICU 

eds. 

Albeit a precise-enough estimation of demand aids in re- 

lanning production and distribution decisions for medical prod- 

cts, it is nearly impossible to meet all demands due to limitations 

n proper infrastructures and facilities’ production capacity. As a 

esult, a sharing system between healthcare facilities can signifi- 

antly impact the effective utilization of available inventory. In this 

egard, there are various approaches to provide a sharing mech- 

nism, including queuing theory [39–41] , simulation [42] , agent- 

ased algorithms [43] , dynamic optimization [44] , game theory 

45] , and data envelopment analysis [46] . In contrast, optimiza- 

ion models have been less employed due to their complexity. Al- 

hough limited studies have been conducted to provide ventilator 

nd patient-sharing systems among healthcare facilities with the 

mergence of the COVID-19 pandemic, a broad range of concerns 

as been neglected in these studies that should be taken into ac- 

ount to increase their effectiveness. As an illustration, neglect- 

ng supply and production limitations can lead to serious doubts 

bout the feasibility of the system’s results. Moreover, some med- 

cal equipment, such as ventilators and ICU beds, can be reused 

fter an almost certain period as a lead time, which is about two 

eeks during the COVID-19 pandemic. So, this characteristic must 

e considered to update the inventory level in healthcare facili- 

ies, which may consequently affect the sharing decisions. What 

s more, a functional sharing system should provide the possibil- 

ty that healthcare facilities can receive a certain amount of de- 

and over their capacity. Such that they can fulfill this excess de- 

and through service sharing instead of just accepting the demand 

ased on a fixed capacity. In this regard, considering a broad range 

f factors are necessitated, including net supply balance, allow- 

ble demand overload, maximum sharing capacity, unmet demand, 
2 
nd adjusting inventory level relying on a reuse cycle for reusable 

quipment. 

According to the above-mentioned description, we address the 

wo problems (i.e., precise-enough estimation of the dynamic de- 

and and planning an efficient logistics network to produce, dis- 

ribute, and share medical products) through a comprehensive 

wo-stage framework. In the first stage, we suggest a SEIHRS model 

ith the OCP for controlling the dynamicity of the demands of 

onsumable and reusable products. Through the OCP, various con- 

rol policies, including raising awareness via spreading information 

nd improving normal and critical treatments for hospitalized peo- 

le, are examined. The second stage deals with modeling a new 

ulti-period production-inventory-sharing problem (PISP), where 

 broad range of decisions are made, including supply, production, 

istribution, inventory, and sharing. 

The contributions of this study are fivefold. First, we introduce 

 comprehensive optimization framework to combat a pandemic. 

econd, we develop a tailored SEIHRS model with a control policy 

o handle the demand dynamicity. Third, we formulate the multi- 

eriod PISP under the equipment reuse cycle. Fourth, we offer an 

ccelerated Benders decomposition algorithm to solve the problem. 

ifth, we render new valid inequalities in the context of the multi- 

eriod PISP, which are based on the real demand, the inventory 

evels, and the unmet demand. The proposed optimization frame- 

ork is finally applied to a realistic case study of the COVID-19 

andemic in France for the first time. 

The remainder of the paper is organized as follows. 

ection 2 offers a comprehensive investigation concerning associ- 

ted studies in the literature. Section 3 presents the description 

f the SEIHRS epidemiological model with the OCP. Section 4 pro- 

oses the multi-period PISP formulation. Section 5 presents the 

alid inequalities along with an accelerated Benders decomposition 

lgorithm. Section 6 describes the case study and provides compu- 

ational results and a set of sensitivity analyses. Section 7 provides 

anagerial insights and implications. Finally, this study is con- 

luded, and future research directions are proposed in Section 8 . 

. Literature review 

The current study concentrates on two main phases: 1) dis- 

ase progression modeling and 2) logistics planning, especially fo- 

used on sharing/re-allocating mechanisms, to offer a comprehen- 

ive framework to combat the COVID-19 pandemic. In the follow- 

ng, the relevant studies of the literature are reviewed and dis- 

ussed to better position the current work and its contributions 

ompared to the literature. First, Table 1 classifies the relevant pa- 

ers according to different criteria. Next, the studies of each phase 

re separately discussed in the following subsections. 

.1. Phase 1—Disease progression modeling under the COVID-19 

andemic 

Considering the advantages and disadvantages listed in the 

revious section for disease progression modeling methods, only 

tudies that have used epidemiology models are examined in 

his section. Although the COVID-19 pandemic just emerged three 

ears ago, a significant number of studies have been conducted 

o predict transmission dynamics and formulate disease progres- 

ion via epidemiology models. In this regard, three review articles 

ave been presented [29,30,47,48] , wherein epidemiological mod- 

ls such as susceptible-infected-recovered (SIR) and susceptible- 

xposed-infectious-recovered (SEIR) have been mostly employed. 

n this regard, the corresponding studies can be separated into two 

ategories: the first category covers simply epidemiological models, 

hile the second incorporates OCP into epidemiological models. 
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Table 1 

Classification of the relevant papers ∗ . 

Ref. Phase 1 Phase 2 Characteristics Sol. 

EM-wo-OCP EM-w-OCP Sup. Prod. Dist./ Demand Resource Inv. Shr. Re-use Appr. 

Identical Distinct Shr. Periodic Overload Unmet Type Type Cap. Cap. Cap. 

[49] 
√ 

[50] 
√ 

[51] 
√ 

[52] 
√ 

[53] 
√ 

[54] 
√ 

[55] 
√ 

[56] 
√ 

[57] 
√ 

[58] 
√ 

[59] 
√ 

[60] 
√ 

[61] 
√ 

[62] 
√ 

[63] 
√ 

[64] 
√ 

[65] 
√ 

[66] 
√ 

[67] 
√ 

[68] 
√ 

[69] 
√ 

[70] 
√ 

[71] 
√ 

[72] 
√ √ √ 

Stochastic Single HEU. 

[73] 
√ √ √ 

Robust Multi 
√ 

GRB. 

[74] 
√ √ √ 

Stochastic Single 
√ √ √ 

MH 

[75] 
√ √ √ √ √ 

Dynamic Multi 
√ 

CPlex 

[76] 
√ √ √ √ √ 

Dynamic Multi 
√ 

AnyLogic 

[77] 
√ √ √ 

Stochastic 
√ √ 

GRB. 

This study 
√ √ √ √ √ √ √ 

Dynamic Multi 
√ √ √ √ 

BD 

∗EM-w/wo-OCP: Epidemiological model with/without OCP; Sup.: Supply; Prod.: Production; Dist.: Distribution; Shr.: Sharing; Inv.: Inventory; Cap.: Capacity; Sol. Appr.: 

Solution approach. 
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In the first category, Anand et al. [49] proposed a modified SIR 

odel (MSIRM) with a case study in India, where infected indi- 

iduals were tested and quarantined. Cooper et al. [50] proposed 

n MSIRM with a dynamic susceptible population, where the pro- 

osed model was examined on different datasets, including China, 

outh Korea, India, Australia, Italy, and the USA. Chen et al. [51] ad- 

ressed an MSIRM with a case study in China, in which recovery 

nd transmission rates were time-dependent. Abou-Ismail [52] ap- 

lied SIR and SEIR models and offered a susceptible-quarantined- 

uarantined-confirmed (SUQC) model. Wangping et al. [53] ex- 

ended the SIR model with a case study in Italy, where the trans- 

ission rate was time-dependent, and the Markov Chain Monte 

arlo method was employed to estimate the basic reproductive 

umber. Ifguis et al. [54] applied the SIR model for a case study 

n Morocco. Calafiore et al. [55] developed an MSIRM based on 

 case study in Italy, where their contributions focused on de- 

ermining the proper number of infected people and enhancing 

dentification and prediction processes. He et al. [56] proposed a 

odified SEIR model (MSEIRM) with a case study in China, where 

 particle swarm optimization algorithm was used to adjust the 

EIR’s parameters. Moreover, they examined the system’s behavior 

egarding seasonality and stochastic infections. Moreover, in order 

o forecast the basic reproduction number and pandemic spread 

ate, Liao et al. [57] developed an integrated strategy compris- 

ng a SIR model and a polynomial regression algorithm as a ma- 

hine learning method. Indeed, the SIR model’s parameters were 

stimated using the machine learning algorithm. Similarly, Alanazi 

t al. [58] applied machine learning methods to estimate the pa- 

ameters of a SIR model. Bagal et al. [59] applied the SIR model for

nalyzing various lockdown scenarios in India. Chen et al. [60] pro- 

osed a SIR model under an uncertain process by means of uncer- 
3 
ain differential equations, where the proposed model was inves- 

igated in a case study of China. Kyurkchiev et al. [61] proposed 

ew modifications for SIR and SEIR models, wherein intervention 

olynomial factor was applied to consider various scenarios for 

he contagious disease deployment. Zisad et al. [62] incorporated 

 neural network model into an SEIR model to enhance the pre- 

iction accuracy, where the neural network was utilized to predict 

he quarantined population. 

Alenezi et al. [63] proposed a time-dependent SIR model for a 

ase study in Kuwait. Hassen et al. [64] proposed an MSIRM called 

IR-Poisson to forecast the number of infected individuals follow- 

ng a Poisson distribution. The accuracy of the proposed model was 

xamined in Maghreb’s central regions, including Algeria, Tunisia, 

nd Morocco. Prodanov [65] introduced an iterative approxima- 

ion algorithm to estimate the parameters of the SIR model. Ala’raj 

t al. [78] applied ARIMA models to adjust the parameters of a 

odified susceptible-exposed-infected-recovered-deceased (SEIRD) 

odel under time-dependent birth and death rates. What is more, 

fimov and Ushirobira [66] proposed an MSEIRM by taking into ac- 

ount societal feedback on disease and confinement aspects as well 

s time-dependent parameters. Singh and Gupta [67] developed a 

eneralized SIR model consisting of miscellaneous time-dependent 

atterns of emerging, peak amplitude, and dwindling. Also, they 

onsidered a logistic growth model to formulate infection spread. 

ópez and Rodo [68] proposed a time-dependent SEIR model for 

 case study in Spain and Italy, where infection spread during the 

atent period was considered under various proportions of contain- 

ent. 

In the second category, few studies have been conducted due 

o the complexity of reflecting OCP factors. Das and Samanta 

69] suggested an MSIRM based on a fractional-order framework, 
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n which OCP was applied to investigate the effectiveness of a so- 

ial distance policy, where lockdown was one of the policy’s parts. 

aha et al. [70] suggested a modified SEIRS model that accounts for 

he influence of information on adequate precautions on people’s 

ehavioral responses. They used OCP to minimize disease burden 

y implementing two control policies: boosting disease awareness 

hrough information and improving treatment for hospitalized pa- 

ients. Saha and Samanta [71] suggested an MSEIRM in which OCP 

as used to assess the efficacy of social distancing and proper hy- 

iene policy on raising awareness. 

Research gaps and questions According to the literature, increas- 

ng awareness about disease symptoms by spreading information 

nd enhancing treatments to hospitalized patients in different 

tages of the COVID-19 pandemic substantially impacts medical 

roducts demand, including hydro-alcoholic gels, masks, medical 

lothes, ordinary and ICU beds, and ventilators. On this subject, the 

emand for each of the mentioned medical products is associated 

ith a specified part of the target population. As an illustration, all 

usceptible individuals must use masks and hydro-alcoholic gels 

o prevent the spread of the virus regarding public health proto- 

ols. Also, hospitalized individuals in general wards need ordinary 

eds, and hospitalized individuals in ICUs require ICU beds and 

entilators. Moreover, all hospitalized individuals in general wards 

nd ICUs need medical clothes. Therefore, reflecting these concerns 

o formulate a realistic disease progression model is necessitated 

or identifying and estimating the demand for each piece of treat- 

ent equipment. Needless to say, sketching a meaningful interac- 

ion between the estimation phase of demand for mentioned prod- 

cts and the planning phase of logistics activities, including pro- 

uction, distribution, and sharing, is undeniable. Regarding the ex- 

lained research gaps, the main research questions are (1) How can 

e estimate demands for different medical products according to 

hanges in disease progression? (2) How can we use estimated de- 

and to plan logistics activities? (3) Does considering dynamic de- 

and lead to more accurate planning for logistics activities? 

.2. Phase 2—Logistics planning: sharing/re-allocating mechanisms 

Resource re-allocation or sharing is a reputable concept that has 

pplications in diverse domains, including judicial services [79] , 

losed-loop supply chain [80] , bike-sharing [81] , and humanitarian 

ogistics operations [82] . However, there are a limited number of 

tudies in the context of mathematical modeling of sharing mech- 

nisms in healthcare systems. It is interesting to know that these 

imited studies have also been formed due to the emergence of the 

OVID-19 pandemic. 

As the first papers dealing with the COVID-19 pandemic issues, 

ehrotra et al. [72] proposed a ventilator sharing framework to 

ombat the COVID-19 pandemic under demand uncertainty, where 

 central agency allocated ventilators to various regions under 

afety stock and inventory levels. In the sharing process, surplus 

entilators were returned to the central agency from the regions 

nd redistributed by the central agency with and without lead 

ime according to the demands of other regions in which demand 

ncertainty was handled by stochastic programming. Parker et al. 

73] proposed two sets of mathematical models to redistribute the 

OVID-19 patients as demands, and beds and nurses as resources 

mong healthcare facilities regarding inventory level. Also, a robust 

ptimization approach handled the demand uncertainty, and the 

bjective functions minimized the total surge capacity and nurse 

verflow. Blanco et al. [74] proposed a single product-sharing sys- 

em among healthcare facilities in the COVID-19 pandemic regard- 

ng inventory and capacity levels, where a stochastic program- 

ing approach handled the demand uncertainty. Also, they ex- 

mined four objective functions that stand for different aspects 

f the unmet demand. Rozhkov et al. [76] proposed a simulation 
4

odel to analyze a production-inventory problem in a multi-layer 

upply chain system with perishable products during the COVID- 

9 pandemic, where two supply chain reactive strategies were 

onsidered, including order cancellation and excess inventory. On 

his subject, they modeled the pandemic dynamics and its dis- 

uptions by an agent-based forecast model as a separate system 

nd analyzed its outcomes on the demand, supply, and capacities 

f the considered supply chain system. Li et al. [75] proposed an 

pidemiological model to formulate a coupled supply chain and 

isease network during the COVID-19 pandemic, where the pro- 

osed SEIHRS model worked alongside a production-inventory dy- 

amic programming model. They considered four significant feed- 

ack functions to provide realistic circumstances of the COVID-19 

andemic and its disruptions, including disease-dependent capac- 

ty, disease-dependent demand, shortage-dependent transmission, 

nd shortage-dependent fatality. 

Research gaps and questions According to the literature, the sup- 

ly and production of medical equipment have not been studied. 

lso, these plans are generally considered for one product type, 

hile different products require different considerations. In this re- 

ard, some medical equipment, such as ventilators and ICU beds, 

an be reused after a certain period. So, this specification needs 

o be reflected to compute the inventory level of healthcare facili- 

ies and sharing decisions. Additionally, in real-world applications, 

ometimes healthcare facilities have a certain level of participation 

n the sharing process despite having excess capacity. Therefore, it 

eems necessary to consider a limited capacity for sharing process. 

hat is more, a practical sharing system ought to allow health- 

are facilities to accommodate some demand that exceeds their ca- 

acity so that they might share services to meet this surplus de- 

and rather than simply accepting it based on a predetermined 

apacity. Regarding the explained research gaps, the main research 

uestions are (1) How can we reduce health system costs and un- 

et demand by planning production, distribution, and sharing? (2) 

ow does reusable products’ reuse cycle affect production to shar- 

ng decisions? (3) How do consumable and reusable products plan 

rom production to distribution in a multi-period healthcare sys- 

em? 

Finally, with the intention of demonstrating research gaps and 

ur contributions better, Table 1 is provided. 

. Epidemiological model 

This section develops a SEIHRS epidemiological model with OCP 

see Fig. 1 ) to estimate the demands of consumable and reusable 

roducts. As a new extension, hospitalized patients are separated 

nto two groups. The first group represents the patients in gen- 

ral wards who need regular hospital beds and typical treatments. 

he second group comprises patients under severe conditions who 

equire ICU beds, ventilators, and critical treatments. In addition, 

s the physical condition of the patients in the first group dete- 

iorates, they are transferred to the second group. More impor- 

antly, in retrospect, people show different behavior towards minor 

nd intense symptoms of corona disease. For example, most peo- 

le do not pay attention to minor symptoms and postpone visiting 

hysicians, while this is usually the opposite in relation to intense 

ymptoms. In addition, as people become more aware of the con- 

equences of delaying the start of needed treatment, this attitude 

sually changes. Furthermore, during the COVID-19 pandemic, due 

o the insufficient knowledge of scientists about the origin of this 

isease, many of the treatments used have been based on their ex- 

erience with similar diseases in the past. Therefore, with the pas- 

age of time, conducting numerous clinical trials, increasing aware- 

ess of the complications of the disease, and how patients respond 

o the prescribed drugs, the treatments required in minor and in- 
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Fig. 1. The proposed SEIHRS model. 
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ense conditions have been adjusted. Consequently, various control 

olicies are considered to reflect such circumstances. 

.1. Main assumptions and notations 

The main assumptions to develop the SEIHRS epidemiological 

odel are as follows: 1) As symptomatic infected population den- 

ity rises, so does the accumulation of information, but over time 

t reaches saturation; 2) The recovery condition is not permanent 

nd a number of recovered individuals return to the susceptible 

nes; 3) This model does not take into account the diseases’ natu- 

al histories, such as the incubation and latency periods; 4) Every 

ember of the population engages in social interaction; 5) Every 

ember of the population has the same health traits, such as im- 

une response, immunity, etc.; and 6) All afflicted individuals are 

ontagious and disseminate the illness among the susceptible indi- 

iduals. 

The list of the notations of the proposed mathematical model is 

rovided as Table 2 . 

The susceptible people become exposed once they encounter 

nfected individuals who are asymptomatic, symptomatic, or hos- 

italized under normal or critical treatments via the term (β1 A + 

2 I + β3 HN + β4 HC) S. 

The exposed individuals are then divided into either asymp- 

omatic or symptomatic segments regarding probabilistic ρ and 

1 − ρ) , respectively if any disease symptoms have been recog- 

ized in the infected individuals [70] . Similarly, symptomatic in- 
5

ividuals are separated into either normal or critical hospitalized 

eople with probabilities (1 − c) and c, respectively, if they need 

upervised care in the hospital. Furthermore, the recovery condi- 

ion is not permanent and a number of recovered individuals re- 

urn to the susceptible segment, further with a constant rate ξ . 

Although raising awareness persuades susceptible individuals 

o change their behavior and protect themselves from contagion, 

very person would not become cautious adequately forever due 

o various reasons ranging from financial matters to personality 

haracteristics. Hence, a proportion of susceptible individuals adopt 

recautionary measures and alter their conventional habits, where 

hese alterations depend not only on the number of susceptible in- 

ividuals but also on the awareness density. Furthermore, the rate 

f information dissemination is solely determined by the num- 

er of symptomatic people. In this regard, let u 1 k be the rate at 

hich the susceptible individuals’ behavior changes to prevent dis- 

ase spread as a result of appropriate disease prevention proceed- 

ngs (e.g., social distancing, cleanliness, and self-isolation). In addi- 

ion, pI 
1+ qI is a saturation function that represents how information 

rows among symptomatic infected individuals [70,83] . 

.2. The proposed SEIHRS model 

The developed SEIHRS model for COVID-19 is a system dynam- 
cs model, where susceptible individuals acquire essential informa- 
ion concerning the disease and recommendations to avoid it. The 
nfected individuals diverge into asymptomatic and symptomatic 
egments; however, due to the latency in the appearance of the 
ymptoms, the possibility of converting asymptomatic individuals 
o symptomatic ones is considered. Additionally, symptomatic in- 
ividuals are divided into minor and intense symptoms, which re- 
uire normal and critical treatments. Furthermore, as the physical 
tate of the patients in the first group deteriorates, they are trans- 
erred to the second group. Also, a number of hospitalized people 
an recover with necessary care, although they can become sus- 
eptible again due to the nature of the virus. Hence, the proposed 

ystem seeks to examine how to control the spread of the disease 
y investigating factors such as raising awareness about precau- 
ionary measures and offering better treatments. In this regard, the 
roposed SEIHRS model of Fig. 1 is mathematically formulated as 
he system of Eq. (1) : 

d S 

d t 
= � − (β1 A + β2 I + β3 HN + β4 HC) S − dS + ξR − u 1 kSZ S(0) > 0

d E 

d t 
= (β1 A + β2 I + β3 HN + β4 HC) S − (k + d) E E(0) ≥ 0 , 

d A 

d t 
= κρE − ηA − (d + δ1 ) A A (0) ≥ 0 , 

d I 

d t 
= κ(1 − ρ) E + ηA − ωI − (d + δ2 ) I I(0) ≥ 0 , 

d HN 

d t 
= ω(1 − c) I − (d + δ3 ) HN − γ1 HN − θHN HN(0) ≥ 0 , (1

d HC 

d t 
= ωcI − (d + δ4 ) HC − γ2 HC + θHN HC(0) ≥ 0 , 

d R 

d t 
= γ1 HN + γ2 HC − ξR − dR + u 1 kSZ R (0) ≥ 0 , 

d Z 

dt 
= 

pI 

1 + qI 
− a 0 Z Z(0) ≥ 0 

This system represents the equilibrium of input and output 

ows at each state, which depends on time and simulates its fluc- 

uation and dynamicity. In this regard, the first equation of the sys- 

em (1) displays the number of susceptible people at time t . It cal- 

ulates the difference between the total population, and the num- 

er of recovered individuals who return to susceptible ones, as the 
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Table 2 

Notations of the proposed SEIHRS model. 

Notation Description 

Parameters 

� Total population at the beginning of the pandemic 

β1 /β2 Disease contagion rates per contact by asymptomatically/symptomatically infected individuals 

β3 /β4 Disease contagion rates per contact by individuals hospitalized under normal/critical treatments 

d Natural death rate of individuals 

δ1 /δ2 Particular death rate among asymptomatically/symptomatically infected individuals 

δ3 /δ4 Particular death rate among individuals hospitalized under normal/critical treatments 

ρ Probability of being asymptomatically infected among exposed individuals 

c Probability of being hospitalized under critical treatments among symptomatically infected individuals 

κ , η, ω, γ1 , γ2 Conversion rates from exposure to infected, asymptomatic to symptomatic, symptomatic to hospitalized, and normal and critical 

hospitalized to recovered individuals 

ξ Return rate of recovered individuals to be susceptible again 

a 0 Depreciation rate of information in the course of time due to the physical fading of memory regarding sequels 

k Information interaction rate 

p, q Information growth rate and the unresponsiveness rate to information 

Variables 

State variables 

N(t) Total population at time t

S(t) Number of susceptible individuals at time t

E(t) Number of exposed individuals at time t

A (t) , I(t) Number of asymptomatically/symptomatically infected individuals at time t

H N(t) , H C(t) Number of hospitalized individuals under normal/critical treatments at time t

R (t) Number of recovered individuals at time t

Z(t) Awareness density because of the spread of information provided by social media platforms and educational campaigns concerning 

awareness programs to illustrate precaution measures ( Z(t) = 0 if lack of symptomatic infected individuals) 

Control variables 

u 1 Response intensity to the information 

u 2 Awareness intensity of normal symptoms 

u 3 Awareness intensity of intense symptoms 

u 4 Response intensity to normal treatments 

u 5 Response intensity to critical treatments 
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nput flows; the number of susceptible individuals who become 

xposed, the number of susceptible individuals who die, and the 

umber of susceptible individuals who follow health protocols, as 

he output flows. The second equation of the system (1) indicates 

he number of exposed people at time t . It calculates the differ- 

nce between the number of susceptible individuals who become 

xposed, as the input flow; the number of exposed individuals who 

ie, and the number of exposed individuals who become infected, 

s the output flows. The third equation of the system (1) indi- 

ates the number of asymptomatically infected people at time t . It 

omputes the difference between the number of exposed individu- 

ls who become asymptomatically infected, as the input flow; the 

umber of asymptomatically infected people who die naturally and 

nnaturally, and the number of asymptomatically infected people 

ho become symptomatically infected, as the output flows. The 

ourth equation of the system (1) indicates the number of symp- 

omatically infected people at time t . It calculates the difference 

etween the number of exposed individuals who become symp- 

omatically infected, and the number of asymptomatically infected 

eople who become symptomatically infected, as the input flows; 

he number of symptomatically infected people who die naturally 

nd unnaturally, and the number of symptomatically infected peo- 

le who become hospitalized, as the output flows. 

The fifth equation of the system (1) indicates the number of 

ospitalized individuals under normal treatments at time t . It cal- 

ulates the difference between the number of symptomatically in- 

ected people who become hospitalized under normal treatments, 

s the input flow; the number of hospitalized individuals under 

ormal treatments who die naturally and unnaturally, the number 

f hospitalized individuals under normal treatments who become 

ecovered, and the number of hospitalized individuals under nor- 

al treatments who transfer to ICUs, as the output flows. The sixth 

quation of the system (1) indicates the number of hospitalized in- 

ividuals under critical treatment at time t . It calculates the differ- 

nce between the number of symptomatically infected people who 
6 
ecome hospitalized under critical treatments, and the number of 

ospitalized individuals under normal treatments who transfer to 

CUs, as the input flows; the number of hospitalized individuals 

nder critical treatments who die naturally and unnaturally, and 

he number of hospitalized individuals under critical treatments 

ho become recovered, as the output flows. The seventh equa- 

ion of the system (1) indicates the number of recovered individ- 

als at time t . It calculates the difference between the number of 

ospitalized individuals under normal and critical treatments who 

ecome recovered, and the number of susceptible individuals who 

ollow health protocols, as the input flows; the number of recov- 

red individuals who die naturally, and the number of recovered 

ndividuals who return to susceptible, as the output flows. Finally, 

he eighth equation of the system (1) indicates the awareness den- 

ity at time t . It calculates the difference between the information 

rowth, as the input flow, and the information depreciation, as the 

utput flow. 

For the calculation of the basic reproduction number R 0 and 

he endemic equilibrium point, interested readers are referred to 

ppendix A . Furthermore, the stability analysis of the R 0 equilibria 

s provided in Appendix B . 

.3. The optimal control problem – OCP 

As discussed earlier, the main goal of the proposed SEIHRS 

odel is to examine how to control the propagation of the dis- 

ase by implementing a number of policies as control variables. 

eedless to say, managers are always looking for feedback from 

he system after the implementation of these interventions so that 

hey can have precise control over them. In addition, it should not 

e forgotten that the implementation of these interventions always 

mposes costs on the system. This matter becomes more important 

hen in the conditions of a pandemic; the available funds must be 

pent more obsessively. Therefore, an approach should be adopted 

hat guarantees the achievement of the goal in addition to con- 
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idering the mentioned limitations. However, the proposed SEIHRS 

odel alone cannot provide the possibility of achieving the listed 

onsiderations. In this regard, OCP can be incorporated into the 

roposed system of equations (1) to determine control variables, 

atisfy the defined constraints of the devised system, and at the 

ame time minimize the total costs of the system as a performance 

riterion. 

In this regard, we considered two main policies, (1) raising 

wareness between susceptible and symptomatic infected people 

oncerning minor and intense symptoms via spreading informa- 

ion, when the susceptible may observe precaution measures, and 

he symptomatic infected can seek treatment without disregard- 

ng their symptoms [70] , and (2) improving normal and critical 

reatments for hospitalized individuals in general and ICU wards 

ue to the increase of knowledge about virus behavior. In this re- 

ard and referring to Fig. 1 , symptomatic infected individuals are 

ivided into two categories. The first category visits medical cen- 

ers with the mildest symptoms and receives normal treatment. 

he second category requires critical treatment due to ignoring the 

lightest symptoms, which exacerbates their health condition. This, 

n turn, leads to saturating general and ICU wards in medical cen- 

ers. Therefore, let 
ε 1 u 2 (t) I 

1+ ζ1 I 
and 

ε 2 u 3 (t) I 
1+ ζ2 I 

be saturation functions for 

eneral and ICU wards, where ε 1 and ε 2 are acceptance rates of 

inor and severe symptoms by infected individuals with intensi- 

ies u 2 and u 3 and saturation constants ζ−1 
1 

and ζ−1 
2 

. Due to the 

nknown of COVID-19, treatments will be developed over time as 

ore knowledge becomes available. This has an impact on disease 

rogression and mortality rates. However, the ratio of patients to 

xisting equipment is quite high, which leads to saturation in the 

ystem. In light of this reality, let 
ε 3 u 4 (t) HN 

1+ ζ3 HN 
and 

ε 4 u 5 (t) HC 

1+ ζ4 HC 
be satura- 

ion treatment functions, where ε 3 and ε 4 are normal and critical 

reatment rates with intensities u 4 and u 5 and saturation constants 
−1 
3 

and ζ−1 
4 

. 

In this OCP, five control variables u i (t) , i = 1 , . . . , 5 ( u i (t) ∈
0 , 1] ) are defined. In control variable u 1 (t) , values 0 and 1 signify

o reaction and the complete response of susceptible individuals 

o information, respectively. For control variables u 2 (t) and u 3 (t) , 

alue 0 signifies when a person is unaware of his or her normal 

r intense symptoms and does not seek medical advice, respec- 

ively; and value 1 represents complete awareness of symptoms. 

inally, control variables u 4 (t) and u 5 (t) , values 0 and 1 signify no

esponse and complete response to normal and critical treatments 

n general and ICU wards, respectively. Hence, in order to deter- 

ine the optimal response to minor and intense symptoms and 

ptimal normal and critical treatments, an objective function is 

onsidered, which minimizes the system’s total costs including the 

ost of spreading awareness among susceptible and symptomatic 

nfected individuals and the cost of normal and critical treatments 

n hospitals. The region of the control interventions can be defined 

s (2) : 

 = { u 1 (t) , u 2 (t) , u 3 (t) , u 4 (t) , u 5 (t) | u i (t) ∈ [0 , 1] 5 , 

i = 1 , . . . , 5 ; t ∈ [0 , T f ] } (2) 

here T f is the final time to implement the control policies, and 

 i (t) for i = 1 , . . . , 5 are bounded and measurable variables. Hence,

ith the intention of formulating the explained control policies, 

he following control problem is proposed with initial condi- 

ions S(0) > 0 , E(0) ≥ 0 , A (0) ≥ 0 , I(0) ≥ 0 , HN(0) ≥ 0 , HC(0) ≥ 0 ,

 (0) ≥ 0 and Z(0) ≥ 0 . 

[ u 1 (t) , u 2 (t) , u 3 (t) , u 4 (t) , u 5 (t)] 

= 

∫ T f 

0 

[ w 1 I(t) + w 2 HN(t) + w 3 HC(t) + w 4 u 

2 
1 (t) 

+ w 5 u 

2 
2 (t) + w 6 u 

2 
3 (t) + w 7 u 

2 
4 (t) + w 8 u 

2 
5 (t)] d t (3) 
7 
.t.: 

d S 

d t 
= � − (β1 A + β2 I + β3 HN + β4 HC) S − dS + ξR − u 1 (t) kSZ, 

d E 

d t 
= (β1 A + β2 I + β3 HN + β4 HC) S − (k + d) E, 

d A 

d t 
= κρE − (η + d + δ1 ) A, 

d I 

d t 
= κ(1 − ρ) E + ηA − (ω + d + δ2 ) I − ε 1 u 2 (t) I 

1 + ζ1 I 
− ε 2 u 3 (t) I 

1 + ζ2 I 
, 

d HN 

d t 
= ω(1 − c) I − (d + δ3 + γ1 + θ ) HN + 

ε 1 u 2 (t) I 

1 + ζ1 I 
− ε 3 u 4 (t) HN 

1 + ζ3 HN 

, 

d HC 

d t 
= ωcI − (d + δ4 + γ2 ) HC + θHN + 

ε 2 u 3 (t) I 

1 + ζ2 I 
− ε 4 u 5 (t) HC 

1 + ζ4 HC 
, 

d R 

d t 
= γ1 HN + γ2 HC − ξR − dR + u 1 (t) kSZ + 

ε 3 u 4 (t) HN 

1 + ζ3 HN 

+ 

ε 4 u 5 (t) HC 

1 + ζ4 HC 
,

d Z 

dt 
= 

pI 

1 + qI 
− a 0 Z (4)

The first term in the objective function (3) calculates the cost 

hen symptomatic infected individuals consult a medical profes- 

ional concerning normal and intense symptoms and seek neces- 

ary medical care without disregarding symptoms. The second and 

he third terms calculate the costs of hospitalized people in general 

nd ICU wards, respectively. The fourth term calculates the cost of 

preading awareness among susceptible individuals. The fifth and 

ixth terms compute the productivity loss due to mild or intense 

llness, respectively. Finally, the seventh and eighth terms calculate 

he opportunity loss, such as productivity loss, resulting from hos- 

italization to general and ICU wards, respectively. Remarkably, the 

quare of the control variable reveals the intensity of side effects 

f awareness programs and treatment policies [31,32,38,84,85] . The 

ositive parameters w i , i = 1 , . . . , 8 are importance weights and

alance the units of the integrand. 

heorem 3. The control system (3) and (4) has optimal control vari- 

bles such that J(u ∗1 , u 
∗
2 , u 

∗
3 , u 

∗
4 , u 

∗
5 ) = min [ J(u 1 , u 2 , u 3 , u 4 , u 5 )] . 

roof. A mathematical proof has been provided in Appendix C . �

Finally, Appendix D provides the way to obtain optimal con- 

rol variables. Noteworthy, as far as the pandemic is not over, 

(t) , A (t) , I(t) , HN(t) , and HC(t) help to estimate the demand 

f medical products corresponding to each segment of the popu- 

ation. For instance, considering the COVID-19 pandemic, the de- 

ands for hydro-alcoholic gels and masks over time can be esti- 

ated by S(t) ; HN(t) + HC(t) can represent the demand for med- 

cal clothes over time; the demand for ordinary beds over time 

an be estimated by HN(t) ; and finally, the demands for ICU beds 

nd ventilators over time can be estimated by HC(t) . More im- 

ortantly, at the endemic equilibrium point, the demand for the 

bove-mentioned products and equipment can be estimated using 

btained optimal state variables ( S ∗, H N 

∗ + H C ∗, H N 

∗, and H C ∗) re-

ulting from the optimal system. 

. The proposed PISP model 

This section formulates a logistics network that includes a set 

f suppliers and manufacturers that provide medical products and 

quipment, as well as a set of demand points/hospitals (hereafter, 

e only use the term hospitals as the demand and cure points 

f the population). The manufacturers and hospitals are clustered 

n a given number of regions, in such a way that the hospitals 

f a given region receive medical products and equipment from 

he manufacturers located in the same region. A set of medical 
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roducts and equipment are considered, which are divided into 

onsumable and reusable products. Manufacturers produce medi- 

al products and equipment using raw materials provided by sup- 

liers and distribute them only among the hospitals of their cor- 

esponding region. Due to demand fluctuations and capacity limi- 

ations in manufacturers and suppliers, hospitals might encounter 

hortages. Hence, an applicable sharing system among hospitals in 

ach region is developed, wherein hospitals with surplus products 

an transfer the extra portion to the hospitals with extra demands. 

n addition, hospitals can receive a higher percentage of their pa- 

ients’ actual demands and respond to them through the sharing 

ystem. More importantly, a lead time is defined for reusable prod- 

cts according to their occupancy times in ICU wards. This is in- 

eed in line with real-world practice, where these products be- 

ome free and reusable over a certain period of time, and they will 

e reconsidered as available inventory. 

Before entering the details of the proposed mathematical 

odel, assumptions and necessary notations are described. 

.1. Assumptions and notations 

The main assumptions of the defined problem are as follows: 

) The capacity of suppliers, manufacturers, and hospitals is lim- 

ted; 2) The sharing capacity of any hospital, and the total sharing 

apacity over all regions are limited; 3) ICU beds and ventilators 

an be reused after a certain period as the occupancy time; 4) The 

hortage of medical products in hospitals is allowable, which is 

eflected by unmet demand; 5) Hospitals with surplus inventory 

an transfer the extra portion to hospitals with extra demands; 

) Hospital’s unmet demand is met using the net supply balance 

nd sharing from other hospitals; 7) Hospitals with extra inventory 

annot receive products from the sharing process; 8) The sharing 

pproach enables hospitals to get a greater proportion of their pa- 

ients’ actual demands and address them; and 9) The demand for 

edical products in hospitals is uncertain and has a dynamic pat- 

ern, which is estimated by the developed SEIHRS model with OCP. 

The list of the notations of the proposed mathematical model is 

rovided as Table 3 . 

.2. The PISP formulation 

This section proposes the multi-period PISP formulation as a 

ixed-integer linear programming model using the notations de- 

cribed in Table 3 , where the demand for consumable and reusable 

roducts are estimated from the proposed SEIHRS model (4) . 

.2.1. Objective function 
The objective function of the multi-period PISP formulation is 

resented as (5) which minimizes the total costs of the system. 

in Z = 

∑ 

j∈ J 

∑ 

t∈ T 
OC j w jt + 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
SC pm 

y pmt + 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

m ∈ K 

∑ 

t∈ T 
T C pjm 

u pjmt 

+ 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
PC pm 

x pmt + 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

m 

′ ∈ H 

∑ 

t∈ T 
T C pmm 

′ q pt 
mm 

′ 

+ 

∑ 

p∈ P 

∑ 

m ∈ H 

∑ 

m 

′ ∈ H 

∑ 

t∈ T 
T C pmm 

′ s pt 
mm 

′ + 

∑ 

p∈ P 

∑ 

m ∈ K∪ H 

∑ 

t∈ T 
IC pm 

I pmt + CU × S max 

(5) 

The objective function (5) includes eight different terms includ- 

ng: 1) fixed ordering costs for suppliers, 2) fixed production setup 

osts at manufacturers, 3) variable transportation costs between 

uppliers and manufacturers, 4) variable production costs at man- 

facturers, 5) variable transportation costs between manufacturers 

nd hospitals, 6) variable sharing costs among hospitals, 7) vari- 

ble inventory holding costs at manufacturers and hospitals, and 

) unmet demand costs, respectively. 
8 
.2.2. Constraints 

In the following, the constraints of the proposed multi-period 

ISP model are explained. The first set of constraints, i.e. (6) –(12) , 

ormulate the amount of unmet demand as well as the amount of 

aw materials and products among suppliers, manufacturers, and 

ospitals. 

 max ≥ S pmt ∀ p ∈ P, m ∈ H, t ∈ T (6) 

∑ 

 ∈ K 
u p jmt ≤ U p j w jt ∀ j ∈ J, p ∈ P, t ∈ T (7)

 

j∈ J 
u p jmt = γp x pmt ∀ p ∈ P, m ∈ K, t ∈ T (8)

 pmt ≤ Q pm 

y pmt ∀ p ∈ P, m ∈ K, t ∈ T (9)

∑ 

 

′ ∈ H i (m ) 

q pt 
mm 

′ ≤ x pm,t−1 + I pm,t−1 ∀ i ∈ I, p ∈ P, m ∈ K i (m ) , t ∈ T (10)

 pmt + 

∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s pt 
mm 

′ ) 
+ ≤

∑ 

m 

′ ∈ K i (m ) 

q pt 
m 

′ m 

∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T 

(11) 

∑ 

 ∈ K i (m ) 

q pt 
mm 

′ ≤ G 

max 
pm 

′ ∀ i ∈ I, p ∈ P, m 

′ ∈ H i (m ) , t ∈ T (12)

In this regard, constraint (6) calculates the maximum unmet de- 

and among all hospitals. Constraint (7) represents supplier ca- 

acities and ensures that only suppliers that have already set up 

an supply raw materials. Constraint (8) represents the balance 

f raw materials quantity transferred from suppliers to manufac- 

urers and the production quantity in manufacturers. Next, con- 

traint (9) guarantees the production capacity of manufacturers for 

ach product type at each period. Furthermore, constraint (10) en- 

ures that the production quantity transferred from each manufac- 

urer to hospitals at the beginning of each period can not exceed 

he production quantity of the previous period and the inventory 

t the beginning of the preceding period. In addition, constraint 

11) ensures that supplied and shared products via each hospital 

uring each period cannot exceed the amount of product deliv- 

red to that hospital. Finally, constraint (12) guarantees that the 

elivery quantity of any type of product from all manufacturers 

o each hospital in each period cannot exceed the hospital’s maxi- 

um supply capacity. 

The second set of constraints, i.e. (13) –(17) , monitor the inven- 

ory level of different products at manufacturers and hospitals. 

 pmt = I pm,t−1 + x pm,t−1 −
∑ 

m 

′ ∈ H i (m ) 

q pt 
mm 

′ ∀ i ∈ I, p ∈ P, m ∈ K i (m ) , t ∈ T 

(13) 

 pmt ≤ I max 
pm 

∀ p ∈ P, m ∈ M, t ∈ T (14) 

 pmt = I pm,t−1 + 

∑ 

m 

′ ∈ K i (m ) 

q pt 
m 

′ m 

− g pm,t−1 + 

∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
m 

′ m 

) −

−
∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
mm 

′ ) + ∀ i ∈ I, p ∈ P ′ , m ∈ H i (m ) , t ∈ T (15) 
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Table 3 

Notations of the proposed multi-period PISP model. 

Notation Description 

Sets & Indices 

m, m 

′ ∈ M Set of nodes, including manufacturers and hospitals in all regions 

K & H Set of manufacturers and hospitals in all regions 

K i (m ) Subsets of manufacturers in region i ; K = 

⋃ 

i 

K i (m ) 

H i (m ) Subsets of hospitals in region i ; H = 

⋃ 

i 

H i (m ) 

j ∈ J set of suppliers of raw materials 

p ∈ P Set of medical products, including two sets of consumable P ′ (hydro-alcoholic gel, mask, medical clothes, and ordinary beds) and 

reusable P ′′ (ICU beds and ventilator) 

t ∈ T Set of time periods 

Parameters 

L Lead-time periods as the occupancy time, at which the reusable products are reconsidered as available inventory 

γp Conversion rate of raw materials to manufacture product p

D pmt Demand for product p in hospital m at period t

U p j Capacity limitation for product p at supplier j

Q pm Capacity limitation for product p at manufacturer m 

OC j Ordering cost of product p at supplier j

SC pm Production cost of product p at manufacturer m 

PC pm Unit production cost of product p at manufacturer m 

T C p jm Transportation cost per unit of product p from supplier j to manufacturer m 

CU Unit cost of unmet demand at hospitals 

I 0 pm Initial inventory of product p at manufacturer/hospital m at the beginning of the planning horizon 

IC pm Unit inventory holding cost of product p at manufacturer/hospital m 

I max 
pm Maximum inventory capacity for product p at manufacturer/hospital m 

G max 
pm Maximum sharing capacity for product p at hospital m 

T Q p Total sharing capacity for product p over all regions 

μp Allowed demand surplus (%) for product p at hospitals that can be met through the sharing system 

T C pmm ′ Unit transportation cost of product p shared among hospitals m and m 

′ during the sharing process 

Decision variables 

w jt 1 if an order is placed to supplier j at period t; 0 otherwise 

y pmt 1 if product p is set up for production in manufacturer m at period t

b pmt Net service balance of product p in hospital m at the beginning of period t before transferring the products in the sharing process; 

b pmt = b + pmt + b −pmt , where b + pmt and b −pmt are positive and negative parts of net service balance b pmt (i.e., b + pmt = max { 0 , b pmt } and b −pmt 

= min { 0 , b pmt } ) 
v m 1 if b pmt > 0 ; 0 otherwise 

x pmt Production quantity of product p in manufacturer m in period t

u p jmt Quantity of raw material for product p transferred from supplier j to manufacturer m in period t

q pt 
mm ′ Quantity of product p transferred from manufacturer m to hospital m 

′ at the beginning of period t

I pmt Inventory of product p in node m at the end of period t

g pmt Available quantity of product p to be supplied by hospital m in period t to satisfy its internal demand and external sharing 

s pt 
mm ′ Quantity of product p shared from hospital m to hospital m 

′ in period t; s pt 
mm = 0 and s pt 

mm ′ = −s pt 
m ′ m , where (s pt 

mm ′ ) 
+ and (s pt 

mm ′ ) 
− are 

the positive and negative parts of shared products (i.e., (s pt 
mm ′ ) 

+ = max { 0 , s pt 
mm ′ } and (s pt 

mm ′ ) 
− = min { 0 , s pt 

mm ′ } for m � = m 

′ ) 
S pmt Amount of unmet demand of product p in hospital m at the end of period t

S max Maximum unmet demand among all hospitals 

I

I

e

(

u

s

b

(

o

s

r

t

D  

m

g  

b  

S  

b  

b  
 pmt = I pm,t−1 + 

∑ 

m 

′ ∈ K i (m ) 

q pt 
m 

′ m 

− g pm,t−1 + 

∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
m 

′ m 

) −

−
∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
mm 

′ ) + ∀ i ∈ I, p ∈ P ′′ , m ∈ H i (m ) , t ∈ T ; 1 < t ≤ L 

(16) 

 pmt = I pm,t−1 + 

∑ 

m 

′ ∈ K i (m ) 

q pt 
m 

′ m 

− g pm,t−1 + g pm,t−L + 

∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
m 

′ m 

) −

−
∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

(s p,t−1 
mm 

′ ) + ∀ i ∈ I, p ∈ P ′′ , m ∈ H i (m ) , t ∈ T ; L < t 

(17) 

In this regard, constraint (13) represents product inventory in 

ach manufacturer at the beginning of each period. Constraint 

14) represents the storage capacity of facilitates, including man- 

facturers and hospitals, for each product type and period. Con- 

traint (15) represents product inventory in each hospital at the 

eginning of each period for the consumable products. Constraint 

16) represents product inventory in each hospital at the beginning 
9 
f periods 2 to L for the reusable products. Constraint (17) repre- 

ents product inventory in each hospital from the beginning of pe- 

iod L -onwards for reusable products regarding the reuse cycle. 

The rest of the constraints, i.e. (18) –(28) , are defined to form 

he sharing system. 

 pmt ≤ (1 + μp ) g pmt ∀ p ∈ P, m ∈ H i (m ) , t ∈ T (18)

∑ 

 ∈ H 
g pmt ≤ T Q p ∀ p ∈ P, t ∈ T (19) 

 pmt ≤ I pmt ∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (20)

 pmt = g pmt − D pmt ∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (21)

 pmt = −b pmt −
∑ 

m 

′ ∈ H i (m ) 
m 

′ � = m 

s pt 
m 

′ m 

∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (22)

 

+ 
pmt ≤ T Q p v m 

∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (23)

 

−
pmt ≥ T Q p (v m 

− 1) ∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (24)
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S
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′ ∈ H i (m ) 
m 

′ � = m 

(s pt 
mm 

′ ) 
+ ≤ b + pmt ∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T (25)

 

+ 
pmt ≥ (s pt 

mm 

′ ) 
+ ∀ i ∈ I, p ∈ P, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ (26)

 

−
pmt ≤ (s pt 

mm 

′ ) 
− ∀ i ∈ I, p ∈ P, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ (27)

s pt 
mm 

′ ) 
+ ≤ G 

max 
pm 

∀ i ∈ I, p ∈ P, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ (28)

For this aim, constraint (18) ensures that each hospital’s de- 

and for each product type in each period is met by the amount 

f hospital supply and the allowable demand overload ratio. Con- 

traint (19) guarantees that all hospitals’ total available supply 

or any product cannot exceed the total supply capacity of that 

ospital. Constraint (20) guarantees that the supply quantity of 

ach product type in each period via each hospital cannot ex- 

eed the hospital inventory at the beginning of the period. Con- 

traint (21) represents the net supply balance of each product in 

ach hospital before sharing. Constraint (22) states that each hos- 

ital’s unmet demand for any product is met using the net sup- 

ly balance and product sharing from other hospitals. Constraints 

23) and (24) impose that only one of b + pmt and b −pmt becomes 

onzero. Constraint (25) guarantees that the total product trans- 

erred from each hospital to other hospitals should not exceed that 

ospital’s maximum transferable capacity. Constraint (26) ensures 

hat each hospital with extra supply can offer an outgoing capacity 

ransfer. Constraint (27) ensures that a hospital with extra supply 

an not receive an incoming capacity transfer. Constraint (28) pre- 

ents product sharing across regions. Finally, constraints (29) de- 

ermine the types of decision variables. 

 p jmt , x pmt , q 
pt 
mm 

′ , I pmt , g pmt , b 
+ 
pmt , (s pt 

mm 

′ ) + , S pmt , S max ≥ 0 

 

pt 
mm 

′ , b pmt ∈ IR 

 

−
pmt , (s pt 

mm 

′ ) − ≤ 0 

 m 

, w jt , y pmt ∈ { 0 , 1 } 
(29) 

. Benders decomposition 

This section offers an accelerated Benders decomposition (ABD) 

lgorithm [86] to solve the proposed PISP model. Benders decom- 

osition divides the original problem into a master problem and 

everal sub-problems such that each of which is generally eas- 

er to solve than the original problem. The sub-problems’ vari- 

bles are estimated by applying linear programming duality. The 

emaining variables are in the master problem, as well as an artifi- 

ial variable that describes a lower bound (upper bound) on the 

ub-problems’ objective function for a minimization (maximiza- 

ion) problem. Afterward, a cutting plane algorithm solves the re- 

ultant model, where the values of the master problem’s variables 

re first determined. Then, the sub-problems are solved with these 

ariables determined at each iteration. A feasibility cut is added 

o the master problem if the sub-problems are infeasible and un- 

ounded; else, an optimality cut is added. If sub-problems are fea- 

ible, an upper bound can be obtained, and if the optimal solution 

s obtained by solving the master problem, a lower bound can be 

btained. The process is repeated until an optimal solution is de- 

ected or the optimality gap falls below a specified threshold. What 

s more, in order to enhance Benders decomposition’s performance, 

 number of acceleration methods are applied. 
10 
.1. Valid inequalities 

This section introduces a set of new valid inequalities that can 

e applied to strengthen the linear programming relaxation of the 

ISP formulation. The first class of inequalities depends on the 

roducts’ type (i.e., consumable and reusable). Three factors are 

onsidered in the valid inequalities for consumable products (i.e., 

nequality (30) ): inventory level, unmet demand quantity, and ag- 

regated demand at hospitals. In addition to these factors, the valid 

nequalities of reusable products (i.e., Inequalities (31) and (32) ) 

ncompass the released inventory level due to the reuse cycle. ∑ 

 ∈ H i (m ) 

I pmh + 

∑ 

m ∈ H i (m ) 

S pmt ≥
∑ 

m ∈ H i (m ) 

∑ 

h ≤t ′ ≤t 

D pmt ′ 

(
1 −

∑ 

m ∈ K i (m ) 

∑ 

h ≤t ′ ≤t 

y pmt ′ 

)
∀ i ∈ I, p ∈ P ′ , t, h ∈ T ; 1 ≤ h ≤ t 

(30) 

∑ 

 ∈ H i (m ) 

I pmh + 

∑ 

m ∈ H i (m ) 

S pmt ≥
∑ 

m ∈ H i (m ) 

∑ 

h ≤t ′ ≤t 

D pmt ′ 

(
1 −

∑ 

m ∈ K i (m ) 

∑ 

h ≤t ′ ≤t 

y pmt ′ 

)

∀ i ∈ I, p ∈ P ′′ , t, h ∈ T ; 1 ≤ t ≤ L, 1 ≤ h ≤ t (31) 

∑ 

 ∈ H i (m ) 

I pmh + 

∑ 

m ∈ H i (m ) 

S pmt + 

∑ 

m ∈ H i (m ) 

D pm,t−L ≥

∑ 

m ∈ H i (m ) 

∑ 

h ≤t ′ ≤t 

D pmt ′ 

(
1 −

∑ 

m ∈ K i (m ) 

∑ 

h ≤t ′ ≤t 

y pmt ′ 

)

∀ i ∈ I, p ∈ P ′′ , t, h ∈ T ; L < t, L < h ≤ t (32) 

Inequality (30) validates that the aggregated demand between 

eriods h to t is typically fulfilled either from available inventory 

t hospitals through direct supply or sharing or from backlog if the 

equired inventory is not available. Inequalities (31) and (32) rep- 

esent a similar concept, except that after period L , the inventory 

evel of reusable products is increased by the amount of demand 

t period t − L , which can be employed to fulfill demands through 

irect supply or sharing. 

Moreover, since the primary master problem in this study only 

ontains logical constraints upon y pmt and a limited number of op- 

imality cuts, the master problem contributes to a supply chain 

ith a restricted number of equipped suppliers and manufactur- 

rs in the initial iterations of the Benders algorithm. As a result, 

he lower bounds for early master problems are negligible. More 

mportantly, only a tiny portion of demands can be fulfilled in sub- 

roblems with few equipped facilities, imposing a high cost of un- 

et demand on the problem. In order to reduce this repercussion, 

he second class of inequalities is in charge of this task. In this re- 

ard, since suppliers provide raw materials to manufacturers and 

anufacturers make finished products, we must set up at least 

ne supplier and manufacturer, which is guaranteed by inequali- 

ies (33) and (34) . Finally, inequality (35) validates that the unmet 

emand of product p in hospital m during each period cannot ex- 

eed the product’s demand in that hospital. 
 

j∈ J 

∑ 

t∈ T 
w jt ≥ 1 (33) 

 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
y pmt ≥ 1 (34) 

 pmt ≤ D pmt ∀ p ∈ P, m ∈ H, t ∈ T (35) 
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.2. Knapsack inequalities 

The knapsack inequality is added to the master problem to ac- 

elerate the branch-and-bound process in the solver. Indeed, the 

onvergence speed of Benders decomposition can be improved by 

dding the following cuts, which assist progressive solvers like 

urobi in deriving a range of valid inequalities [87] . Consequently, 

he following cuts (36) are added in iteration n + 1 of the master

roblem. 

B 

n ≤
∑ 

j∈ J 

∑ 

t∈ T 
OC j w jt + 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
SC pm 

y pmt + ζ (36) 

here LB n signifies the best specified lower bound found so far, 

nd ζ is an additional variable representing the total cost except 

rdering and setup costs. Finally, the PISP Benders reformulation is 

rovided in Appendix F . 

. Computational experiments 

This section presents the computational results of the devised 

ramework to deal with pandemic situations under dynamic de- 

and. For this aim, Section 6.1 designs a set of experiments based 

n a real case study, the COVID-19 pandemic in France. Next, 

ection 6.2 provides a comparative analysis between the proposed 

BD algorithm and the Gorubi solver without (GRB) and with 

he valid inequalities (GRB_VI). The comparison between GRB and 

RB_VI helps to investigate how much the valid inequalities have 

een effective in reducing the computational time of the Gurobi 

olver. Finally, a set of comprehensive sensitivity analyses are pre- 

ented in Section 6.3 to investigate the behavior of the proposed 

ISP model to any changes in its input parameters. 

.1. Experimental design and case study 

This section designs a set of experiments for evaluating the de- 

ised framework’s performance in dealing with the COVID-19 pan- 

emic in France, where the demands of consumable and reusable 

roducts are determined using the proposed SEIHRS model. The 

xperiments are derived from a real case study, the COVID-19 pan- 

emic in France. In this case study, a set of six medical products 

nd equipment are considered, which are divided into consum- 

ble and reusable products, including masks, hydro-alcoholic gel, 

edical clothes, and ordinary beds as consumable products, and 

CU beds and ventilators as reusable ones. Among 13 metropolitan 

nd 5 overseas regions of France, this case includes 12 regions, and 

ach region has a given number of factories, hospitals, and popula- 

ion as depicted in Fig. 2 . Furthermore, there exist 12 suppliers to 

upply raw materials throughout France. For each region, we nom- 

nate a set of geographically dispersed hospitals throughout the re- 

ion, and each may also integrate a set of other local/smaller hos- 

itals. In the case of integrating multiple hospitals, the capacity of 

he representative hospital will be the sum of the capacity of inte- 

rated hospitals. Each main hospital or a group of hospitals is re- 

ponsible for fulfilling the demand of a populated area under their 

overage. Accordingly, the dynamic demand of products at each 

ospital (i.e., D pmt ) is obtained by running the proposed system 

ynamics model (4) for that area, where the total population and 

eath rates are the mean values for covered populated areas, and 

he population is the sum of the populations in those areas. More- 

ver, we assume that the disease does not spread among different 

egions and the proposed SEIHRS model is executed separately for 

ach region. Detailed information on all other parameters in the 

EIHRS model and PISP formulation is provided in 

Figure 3 illustrates the outcomes of the SEIHRS model in de- 

ermining the state variables for two distinct hospitals that be- 

ong to two different regions. It is worth mentioning that these 
11 
esults only represent the first peak of the disease. As can be ob- 

erved, the dynamicity of the state variables in the two hospi- 

als are significantly different, and they do not follow a specific 

istribution. These issues demonstrate the necessity of employing 

pidemiological-based system dynamics models (i.e., the SEIHRS 

odel) to determine the demand. As a result, the policy-makers in 

ach region should plan separately based on their production and 

haring capacities. Needless to say, this knowledge leads to better 

tilization of the capacity. What is more, national policy-makers 

ay also arrange to transfer excess capacity to other regions. 

Remarkably, since the basic reproduction number R 0 is ob- 

ained greater than 1 for the case study, the endemic equilib- 

ium point of the pandemic cannot be obtained by solving the 

ystem of Eq. (A.6) . Hence, it can be realized that the optimal 

alues of the state variables cannot be used to estimate the de- 

and for masks and hydro-alcoholic gels ( S ∗), ordinary beds ( HN 

∗),

CU beds and ventilators ( HC ∗), and medical clothes ( HN 

∗ + HC ∗).

herefore, the cumulative value of each of the state variables 

S(t) , HN(t) , HC(t) , HN(t) + HC(t)) in a week represents the de-

and for medical products in each period of the PISP model. 

To test the performance of the proposed ABD algorithm, a set 

f 25 test problems are derived from the case study, wherein the 

umbers of regions, suppliers, manufacturers, and hospitals are 

xed, but the period increases from 4 weeks to 52 weeks. Since 

he SEIHRS model is run for each hospital for a time horizon of 365 

ays and it is also impossible and illogical to plan the PISP daily, 

ach period of the PISP model represents a week and the demand 

f each period is the cumulative demand of the whole week. 

The PISP model and the ABD algorithm were coded in Python 

 using the Gurobi library, and all experiments were done on a 

erver containing four Intel XEON processors with 5 GB of RAM 

unning at 2.3 GHz. Furthermore, two stopping criteria are consid- 

red when executing the accelerated Benders decomposition algo- 

ithm and the Gurobi solver: 1) a gap of 1% and 2) a CPU time

f 7200s. For the ABD algorithm, the first criterion is the gap (%) 

etween the obtained lower-bound and upper-bound at each iter- 

tion of the algorithm; and for the Gurobi solver, it is the gap (%) 

etween the best-found solution and the current obtained solution. 

.2. Numerical results 

This section provides a comparative analysis of the performance 

f the proposed ABD algorithm with the GRB and GRB_VI. Table 4 

hows the results of this comparison for 25 test problems (i.e., 

olumn “| T | ” as the number of periods), in terms of both objec- 

ive function values (i.e., columns “Obj. Values”) and computational 

ime (i.e., columns “Time (s)”). In columns “Obj. Values”, the val- 

es are proportional to the objective function value of the first test 

roblem, which has been shown as “X” in Table 4 . 

As can be seen in Table 4 , all three methods have been able

o obtain optimal solutions for test problems up to 26 time pe- 

iods except the test problem with 20 periods; however, this has 

ccurred in less computational efforts for the ABD algorithm com- 

ared to both GRB and GRB_VI. Furthermore, the GRB_VI has been 

lso faster compared to the GRB in the mentioned test problems. In 

ddition, the ABD algorithm has been able to obtain a gap of less 

han 1% for all test problems before reaching the maximum allow- 

ble CPU time of 7200s, even for larger test problems. It has also 

appened for the GRB_VI for almost all test problems except the 

ast four test problems. Indeed, the proposed valid inequalities help 

he mathematical model to be solved faster, and they obtain better 

esults under limited computational efforts. However, they are still 

neffective when solving large-sized test problems for | T | ≥ 46 . 

On the other hand, the GRB has been unable to obtain the op- 

imal solution for test problems with 20 and ≥ 28 periods, among 

hich for test problems with | T | ≥ 42 a feasible solution has not 
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Fig. 2. The case study information on each region. 
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een even obtained within the limited computational effort of 

200s. It is also clear that there is a considerable difference be- 

ween the computational time of GRB and GRB_VI compared to the 

BD algorithm, which indicates the effectiveness of the proposed 

BD algorithm in solving the PISP. 

More importantly, to demonstrate the efficiency of the sharing 

echanism, two critical evaluation criteria have been examined 

or all test problems, namely the total cost of the system and the 

aximum unmet demand. These evaluations have been reported 

n columns “Obj.” and “S max ” under “Sharing impacts (%)”, respec- 

ively, where positive and negative values, respectively, show the 

ncrease and the decrease percentages in the corresponding val- 

es. For this aim, the ABD algorithm has been used to solve all 

est problems under two options: 1) sharing and 2) without shar- 

ng. In the second option, the parameter G max is fixed to 0 to 

rohibit the hospitals from sharing products. As can be seen, the 

haring mechanism reduces the total system costs and unmet de- 

and in all test problems except for test problems with a smaller 

umber of periods. For instance, the total cost of the system is in- 

reased by 15.71% and 2.35% for test problems | T | = 4 and | T | = 6 ,
12 
espectively. The unmet demand is also increased for test problems 

 T | = { 4 , 6 , 8 , 10 } . The reason for these exceptional increases in the

otal cost of the system goes back to the fact that in primer peri- 

ds, the demand for medical products increases sharply up to pe- 

iod t = 10 (when the peak of the pandemic occurs in most of the

opulated areas), consequently, the maximum unmet demand in- 

reases as well. In such situations, since the planning horizon is 

hort, the system increases the inventory levels with the hope to 

ulfill the demand in all possible ways (i.e., direct or sharing ful- 

llment), while this increase is not that significant to absorb the 

ffect of the unmet demand cost in the objective function. There- 

ore, the maximum unmet demand and the total cost of the sys- 

em increase. However, when a higher number of periods are con- 

idered, the system allows for a significant increase in the inven- 

ory levels even in primary periods to fulfill the demand, as well 

s the fact that the extra inventory is allowed to be shared in 

urther periods. In addition, this phenomenon indirectly decreases 

he total cost where the system prefers a higher transfer quan- 

ity of products in the lower frequency of supplier and manufac- 

urer setups. Indeed, the system’s increase in transportation costs 
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Fig. 3. The outcomes of the SEIHRS model showing the dynamic demands. 

Table 4 

ABD vs. GRB & GRB_VI and the impact of sharing. 

| T | Obj. values Time (s) Sharing impact (%) 

ABD GRB GRB_VI ABD GRB GRB_VI Obj. S max 

4 1.0X 1.0X 1.0X 9 28 18 15.71 25.99 

6 2.0X 2.0X 2.0X 15 56 50 2.35 31.81 

8 2.8X 2.8X 2.8X 74 1586 1220 −10.83 14.03 

10 3.8X 3.8X 3.8X 56 750 623 −21.95 9.64 

12 4.4X 4.4X 4.4X 129 2313 2005 −29.83 −9.77 

14 5.3X 5.3X 5.3X 178 1548 1248 −35.08 −21.06 

16 6.3X 6.3X 6.3X 412 5217 4350 −38.32 −29.07 

18 6.9X 6.9X 6.9X 463 3560 3019 −40.61 −32.58 

20 8.1X 33.4X 8.1X 558 7200 ∗ 2750 −42.02 −35.16 

22 8.7X 8.7X 8.7X 623 5661 2572 −42.79 −35.31 

24 9.3X 9.3X 9.3X 1131 6183 3334 −43.12 −35.20 

26 10.3X 10.3X 10.3X 1228 6607 2873 −43.19 −36.44 

28 11.5X 42.6X 11.5X 2002 7200 ∗ 6800 −42.94 −35.95 

30 25.4X 44.8X 25.4X 2315 7200 ∗ 665 −42.50 −35.35 

32 13.1X 47.3X 13.1X 2505 7200 ∗ 1316 −41.74 −34.68 

34 27.9X 49.6X 27.9X 2580 7200 ∗ 1553 −40.95 −30.01 

36 29.5X 52.0X 29.5X 2692 7200 ∗ 1661 −40.15 −29.22 

38 35.1X 54.3X 35.1X 2858 7200 ∗ 1662 −39.26 −28.42 

40 17.7X 56.7X 17.7X 3034 7200 ∗ 2044 −38.33 −27.61 

42 59.1X ∗∗ 101.6X 3669 ∗∗ 7200 ∗ −37.36 −26.81 

44 61.6X ∗∗ 104.5X 5413 ∗∗ 7200 ∗ −36.32 −26.03 

46 64.1X ∗∗ ∗∗ 5665 ∗∗ ∗∗ −35.31 −25.28 

48 66.6X ∗∗ ∗∗ 6029 ∗∗ ∗∗ −34.23 −24.55 

50 69.0X ∗∗ ∗∗ 6743 ∗∗ ∗∗ −33.32 −23.85 

52 71.5X ∗∗ ∗∗ 7126 ∗∗ ∗∗ −32.33 −23.21 

Average : −32.98 −20.96 

∗ Time limit of 7200 s reached. 
∗∗ No feasible solution after 7200 s. 

13 
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Table 5 

Comparison between ABD & GRB & GRB_VI. 

| T | Obj. values (%) Time (ratio) 

ABD vs. GRB ABD vs. GRB_VI GRB_VI vs. GRB ABD vs. GRB ABD vs. GRB_VI GRB_VI vs. GRB 

4 0.00 0.00 0.00 3.16 2.02 1.56 

6 0.00 0.00 0.00 3.73 3.33 1.12 

8 0.00 0.00 0.00 21.43 16.49 1.30 

10 0.00 0.00 0.00 13.40 11.13 1.20 

12 0.00 0.00 0.00 17.93 15.54 1.15 

14 0.00 0.00 0.00 8.70 7.01 1.24 

16 0.00 0.00 0.00 12.66 10.56 1.20 

18 0.00 0.00 0.00 7.69 6.52 1.18 

20 −75.91 0.00 −75.91 ∗ 4.93 ∗

22 0.00 0.00 0.00 9.09 4.13 2.20 

24 0.00 0.00 0.00 5.47 2.95 1.85 

26 0.00 0.00 0.00 5.38 2.34 2.30 

28 −72.89 0.00 −72.89 ∗ 3.40 ∗

30 −43.34 0.00 −43.34 ∗ 13.29 ∗

32 −72.25 0.00 −72.25 ∗ 22.73 ∗

34 −43.88 0.00 −43.88 ∗ 24.79 ∗

36 −43.28 0.00 −43.28 ∗ 25.75 ∗

38 −35.45 0.00 −35.45 ∗ 24.69 ∗

40 −68.81 0.00 −68.81 ∗ 28.60 ∗

42 ∗∗ −41.82 ∗ ∗∗ ∗ ∗

44 ∗∗ −41.04 ∗ ∗∗ ∗ ∗

46 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

48 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

50 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

52 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Average (in case of optimality of GRB): 9.88 7.46 1.48 

Average (in case of optimality of GRB_VI): N/A 12.12 N/A 

∗ Time limit of 7200 s reached. 
∗∗ No feasible solution after 7200 s. 
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c

s more tolerable/affordable compared to the increase in setup 

osts. 

Regardless of the system’s total cost increase, the sharing mech- 

nism has led to a significant decrease of 32.98% and 20.96% on 

verage in the total cost and the maximum unmet demand, re- 

pectively. Furthermore, these savings in the majority of the test 

roblems are significantly more than the average reported sav- 

ngs. These maximum savings belong to test problems with | T | ≈
4 . After a detailed investigation, we figured out that the maxi- 

um savings happen in test problems wherein the system experi- 

nces the pandemic’s peak demands. This, in turn, demonstrates 

he effectiveness and outstanding capabilities of the proposed 

ramework to handle the sharp increase in demands whenever 

equired. 

Moreover, Table 5 provides a pairwise comparative analysis be- 

ween the proposed ABD algorithm, the GRB, and the GRB_VI, in 

erms of both the objective function gap (%) and the computational 

ime ratio. In columns “Obj. Values”, negative values indicate that 

he first algorithm has obtained a lower objective function com- 

ared to the second algorithm (i.e., first algorithm vs. the second 

lgorithm) under a limited computational time of 7200s. In col- 

mn “Time (ratio)”, the values represent how many times the first 

lgorithm is faster than the second algorithm. The column “ABD vs. 

RB” of “Obj. Values” reveals that, under the limited computational 

ime of 7200s, the proposed ABD algorithm can obtain much better 

olutions in terms of objective function values compared to GRB 

ith an average of −57 % (i.e., the solutions of ABD algorithm are 

7% better than the solutions of GRB without valid inequalities). 

ooking at column “ABD vs. GRB_VI” in “Obj. Values” figures out 

hat both ABD and GRB_VI obtain the optimal solutions for test 

roblems with | T | = { 4 − 40 } , but with a much less computational

ime for the ABD algorithm. For two test problems | T | = { 42 , 44 } ,
he GRB_VI has not been able to obtain the optimal solution, but 

ts best-found solutions compared to the optimal solutions of ABD 

re in gaps of 41.82% and 41.04%, respectively. 
14 
Moreover, column “GRB_VI vs. GRB” in ‘Obj. Values” shows that 

he valid inequalities are indeed effective and help the GRB to ob- 

ain even optimal solutions for test problems | T | = { 20 , 28 − 40 }
nder the limited computational time of 7200s. The columns “Time 

ratio)” present interesting results on the speed of the three meth- 

ds. As can be seen, the proposed ABD algorithm is always faster 

han GRB_VI, and GRB_VI is also faster than GRB. It is worth men- 

ioning that the paired comparison between the two methods in 

erms of speed has been reported whenever both methods have 

eached the optimal solution under the limited computational time 

f 7200 s. In summary, for the test problems for which the GRB 

as obtained the optimal solution (i.e., | T | = { 4 − 18 , 22 − 26 } ), it

as observed that the ABD is on average 9.88 and 7.46 times 

aster than GRB and GRB_IV, respectively. Considering the same 

est problems, the GRB_VI is on average, 1.48 times faster than 

RB. It reveals that the valid inequalities accelerate the GRB on the 

verage up to 1.48 times faster when obtaining the optimal solu- 

ions. For another set of test problems (i.e., | T | = { 4 − 40 } ) where

he GRB_VI has obtained the optimal solution, the proposed ABD 

lgorithm is, on average, 12.12 times faster than GRB_VI. 

.3. Sensitivity analyses 

This section renders a broad range of sensitivity analyses to val- 

date and illustrate the capabilities of the developed model and the 

olution approach. This investigation encompasses three main cat- 

gories: 1) sensitivity of the objective function value, the inventory, 

nd the sharing of products to input parameters, 2) inter-relation 

etween the total demand, inventory, and sharing, and 3) capacity 

tilization. These three categories are explained in the following 

ubsections, respectively. 

.3.1. Sensitivity to input parameters 

This section provides a broad sensitivity analysis of three main 

riteria including the objective function value (i.e., the total cost of 
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Fig. 4. The impact of the cost of unmet demand on total cost, inventory, and sharing. 
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he system), the total amounts of inventory, and sharing with re- 

pect to changes of certain input parameters including the cost of 

nmet demand ( CU), the demand of products ( D ), maximum shar- 

ng capacity ( G max ), inventory holding cost ( ICH), and allowable de- 

and overload ratio ( μ). 

Figure 4 shows how unmet demand cost affects the three men- 

ioned criteria. Figure 4 (a) indicates that if CU increases, the total 

osts also increase. In fact, with a 35% of increase in the cost of 

nmet demand, it was observed that supply, manufacturing, distri- 

ution, and sharing expenses outweigh the overall cost of unmet 

emands. However, by increasing this cost from 35% to 60%, the 

osts of unmet demands surpass the system’s other expenses. Fi- 

ally, by increasing this cost by more than 60%, the system reaches 

ts maximum capacity and achieves a state of equilibrium. At this 

tage, a slight decrease can be seen in the system’s total cost. The 

eason for this decrease goes back to the fact that after increas- 

ng the cost of unmet demand higher than 60%, the last term of 

he objective function that calculates the total cost of the unmet 

emand (i.e., CU × S max ) becomes the dominant term of the objec- 

ive function. Accordingly, the model puts a higher effort into min- 

mizing this term. Therefore, a sudden fall happens in the max- 

mum number of unmet demands ( S max ). This decrease is signif- 
15 
cant and, overall, leads to a decrease in the total cost of the 

ystem. 

In terms of the changes in the total inventory of products in the 

ystem, Fig. 4 (b) illustrates that as the cost of unmet demand in- 

reases, the system seeks to minimize mortality by increasing the 

roduction of hospital wards-related items such as medical clothes, 

rdinary beds, ICU beds, and ventilators. As a result, these items’ 

nventory levels increase. Simultaneously, individuals are attempt- 

ng to take better care of themselves by observing public health, 

hich is related to a rise in the usage of health products, such as 

asks and hydro-alcoholic gel, which will boost consumption and 

educe the remaining inventory of these products. In connection 

ith the changes in the total quantity of product sharing, Fig. 4 (c) 

rticulates that the sharing of all products has increased with the 

ncrease in the cost of unmet demand. This increase is entirely 

eaningful for ventilators and medical clothing. Indeed, the sys- 

em decides to transfer the increased level of product inventory 

seen in Fig. 4 (b)) via sharing mechanism to fulfill the demand as 

uch as possible to absorb the increase of unmet demand cost. 

herefore, the system has attempted to fulfill demand by utiliz- 

ng all available capacities. In addition, the considerable increase 

n the sharing of medical clothes is due to the demand for this 
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Fig. 5. The impact of demand on total cost, inventory, and sharing. 
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roduct being impacted by hospitalized individuals in general and 

CU wards. 

Figure 5 shows how changes in demand D affect the three cri- 

eria. As can be seen in Fig. 5 (a), if D increases, the total costs

lso increase. This trend is logical due to rising supply, production, 

istribution, and sharing expenses across various facilities. Also, 

ig. 5 (b) illustrates that the inventory of masks and hydro-alcoholic 

els has reduced due to increased consumption of these products 

n response to rising demands. Other products – which are the 

ssential products for curing patients – are facing an increase in 

heir total inventory, which reflects the system’s behavior when 

he demand increases for such essential products. Indeed, the sys- 

em produces more and stores more to fulfill the demand for es- 

ential products. For the reusable products (i.e., ICU beds and ven- 

ilators), the inventory also experiences a special increase, which 

s the return of these products to the utilization cycle. Finally, it 

ight be claimed from Fig. 5 (c) that there is an increasing-then- 

ecreasing oscillation cycle in terms of the total sharing of prod- 

cts. Indeed, initially, the system strives to compensate for its lack 

f capacity by sharing, but once there is no more capacity to share, 

he system begins to boost product supply and production, result- 

ng in less sharing. 
16 
Figure 6 shows how changes in the maximum sharing capacity 

 max affect the three concerned criteria. As can be seen in Fig. 6 (a),

aising the maximum sharing capacity lowers the total cost of the 

ystem. This trend has two primary explanations. The first is that 

s sharing capacity grows, more sharing is allowed through the 

ystem (see Fig. 6 (c)). Consequently, the supplies and the produc- 

ions are set up with lower frequency to effectively use the cur- 

ent capacity, mainly from the sharing mechanism. Another reason 

s that certain hospitals serve as intermediate distribution centers. 

n reality, due to the geographic structure of each region, hospitals 

n each region may either acquire products from manufacturers or 

istribute their excess products in the established sharing mech- 

nism to other hospitals. This issue becomes even more pressing 

hen this procedure lowers the cost of shipping items by eliminat- 

ng the need to order products from manufacturers and allowing 

roducts to be moved between hospitals at significantly cheaper 

ransportation costs (i.e., due to lower distance). 

Moreover, as the sharing capacity rises in Fig. 6 (b), the total in- 

entory level also climbs because the system can now store more 

roducts and share them through the system. Also, as can be ob- 

erved, the ventilator and ICU beds have greater inventory levels 

han other products being impacted by two reasons; first, these 
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Fig. 6. The impact of maximum sharing capacity on total cost, inventory, and sharing. 
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roducts are expensive to be produced, so the system attempts to 

tore these products as much as affordable by the system; second; 

hese products may be reused after a predefined lead time. When 

ooking at Fig. 6 (c), it is evident that as the capacity for sharing

rows; more products are allowed to be shared since sharing is 

ypically less expensive compared to manufacturing, especially for 

xpensive products (e.g., beds and ventilators). In this regard, the 

igger the capacity, the less the influence on the sharing of low- 

ost products (e.g., masks, hydro-alcoholic gels, and medical cloths) 

ecause the cost of manufacturing is affordable compared to the 

ost of sharing for these products. 

Figure 7 shows how changes in the inventory holding cost ICH

mpact the three mentioned criteria. As Fig. 7 (a) depicts, the total 

ost of the system rises monotonically with the increase of ICH. 

his is because the cost of holding products in hospitals and the 

bjective function have a direct linear connection. What is more in 

ig. 7 (b), when inventory holding costs rise, more expensive prod- 

cts (e.g., medical clothes, beds, and ventilators) will have lower 

nventory levels since the ICH is a fraction of the production cost 

 C (see Table G.8 ). 

Furthermore, for products with a lower production cost, the to- 

al inventory level rises. This pattern may be seen in hospitals that 
17 
ave greater holding costs. Indeed, they would prefer not to keep 

nventory in the system and instead use the sharing mechanism 

o satisfy their demand. On the other hand, this behavior enables 

ther hospitals with lower holding costs to keep additional inven- 

ory to satisfy their demand. Finally, Fig. 7 (a) illustrates that raising 

he cost of inventory in the hospital lowers product sharing. This 

s due to hospitals’ unwillingness to keep inventory to participate 

n the sharing process and preferring to get products only as much 

f their demand directly from the manufacturers. 

Figure 8 illustrates the impact of allowable demand overload ra- 

io μ on the three mentioned criteria. Based on Fig. 8 (a), as the μ
ncreases and consequently more and more amounts of products 

re allowed to be stored extra than the actual demand, the pos- 

ibility of fulfilling demand surpluses through the sharing mech- 

nism increases accordingly. As a result, the supply and produc- 

ion setups happen with a lower frequency, and their fixed setup 

osts decrease consequently. Furthermore, the transportation cost 

f direct transferring of products from manufacturers to hospitals 

ecreases. All these result in lower total costs of the system. More- 

ver, Fig. 8 (b) reveals that hospitals are more likely to employ the 

haring mechanism and to decrease the total inventory of products 

s the overload ratio rises. As a result, hospitals strive to maintain 
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Fig. 7. The impact of inventory holding cost at hospitals on total cost, inventory, and sharing. 

Table 6 

Impact of disease parameters on the demand for products. 

Demand for ... β1 β2 β3 β4 ζ κ η (If ...) ρ (If ...) ω (If ...) c & θ (If ...) η1 & η2 

Demand for ... β1 β2 β3 β4 ζ κ η (If ...) ρ (If ...) ω (If ...) c & θ (If ...) η1 & η2 

Masks & Hydro-alcoholic gel − − − − + − − (If β2 > β1 ) − ( β1 > β2 ) − ( β3 , β4 > β2 ) − ( β4 > β3 ) + 

+ ( β2 > β1 ) + ( β1 < β2 ) + ( β3 , β4 < β2 ) + ( β4 < β3 ) 

Medical clothes + + + + + + − + 

Ordinary bed + + + + + + − + − −
ICU bed & Ventilator + + + + + + − + − −
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heir inventory levels to a minimum. In addition, when the allow- 

ble demand overload ratio rises in Fig. 8 (c), the total sharing for 

ll products intends to be increased. Remarkably, this trend is par- 

icularly apparent in consumable products because these products 

annot be reused. As a result, since the inventory level of these 

roducts is derived from both production and sharing amounts, the 

xcess demand is met entirely through the sharing system. 

.3.2. Inter-relation between cost, inventory, and sharing 

This section seeks the inter-relation between the total demand 

nd the total inventory and sharing of the products in the sys- 

em. Indeed, the goal is to investigate how different hospitals man- 
18 
ge the inventory level and the sharing of products based on their 

articular amount of demand. In this regard, Fig. 9 (a) depicts the 

uantity of total demand as well as the proportional level of total 

nventory and total sharing to the total demand over a period of 

 months (i.e., | T | = 12 ), wherein the results of the even periods

ave been depicted for the sake of simplicity. As can be observed 

n Fig. 9 (a)(a), there is a modest decrease in the total demand as 

he pandemic progresses, which is logical since we have only a sin- 

le peak of demand at the early stages of the pandemic in our case 

tudy, and as long as the pandemic progresses, the demand de- 

reases due to the control of the pandemic. In addition, due to a 

rop in the number of susceptible individuals after the pandemic 
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Fig. 8. The impact of allowable demand overload ratio at hospitals on total cost, inventory, and sharing. 
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eak, the inventory-to-demand ratio in Fig. 9 (a)(b) for masks and 

ydro-alcoholic gels is falling. However, this ratio is higher for ICU 

eds and ventilators due to the rise in hospitalized individuals in 

eneral and ICU wards. As a result, the hospitals have attempted 

o fulfill the demand by storing more products. Furthermore, the 

haring-to-demand ratio in Fig. 9 (a)(c) indicates that the hospital 

s able to engage in the product-sharing procedure owing to the 

equired inventory level. 

In order to show how different hospitals manage their in- 

entory and sharing, three different hospitals have been selected 

hat behave differently in managing their inventory and sharing. 

he hospital of Fig. 9 (b) refuses to engage in the sharing mech- 

nism since no input ( Fig. 9 (b)(c)) and output ( Fig. 9 (b)(d)) shar-

ng happens in this hospital. Consequently, the inventory level 

 Fig. 9 (b)(b)) of the hospital remains at its minimum for the ma- 

ority of the products. This indicates that the demand and the sup- 

ly of products from manufacturers are in an implicit equilibrium. 

n a second hospital depicted in Fig. 9 (c), the situation is differ- 

nt. In fact, this hospital faces an inventory shortage owing to high 

emand and the possibility of receiving surplus demand. In this 

ituation, the hospital fulfills its demand ( Fig. 9 (c)(a)) simultane- 

usly from its inventory ( Fig. 9 (c)(b)) as well as the input sharing
19 
 Fig. 9 (c)(c)) coming from other hospitals, and it shares no prod- 

cts with others ( Fig. 9 (c)(d)). Finally, another hospital is available 

ith excess products as Fig. 9 (d). This hospital fulfills its demand 

 Fig. 9 (d)(a)) only from its own inventory ( Fig. 9 (d)(b)) and shares

he excess products with other hospitals ( Fig. 9 (d)(c)). 

.3.3. Supply and production capacity utilization 

An interesting investigation in this study has been done in 

ig. 10 to see how much of the supply and production capacities 

ave been utilized over the first three months (i.e., | T | = 12 ) of the

andemic. 

For this curiosity, Fig. 10 (a) depicts the percentage of suppliers 

hat contributed to the fulfillment of the raw materials required 

o produce the medical products. As can be seen, from the early 

eriods of the pandemic, at least 50% of the suppliers have been 

sed, and this percentage goes up to full utilization of 100% from 

he sixth week of the pandemic (i.e., the moment that the pan- 

emic approaches its peak). Furthermore, Fig. 10 (b) and (c) depict 

he percentage of manufacturers that contributed to the produc- 

ion of medical products and their capacity percentage utilization, 

espectively. Knowing that manufacturers are involved in the sys- 

em with an initial inventory, the whole number and the whole 
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Fig. 9. Inter-relation between cost, inventory, and sharing. 
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apacity of the manufacturers are not used in the early weeks of 

he pandemic; however, the involvement of the manufacturers in- 

reases as far as the pandemic progresses. Furthermore, Fig. 10 (c) 

hows that the manufacturers do not always utilize their maxi- 

um production capacity for certain products (e.g., masks, hydro- 

lcoholic gels, medical clothes, and ordinary beds). However, they 

roduce a higher rate of the more essential products (i.e., ICU beds 

nd ventilators). 

. Managerial insights 

Based on the findings of Section 6.3 , this section provides a list 

f managerial insights for the health policy-makers to better plan 

or possible future health pandemics. 

The first managerial implication of the proposed model relates 

o its ability to act as both business and mortality models. The be- 

avior of the model changes by changing the unmet demand cost. 

lthough the proposed model has a cost objective function, ma- 

ipulating the unmet demand costs switches the proposed model 
20 
rom a cost-oriented model to a more mortality-oriented model. In 

act, there is a turning point for this switch when increasing the 

nmet demand, the proposed model goes from cost-oriented plan- 

ing to mortality-oriented planning. For the current case study, the 

witch happens when increasing the unmet demand cost up to 

5%. Managers should also notice that increasing the unmet de- 

and will also affect the level of inventory and sharing. Therefore, 

equirements should be met when switching the behavior of the 

odel. In terms of the inventory of products, two different phe- 

omena happen. As the cost of unmet demand increases, the sys- 

em seeks to minimize mortality by increasing the production of 

ospital ward-related items such as medical clothes, ordinary beds, 

CU beds, and ventilators. As a result, these items’ inventory levels 

ncrease. On the other hand, when experiencing a high unmet de- 

and cost, individuals are attempting to take better care of them- 

elves by observing public health, which is related to a rise in the 

sage of health products, such as masks and hydro-alcoholic gel, 

hich will boost consumption and reduce the remaining inventory 

f these products. 
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Fig. 10. The capacity utilization of suppliers and manufacturers. 
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Another important observation is the impact of demand varia- 

ion on the sharing mechanism. We observed that the amount of 

haring is a concave function of the demand. The results show that 

here are concave cycles in the total sharing amount of products 

hen changing the demand. Initially, when increasing the demand, 

he system attempts to mitigate the risk of capacity shortage in 

ome hospitals through sharing mechanism, but once the maxi- 

um sharing capacity is reached, the system begins to satisfy the 

emand by producing and supplying new products, which results 

n less sharing. This phenomenon highlights the impact of shar- 

ng mechanisms between hospitals to better respond to the surging 

roduct demand. As a matter of fact, sharing mechanisms provide 

oth cost and responsiveness advantages. In terms of cost, sharing 

f products between neighboring hospitals reduces the transporta- 

ion costs of transferring newly produced products from manufac- 

urers to geographically far hospitals. On the other hand, this shar- 

ng mechanism helps to increase the responsiveness and agility of 

ospitals to their demands. In fact, due to usually less distance be- 

ween neighboring hospitals compared to regional manufacturers, 

ome hospitals can act as intermediate suppliers. In this situation, 

ome hospitals should be allowed to store more products to re- 

pond to the shortage of farther hospitals more rapidly. 

It is worth mentioning that the demand is not an indepen- 

ent parameter but a function of disease parameters in the epi- 

emiological model. Any changes in these parameters would ei- 

her increase or decrease the demand for products, under spe- 

ific conditions. Table 6 shows how increasing the disease pa- 

ameters increase (“+”) or decreases (“−”) the demand for prod- 

cts under specific conditions. Accordingly, any changes in dis- 

ase parameters can be mapped to the changes in the objective 

unction value, inventory, and sharing of products through the de- 

and intermediate parameter. By manipulating the disease param- 
21 
ters, health policy-makers can change product demand and at- 

empt better production-inventory-sharing planning. 

We observed that as long as the inventory holding cost in- 

reases, the inventory level of less critical products (e.g., mask, 

ydro-alcoholic gel) increases while the inventory level of critical 

roducts (e.g., beds and ventilators) decreases. It was revealed if 

he unit inventory holding cost exceeds the unit of manufacturing 

etup cost, the inventory of critical products decreases. In this sit- 

ation, the system also discourages the sharing mechanism (due 

o the lack of inventory), consequently leading to a higher level 

f unmet demand. Therefore, there is an important interplay be- 

ween the inventory holding cost and the amount of product shar- 

ng. Accordingly, among different cost elements in the system, it is 

ecommended to keep the inventory holding cost at its minimum 

evel to encourage the sharing of products between hospitals. With 

his observation together with the role of intermediate supply of 

ome hospitals, policy-makers may provide the geographically cen- 

ral hospitals with a higher inventory capacity and less inventory 

olding cost, and the farther hospitals (from the manufacturers) 

ith less inventory holding capacity. This allows for storing more 

roducts in central hospitals with a lower inventory holding cost, 

nd these hospitals share the excess product with farther ones. In 

his case, the distribution system goes from an isolated structure, 

here hospitals order and fulfill separately, to a more hierarchical 

nd collaborative system, where hospitals order and fulfill collabo- 

atively. 

. Conclusions 

The COVID-19 pandemic has posed a variety of challenges to 

uman civilizations, emphasizing the necessity for a decision- 

aking framework to address them. In this study, we have pre- 
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F

ented a novel comprehensive framework that includes three 

hases of demand controlling, production-distribution-sharing 

lanning, and solution methodology, wherein various specific con- 

erns of the health pandemic have been reflected, particularly the 

OVID-19 pandemic. In the first phase, we proposed a SEIHRS epi- 

emiological model with the optimal control problem for handling 

he dynamicity of the demands of consumable and reusable prod- 

cts. In the second phase, we have introduced and formulated a 

ulti-period production-inventory-sharing problem in terms of a 

ixed-integer linear programming model. Finally, an accelerated 

enders decomposition algorithm with a set of tailored valid in- 

qualities has been proposed to solve the proposed model. 

Although the framework has been partially adjusted to deal 

ith the COVID-19 pandemic, it can surely be applied to deal with 

ubsequent pandemics as well. The second phase, in particular, is 

 contrivance for planning supply, manufacturing, distribution, and 

haring decisions that may be implemented directly or with min- 

mal adjustments in a variety of populated areas. The computa- 

ional results show that the proposed accelerated Benders decom- 

osition algorithm is efficient in handling large-sized test prob- 

ems. In this regard, it was observed that the proposed decompo- 

ition method coupled with effective valid inequalities could solve 

arge-sized test problems in a reasonable computational time and 

.88 times faster than the Gurobi solver. In addition, the effective- 

ess of the valid inequalities was also reported that helping the 

roposed model to be solved 1.48 times faster using the Gurobi 

olver. Moreover, the sharing mechanism reduces the total cost 

f the system and the unmet demand, on average, up to 32.98% 

nd 20.96%, respectively. Furthermore, the two parameters of max- 

mum sharing capacity and allowable demand overload ratio are 

wo valuable factors at hand for managers to regulate inventory 

nd sharing decisions in the proposed sharing mechanism, which 

ignificantly influences the system’s total cost and unmet demand. 

Some ideas for expanding the current study on the predic- 

ion and planning stages can be explored. The application of ma- 

hine learning algorithms to estimate the parameters of the SEIHRS 

odel during the prediction phase can improve demand predic- 

ion accuracy. The proposed SEIHRS model is a single-region-based 

odel wherein the evolution of the pandemic in each region is 

odeled in isolation and no interaction between regions is con- 

idered. This assumption is similar to the situation when all re- 

ions are under a quarantine restriction and no inter-regional dis- 

lacement or immigration happens. Therefore, as a new research 

irection, we propose to develop a multi-regional epidemiological 

odel with inter-regional interactions [8] . 

In the planning phase, although we have planned the produc- 

ion, distribution, and sharing of the products according to the ex- 

sting geographical borders for various regions, redistricting models 

ay be applied to define regions, which also improves the efficacy 

f the sharing mechanism. Furthermore, the cost of unmet demand 

or all products is treated the same in this study, despite the fact 

hat there is a substantial difference between the lack of ventila- 

ors and the absence of masks. As a result, using a cost function 

ather than a parameter can help improve the planning results. 

Last but not least, developing an integrated optimization frame- 

ork would be another research direction that is worthy of inves- 

igation. The current work considers that the disease parameters 

re constant during the planning horizon and no vaccination takes 

lace. Therefore, a new framework can be developed to incorpo- 

ate these two aspects. To do so, the proposed optimization model 

an be integrated with the SEIHRS model in an interactive way to 

evelop a myopic model. In this model, the SEIHRS model and the 

ptimization model interact in each period, and a vaccination rate 

an be added to the SEIHRS model. Furthermore, from one period 

o another, disease parameters can also vary. 
22
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ppendix A. Basic reproduction number 

In what follows, the basic reproduction number R 0 

nd the endemic equilibrium point are calculated by 

olving the isoclines, where two equilibrium points can 

e considered including disease-free equilibrium point 

 0 (S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) = ( �
d 

, 0 , 0 , 0 , 0 , 0 , 0 , 0) and endemic equi-

ibrium point E ∗(S ∗, E ∗, A 

∗, I ∗, H N 

∗, H C ∗, R ∗, Z ∗) . The basic repro-

uction number R 0 is an indicator for the study of contagious 

isease dynamics. If R 0 ≥ 1 , the outbreak is anticipated to con- 

inue, and the outbreak is going to end otherwise (i.e., R 0 < 

). In order to calculate R 0 , we applied the proposed method 

y Van den Driessche and Watmough [88] . For this purpose, 

et x ≡ (E, A, I, HN, HC) and constitute dx 
dt 

, H (x ) , and v (x ) , where

 (x ) refers to the segments in which new infection terms are 

ntroduced, and v (x ) refers to the remainder of the segments. 

ccordingly, we have: 

dx 

dt 
= H (x ) − v (x ) (A.1) 

 (x ) = 

⎛ 

⎜ ⎜ ⎝ 

(β1 A + β2 I + β3 HN + β4 HC) S 
0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎠ 

(A.2) 

 (x ) = 

⎛ 

⎜ ⎜ ⎝ 

(k + d) E 
−kρE + (η + d + δ1 ) A 

−k (1 − ρ) E − ηA + (ω + d + δ2 ) I 
−ω(1 − c) I + (d + δ3 + γ1 + θ ) HN 

−ωcI + ( d + δ4 + γ2 ) HC − θHN 

⎞ 

⎟ ⎟ ⎠ 

(A.3) 

In what follows, the equivalent linearized matrices of H (x ) and 

 (x ) at disease-free equilibrium E 0 = (S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) can be

onstructed as (A.4) and (A.5) , respectively. 

 = (D H (x ))(E 0 ) = 

⎛ 

⎜ ⎜ ⎝ 

0 β1 S 0 β2 S 0 β3 S 0 β4 S 0 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

(A.4) 
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V

0 0 

0 0 

0 0 

 δ3 + γ1 + θ 0 

−θ d + δ4 + γ2 

⎞ 

⎟ ⎟ ⎠ 

(A.5) 

n number is equal to the special vector of F V −1 . Moreover, the endemic 

e

�  , 

(

κ

κ

ω

ω

γ

(A.6) 

int is obtained when the basic reproduction number is greater than 

o roduction number ( R 0 < 1 ) cause the non-occurrence of an endemic 

e . The system of equations (1) has a disease-free equilibrium point 

E  0 > 1 , the system has a unique endemic equilibrium E ∗(S ∗, E ∗, A 

∗, I ∗, 
H

A

zed as follows. For this aim, we analyze the local and global stability 

c 1 = η + d + δ1 , α2 = ω + d + δ2 , α3 = d + delta 3 + γ1 + θ , α4 = d + δ4 + 

γ

J

−β3 S −β4 S ζ −u 1 κS 

β3 S β4 S 0 0 

0 0 0 0 

0 0 0 0 

−α3 0 0 0 

θ −α3 0 0 

γ1 γ2 −(ξ + d) u 1 kS 

0 0 0 −a 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(B.1) 

w

B

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) , which is shown by J̄ | E 0 is constructed and solved 

w is regard, we have eight eigenvalues, where λ1 = −d, λ2 = −(ξ + d) , 

λ ts of the following equation: 

λ (B.2) 

 above equation with Python, we can conclude that Q 5 is positive for 

R gative real parts only when Q 2 , Q 3 , Q 4 > 0 , and we have the following 

t

T  asymptomatically stable for R 0 < 1 when Q 2 , Q 3 , Q 4 > 0 hold. 

B

T bally asymptomatically stable when p < d and u 1 k � < a 0 d hold. 

P

V (B.3) 
 = (D v (x ))(E 0 ) = 

⎛ 

⎜ ⎜ ⎝ 

k + d 0 0 

−κρ η + d + δ1 0 

−κ( 1 − ρ) −η ω + d + δ2 

0 0 −ω( 1 − c) d +
0 0 −ωcI 

Consequently, regarding matrices F and V , the basic reproductio

quilibrium point is obtained by solving the system of Eq. (A.6) . 

− (β1 A 

∗ + β2 I 
∗ + β3 HN 

∗ + β4 HC ∗) S ∗ − dS ∗ + ξR 

∗ − u 1 kS ∗Z ∗ = 0

β1 A 

∗ + β2 I 
∗ + β3 HN 

∗ + β4 HC ∗) S ∗ − (k + d) E ∗ = 0 , 

ρE ∗ − (η + d + δ1 ) A 

∗ = 0 , 

(1 − ρ) E ∗ + ηA 

∗ − (ω + d + δ2 ) I 
∗ = 0 , 

(1 − c) I ∗ − (d + δ3 + γ1 + θ ) HN 

∗ = 0 , 

cI ∗ − (d + δ4 + γ2 ) HC ∗ + θHN 

∗ = 0 , 

1 HN 

∗ + γ2 HC ∗ − ξR 

∗ − dR 

∗ + u 1 kS ∗Z ∗ = 0 , 

pI ∗
1+ qI ∗ − a 0 Z 

∗ = 0 

After solving the system of Eq. (A.6) , a unique equilibrium po

ne ( R 0 > 1 ). However, values smaller than one for the basic rep

quilibrium. Therefore, the following statement can be deduced

 0 (S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) for any values of parameters. And for R

 N 

∗, H C ∗, R ∗, Z ∗) . 

ppendix B. Stability analysis 

Local and global stability conditions of the equilibria are analy

onditions for the disease-free equilibrium point. Let α0 = κ + d, α

2 . The Jacobian matrix J̄ of system (1) is considered as follow: 

 ̄= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α11 0 −β1 S −β2 S 

β1 A + β2 I + β3 HN + β4 HC −α0 β1 S β2 S 

0 κρ −α1 0 

0 κ(1 − ρ) η −α2 

0 0 0 ω(1 − c) 

0 0 0 ωc 

u 1 kZ 0 0 0 

0 0 0 

p 
(1+ qI) 2 

here α11 = −(β1 A + β2 I + β3 HN + β4 HC) − d − u 1 kZ. 

1. Local stability of E 0 

Jacobian matrix at the disease-free equilibrium point E 0 = (�/d

ith Python to obtain eigenvalues of J̄ | E 0 , where S 0 = �/d. In th

3 = −a 0 , and other five eigenvalues can be obtained from the roo

5 + Q 1 λ
4 + Q 2 λ

3 + Q 3 λ
2 + Q 4 λ + Q 5 = 0 

Regarding the values of parameters in Table G.8 , by solving the

 0 < 1 . So for R 0 < 1 , the characteristic equation has roots with ne

heorem. 

heorem 1. Disease-free equilibrium point E 0 of system (1) is locally

2. Global stability of E 0 

heorem 2. Disease-free equilibrium point E 0 of the system (1) is glo

roof. Let us consider the Lyapunov function as follows: 

 1 = (S − S 0 − S 0 ln ( 
S 

S 
)) + E + A + I + HN + HC + R + Z 
0 

23 
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w Z) other than the disease-free equilibrium point. Time derivative of V 1 
a

 1 (t) kSZ] 

 R ) − δ1 A − δ2 I 

C − �S 0 
S 

+ dS 0 − ξS 0 R 

S 
+ u 1 kS 0 Z 

a 0 d) Z 

(B.4) 

 V 1 
d t 

= 0 when S = S 0 and E = A = I = HN = HC = R = Z = 0 . Regarding 

L  stable when R 0 < 1 , and when the considered parametric limitations 

a amined. �

A

P conditions are satisfied: 

s u i , i = 1 , . . . , 5 in � � = φ. 

 coefficients depend on state variables and time, where set � is convex 

 2 , u 3 , u 4 , u 5 ) ≥ f (u 1 , u 2 , u 3 , u 4 , u 5 ) , where f (u 1 , u 2 , u 3 , u 4 , u 5 ) is contin- 

n ‖ (u 1 , u 2 , u 3 , u 4 , u 5 ) ‖ → ∞ . Indeed, ‖ . ‖ indicates the L 5 (0 , T f ) norm. 

S + E + A + I + HN + HC + R . Hence, d N 
d t 

= � − dN − δ1 A − δ2 I − δ3 HN −
δ ) = S(0) + E(0) + A (0) + I(0) + HN(0) + HC(0) + R (0) . Also, when t → 

∞ o, d Z 
d t 

+ a 0 Z ≤ p�
d 

, and 0 < Z(t) ≤ Z(0) e −a 0 t + 

p�
a 0 d 

(1 − e −a 0 t ) . Also, when 

t

control variables in � , and the right-hand side functions are also locally 

L st condition is met [90] . 

. The second condition is likewise met because all of the equations in 

( tate variables are dependent on coefficients. Furthermore, the convex 

p aranteed by the quadratic nature of all control variables. Also, we have 

L  

2 
1 

+ w 5 u 
2 
2 

+ w 6 u 
2 
3 

+ w 7 u 
2 
4 

+ w 8 u 
2 
5 

≥ w 4 u 
2 
1 

+ w 5 u 
2 
2 

+ w 6 u 
2 
3 

+ w 7 u 
2 
4 

+ w 8 u 
2 
5 
. 

 (u 2 
1 

+ u 2 
2 

+ u 2 
3 

+ u 2 
4 

+ u 2 
5 
) . Hence, 

 u 2 , u 3 , u 4 , u 5 ) → ∞ , when ‖ (u 1 , u 2 , u 3 , u 4 , u 5 ) ‖ → ∞ . Hence, the third 

c ntrol variables u ∗
i 
, i = 1 , . . . , 5 with the condition J(u ∗

1 
, u ∗

2 
, u ∗

3 
, u ∗

4 
, u ∗

5 
) = 

m

A

e Hamiltonian function is formulated by introducing adjoint variables 

λ aximum Principle [92] , which has been explained in Appendix E . 

T ables, and u ∗
i 
, i = 1 , . . . , 5 are optimal control variables of system (3) and 

( he canonical system of Eq. (D.1) : 

 

ε 2 u 3 

(1 + ζ2 I) 2 

)
−

here V 1 is a positive definite function for all (S, E, A, I, HN, HC, R, 

long the solution of the system (1) is calculated as follows: 

d V 1 

d t 
= (1 − S 0 

S 
)[� − (β1 A + β2 I + β3 HN + β4 HC) S − dS + ξR − u

+ (β1 A + β2 I + β3 HN + β4 HC) S − d(E + A + I + HN + HC +

− δ3 HN − δ4 HC − ξR + u 1 kSZ + 

pI 

1 + qI 
− a 0 Z 

= � − d(E + A + I + HN + HC + R ) − δ1 A − δ2 I − δ3 HN − δ4 H

+ 

pI 

1 + qI 
− a 0 Z ≤ ( 

�

S 
− d)(S − S 0 ) + (p − d) I + 

1 

d 
(u 1 k � −

= −d 

S 
(S − S 0 ) 

2 + (p − d) I + 

1 

d 
(u 1 k � − a 0 d) Z 

Therefore, 
d V 1 
d t 

< 0 when p < d and u 1 k � < a 0 d hold. Also, 
d

aSalle’s invariance principle [89] , E 0 is globally asymptomatically

re satisfied. Similarly, the local and global stability of E ∗ can be ex

ppendix C. Proof of Theorem 3 

roof. The optimal control interventions exist when the following 

• The solution space of system dynamics (1) with control variable
• The state system is a linear function of control variables, whose

and closed. 
• Integrand of (3) : L is convex on � and L (S, E, A, I, HN, HC, R, u 1 , u

uous, and ‖ (u 1 , u 2 , u 3 , u 4 , u 5 ) ‖ −1 f (u 1 , u 2 , u 3 , u 4 , u 5 ) → ∞ , whe

Regarding system dynamics (1) , the total population is N = 

4 HC ≤ � − dN , and 0 < N (t) ≤ N (0) e −dt + 

�
d 
(1 − e −dt ) , where N(0

 , we have 0 < N(t) ≤ λ
d 

. In addition, d Z 
d t 

= 

pI 
1+ qI − a 0 Z ≤ pI − a 0 Z. S

 → ∞ , we have 0 < Z(t) ≤ p�
a 0 d 

. 

The solution of system dynamics (1) is bounded for each of the 

ipschitzian. The Picard Lindelöf theorem demonstrates that the fir

Regarding the definition, the control set � is convex and closed

1) are represented as linear equations in u ∗
i 
, i = 1 , . . . , 5 , whose s

roperty of integrand L (S, E, A, I, HN, HC, R, Z, u 1 , u 2 , u 3 , u 4 , u 5 ) is gu

 (S, E, A, I, HN, HC, R, u 1 , u 2 , u 3 , u 4 , u 5 ) = w 1 I + w 2 HN + w 3 HC + w 4 u

Let ū = min (w 4 , w 5 , w 6 , w 7 , w 8 ) > 0 and f (u 1 , u 2 , u 3 , u 4 , u 5 ) = ū

L (S, E, A, I, HN, HC, R, Z, u 1 , u 2 , u 3 , u 4 , u 5 ) ≥ f (u 1 , u 2 , u 3 , u 4 , u 5 ) 

In this regard, f is continuous and ‖ (u 1 , u 2 , u 3 , u 4 , u 5 ) ‖ −1 f (u 1 ,

ondition is also met. Therefore, we can conclude that there are co

in [ J(u 1 , u 2 , u 3 , u 4 , u 5 )] [38,91] . �

ppendix D. Optimal control variables 

In what follows, in order to obtain optimal control variables, th

= (λ1 , λ2 , . . . , λ8 ) ∈ R 8 , and minimized by applying Pontryagin’s M

heorem 4. If S ∗, E ∗, A 

∗, I ∗, HN 

∗, HC ∗, R ∗, Z ∗ are optimal state vari

4) , there are adjoint variables λ = (λ1 , λ2 , . . . , λ8 ) ∈ R 8 that satisfy t

d λ1 

d t 
= λ1 (β1 A + β2 I + β3 HN + β4 HC + d + u 1 kZ) −

λ2 (β1 A + β2 I + β3 HN + β4 HC) − λ7 u 1 kZ, 

d λ2 

d t 
= λ2 (k + d) − λ3 (κρ) − λ4 (κ(1 − ρ)) , 

d λ3 

d t 
= λ1 (β1 S) − λ2 (β1 S) + λ3 (η + d + δ1 ) − λ4 (η) , 

d λ4 

d t 
= −w 1 + λ1 (β2 S) − λ2 (β2 S) + λ4 

(
ω + d + δ2 + 

ε 1 u 2 

(1 + ζ1 I) 2 
+

24 
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p 

(1 + qI) 2 

)
, 

 4 

 

HN) 2 

)
− (D.1) 

 

2 

)
−

R l control variables u ∗
i 
, i = 1 , . . . , 5 are obtained as: 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

P es, and u ∗
i 
, i = 1 , . . . , 5 be optimal control variables of system (1) that 

m ximum Principle and defined adjoint variables λi , i = 1 , . . . , 8 , we have 

 − ∂ ̄H 
∂HC 

, 
d λ7 
d t 

= − ∂ ̄H 
∂R 

, 
d λ8 
d t 

= − ∂ ̄H 
∂Z 

, which lead to obtain Eq. (D.1) . In regard 

t ity conditions, we have: 

(D.7) 

(D.8) 

(D.9) 
λ5 

(
ω(1 − c) + 

ε 1 u 2 

(1 + ζ1 I) 2 

)
− λ6 

(
ωc + 

ε 2 u 3 

(1 + ζ2 I) 2 

)
− λ8 

(

d λ5 

d t 
= −w 2 + λ1 (β3 S) − λ2 (β3 S) + λ5 

(
d + δ3 + γ1 + θ + 

ε 3 u

(1 + ζ3

λ6 (θ ) − λ7 

(
γ1 + 

ε 3 u 4 

(1 + ζ3 HN) 2 

)
, 

d λ6 

d t 
= −w 3 + λ1 (β4 S) − λ2 (β4 S) + λ6 

(
d + δ4 + γ2 + 

ε 4 u 5 

(1 + ζ4 HC)

λ7 (γ2 + 

ε 4 u 5 

(1 + ζ4 HC) 2 

)
, 

d λ7 

d t 
= −λ1 (ξ ) + λ7 (ξ + d) , 

d λ8 

d t 
= λ1 (u 1 kS) − λ7 (u 1 kS) + λ8 (a 0 ) 

egarding the transversality conditions λi (T f ) = 0 , i = 1 , . . . , 8 , optima

u 

∗
1 = min 

{
max 

{
0 , 

kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

}
, 1 

}
, 

u 

∗
2 = min 

{
max 

{
0 , 

ε 1 I 
∗

1 + ζ1 I ∗
(λ4 − λ5 ) 

2 w 5 

}
, 1 

}
, 

u 

∗
3 = min 

{
max 

{
0 , 

ε 2 I 
∗

1 + ζ2 I ∗
(λ4 − λ6 ) 

2 w 6 

}
, 1 

}
, 

u 

∗
4 = min 

{
max 

{
0 , 

ε 3 HN 

∗

1 + ζ3 HN 

∗ (λ5 − λ7 ) 

2 w 7 

}
, 1 

}
, 

u 

∗
5 = min 

{
max 

{
0 , 

ε 4 HC ∗

1 + ζ4 HC ∗
(λ6 − λ7 ) 

2 w 8 

}
, 1 

}
, 

roof. Let S ∗, E ∗, A 

∗, I ∗, HN 

∗, HC ∗, R ∗, Z ∗ be optimal state variabl

inimize objective function (3) . With the help of Pontryagin’s Ma
d λ1 
d t 

= − ∂ ̄H 
∂S 

, 
d λ2 
d t 

= − ∂ ̄H 
∂E 

, 
d λ3 
d t 

= − ∂ ̄H 
∂A 

, 
d λ4 
d t 

= − ∂ ̄H 
∂ I 

, 
d λ5 
d t 

= − ∂ ̄H 
∂HN 

, 
d λ6 
d t 

=
o the transversality conditions λi (T f ) = 0 , i = 1 , . . . , 8 and optimal

∂ H̄ 

∂u 1 

| u 1 = u 

∗
1 = 0 

∂ H̄ 

∂u 1 

| u 1 = u 

∗
1 = 2 w 4 u 

∗
1 − λ1 kSZ + λ7 kSZ = 0 

u 

∗
1 = 

kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

∂ H̄ 

∂u 2 

| u 2 = u 

∗
2 = 0 

∂ H̄ 

∂u 2 

| u 2 = u 

∗
2 = 2 w 5 u 

∗
2 + λ4 (−ε 1 I/ 1 + ζ1 I) + λ5 (ε 1 I/ 1 + ζ1 I) = 0 

u 

∗
2 = 

(
ε 1 I ∗

1 + ζ1 I ∗

)
(λ4 − λ5 ) 

2 w 5 

∂ H̄ 

∂u 3 

| u 3 = u 

∗
3 = 0 

∂ H̄ 

∂u 

| u 3 = u 

∗
3 = 2 w 6 u 

∗
3 + λ4 (−ε 2 I/ 1 + ζ2 I) + λ6 (ε 2 I/ 1 + ζ2 I) = 0 
3 
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HN) = 0 (D.10) 

C) = 0 (D.11) 

m these observations and the properties of control set � : 

u (D.12) 

u

 0 

 

) 

≤ 1 

 1 

(D.13) 

u

 0 

 

) 

≤ 1 

 1 

(D.14) 

u

7 ) 

< 0 

 

− λ7 ) 

≤ 1 

7 ) 

> 1 

(D.15) 
u 

∗
3 = 

(
ε 2 I 

∗

1 + ζ2 I ∗

)
(λ4 − λ6 ) 

2 w 6 

∂ H̄ 

∂u 4 

| u 4 = u 

∗
4 = 0 

∂ H̄ 

∂u 4 

| u 4 = u 

∗
4 = 2 w 7 u 

∗
4 + λ5 (−ε 3 HN/ 1 + ζ3 HN) + λ7 (ε 3 HN/ 1 + ζ3

u 

∗
4 = 

(
ε 3 HN 

∗

1 + ζ3 HN 

∗

)
(λ5 − λ7 ) 

2 w 7 

∂ H̄ 

∂u 5 

| u 5 = u 

∗
5 = 0 

∂ H̄ 

∂u 5 

| u 5 = u 

∗
5 = 2 w 8 u 

∗
5 + λ6 (−ε 4 HC/ 1 + ζ4 HC) + λ7 (ε 4 HC/ 1 + ζ4 H

u 

∗
5 = 

(
ε 4 HC ∗

1 + ζ4 HC ∗

)
(λ6 − λ7 ) 

2 w 8 

Now, we can deduce the following optimal control variables fro

 

∗
1 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 
kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

< 0 

[5 pt] 
kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

if 0 ≤ kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

≤ 1 

[5 pt]1 if 
kS ∗Z ∗(λ1 − λ7 ) 

2 w 4 

> 1 

 

∗
2 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 

( ε 1 I 
∗

1 + ζ1 I ∗
)
(λ4 − λ5 ) 

2 w 5 

<

[5 pt] 

( ε 1 I 
∗

1 + ζ1 I ∗
)
(λ4 − λ5 ) 

2 w 5 

if 0 ≤

( ε 1 I 
∗

1 + ζ1 I ∗
)
(λ4 − λ5

2 w 5 

[5 pt]1 if 

( ε 1 I ∗

1 + ζ1 I ∗
)
(λ4 − λ5 ) 

2 w 5 

>

 

∗
3 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 

( ε 2 I 
∗

1 + ζ2 I ∗
)
(λ4 − λ6 ) 

2 w 6 

<

[5 pt] 

( ε 2 I 
∗

1 + ζ2 I ∗
)
(λ4 − λ6 ) 

2 w 6 

if 0 ≤

( ε 2 I 
∗

1 + ζ2 I ∗
)
(λ4 − λ6

2 w 6 

[5 pt]1 if 

( ε 2 I 
∗

1 + ζ2 I ∗
)
(λ4 − λ6 ) 

2 w 6 

>

 

∗
4 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 

( ε 3 HN 

∗

1 + ζ3 HN 

∗
)
(λ5 − λ

2 w 7 

[5 pt] 

( ε 3 HN 

∗

1 + ζ3 HN 

∗
)
(λ5 − λ7 ) 

2 w 7 

if 0 ≤

( ε 3 HN 

∗

1 + ζ3 HN 

∗
)
(λ5

2 w 7 

[5 pt]1 if 

( ε 3 HN 

∗

1 + ζ3 HN 

∗
)
(λ5 − λ

2 w 
7 
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u

7 ) 

< 0 

− λ7 ) 

≤ 1 

7 ) 

> 1 

(D.16) 

w

 obtain optimal controls (u ∗
1 
, u ∗

2 
, u ∗

3 
, u ∗

4 
, u ∗

5 
) . In this regard, the impacts 

o nimal cost have been examined one by one. So, the control system in 

E . On this subject, a number of combinations of control variables are re- 

fl  u 4 , u 5 )] . The computational simulation for all combinations is executed 

b d to find the optimal control variables, where the optimal and adjoint 

s vely. Afterward, in order to update the optimal controls by Hamiltonian 

f ployed. This procedure carries on until the convergence [93] . 

A

P l problem for system (3) and (4) by using Pontryagin’s Maximum Prin- 

c s (E.1) and (E.2) : 

(E.1) 

 

d R 

d t 
+ λ8 

d Z 

d t 

H

 

] 

 

] 
 3 u 4 (t) HN 

 + ζ3 HN 

] 
C 

C 

] 
t) HC 

4 HC 

] 

(E.2) 

A

variables, respectively. Based on the notation of Table F.7 , the Benders 

s

m
 

 

∑ 

m 

′ ∈ H 

∑ 

t∈ T 
T C pmm 

′ q pt 
mm 

′ 

 × S max (F.1) 

s

m

(F.2) 
 

∗
5 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 

( ε 4 HC ∗

1 + ζ4 HC ∗
)
(λ6 − λ

2 w 8 

[5 pt] 

( ε 4 HC ∗

1 + ζ4 HC ∗
)
(λ6 − λ7 ) 

2 w 8 

if 0 ≤

( ε 4 HC ∗

1 + ζ4 HC ∗
)
(λ6 

2 w 8 

[5 pt]1 if 

( ε 4 HC ∗

1 + ζ4 HC ∗
)
(λ6 − λ

2 w 8 

hich is corresponding to (D.2) –(D.6) . �

As mentioned earlier, Pontryagin’s Maximum Principle helps to

f the application of one or all control variables to obtain the mi

qs. (3) and (4) is solved with respect to the mentioned parameters

ected, including [ u 1 , (u 1 , u 2 ) , (u 1 , u 3 ) , (u 1 , u 4 ) , (u 1 , u 5 ) , (u 1 , u 2 , u 3 ,

y Python. Next, the Forward-backward sweep method is employe

tate systems are solved by forward and backward in time, respecti

or the optimality of the system, the steepest descent method is em

ppendix E. Pontryagin’s maximum principle 

roof. We derived the necessary conditions for the optimal contro

iple [91,92] . Let H̄ be the Hamiltonian function, which is defined a

H̄ (S, E, A, I, HN, HC, R, Z, u 1 , u 2 , u 3 , u 4 , u 5 , λ) 

= L (S, E, A, I, HN, HC, R, Z, u 1 , u 2 , u 3 , u 4 , u 5 ) 

+ λ1 
d S 

d t 
+ λ2 

d E 

d t 
+ λ3 

d A 

d t 
+ λ4 

d I 

d t 
+ λ5 

d HN 

d t 
+ λ6 

d HC 

d t 
+ λ7

Hence, 

¯
 = w 1 I + w 2 HN + w 3 HC + w 4 u 

2 
1 + w 5 u 

2 
2 + w 6 u 

2 
3 + w 7 u 

2 
4 + w 8 u 

2 
5 

+ λ1 

[
� − (β1 A + β2 I + β3 HN + β4 HC) S − dS + ξR − u 1 (t) kSZ

+ λ2 

[
(β1 A + β2 I + β3 HN + β4 HC) S − (k + d) E 

] 

+ λ3 

[
κρE − ηA − (d + δ1 ) A 

] 

+ λ4 

[
κ(1 − ρ) E + ηA − ωI − (d + δ2 ) I − ε 1 u 2 (t) I 

1 + ζ1 I 
− ε 2 u 3 (t) I

1 + ζ2 I 

+ λ5 

[
ω(1 − c) I − (d + δ3 ) HN − γ1 HN − θHN + 

ε 1 u 2 (t) I 

1 + ζ1 I 
− ε

1

+ λ6 

[
ωcI − (d + δ4 ) HC − γ2 HC + θHN + 

ε 2 u 3 (t) I 

1 + ζ2 I 
− ε 4 u 5 (t) H

1 + ζ4 H

+ λ7 

[
γ1 HN + γ2 HC − ξR − dR + u 1 kSZ + 

ε 3 u 4 (t) HN 

1 + ζ3 HN 

+ 

ε 4 u 5 (

1 + ζ

+ λ8 

[ pI 

1 + qI 
− a 0 Z 

] 
�

ppendix F. The PISP Benders reformulation 

Let w̄ jt , ȳ pmt , and v̄ m 

be the vectors of fixed w jt , y pmt , and v m 

ub-problem can be written as follows: 

in Z = 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

m ∈ K 

∑ 

t ∈ T 
T C p jm 

u p jmt + 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
P C pm 

x pmt + 

∑ 

p∈ P 

∑
m ∈ K

+ 

∑ 

p∈ P 

∑ 

m ∈ H 

∑ 

m 

′ ∈ H 

∑ 

t∈ T 
T C pmm 

′ s pt 
mm 

′ + 

∑ 

p∈ P 

∑ 

m ∈ K∪ H 

∑ 

t∈ T 
IC pm 

I pmt + CU

.t.: Constraints (6), (8), (10) –(22), (25) –(29) , and ∑ 

 ∈ K 
u p jmt ≤ U p j w̄ jt ∀ j ∈ J, p ∈ P, t ∈ T 
27 
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Table F.7 

Vectors of the dual variables associated with the Benders sub-problem constraints. 

Not. Desc. Not. Desc. 

α { αpmt ≥ 0 | p ∈ P, m ∈ H, t ∈ T } β { β jpt ≥ 0 | j ∈ J, p ∈ P, t ∈ T } 
� { �pmt ∈ R | p ∈ P, m ∈ H, t ∈ T } η { ηpmt ≥ 0 | p ∈ P, m ∈ K, t ∈ T } 
λ1 { λipm, 1 ≥ 0 | p ∈ P, i ∈ I, m ∈ K i (m ) } λ { λipmt ≥ 0 | p ∈ P, i ∈ I, m ∈ K i (m ) , t ∈ T ; t > 1 } 
τ { τipmt ≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } π1 { πipm, 1 ∈ R | p ∈ P, i ∈ I, m ∈ K i (m ) } 
π { πipmt ∈ R | p ∈ P, i ∈ I, m ∈ K i (m ) , t ∈ T ; t > 1 } ε { εpmt ≥ 0 | p ∈ P, m ∈ M, t ∈ T } 
φ1 { φipm, 1 ∈ R | p ∈ P, i ∈ I, m ∈ H i (m ) } φ { φipmt ∈ R | p ∈ P ′ , i ∈ I, m ∈ H i (m ) , t ∈ T ; t > 1 } 
φ′ { φ′ 

ipmt 
∈ R | p ∈ P ′′ , i ∈ I, m ∈ H i (m ) ; 1 < t ≤ L } φ′′ { φ′′ 

ipmt 
∈ R | p ∈ P ′′ , i ∈ I, m ∈ H i (m ) , t ∈ T ; t > L } 

� { �pmt ≥ 0 | p ∈ P, m ∈ H, t ∈ T } ω { ω pt ≥ 0 | p ∈ P, t ∈ T } 
X {X ipmt ≥ 0 | p ∈ P, i ∈ I φ′ = , m ∈ H i (m ) , t ∈ T } Y {Y ipmt ≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } 
W {W ipmt ∈ R | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } R {R ipmt ∈ R | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } 
V {V ipmt ≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } V ′ {V ′ 

ipmt 
≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } 

Z {Z ipmt ≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } Z 

′ {Z ′ 
ipmt 

≥ 0 | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } 
Z 

′′ {Z ′′ 
ipmt 

∈ R | p ∈ P, i ∈ I, m ∈ H i (m ) , t ∈ T } N {N ipmm ′ t ≥ 0 | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } 
N 

′ {N 

′ 
ipmm ′ t ≥ 0 | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } M {M ipmm ′ t ∈ R | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } 
M 

′ {M 

′ 
ipmm ′ t ∈ R | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } M 

′′ {M 

′′ 
ipmm ′ t ≥ 0 | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } 
H {H ipmm ′ t ≥ 0 | p ∈ P, i ∈ I, m, m 

′ ∈ H i (m ) , t ∈ T ; m � = m 

′ } 

x (F.3) 

b (F.4) 

b (F.5) 

m (F.6) 

s
 

p∈ P 
∑ 

m ∈ K 
∑ 

t∈ T Q pm 

y pmt ηpmt 

ax 
m 

εpmt 

∑ 

p∈ P 
∑ 

t∈ T T Q p ω pt 

 

t∈ T D pmt W ipmt 

 

t∈ T T Q p (v m 

− 1) Z 

′ 
ipmt 

(F.7) 

 V 

′ , Z , Z 

′ , Z 

′′ , N , N 

′ , M , M 

′ , M 

′′ , H ) ∈ P ∇ 

ζ (F.8) 

w e problem, and P ∇ 

implicates the set of extreme points of ∇ . Constraint 

( ively in accordance with Bender’s sub-problem solution and the vectors 

o

A

del and PISP formulation is provided in Table G.8 . The majority of the 

p he supply and production capacities which have been estimated based 

o lation in each set of populated areas, other parameters of the SEIHRS 

m

 pmt ≤ Q pm ̄

y pmt ∀ p ∈ P, m ∈ K, t ∈ T 

 

+ 
pmt ≤ T Q p ̄v m 

∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T 

 

−
pmt ≥ T Q p ( ̄v m 

− 1) ∀ i ∈ I, p ∈ P, m ∈ H i (m ) , t ∈ T 

The Benders master problem can be written as follows: 

in Z = 

∑ 

j∈ J 

∑ 

t∈ T 
OC j w jt + 

∑ 

p∈ P 

∑ 

m ∈ K 

∑ 

t∈ T 
SC pm 

y pmt + ζ

.t.: Constraints (30) –(35) and (36) , and 

−∑ 

p∈ P 
∑ 

m ∈ H 
∑ 

t∈ T D pmt αpmt −
∑ 

j∈ J 
∑ 

m ∈ H 
∑ 

t∈ T U p j w jt β jpt −
∑

+ 

∑ 

i ∈ I 
∑ 

m ∈ K i (m ) 

∑ 

p∈ P I 
0 
pm 

(πipm, 1 − λipm, 1 ) −
∑ 

p∈ P 
∑ 

m ∈ M 

∑ 

t∈ T I 
m
p

+ 

∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m ∈ H i (m ) I 
0 
pm 

φipm, 1 + 

∑ 

p∈ P 
∑ 

m ∈ H 
∑ 

t∈ T D pmt �pmt −
−∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m 

′ ∈ H i (m ) 

∑ 

t∈ T G 

max 
pm 

′ X ipm 

′ t + 

∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m 

′ ∈ H i (m ) 

∑
−∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m 

′ ∈ H i (m ) 

∑ 

t∈ T T Q p v m 

Z ipmt + 

∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m 

′ ∈ H i (m ) 

∑
−∑ 

i ∈ I 
∑ 

p∈ P 
∑ 

m ∈ H i (m ) 

∑ 

m 

′ ∈ H i (m ) 

m 

′ � = m 

∑ 

t∈ T G 

max 
pm 

H ipmm 

′ t ≤ ζ

∀ ( α, β, �, η, λ1 , λ, τ, π1 , π, ε, φ1 , φ, φ′ , φ′′ , �, ω , X , Y , W , R , V ,

≥ 0 

here ∇ signifies the polyhedron specified by the constraints of th

F.7) represents the optimality cut which can be generated consecut

f the dual variables. 

ppendix G. Details of the case study’s data 

Detailed information on all other parameters in the SEIHRS mo

arameters are based on real data except for the setup costs and t

n expert opinion. Except for the death rates as well as the popu

odel are considered similar for the whole of France [52,94,95] . 
28 
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