
HAL Id: hal-04232211
https://hal.science/hal-04232211

Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fair-split distribution of multi-dose vaccines with
prioritized age groups and dynamic demand: The case

study of COVID-19
Behnam Vahdani, Mehrdad Mohammadi, Simon Thevenin, Michel Gendreau,

Alexandre Dolgui, Patrick Meyer

To cite this version:
Behnam Vahdani, Mehrdad Mohammadi, Simon Thevenin, Michel Gendreau, Alexandre Dolgui, et
al.. Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand:
The case study of COVID-19. European Journal of Operational Research, 2023, 310 (3), pp.1249-1272.
�10.1016/j.ejor.2023.03.032�. �hal-04232211�

https://hal.science/hal-04232211
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


European Journal of Operational Research 310 (2023) 1249–1272 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Innovative Applications of O.R. 

Fair-split distribution of multi-dose vaccines with prioritized age 

groups and dynamic demand: The case study of COVID-19 

Behnam Vahdani a , Mehrdad Mohammadi a , b , ∗, Simon Thevenin 

c , Michel Gendreau 

d , 
Alexandre Dolgui c , Patrick Meyer a 

a IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest F-29238, France 
b Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven 5600MB, the Netherlands 
c IMT Atlantique, LS2N-CNRS, La Chantrerie, 4, rue Alfred Kastler, Nantes cedex 3, F-44307, France 
d CIRRELT and Département de Mathématiques et Génie Industriel, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal H3C 3A7, Canada 

a r t i c l e i n f o 

Article history: 

Received 4 April 2022 

Accepted 25 March 2023 

Available online 20 April 2023 

Keywords: 

Distribution 

Vaccine distribution 

Fairness 

Dynamic demand 

Benders decomposition 

a b s t r a c t 

The emergence of the SARS-CoV-2 virus and new viral variations with higher transmission and mortal- 

ity rates have highlighted the urgency to accelerate vaccination to mitigate the morbidity and mortal- 

ity of the COVID-19 pandemic. For this purpose, this paper formulates a new multi-vaccine, multi-depot 

location-inventory-routing problem for vaccine distribution. The proposed model addresses a wide variety 

of vaccination concerns: prioritizing age groups, fair distribution, multi-dose injection, dynamic demand, 

etc. To solve large-size instances of the model, we employ a Benders decomposition algorithm with a 

number of acceleration techniques. To monitor the dynamic demand of vaccines, we propose a new ad- 

justed susceptible-infectious-recovered (SIR) epidemiological model, where infected individuals are tested 

and quarantined. The solution to the optimal control problem dynamically allocates the vaccine demand 

to reach the endemic equilibrium point. Finally, to illustrate the applicability and performance of the pro- 

posed model and solution approach, the paper reports extensive numerical experiments on a real case 

study of the vaccination campaign in France. The computational results show that the proposed Benders 

decomposition algorithm is 12 times faster, and its solutions are, on average, 16% better in terms of qual- 

ity than the Gurobi solver under a limited CPU time. In terms of vaccination strategies, our results suggest 

that delaying the recommended time interval between doses of injection by a factor of 1.5 reduces the 

unmet demand up to 50%. Furthermore, we observed that the mortality is a convex function of fairness 

and an appropriate level of fairness should be adapted through the vaccination. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

As of 20 March 2022, the ongoing SARS-CoV-2 virus (COVID- 

9, hereafter) pandemic has engendered approximately 427 mil- 

ion confirmed cases and 6.09 million fatalities worldwide ( Johns 

opkins University & Medicine, 2021 ). Since the beginning of the 

andemic, almost all countries around the world have adopted 

 variety of measures to restrict the propagation of COVID-19. 

hese measures include individual precautions ranging from wear- 

ng face masks to social distancing, non-pharmaceutical measures 
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rom governments such as quarantine and border controls, to name 

 few, and pharmaceutical propositions resorting to vaccination as 

he most effective way ( Kaplan, 2020; Pagliusi et al., 2020 ). In this

egard, the accelerated advancement and outset of some innovative 

OVID-19 vaccines is a remarkable and exceptional achievement of 

ontemporary science, where Pfizer-BioNTech was the first vaccine 

o be conferred a temporary authorization for emergency uses in 

he United Kingdom ( Shaw et al., 2021 ). 

Although the rapid development of such effective vaccines 

gainst COVID-19 in a short time is among the greatest scientific 

chievements ( Graham, 2020; Lurie et al., 2020 ), successfully vac- 

inating the global population encounters many challenges, from 

roduction to distribution, deployment, and even social acceptance. 

ore precisely, two significant concerns need to be handled to 

uarantee the success of a vaccination plan in pandemic situations. 

Firstly, coming up with an accurate estimation of the demand 

or vaccines, regardless of their types, which can immune people 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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gainst COVID-19 to confine its propagation. This challenge be- 

omes even more critical knowing that the number of companies 

roducing COVID-19 vaccines is minimal, and almost all countries 

ave to meet their needs by purchasing vaccines from them. How- 

ver, countries that can produce vaccines prioritize meeting their 

wn needs first ( Alam et al., 2021 ). This issue forces other coun-

ries to be more accurate in estimating their demand when pur- 

hasing vaccines. Nonetheless, the precision of such estimation in 

he COVID-19 pandemic could be jeopardized due to many fac- 

ors, including the emergence of new variants of the virus, non- 

ompliance with health protocols by some individuals, monopo- 

ies in the distribution and consumption of vaccines by developed 

ountries, and insufficient infrastructure and distribution capacity 

f vaccines ( Alam et al., 2021; Burgos et al., 2021; Tyagi et al.,

021; Wouters et al., 2021 ). Such factors lead to important fluctu- 

tions and dynamicity in vaccine demand ( Besiou & Van Wassen- 

ove, 2021 ). Hence, providing a precise estimation of the progres- 

ion of the pandemic allows more fruitful management of the lo- 

istics challenges. In this regard, in order to provide an accurate 

stimation of disease propagation, a broad range of efficient ap- 

roaches have been employed in the literature, including artifi- 

ial intelligence approaches such as time series ( Betcheva et al., 

021; Qi et al., 2020 ), machine learning ( Kushwaha et al., 2020 ),

nd deep learning ( Yang et al., 2020 ), agent-based approaches ( Kai 

t al., 2020 ), metrological and meta-population models ( Ma et al., 

021 ), and compartmental epidemiological models ( Arfan et al., 

021 ). From the technical point of view, apart from compartmental 

pidemiological models, the other approaches hang on data acces- 

ibility. Hence, these approaches almost become inapplicable since 

ata is unavailable and unreliable in the early phases of a pan- 

emic ( Gnanvi et al., 2021 ). Also, historical data cannot be ex- 

loited due to the occurrence of different virus variants. Moreover, 

hese approaches cannot consider various government strategies, 

uch as quarantine and raising people’s awareness ( Biswas & Alfan- 

ari, 2022; Nikolopoulos et al., 2021 ). Finally, they cannot optimize 

he measures related to implementing the policies established by 

he governments, such as reducing the number of deaths or min- 

mizing system costs to control the propagation of a pandemic. In 

his regard, the synergy between compartmental epidemiological 

odels and the optimal control problem (OCP) as a powerful dy- 

amic optimization approach not only tackles the barriers men- 

ioned above ( Castilho, 2006 ) but also offers an endemic equilib- 

ium point of the COVID-19 contagious influence ( Gaff & Schae- 

er, 2009 ). However, due to the complexity of implementing these 

ethods, researchers have rarely used them. 

Secondly, it is naive to believe that most of the vaccination 

rocess has been completed by purchasing the estimated amount 

f vaccine. In fact, distributing vaccines, especially COVID-19 vac- 

ines with miscellaneous concerns such as minimal supplies, pri- 

ritizing age groups, fair distribution, multi-dose injection, split 

elivery of vaccines, vaccine loss during transit, and vial-opening, 

s the second challenge that makes it a highly daunting process 

 Abbasi et al., 2020; Chen et al., 2020; De Boeck et al., 2020;

vanov, 2020 ). Hence, this paper aims to develop an efficient vac- 

ine distribution network to deliver a limited supply of vaccines 

etween different vaccination centers. Developing such a network 

equires a broad range of decisions to be made ( Duijzer et al., 

018c; Manupati et al., 2021 ): 1) Location-allocation , where to lo- 

ate vaccine distribution centers and allocate vaccination centers to 

hem ( Ahmadzadeh & Vahdani, 2017; Mohammadi et al., 2014; Ni 

t al., 2021; Niakan et al., 2015; Rahimi-Vahed et al., 2015; Vahdani 

 Ahmadzadeh, 2019; Vahdani et al., 2017 ), 2) Inventory , where 

at which center) to hold inventory considering the perishability 

f vaccines ( Tang et al., 2022; Vahdani & Ahmadzadeh, 2021; Vah- 

ani et al., 2011 ), and 3) Delivery-Routing , what amount of vaccines 

o be delivered/routed between different centers using which ve- 
1250 
icles ( Alam et al., 2021; Capelle et al., 2019; Gmira et al., 2021; 

abavi et al., 2022; Rahimi-Vahed et al., 2015; Rostami et al., 2021; 

idal et al., 2012; 2021 ). 

Speaking of which, a careful examination of the COVID-19 pan- 

emic reveals that additional factors should also be addressed in 

ew pandemics when planning vaccine distribution. This paper ac- 

ounts for four additional factors to design an efficient vaccination 

etwork. These factors are classified into prioritizing the popula- 

ion for vaccination , fair distribution of vaccine , multi-dose vaccina- 

ion planning , and split delivery . 

First, since the supply of COVID-19 vaccines has initially been 

estricted, the world realized that to pilot a vaccination campaign 

fficiently, governments all over the world should make a tough 

ecision on who to vaccinate first. In fact, health policy-makers 

ll around the world came to a global consensus on vaccination 

trategies to prioritize the vaccination of front-line workers (e.g., 

ealthcare workers) against the disease, then vulnerable popula- 

ions such as older people and people with weak immune systems. 

ccordingly, such prioritization decisions should be taken into ac- 

ount when designing a vaccine distribution network ( Mohammadi 

t al., 2022 ). 

Second, the lack of COVID-19 vaccines raises the issue of a fair 

istribution of the produced vaccines among or within countries. 

n fact, vaccine distribution presents a slew of complicated and 

ontentious matters, including public health, finance, public per- 

uasion, and diplomacy ( DeRoo et al., 2020; Forni & Mantovani, 

021 ). Various global organizations, national administrators, and 

accine manufacturers realized that ethics is vital in making de- 

isions. However, inadequate progress has been achieved in defin- 

ng the fair distribution of vaccines globally and nationally. An “eq- 

itable vaccine distribution” is often praised without specifying a 

tructure or offering any suggestions. This paper investigates the 

airness in the distribution of vaccines among different vaccination 

enters, each being responsible to vaccinate the population of their 

orresponding region. 

Third, another factor affecting the operation of vaccine distribu- 

ion centers is multi-dose vials of vaccines recommended/imposed 

y the manufacturers to achieve a sufficient level of immunity 

gainst COVID-19. Such recommendation/necessity for multi-dose 

accination encounters the distribution center with important 

hallenges. As a matter of fact, multi-dose vaccination imposes a 

ommitment to the distribution network to imperatively fulfill the 

emand for the second dose, if the first dose has previously been 

ulfilled. Another point to note is that individuals must receive the 

econd dose of a vaccine after a given time interval, depending on 

he type of their first-dose vaccine ( Silva-Cayetano et al., 2021 ). In 

his regard, a number of recent studies have articulated that inject- 

ng a second dose from another type of vaccine is possible if it is 

ompatible with the first dose, although the majority of evidence 

as recommended that it is better if two doses have the same kind 

 Sampath et al., 2021 ). 

Fourth, the delivery of multi-dose vaccinations puts far more 

ressure on the distribution network. This becomes even more 

roblematic when we know that COVID-19 vaccines must be trans- 

orted in refrigerators or freezers, limiting the number of accessi- 

le vehicles. One of the most efficient strategies to cope with this 

bstacle is to use the split delivery method ( Haddad et al., 2018; 

ohammadi et al., 2020; Veysmoradi et al., 2018 ). 

According to the above-mentioned description, we address the 

wo problems as a comprehensive two-stage framework. The first 

tage concentrates on estimating the dynamic demand for vaccines 

nd assesses the number of vaccines that need to be provided to 

ontrol the pandemic. The second stage focuses on offering a ded- 

cated multi-vaccine, multi-depot location-inventory-routing prob- 

em (MVMDLIRP) to distribute vaccines among vaccination centers, 

herein a broad range of characterful concerns of the COVID-19 
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accine distribution is reflected. The first stage offers an adjusted 

IR model with the optimal control problem for controlling the dy- 

amicity of demand for vaccines, and the resulting model provides 

he number of vaccines needed during the vaccination campaign. 

he second stage formulates a dedicated MVMDLIRP, where a 

road range of decisions are considered, including supply, location- 

llocation, shipment, inventory, and routing concerning various 

oncerns, including perishability, split delivery, capacity, popula- 

ion priorities, and multi-dose delivery. To the best of our knowl- 

dge, the MVMDLIRP has yet to be investigated, let alone the other 

eflected considerations in the current study that make it more 

ealistic and sophisticated. Hence, the contributions of this study 

egarding the investigated literature in the next section are as 

ollows: 

• Introducing a comprehensive and exclusive optimization frame- 

work to distribute vaccines to control the pandemic situation, 
• Proposing an adjusted SIR model with the optimal control prob- 

lem to overcome the demand dynamicity and determine the 

number of vaccines that need to be supplied to control the pan- 

demic, and 

• Formulating the MVMDLIRP regarding a broad range of applica- 

ble concerns, including prioritizing age groups, fair distribution, 

multi-dose injection, split delivery of vaccines, vaccine fraction 

during transit and vial-opening, vaccine deterioration, and dy- 

namic demand. 

The remainder of the paper is organized as follows. 

ection 2 scrutinizes related literature. Section 3.1 provides 

he description of the SIR epidemiological model with the optimal 

ontrol problem. Section 4 presents the MVMDLIRP formulation. 

ection 5 offers the details of the accelerated Benders decompo- 

ition algorithm. Section 6 describes the case study and provides 

umerical results. Next, Section 7 provides a set of sensitivity 

nalyses and managerial insights. Finally, this study is concluded, 

nd future research directions are proposed in Section 8 . 

. Literature review 

The current research focuses on two main phases: estimating 

he demand for vaccines through disease progression modeling via 

pidemiological models and the logistics planning of vaccine distri- 

ution. Hence, this section scrutinized the related literature of the 

wo mentioned subjects to illustrate research gaps and our contri- 

utions. 

.1. Phase I—Epidemiological models at the service of vaccine 

istribution 

Asano et al. (2008) suggested a modified Susceptible-Infected- 

ecovered (SIR) model with the optimal control problem for man- 

ging vaccine bait distribution to control the spread of rabies in 

accoons, where the rate of vaccine bait distribution was consid- 

red as a control variable and determined the number of vac- 

ines needed to control the disease. Nguyen & Carlson (2016) ex- 

ended the conventional SIR model as a semi-Markovian process 

o reflect the real-time circumstances of an outbreak for control- 

ing vaccine allocation. Büyüktahtakın et al. (2018) proposed an 

pidemics-logistics optimization model to control the Ebola virus. 

his model’s decisions include allocating resources regarding ca- 

acity and budget restrictions. The objective function minimized 

he total number of infected people and deaths of infected indi- 

iduals, where a modified SIR model was proposed to model the 

bola disease transmission. Duijzer et al. (2018b) considered the 

onventional SIR model to investigate two vaccination strategies, 

ncluding early and later vaccines. They suggested that a hybrid 

trategy can diminish the number of infected individuals by more 

han 50% compared to the best absolute strategy. Duijzer et al. 
1251 
2018a) employed the conventional SIR model to introduce an ana- 

ytical model for allocating the necessitated number of vaccines in 

rder to control an epidemic, where the objective function maxi- 

ized the health benefit, which was defined as the total number 

f people who escaped from infection with or without vaccination. 

nayati & Özaltın (2020) proposed a modified susceptible-exposed- 

nfected-recovered (SEIR) model to manage influenza vaccine dis- 

ribution by minimizing the number of vaccines used to immunize 

eople and control such an outbreak, where the Gini coefficient 

eflected the equity concern. Westerink-Duijzer et al. (2020) ap- 

lied the conventional SIR model to formulate an influenza dis- 

ase transmission as part of an analytical model to explore shar- 

ng vaccines as a redistribution problem, where health agencies 

ight cooperate based on cooperative game theory. Gamchi et al. 

2021) proposed a bi-objective mathematical model for influenza 

accine distribution, where the conventional SIR model with the 

ptimal control problem, adapted from Alcaraz & Vargas-De-León 

2012) , was employed to prioritize regions and individuals for vac- 

ination. Then a classical vehicle routing problem was used to dis- 

ribute vaccines. The first objective function minimized the social 

osts of infected individuals before and after vaccination, and the 

econd objective function minimized the fixed costs of vehicles 

sed in the distribution process. 

.2. Phase II—Vaccine distribution problem 

Chen et al. (2014) proposed a mathematical model to formulate 

n inventory-transshipment problem for vaccine distribution in de- 

eloping countries. The objective function maximizes the number 

f immunized children and additional doses of vaccines. The au- 

hors consider two types of vaccines (frozen and refrigerated), vac- 

ine fractions during transit and vial-opening, and deterioration 

f vaccine inventory have been the main contributions. Lim et al. 

2022) proposed a multi-modal location-transshipment model to 

esign a distribution network of vaccines, where the objective 

unction minimizes the total costs of opening and operating facil- 

ties and transportation. The main feature is the consideration of 

 replenishment frequency, where two discrete options, including 

onthly and quarterly, were reckoned. Abbasi et al. (2020) pro- 

osed a transshipment-assignment problem to allocate COVID-19 

accine to people, where the objective function minimized the in- 

ection risk of people based on the susceptibility rating of target 

roups, transshipment time, and the number of over-supplied vac- 

ines. 

They also considered the possibility of transmitting vaccines 

etween vaccination centers, and different target groups to re- 

eive vaccines. Larissa et al. (2021) proposed a mathematical model 

o formulate a classical vehicle routing and scheduling problem, 

here the objective function minimized the transit time and ve- 

icle and road penalties, which represented unreliable conditions 

hat can jeopardize vaccine distribution. However, none of the 

pecific considerations of vaccine distribution were considered in 

he suggested model. Yang et al. (2021) presented a multi-period 

ocation-routing model to distribute vaccines. 

The considered problem accounts for vehicle and facility ca- 

acities, and the objective function minimized the costs of open- 

ng facilities and transportation. The authors applied the replen- 

shment frequency suggested by Lim et al. (2022) . Rastegar et al. 

2021) proposed a multi-period inventory-location model to dis- 

ribute the influenza vaccine during the COVID-19 pandemic. The 

odel accounts for fairness concerns, where the objective func- 

ion maximized the minimum delivery-to-demand ratio as an eq- 

ity measurement. They considered multiple target groups for vac- 

ination without priorities, but a minimum coverage rate for each 

roup was considered as another equitable feature. Tavana et al. 

2021) made a similar study to Rastegar et al. (2021) , with the 
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Fig. 1. The SIR model. 
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xception that they formulated the COVID-19 vaccine distribution. 

he main feature was the consideration of various vaccines, which 

equired very cold and ultra-cold refrigeration for equipping distri- 

ution centers and their storage. 

Chen et al. (2021) proposed an agent-based simulation model to 

llocate COVID-19 vaccines to people with the help of social con- 

act network. They concluded that the proposed simulation model 

as much more effective than other simulations whose dialectics 

ere based on the number of infected, hospitalized, or dead peo- 

le. Tang et al. (2022) proposed a bi-objective location-inventory 

odel for a vaccination planning problem, where the first ob- 

ective minimized the total operational costs and the second one 

inimized the travel distance of people to vaccination centers. 

lso, they offered a genetic algorithm and dynamic programming 

ethod to solve the proposed model. Gilani & Sahebi (2022) con- 

idered a sustainable production-inventory-transshipment vaccine 

roblem as a vaccine supply chain during the COVID-19 pandemic, 

here the decisions of manufacturers’ capacity and capacity ex- 

ansion, the locations of the packing centers of different vaccines 

nd their distribution centers, and transshipment of vaccines were 

onsidered. They proposed a multi-objective mathematical model 

nder uncertain supply to formulate the addressed problem. The 

rst objective function minimized the total costs, the second one 

inimized the total environmental effects, and the third maxi- 

ized the number of created jobs. Moreover, they offered a ro- 

ust data-driven approach to tackle the challenges of the uncertain 

upply of vaccines. Finally, Table 1 summarizes the significant con- 

erns of the investigated literature to demonstrate research gaps 

nd our contributions. 

. The estimation of demand for COVID-19 vaccine 

.1. Epidemiological model 

In order to formulate the propagation of contagious disease and 

alculate the number of susceptible, infected, and recovered indi- 

iduals in a population, the standard SIR model with the possi- 

ility of vaccination, as the well-known epidemiological model, is 

epicted in Fig. 1 (a). As can be seen, susceptible individuals be- 

ome either infected once exposed to the disease or recover if vac- 

inated, where the population size is fixed and predetermined. No- 

ably, the standard model cannot consider the unique concerns of 

preading COVID-19 because one of the crucial factors in model- 
1252 
ng the spread of this virus is considering the test results on in- 

ected people. So, according to the test results, people must be 

ivided into two groups: quarantined and unquarantined ( Anand 

t al., 2020 ). Consequently, the adjusted version of the SIR model 

ith the possibility of vaccination is offered to model the spread of 

OVID-19. The configuration of this model is depicted in Fig. 1 (b), 

nd its notations are presented in Table 2 . 

As can be seen, the susceptible individuals ( S) become either 

nfected ( I) once exposed to the disease via the term (β1 I + β2 Q +
3 U) S, or they get recovered ( R ) if vaccinated via term uS. Un-

ike the classical SIR model, the adjusted SIR model considers that 

nfected individuals become either quarantined ( Q) or unquaran- 

ined ( U) via rates kτ and k (1 − τ ) , respectively. In fact, the Q

ompartment consists of the infected individuals whose test has 

een positive. These individuals are quarantined/isolated from the 

est of the population, and they no longer jeopardize the health of 

ther susceptible individuals. On the other hand, the U compart- 

ent represents a group of individuals who are infected but have 

ot still been tested. Contrary to the Q individuals, the U individ- 

als pose the risk of infection to the susceptible individuals. More 

mportantly, these two compartments are correlated with the test- 

ng factor τ . Indeed, the higher the level of this factor, the higher 

he number of individuals who become quarantined. Hence, there 

re fewer unquarantined people and less risk of infection for sus- 

eptible individuals. Finally, the quarantined and unquarantined in- 

ividuals are differently removed from the system and become re- 

overed ( R ). It is indeed assumed that the vaccinated individuals 

ill never get infected again. 

The justified SIR model of Fig. 1 (b) is mathematically formu- 

ated as the system of Eq. (1) . Indeed, the system of Eq. (1) rep-

esents the balance of input and output time-dependent flows at 

ach state and models its fluctuation and dynamicity. 

d S 

d t 
= � − (β1 I + β2 Q + β3 U) S − dS − uS S(0) > 0 , 

d I 

d t 
= (β1 I + β2 Q + β3 U) S − (d + δ1 + k ) I I(0) ≥ 0 , 

d Q 

d t 
= kτ I − (d + δ2 ) Q − v 1 Q Q(0) ≥ 0 , 

d U 

d t 
= k (1 − τ ) I − (d + δ3 ) U − v 2 U U(0) ≥ 0 , 

d R = v 1 Q + v 2 U − dR + uS R (0) ≥ 0 , (1) 

d t 
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Table 1 

Classification of the relevant papers. 

Ref. Phase 1 Phase 2 Solution Method c 

Epidemiological model a Vaccine supply chain 

woOCP wOCP Adjusted Disease Cooperation a Decisions Specification b Uncertainty 

Location Allocation Transshipment Inventory Routing 

Asano et al. (2008) 
√ √ 

Rabies in raccoons 

Nguyen & Carlson (2016) 
√ √ 

General SMP 

Büyüktahtakın et al. (2018) 
√ √ 

Ebola OR 

Duijzer et al. (2018b) 
√ 

Influenza OR 

Duijzer et al. (2018a) 
√ 

Influenza AM 

Enayati & Özaltın (2020) 
√ √ 

Influenza OR 

Westerink-Duijzer et al. (2020) 
√ 

Influenza AM 

Gamchi et al. (2021) 
√ 

General OR 
√ √ √ 

D,N 

Chen et al. (2014) 
√ √ √ 

A,B,J,K,M,N CPLEX 

Lim et al. (2022) 
√ √ √ 

M,N MH 

Abbasi et al. (2020) 
√ √ 

D,M,N CPLEX 

Larissa et al. (2021) 
√ √ √ 

B,N Gurobi 

Yang et al. (2021) 
√ √ √ √ 

M,N Heuristic 

Rastegar et al. (2021) 
√ √ √ √ √ 

A,B,D,M GAMS 

Tavana et al. (2021) 
√ √ √ √ 

A,B,D,M CPLEX 

Chen et al. (2021) 
√ 

D,M 

Tang et al. (2022) 
√ √ √ 

A,M MH 

Gilani & Sahebi (2022) 
√ √ √ √ 

A,B,L,M,N GAMS 

Thul & Powell (2023) COVID-10 SMP 
√ 

A,C Stochastic Analytical 

Yin et al. (2023) 
√ √ 

COVID-19 OR 
√ 

A,M Dynamic CPlex 

Current study 
√ √ 

COVID-19 OR 
√ √ √ √ √ 

All Dynamic BD 

a woOCP: without OCP; wOCP: with OCP; SMP: Semi-Markovian Process; OR: Operations Research; AM: Analytical Model. 
b A: Multi-period; B: Multiple vaccines; C: Fairness; D: Age groups; E: Prioritized age groups; F: Split delivery; G: Multi-dose; H: Cumulative demand in the second dose; I: Time lag between injection of doses; J: Vaccine 

fraction; K: Vaccine deterioration; L: Unmet demand; M: Storage capacity; N: Shipping capacity. 
c MH: Meta-heuritic. 

1
2

5
3
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Table 2 

Notations of the adjusted SIR model. 

Notation Description 

� Total population at the beginning of the pandemic 

d Natural death rate of individuals 

N(t) Total population at time t

S Number of susceptible individuals 

I Number of infected individuals 

Q Number of quarantined individuals 

U Number of unquarantined individuals 

R Number of recovered individuals 

β1 /β2 /β3 Disease contagion rates per contact by infected/quarantined/unquarantined individuals 

u Proportion of susceptible individuals who are vaccinated 

k Information interaction rate through which individuals admit to taking a test 

τ The probability of a test to be positive 

v / v 1 / v 2 Progression rate by which infected/quarantined/unquarantined individuals get recovered 

δ1 /δ2 /δ3 Particular death rate among infected/quarantined/unquarantined individuals 
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By solving the isoclines, the basic reproduction ratio R 0 and the 

ndemic equilibrium point can be calculated. In this regard, two 

quilibrium points are considered as the disease-free equilibrium 

oint (i.e., E 0 (S 0 , 0 , 0 , 0 , 0) = ( �
d 

, 0 , 0 , 0 , 0) )) and the endemic equi-

ibrium point (i.e., E ∗(S ∗, I ∗, Q 

∗, U 

∗, R ∗) , where R 0 < 1 ). 

The basic reproduction ratio R 0 ( Wallinga et al., 2010 ) is de- 

ned as the number of new infections caused by a single infec- 

ious individual in a completely susceptible population ( Duijzer 

t al., 2018b ). Accordingly, in the case of R 0 ≥ 1 , the pandemic is

nticipated to progress. Next, the method proposed by ( Van den 

riessche & Watmough, 2002 ) is used to calculate R 0 . For this 

urpose, let x ≡ (I, Q, U) and constitute dx 
dt 

, H (x ) , and v (x ) , where

 (x ) refers to the segments in which new infection terms are in-

roduced, and v (x ) refers to the remainder of the segments. Ac- 

ordingly, we have: 

dx 

dt 
= H (x ) − v (x ) (2) 

 (x ) = 

( 

(β1 I + β2 Q + β3 U) S 
0 

0 

) 

(3) 

 (x ) = 

( 

(d + δ1 + k ) I 
−kτ I + (d + δ2 + v 1 ) Q 

−k (1 − τ ) I + (d + δ3 + v 2 ) U 

) 

(4) 

In the following, the equivalent linearized matrices of H (x ) and 

 (x ) at disease-free equilibrium E 0 = (S 0 , 0 , 0 , 0 , 0) can be con-

tructed as (5) and (6) , respectively. 

 = (D H (x ))(E 0 ) = 

( 

β1 S 0 β2 S 0 β3 S 0 
0 0 0 

0 0 0 

) 

(5) 

 = (D v (x ))(E 0 ) 

= 

( 

(d + δ1 + k ) 0 0 

−kτ (d + δ2 + v 1 ) 0 

−k (1 − τ ) 0 (d + δ3 + v 2 ) 

) 

(6) 

Finally, the basic reproduction number is equal to the spectral 

adius of F V −1 (i.e., R 0 = ρ(F V −1 ) , where ρ(A ) is the spectral ra-

ius of the matrix A ). The endemic equilibrium point is then ob- 

ained by solving the system of Eq. (7) . 

− (β1 I 
∗ + β2 Q 

∗ + β3 U 

∗) S ∗ − dS ∗ − uS ∗ = 0 , 

(β1 I 
∗ + β2 Q 

∗ + β3 U 

∗) S ∗ − (d + δ1 + k ) I ∗ = 0 , 

kτ I ∗ − (d + δ2 ) Q 

∗ − v 1 Q 

∗ = 0 , 

k (1 − τ ) I ∗ − (d + δ3 ) U 

∗ − v 2 U 

∗ = 0 , 

v 1 Q 

∗ + v 2 U 

∗ − dR 

∗ + uS ∗ = 0 , (7) 
1254 
.2. The optimal control problem (OCP) 

At this stage, we investigate how intervention measures can 

itigate the population’s disease burden. For this aim, the system 

f Eq. (1) is revised to reflect the impact of the control variable 

 (t) over time. In this regard, the aim is to minimize the cost 

ncurred by infected and quarantined individuals and the immu- 

ization program in order to maximize the number of recovered 

ndividuals using the possible minimal control variable u (t) . The 

ptimal value of the control variable u (t) (i.e., u ∗(t) ) can be found

hrough the optimal control problem (8) and (9) . Indeed, this value 

akes the system follow a trajectory state variable that minimizes 

he performance measure J, where positive parameters w 1 , w 2 , and 

 3 are weight constants balancing the units of the integrand. 

[ u (t)] = 

∫ T f 

0 

[ w 1 I(t) + w 2 Q(t) + w 3 u 

2 (t)] d t (8)

.t.: 

d S 

d t 
= � − (β1 I + β2 Q + β3 U) S − dS − u (t) S, 

d I 

d t 
= (β1 I + β2 Q + β3 U) S − (d + δ1 + k ) I, 

d Q 

d t 
= kτ I − (d + δ2 ) Q − v 1 Q, 

d U 

d t 
= k (1 − τ ) I − (d + δ3 ) U − v 2 U, 

d R 

d t 
= v 1 Q + v 2 U − dR + u (t) S (9) 

ith initial conditions S(0) > 0 , I(0) ≥ 0 , Q(0) ≥ 0 , U(0) ≥
 , R (0) ≥ 0 . The objective function (8) denotes the total in-

urred cost, where the first term calculates the cost when infected 

ndividuals consult medical professionals concerning symptoms 

nd intend to take a test. The second term also represents the 

ost imposed on the government for quarantined individuals (e.g., 

ocial and home-care aids). The third term computes the cost of 

he immunization program. Noteworthy, the square of the control 

ariable u (t) reflects the severity of vaccination side effects ( Laarbi 

t al., 2013 ). So, the region for the control intervention u (t) ∈ [0 , 1]

s given as � = { u (t) | u (t) ∈ [0 , 1] , t ∈ [0 , T f ] } , where T f is the

nal time up to which the control policy is executed, and also 

 (t) is a measurable and bounded function. The optimal control 

ntervention u ∗(t) exists in � that minimizes the cost function J. 

heorem 1. The optimal control intervention u ∗ in � of the optimal 

ontrol problem (8) and (9) exists such that J(u ∗) = min [ J(u )] . 

roof. A mathematical proof is provided in Appendix A . �
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In what follows, in order to obtain the optimal control vari- 

ble u ∗, the Hamiltonian function is formulated by introducing ad- 

oint variables λ = (λ1 , λ2 , . . . , λ5 ) ∈ R 

5 , and minimized by apply-

ng Pontryagin’s Maximum Principle ( Pontryagin, 1987 ) (please see 

ore explanations in Appendix B ). 

heorem 2. If u ∗ is the optimal control variable and S ∗, I ∗, Q 

∗, U 

∗,

 

∗ are optimal state variables of the optimal control problem (8) and 

9) , there exist then adjoint variables λ = (λ1 , λ2 , . . . , λ5 ) ∈ R 

5 that 

atisfy the canonical system of Eq. (10) : 

d λ1 

d t 
= λ1 (β1 I + β2 Q + β3 U + d + u ) 

−λ2 (β1 I + β2 Q + β3 U) − λ5 (u ) , 

d λ2 

d t 
= −w 1 + λ1 (β1 S) − λ2 (β1 S − d − δ1 − k ) 

−λ3 (kτ ) − λ4 (k (1 − τ )) , 

d λ3 

d t 
= −w 2 + λ1 (β2 S) − λ2 (β2 S) + λ3 (d + δ2 + v 1 ) − λ5 (v 1 ) , 

d λ4 

d t 
= λ1 (β3 S) − λ2 (β3 S) + λ4 (d + δ3 + v 2 ) − λ5 (v 2 ) , 

d λ5 

d t 
= λ5 (d) , (10) 

With the transversality conditions λi (T f ) = 0 , i = 1 , . . . , 5 , the op-

imal control variable u ∗ is given as: 

 

∗ = min 

{
max 

{
0 , 

(λ1 − λ5 ) S 

2 w 3 

}
, 1 

}
, (11) 

roof. A mathematical proof is provided in Appendix C . �

Finally, we can establish the optimal system by replacing the 

btained optimal control variable (11) at the optimal control prob- 

em (8) and (9) with optimal state variables. Noteworthy, as far 

s the pandemic is not over, uS(t) helps estimate the demand for 

accines for the population that should be provided. More impor- 

antly, at the endemic equilibrium point (i.e., R 0 < 1 ), the demand 

or the vaccines can be estimated as u ∗ S ∗ resulting from the opti- 

al system. Accordingly, the government should increase the value 

f u until it reaches its optimal value u ∗ to enter the endemic equi-

ibrium point. 

. Mathematical formulation 

This section formulates the MVMDLIRP to distribute purchased 

accines from a central storage hub to a set of vaccination cen- 

ers through a set of intermediate distribution centers/depots. In 

his network, the location of the central storage hub and vacci- 

ation center is fixed, while the locations of the distribution cen- 

ers need to be determined. Both distribution and vaccination cen- 

ers are able to hold an inventory of vaccines in different periods. 

oreover, two groups of vaccines are available that differ in their 

hysicochemical properties, including mRNA vaccines (e.g., Pfizer- 

ioNTech and Moderna) and Adenovirus vector vaccines (e.g., As- 

raZeneca and Sputnik V). These vaccines require different storage 

odes while the former should be stored in ultra-cold freezers be- 

ween [ −80 ◦C, −15 ◦C], the latter should be stored in refrigerators 

etween [2 ◦C, 8 ◦C]. Therefore, different inventory holding costs 

re applied to each type of vaccine. It is also considered that a 

raction of the vaccines might perish/deteriorate from one period 

o the next and be lost. To make the problem more realistic, the 

opulation is divided into different classes based on their age, and 

ach class has a particular priority to be vaccinated. 

According to the description, in order to provide an applica- 

le plan for vaccine distribution, three main categories of decisions 

hould be made simultaneously: design , distribution , and inventory . 
1255 
he design decision focuses on locating distribution centers from 

 set of potential locations. Notably, these potential places have 

pecialized storage facilities and usually only need to make small 

hanges in the deployment of equipment. Therefore, when the 

andemic spread is controlled, we need to close these centers or 

educe their numbers. So, this can be performed with minimal en- 

rgy, time, and cost, and these facilities can return to their previ- 

us activities. Therefore, this level of decision should be reviewed 

eriodically according to the volume of demand for vaccination. 

herefore, in the presented model, we have periodically reviewed 

he decisions related to this level, confirming that the location de- 

ision in the current problem does not belong to strategic level 

ecisions. Next, decisions related to the distribution of vaccines 

hould be made. In this regard, the vaccine distribution should be 

erformed from opened distribution centers as intermediate nodes 

etween the central storage hub and vaccination centers. In fact, 

he inventory levels in opened distribution centers and vaccination 

enters are the decision criteria for supplying vaccines from the 

entral storage hub and sending them to vaccination centers. 

Additionally, the delivery of vaccines from opened distribution 

enters to vaccination centers is performed via a limited number 

f refrigerated trucks, and each truck has a limited capacity. At 

ach distribution center, the trucks are loaded with appropriate 

accines, and each truck is responsible for delivering a number of 

accines to different vaccination centers. Consequently, the ship- 

ing of vaccines from distribution centers to vaccination centers 

s addressed as a vehicle routing problem. What is more, due to 

he dynamic nature of demand, resource limitations, and capaci- 

ies of trucks and vaccination centers, in most cases, it is impossi- 

le to meet the vaccine demand of vaccination centers in one visit. 

herefore, in order to overcome this problem, split delivery is in- 

ended for the distribution of vaccines. Thus, several trucks from 

ifferent distribution centers can meet the demand for a vaccina- 

ion center. 

Moreover, since the amount of vaccines produced is much 

ower than the current demand, a fair distribution system is con- 

idered between vaccination centers. For the sake of fairness, a ser- 

ice gap level is defined, which guarantees that the difference be- 

ween the ratio of satisfied demand to the demand of two different 

accination centers cannot exceed the specified service gap. There- 

ore, we can guarantee that all vaccination centers can supply the 

accine demand of the people assigned to them within an accept- 

ble boundary. Also, a predetermined percentage of each vaccina- 

ion center’s total demand is guaranteed to be met. In this regard, 

he shortage of vaccines is also considered by unmet demand that 

appens when the demand for vaccines is more significant than 

he supply power. Additionally, the cost of unmet demand is cor- 

espondent by morbidity and mortality costs that an unvaccinated 

ndividual imposes on the health system. Notably, we have consid- 

red this cost to be the same for all target age groups because, on 

he one hand, this issue is of equal importance to all residents in a 

ommunity, and on the other hand, it expresses a kind of fairness 

n the distribution of vaccines. 

More importantly, COVID-19 vaccines should be injected in two 

oses, which should be done in a predefined time interval. Al- 

hough this time has a lower bound according to the assessment of 

he World Health Organization and vaccine-producing companies, 

his lag is not necessarily fixed. In fact, the inventory of purchased 

accines, the severity of the disease’s spread, and the government’s 

olicies in the vaccination process can change the time interval. In 

ddition, as previously discussed, the second dose should be the 

ame as the first dose, so each vaccination center must respond to 

wo types of demand in each period. The first type, which we call 

ew demand, is related to people who want to inject their first 

ose. The second type of demand is related to people who want 

o inject their second dose, and the type of vaccine required for 
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he second injection must be the same as the first dose. Therefore, 

ach period’s cumulative demand must be calculated for each dis- 

ribution center. The main assumptions of the described problem 

re as follows: 

• The locations of the central storage hub and vaccination centers 

are predefined; 
• The capacities of the central storage hub, distribution centers, 

vaccination centers, and vehicles are limited; 
• The shortage of vaccines is allowed, which is considered by un- 

met demand; 
• COVID-19 vaccines must be injected twice with a predefined 

time interval; 
• The second dose of vaccines must be injected the same as the 

first dose for each individual; 
• People are classified into a number of classes based on their 

ages; 
• The satisfaction of demand for vaccines is based on the priority 

of each class of people; 
• Each vaccine center can be visited by vehicles more than once, 

which is implied by the split delivery; 
• The demand for vaccines is uncertain and has a dynamic pat- 

tern, which is estimated by the proposed adjusted SIR model 

with OCP; 
• Vaccines can become unusable due to fractions during shipping 

or opening and deterioration; 
• The unit cost of unmet demand is an estimation of the cost that 

an unvaccinated individual imposes on the health system (e.g., 

test, treatment, hospitalization, and death costs); 
• The government obliges the people to receive the total dose of 

vaccines in order to receive social services. 

.1. Notations 

Table 3 lists the notations to formulate the MVMDLIRP. 

.2. The MVMDLIRP formulation 

This section formulates the MVMDLIRP in terms of a mixed- 

nteger non-linear programming model using the notations de- 

cribed in Section 4.1 , where the demand for vaccines is estimated 

rom the proposed modified SIR model (9) . The non-linear terms 

re linearized afterward. 

.2.1. Objective function 

The objective function of the MVMDLIRP formulation is pre- 

ented as (12) which minimizes the total costs of the system. 

in Z = 

∑ 

j∈ J 

∑ 

t∈ T 
f j Z jt + 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

t∈ T 
c p j U p jt 

+ 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

i ∈ I 

∑ 

t∈ T 
cs p ji T p jit + 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

t∈ T 
h 

DC 
p jt I p jt 

+ 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

t∈ T 
h 

VC 
pi I 

′ 
pit + 

∑ 

j∈ M 

∑ 

i ∈ M 

∑ 

v ∈ V 

∑ 

t∈ T 
πv 	 ji X ji v t 

+ cu 

∑ 

p∈ P 

∑ 

k ∈ K 

∑ 

i ∈ I 

∑ 

t∈ T 
w pkit 

(
R pkit 

d pkit 

)
(12) 

The objective function (12) includes seven different terms, in- 

luding 1) fixed cost of opening distribution centers, 2) variable 

ransportation cost of shipping vaccines from the central storage 

ub to distribution centers, 3) variable transportation cost of ship- 

ing vaccines from distribution centers to vaccination centers, 4) 

ariable inventory holding cost of vaccines in distribution centers, 

) variable inventory holding cost of vaccines in vaccination cen- 

ers, 6) variable transportation cost (per distance) of vehicles, and 
1256 
) unmet demand cost. The last term also guarantees the priori- 

ization of different age groups for vaccination. In fact, this term 

eeks to minimize the total remaining fraction of unmet demand, 

herein the fraction of unmet demand of a given vaccination cen- 

er is weighted by its related priority score. 

.2.2. Constraints 

In the following, the constraint body of the proposed 

VMDLIRP formulation is explained. The first set of constraints, 

.e., (13) –(17) , determine different quantities in the model from dis- 

ributed vaccines to unmet demands. 
 

p∈ P 
(1 − γp jt ) U p jt ≥

∑ 

p∈ P 

∑ 

i ∈ I 
T p jit Y jit ∀ j ∈ J, t ∈ T (13) 

 

k ∈ K 
G pkit ≤

∑ 

j∈ J 
(1 − μp jit ) T p jit Y jit ∀ p ∈ P, i ∈ I, t ∈ T (14)

k d pkit ≤ G pkit ≤ d pkit ∀ p ∈ P, k ∈ K, i ∈ I, t ∈ T , t ≤ L p (15)

k d pkit + G pkit ′ ≤ G pkit ≤ d pkit 

+ G pkit ′ ∀ p ∈ P, k ∈ K, i ∈ I, t ∈ T , t > L p , t 
′ = t − L p , (16) 

 pkit = R pki,t−1 + d pkit − G pkit ∀ p ∈ P, k ∈ K, i ∈ I, t ∈ T (17)

Constraint (13) guarantees that the number of vaccines dis- 

ributed from each distribution center should be less than the 

umber of arrival vaccines to that center, incorporating the ship- 

ing lost rate. Similarly, constraint (14) holds the same condition 

n arrival and distributed vaccines at each vaccination center. Con- 

traints (15) and (16) determine the amount of demand that needs 

o be fulfilled for the first and the second dose of each vaccine, re- 

pectively, such that the fulfilled demand of a vaccine for its first 

ose in period t should be re-fulfilled in period t + L . Finally, con-

traint (17) monitors the unmet demands at each period based on 

he actual demand and the amount of demand that each vaccina- 

ion center fulfills. 

By involving inventory and shipping lost rates, the set of con- 

traints (18) and (19) preserve the inventory level of vaccines in 

istribution and vaccination centers, respectively. 

 

DC 
p jt = (1 − αp j,t−1 ) I 

DC 
p j,t−1 

+ (1 − γp jt ) U p jt −
∑ 

i ∈ I 
T p jit ∀ p ∈ P, j ∈ J, t ∈ T (18) 

 

VC 
pit = (1 − λpi,t−1 ) I 

VC 
pi,t−1 + 

∑ 

j∈ J 
(1 − μp jit ) T p jit 

−
∑ 

k ∈ K G pkit 

1 − φpit 

∀ p ∈ P, i ∈ I, t ∈ T (19) 

The set of constraints (20) and (24) ensure the capacity restric- 

ions such that (20) represents the supply capacity for the number 

f vaccines transferred from the central storage hub; constraints 

21) limit the number of vaccines delivered to each vaccination 

enter; constraints (22) ensure the capacity of vehicles when ship- 

ing vaccines; and finally, constraints (23) and (24) limit the level 

f inventory at distribution and vaccination centers, respectively. 
 

j∈ J 
U p jt ≤ Q 

CH 
p ∀ p ∈ P, t ∈ T (20) 

 

j∈ J 
(1 − μp jit ) T p jit ≤ Q̄ 

VC 
pi ∀ p ∈ P, i ∈ I, t ∈ T (21)

 

i ∈ I 

∑ 

p∈ P 
T p jit ZK jv t ≤ Q 

V 
v ∀ j ∈ J, v ∈ V, t ∈ T (22)
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Table 3 

Notations of the proposed multi-period PISP model. 

Notation Description 

Sets & Indices 

j ∈ J Set of distribution centers 

i, i ′ ∈ I Set of vaccination centers 

m ∈ M Set of entire nodes in the network; M = I ∪ J
p ∈ P Set of vaccines 

k ∈ K Set of population classes 

v ∈ V Set of shipping vehicles 

t , t ′ ∈ T Set of time periods 

Parameters 

w pkit /d pkit Priority/demand of each population class k at each vaccination center i for receiving vaccine p in period t

βk Minimum percentage of the demand of each population class k that should be fulfilled 

δ Service level gap at which a fair distribution of vaccine among different vaccination centers should be established; δ ≥ 1 . This is also called the 

maximum ratio among the proportions of fulfilled demand at all vaccination centers 

L p Time interval between two doses of vaccines. In fact, It is imposed to the system that each population class must receive two doses of the same 

vaccine. Therefore, the demand level in the network is indeed doubled 

f j Fixed cost of establishing the distribution center j

γp jt Lost rate of vaccines while shipping the vaccine p from the central storage hub to distribution center j in period t

μp jit Lost rate of vaccines while shipping the vaccine p from distribution center j to vaccination center i in period t

c p j Unit shipment cost of vaccine p from the central storage hub to distribution center j

cs p ji Unit shipment cost of vaccine p from distribution center j to vaccination center i 

	i j Distance between each pair of nodes i and j in the network ( i, j ∈ M) 

πv Variable (per distance unit) cost of vehicle v 
I DC 
p j, 0 

/ I DC 
pi, 0 

Initial inventory of vaccine p hold at distribution center j/vaccination center i 

h DC 
p jt 

/ h VC 
pit 

Unit inventory holding cost of vaccine p at distribution center j/vaccination center i in period t

αp jt Perishing (deterioration) rate of vaccine p at distribution center j at the end of period t

λpit / φpit Perishing/deterioration rate of vaccine p at vaccination center i at the end of period t

Q CH 
p Storage capacity constraint of vaccine p at the central storage hub 

Q DC 
p j 

/ Q VC 
pi 

Storage capacity of vaccine p at distribution center j/vaccination center i 

Q V v Shipping capacity of vehicle v 
Q̄ VC 

pi 
Arrival capacity of vaccine p at vaccination center i 

cu Unit cost of unmet demand 

M A big enough number 

Decision variables 

I DC 
p jt 

/ I VC 
pit 

Inventory level of vaccine p at distribution center j/vaccination center i at the end of period t

U p jt Amount of vaccine p shipped from the central storage hub to distribution center j in period t

T p jit Amount of vaccine p shipped from distribution center j to vaccination center i in period t

G pkit Amount of fulfilled demand of population class k for vaccine p from vaccine center i in period t

R pkit Amount of demand of population class k for vaccine p left unmet from vaccine center i in period t; R pki, 0 = 0 

Z jt 1 if distribution center j is opened/utilized in period t; 0 otherwise 

Y jit 1 if vaccination center i is assigned to distribution center j in period t; 0 otherwise 

X ji v t 1 if node j is on the route of vehicle v before node i at time period t; 0 otherwise 

ZK jv t 1 if node j is on the route of vehicle v at time period t; 0 otherwise 

UU i v t The subtour elimination variable 

I  

I

a

i

t

w

l

t

t

t

o

v

a

t

c

r

o

b

e

a  

c

a

e

Y

∑
∑

 

DC 
p jt ≤ Q 

DC 
p j Z jt ∀ p ∈ P, j ∈ J, t ∈ T (23)

 

VC 
pit ≤ Q 

VC 
pi ∀ p ∈ P, i ∈ I, t ∈ T (24) 

In order to address the fairness in distributing the vaccines 

mong different vaccination centers, constraints (25) and (26) are 

ntroduced such that the former determines the service gap, i.e., 

he maximal ratio between fulfilled demand proportions to the 

hole demand for all vaccines among all population classes. The 

atter also signifies that all vaccination centers that are served by 

he same distribution center will receive the same proportions of 

heir demand. ∑ 

p∈ P 
∑ 

k ∈ K G pkit ∑ 

p∈ P 
∑ 

k ∈ K d pkit 

≤
∑ 

p∈ P 
∑ 

k ∈ K G pki ′ t ∑ 

p∈ P 
∑ 

k ∈ K d pki ′ t 
· δ ∀ i, i ′ ∈ I; i  = i ′ , t ∈ T 

(25) 

∑ 

p∈ P 
∑ 

k ∈ K G pkit ∑ 

p∈ P 
∑ 

k ∈ K d pkit 

≤
∑ 

p∈ P 
∑ 

k ∈ K G pki ′ t ∑ 

p∈ P 
∑ 

k ∈ K d pki ′ t 

+ (2 − Y jit − Y ji ′ t ) ∀ i, i ′ ∈ I; i  = i ′ , j ∈ J, t ∈ T 

(26) 

Z

1257 
The remaining set of constraints (27) –(42) are to design 

he distribution network. Constraint (27) ensures that only 

pened/established distribution centers can distribute vaccines to 

accination centers. Constraints (28) and (29) , respectively, guar- 

ntee that each vaccination center is assigned to at least one dis- 

ribution center at each period as well as more than a single vac- 

ination center is assigned to each distribution center at each pe- 

iod. Constraints (30) and (31) ensure that shipping vehicles serve 

nly established distribution centers and only the established links 

etween them and vaccination centers. Constraint (32) forces that 

ach vehicle can travel through the link from node i to node j if 

nd only if it is decided that node j be on the path of the vehi-

le v . Constraint (33) guarantees that each vehicle is assigned to 

t most a single distribution center. Constraint (34) indicates that 

ach node should be on the path of at least one vehicle. 

 jit ≤ Z jt ∀ j ∈ J, i ∈ I, t ∈ T (27) 

 

j∈ J 
Y jit ≥ 1 ∀ i ∈ I, t ∈ T (28) 

 

i ∈ I 
Y jit ≥ 1 ∀ j ∈ J, t ∈ T (29) 

 jt ≥ ZK jv t ∀ j ∈ J, v ∈ V, t ∈ T (30) 
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 jit ≥ X ji v t ∀ j ∈ J, i ∈ I, v ∈ V, t ∈ T (31) 

K jv t ≥ X ji v t ∀ j ∈ M, i ∈ I, v ∈ V, t ∈ T (32) 

 

j∈ J 
ZK jv t ≤ 1 ∀ v ∈ V, t ∈ T (33) 

 

v ∈ V 
ZK jv t ≥ 1 ∀ j ∈ M, t ∈ T (34) 

Constraint (35) states that a vaccination center can be assigned 

o a distribution center if both centers are on the same route. Con- 

traint (36) allows split delivery and ensures that each vaccina- 

ion center is visited at least once. That is to say, the number of 

accines required by each vaccination center can be fulfilled not 

s a whole but through smaller deliveries by different vehicles 

rom distribution centers. Constraint (37) ensures that each vehi- 

le should be dispatched from at most a single distribution center. 

onstraint (38) forces that each distribution center dispatches at 

east one vehicle. In addition, constraint (39) ensures that at most 

ne vehicle could be assigned for each route. The connectivity con- 

ition for vehicles is guaranteed by constraint (40) , and constraint 

41) indicates that distribution centers can deliver vaccines only to 

he assigned vaccination centers. Constraint (42) guarantees sub- 

our elimination. Finally, constraint (43) determines the types of 

ecision variables. 
 

j∈ M 

X i jv t + 

∑ 

j∈ M 

X j ′ jv t − Y j ′ it ≤ 1 ∀ i ∈ I, j ′ ∈ J, v ∈ V, t ∈ T (35)

 

j∈ M 

∑ 

v ∈ V 
X ji v t ≥ 1 ∀ i ∈ I, t ∈ T (36) 

 

j∈ J 

∑ 

i ∈ I 
X ji v t ≤ 1 ∀ v ∈ V, t ∈ T (37) 

 

v ∈ V 

∑ 

i ∈ I 
X ji v t ≥ 1 ∀ j ∈ J, t ∈ T (38) 

 

v ∈ V 
X ji v t ≤ 1 ∀ i, j ∈ M; i  = j, t ∈ T (39)

 

i ∈ M 

X ji v t −
∑ 

i ∈ M 

X i jv t = 0 ∀ j ∈ M, v ∈ V, t ∈ T (40)

 p jit ≤ M Y jit ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (41)

 U jv t − U U i v t + | I | X ji v t ≤ | I | − 1 ∀ i, j ∈ I , v ∈ V, t ∈ T (42)

 pjt , T pjit , G pkit , R pkit , I pjt , I 
′ 
pit 

, UU jv t ≥ 0 

 jt , Y jit , ZK jv t , X ji v t ∈ { 0 , 1 } ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T 

(43) 

The proposed formulation of this section is a non-linear pro- 

ramming model due to the multiplication T pjit Y jit in constraints 

13) and (14) as well as the multiplication T pjit ZK jv t in constraint 

22) . The linearization has been provided in Appendix D . 

The employment of SIR models in a vaccine distribution net- 

ork is twofold: Apriori or Interactive . In an apriori way ( Gamchi 

t al., 2021 ), the SIR model is used to estimate the dynamic de- 

and with a given vaccination strategy (i.e., fixed rate of vacci- 

ation (i.e., u in 1 )). In this approach, once the demand is esti-

ated for the whole planning horizon, the demand is given as an 

nput parameter to the optimization model. Furthermore, the deci- 

ions in one period do not affect the estimated demand of further 
1258 
eriods, except the unmet demand accumulated over periods. In 

n interactive way ( Bertsimas et al., 2022 ), the SIR model interacts 

ith an optimization model in each period. In this way, the vac- 

ination rate u is a decision variable, and the optimization model 

etermines it according to the technical constraints of the distri- 

ution network. In this way, the decisions in each period directly 

ffect the estimated demand for further periods, and no unmet de- 

and is considered. Accordingly, the SIR model is updated at the 

nd of each period based on the output of the optimization model 

n that period, and it estimates the demand for the next period. 

he new demand is then given to the optimization model for fur- 

her vaccination decisions. These optimization models, which are 

xecuted for each period, are called myopic models. In this pa- 

er, we have employed the apriori approach with a given vacci- 

ation rate u , where the SIR model is executed once throughout 

he whole planning horizon. 

. Benders decomposition - BD 

This section employs a Benders decomposition algorithm 

 Benders, 1962 ) to solve the proposed model for the MVMDLIRP. 

enders (1962) proposed the BD algorithm to deal with prob- 

ems with complicated variables, where it decentralizes the struc- 

ure of a problem to provide an easier formation of the prob- 

em to reduce the computational burden ( Abou-Ismail, 2020; Rah- 

aniani et al., 2018 ). From then until now, it has been gaining 

restige as one of the most powerful exact algorithms to solve a 

road range of NP-hard problems, such as vehicle routing ( Corréa 

t al., 2007 ), facility location ( Boland et al., 2016 ), logistics network 

esign ( Cordeau et al., 2006 ), transportation ( Coelho & Laporte, 

014 ), and inventory vehicle routing ( Alkaabneh et al., 2020 ). What 

s more, many studies in the literature have used the BD algo- 

ithm to solve the vehicle routing problem and its derivatives, such 

s location-routing ( Çalık et al., 2021 ), location-inventory-routing 

 Zheng et al., 2019 ), and production-inventory-routing ( Cordeau 

t al., 2015 ) problems. As a result, several efficient valid inequal- 

ties have been presented for these problems that could limit the 

olution space and improve the convergence speed of the BD. 

ence, since the proposed model in the current research is one 

f the derivatives of the vehicle routing problem, the BD algorithm 

s employed to solve the proposed model. 

.1. BD in general 

The idea behind the BD algorithm is to divide the original prob- 

em into a master problem and a set of sub-problems, with the 

ope that the decomposed problem be easier to be solved ( Abou- 

smail, 2020; Rahmaniani et al., 2018 ). The master problem in- 

orporates a part of the original model with only integer vari- 

bles. On the other hand, sub-problems are formed by applying 

rogramming duality over the rest of the original model, know- 

ng that the value of the integer variables is given. Along with 

he integer variables in the master problem, an artificial variable 

s considered that describes a lower bound (upper bound) on the 

ub-problems’ objective function for a minimization (maximiza- 

ion) problem. Through the BD algorithm (see Fig. 2 ), master and 

ub-problems are solved iteratively, such that the master problem 

s solved first and the values of the integer variables are deter- 

ined. Next, the sub-problems are solved for the given value of 

he integer variables from the master problem. Finally, a feasibility 

ut (based on the values of the sub-problems’ variables) is added 

o the master problem if some sub-problems are infeasible or un- 

ounded; else, an optimality cut is added. If sub-problems are fea- 

ible, an upper bound can be obtained, and if the optimal solution 

s obtained by solving the master problem, a lower bound can be 

btained. This procedure is repeated for further iterations until a 
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Fig. 2. BD’s flowchart. 
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topping criterion is met (i.e., the maximum number of iterations 

r a threshold for the gap between the obtained lower and upper 

ounds). Afterward, a set of accelerators, in terms of inequalities , 

re employed to enhance BD’s performance, the so-called acceler- 

ted BD (ABD) algorithm. In the following subsection, a set of valid 

nequalities are introduced. 

.2. Valid inequalities 

The first set of valid inequalities (44) –(46) have been widely 

sed in the literature for inventory and location routing problems 

 Coelho & Laporte, 2014; Darvish et al., 2019 ). These inequalities 

re employed to empower the linear programming relaxation of 

he MVMDLIRP formulation. 

 

v ∈ V 

t 2 ∑ 

t ′ = t 1 
ZK i v t ′ 

≥
∑ t 2 

t ′ = t 1 
∑ 

p∈ P 
∑ 

k ∈ K d pkit ′ −
∑ 

p∈ P I 
VC 
pit 1 ∑ t 2 

t ′ = t 1 
∑ 

p∈ P 
∑ 

k ∈ K d pkit ′ 
∀ i ∈ I, t 1 , t 2 ∈ T ; t 2 ≥ t 1 

(44) 

 ii v t = 0 ∀ i ∈ M, v ∈ V, t ∈ T (45)

 · ZK jv t ≤
∑ 

i ∈ I 
X ji v t + 

∑ 

i ∈ I 
X i jv t ∀ j ∈ J, v ∈ V, t ∈ T (46)

The idea behind the valid inequality (44) relates to whether the 

nventory held at each vaccination center at each period is suffi- 

ient to fulfill future demands. More precisely, if the inventory held 

n period t 1 by vaccination center i is sufficient to fulfill its demand 

or periods [ t 1 , t 2 ] , then no delivery of vaccines to vaccination

enter i is required. Indeed, if 
∑ 

p∈ P I VC 
pit 1 

≥ ∑ t 2 
t ′ = t 

∑ 

p∈ P 
∑ 

k ∈ K d pkit ′ , 

1 

1259 
hen 

∑ 

v ∈ V 
∑ t 2 

t ′ = t 1 
ZK i v t ′ ≥ 0 . On the other hand, if the inventory is 

ot sufficient to fulfill future demands, then a delivery must take 

lace. Moreover, the valid inequality (45) eliminates links between 

 node and itself. Finally, the valid inequality (46) forces that one 

oute can start and end at a distribution center in each period if 

he distribution center is opened/established. 

Another type of valid inequality, called knapsack inequality 

 Santoso et al., 2005 ), is used in the proposed ABD algorithm. The 

napsack inequality is added to the master problem with the aim 

f accelerating the branch-and-bound process of the solver. In- 

eed, the convergence speed of Benders decomposition can be im- 

roved by adding the knapsack inequality, which assists progres- 

ive solvers like Gurobi in deriving a range of valid inequalities. 

B 

n ≤
∑ 

j∈ J 

∑ 

t∈ T 
f j Z jt + 

∑ 

j∈ J 

∑ 

i ∈ M 

∑ 

v ∈ V 

∑ 

t∈ T 
πv 	i j X ji v t + ζ (47) 

here LB n represents the best lower bound found so far (i.e., the 

bjective function value (the best lower bound found by the solver) 

n the previous iteration in case of feasibility (infeasibility)), and ζ
s an additional variable representing the total cost except fixed 

pening cost distribution centers as well as the variable shipping 

ost of the vehicles. 

The Benders reformulation of the MVMDLIRP is provided in 

ppendix E . 

. Computational experiments 

This section presents the computational results of the designed 

accine distribution network under demand dynamicity. In the fol- 

owing, Section 6.1 designs a set of experiments based on a real 

ase study, the vaccination campaign during the COVID-19 pan- 

emic in France. Next, Section 6.2 presents a comparative anal- 

sis between the proposed ABD algorithm and the Gorubi solver 
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Fig. 3. The case study representing different regions with corresponding population 

indices. 
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GRB). Finally, a set of comprehensive sensitivity analyses are con- 

ucted in Section 7 to investigate the behavior of the proposed 

VMDLIRP model to any changes of its input parameters. These 

ensitivity analyses help to draw valuable insights for health poli- 

ymakers ( Fig. 3 ). 

.1. Experimental design and case study 

This section describes a real case study (see Fig. 3 ) on the vac-

ination campaign in France. France encompasses a total number 

f 18 regions (i.e., 13 metropolitan and 5 overseas regions) and is 

ivided into 101 departments (i.e., 96 metropolitan and 5 overseas 

epartments). Among all, a number of 12 metropolitan regions (see 

ig. 3 (a) with the total eligible-for-vaccination population of each 

egion in parentheses) are considered to be the potential location 

or establishing distribution centers (i.e., | J| = 12 ), and a number 

f 80 metropolitan departments are considered as the vaccination 

enters (i.e., | I| = 80 ) or the areas that have a particular demand

or vaccines. The metropolitan regions in France possess different 

roperties (e.g., demographic, educational, social, economic, etc.), 

nd these disparities among regions make vaccination a complex 

ork for France’s health policymakers. A summary of these prop- 

rties has been provided per region in Table F.1 in Appendix F . In

his case study, the population in each area is divided into four 

ge-based classes (i.e., | K| = 4 ; ages: “18–49”, “50–64”, “65–74”, 

> 75 ”), and each area includes a different number of individuals 

er each age-based class (see Fig. 3 (b)). The central storage hub 

f the purchased vaccines is located in the capital (i.e., region de- 

rance). A total number of 24 refrigerated trucks are considered 

i.e., | V | = 24 ) to ship the vaccines from distribution centers to vac-

ination centers. 

The dynamic demand for vaccines in each populated area is ob- 

ained by running the proposed system dynamics model (9) for 

hat area, where the birth and death rates as well as the popu- 

ation are different for each area. Detailed information on all other 

arameters of the adjusted SIR model and the MVMDLIRP model 

s provided in Table 4 . Except for the birth and death rates as well

s the population in each set of populated areas, other parameters 

f the adjusted SIR model are considered similar for the whole of 

rance ( Angeli et al., 2021; OPECST, 2021 ). 

In Table 4 , the unit shipment costs c and cs are calculated based 

n the rent price of refrigerated trucks divided by their holding 

apacity (per pallet of 10k vaccines). Depending on the type and 

apacity of the truck, this cost varied from 10 to 40 euros. In ad- 

ition, the variable (per distance) shipment cost π represents the 

ehicles’ traveling cost (e.g., fuel). The unit holding costs h DC/VC 
1260 
re also proportional to the shipment cost of vaccines, c, since the 

hipment cost is indeed the cost of utilizing mobile refrigerators to 

old vaccines. Furthermore, the unit unmet demand cost is calcu- 

ated as the expected cost that an unvaccinated individual imposes 

n the health system (e.g., treatments, medicines, hospitalization, 

est costs, etc.). 

Figure 4 illustrates the outcomes of the adjusted SIR model in 

etermining the state variables for two distinct populated areas, 

he demand points of vaccines. As can be observed, the dynamic- 

ty of the state variables in the two areas are significantly different, 

nd they do not follow a specific distribution. These issues demon- 

trate the necessity of employing epidemiological-based system 

ynamics models (i.e., the adjusted SIR model) to determine the 

emand for vaccines. Remarkably, since the pandemic is not over 

t the time of this research, the state variable uS ( Fig. 4 f) is used

o estimate the demand for vaccines in each populated area. 

The performance of the proposed ABD algorithm is tested 

hrough a set of 36 test problems with a different number of vac- 

ination centers and time periods. All test problems except the last 

ne are indeed smaller parts of the case study with fewer vaccina- 

ion centers or fewer time periods. Since the adjusted SIR model is 

un for each populated area for a time horizon of 365 days, and it 

s also impossible and illogical to plan the MVMDLIRP daily, each 

eriod of the MVMDLIRP model represents a week and the demand 

or each period is the cumulative demand of the whole week. 

Both the MVMDLIRP model and the ABD algorithm were coded 

n Python 3.8 using the Gurobi 9.1.2 library, and all experiments 

ere done on a server containing four Intel XEON processors with 

 gigabytes of RAM memory running at 2.3 gigahertz. Furthermore, 

wo stopping criteria were considered, when executing the ABD al- 

orithm and GRB, as 1) a gap of 1% and 2) a CPU time of 7200 sec-

nds. For the ABD algorithm, the first criterion is the gap (%) be- 

ween the obtained lower-bound and upper-bound at each algo- 

ithmic iteration; and for GRB, it is the gap (%) between the best- 

ound solution and the current obtained solution. 

.2. Numerical results 

This section conducts a comparative analysis of the perfor- 

ance of the proposed ABD algorithm with valid inequalities 

ABD-w-VI) and without valid inequalities (ABD-wo-VI) compared 

o GRB. Table 5 shows the results of this comparison for 36 test 

roblems with a different number of vaccination centers (i.e., col- 

mn | I| ) and different periods (i.e., column “| T | ”) in terms of objec-

ive function values (i.e., columns “Obj. Values”) and computational 

ime (i.e., columns “Time (s)”). In columns “Obj. Values”, the values 

re proportional to the objective value of the test problem #1. The 

oal of this comparison is to evaluate the performance of the pro- 

osed ABD algorithm compared to GRB and evaluate the benefits 

f valid inequalities for the proposed ABD algorithm. 

As can be seen in Table 5 , both ABD-w-VI and ABD-wo-VI algo- 

ithms have been able to obtain solutions with a gap of less than 

% for all test problems before reaching the maximum allowable 

PU time of 7200 seconds, even for larger test problems. However, 

RB has been unable to find the optimal solution for test prob- 

ems (| I| , | T | ) ∈ { (60 , 20 − 24) , (70 , 14 − 18) , (80 , 8 − 12) } under a

omputational effort of 7200 seconds. Furthermore, GRB has not 

ven been able to find a feasible solution for larger test problems 

| I| , | T | ) ∈ { (70 , 20 − 24) , (80 , 14 − 24) } under the limited compu-

ational time. Moreover, columns “Gap” compare the performance 

f the ABD-wo-VI algorithm and GRB with the ABD-w-VI algorithm 

n terms of objective function gap (%) and the computational time 

atio. Regarding the objective function gap, we only compare the 

erformance of GRB, since the ABD-wo-VI has reached the same 

olutions as those of the ABD-w-VI algorithm. In terms of objec- 

ive function gap, the ABD-w-VI algorithm has obtained much bet- 



B. Vahdani, M. Mohammadi, S. Thevenin et al. European Journal of Operational Research 310 (2023) 1249–1272 

Fig. 4. The outcomes of the dynamic optimization model. 

Table 4 

Input data. 

Parameter Value Parameter Value Parameter Value 

I 80 λ [0 . 05 , 0 . 1] L (week) [2 , 6] 

J 12 Q CH [2 M, 5 M] cu ( €) 2000 

P 3 Q DC [0 . 5 M, 1 M] β1 3 . 70 E − 6 

K 4 Q VC [2 E + 4 , 10 E + 4] β2 1 . 48 E − 5 

V 24 Q̄ VC [5 E + 4 , 2 E + 5] β3 7 . 00 E − 4 

T 24 Q V [0 . 3 M, 0 . 5 M] k 0.05 

w [0,0.5] f ( €) [0 . 2 M, 0 . 5 M] δ1 [1 E − 4 , 1 E − 3] 

β [0.1,0.25] c ( €) [10 , 40] δ2 [2 E − 4 , 2 E − 3] 

δ 1.5 cs ( €) [5% , 20%] × c δ3 [5 E − 4 , 5 E − 3] 

γ [0 . 05 , 0 . 1] h DC ( €) [5% , 10%] × c τ 0.2 

μ [0 . 05 , 0 . 1] h VC ( €) [5% , 10%] × c v 1 0.2 

α [0 . 05 , 0 . 1] π ( €) 1% × c v 2 0.05 
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er solutions than GRB with a mean gap of 16% over test problems 

or which GRB has reached at least a feasible solution. In terms of 

omputational time, a paired comparative analysis has only been 

one over the test problems for which both corresponding meth- 

ds have obtained the optimal solution with a gap of less than 1% 

ithin the computational time of 7200 seconds. 

It can be observed that the ABD-w-VI algorithm is faster than 

oth the ABD-wo-VI algorithm and GRB for all the correspond- 

ng test problems with mean ratios of 1.75 and 12, indicating that 

he ABD-w-VI algorithm is, on average, 1.752 and 12 times faster 

han the ABD-wo-VI algorithm and GRB for solving the MVMDLIRP 

odel. To better show the difference between algorithms, Fig. 5 

llustrates the comparison between three solution techniques (i.e., 

BD-w/wo-VI and GRB) in terms of both objective function values 

 Fig. 5 (a)) and the computational time ( Fig. 5 (b)). 

In order to explore the detail of results, Table 6 reports different 

nformation for all test problems, including the number of opened 

istribution centers (“OCD” in %), the unmet demand (“UMD” in %) 

or each age-based class, and the contribution of each vaccine to 

he vaccination of each age-based class (“CVG” in %). 

Looking at column “ODC (%)”, we observe that the larger the 

ize of the problem (i.e., the number of vaccination centers and 
1261 
lanning periods), the higher the number of distribution centers 

o fulfill the demand. Overall, about 82% of the total number of 

istribution centers have been used to fulfill the demand in the 

istribution network. The reason for the value “0” for instances 

ith | T | = 2 (i.e., two weeks) is that the initial inventory of vac-

ines in the vaccination centers is sufficient to fulfill the demand 

or such a short planning horizon. When solving the original case 

tudy with | I| = 80 for planning horizons of | T | ≥ 8 (i.e., greater

han 8 weeks), the whole capacity of the distribution network is 

tilized by opening 100% of the distribution centers. 

The results of columns “UMD (%)” indicate that, in overall, 6.4%, 

.4%, 13.8%, and 23.1% of the demand have remained unmet for 

ge-based classes “> 75 ”, “65–74”, “50–64”, and “18–49”, respec- 

ively. Comparing age-based classes shows that a lower percentage 

f the population remains unvaccinated, from elders to younger 

ndividuals. This comes from the prioritization of the age-based 

lasses in the objective function. More importantly, it can be seen 

hat the unmet demand of elders remains fixed when increasing 

he number of vaccination centers (or indirectly increasing the po- 

ential demand for vaccination); however, the unmet demand of 

ounger individuals increases. The reason is that no matter how 

uch the population is, the system put its all efforts into vac- 
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Table 5 

ABD vs. GRB. 

# | I| | T | Obj. values Time (seconds) Gap (... vs. ABD-w-VI) 

ABD-w-VI ABD-wo-VI GRB ABD-w-VI ABD-wo-VI GRB Obj. (%) Time (ratio) 

GRB ABD-wo-VI GRB 

1 60 2 1.000X 1.000X 1.000X 57 62 130 0 1.09 2.29 

2 60 4 2.066X 2.066X 2.066X 75 83 393 0 1.1 5.28 

3 60 6 3.152X 3.152X 3.152X 88 97 749 0 1.1 8.48 

4 60 8 4.251X 4.251X 4.251X 104 118 1818 0 1.13 17.52 

5 60 10 5.361X 5.361X 5.361X 132 168 2560 0 1.27 19.37 

6 60 12 6.481X 6.481X 6.481X 190 314 3496 0 1.65 18.45 

7 60 14 7.610X 7.610X 7.610X 206 340 4386 0 1.65 21.30 

8 60 16 8.752X 8.752X 8.752X 282 488 5976 0 1.73 21.21 

9 60 18 9.906X 9.906X 9.906X 347 618 6666 0 1.78 19.22 

10 60 20 11.075X 11.075X 14.790X 389 700 7200 33.54 1.8 ∗

11 60 22 12.258X 12.258X 17.430X 470 879 7200 42.19 1.87 ∗

12 60 24 13.457X 13.457X 20.761X 556 1073 7200 54.27 1.93 ∗

13 70 2 1.005X 1.005X 1.005X 46 58 193 0 1.27 4.20 

14 70 4 2.075X 2.075X 2.075X 66 89,1 531 0 1.35 8.02 

15 70 6 3.158X 3.158X 3.158X 139 204 1154 0 1.47 8.29 

16 70 8 4.257X 4.257X 4.257X 187 275 2283 0 1.47 12.23 

17 70 10 5.367X 5.367X 5.367X 191 302 3608 0 1.58 18.92 

18 70 12 6.489X 6.489X 6.489X 378 631 6967 0 1.67 18.43 

19 70 14 7.624X 7.624X 10.636X 422 709 7200 39.51 1.68 ∗

20 70 16 8.772X 8.772X 12.837X 487 891 7200 46.34 1.83 ∗

21 70 18 9.934X 9.934X 14.631X 516 970 7200 47.29 1.88 ∗

22 70 20 11.112X 11.112X ∗∗ 537 1208 ∗∗ ∗∗ 2.25 ∗∗

23 70 22 12.308X 12.308X ∗∗ 685 1569 ∗∗ ∗∗ 2.29 ∗∗

24 70 24 13.467X 13.467X ∗∗ 727 1687 ∗∗ ∗∗ 2.32 ∗∗

25 80 2 1.007X 1.007X 1.007X 56 77 296 0 1.37 5.29 

26 80 4 2.080X 2.080X 2.080X 121 190 1855 0 1.57 15.32 

27 80 6 3.168X 3.168X 3.168X 193 326 4558 0 1.69 23.60 

28 80 8 4.275X 4.275X 6.648X 283 501 7200 55.49 1.77 ∗

29 80 10 5.416X 5.416X 8.570X 385 689 7200 58.24 1.79 ∗

30 80 12 6.497X 6.497X 9.704X 482 877 7200 49.35 1.82 ∗

31 80 14 7.638X 7.638X ∗∗ 598 1244 ∗∗ ∗∗ 2.08 ∗∗

32 80 16 8.786X 8.786X ∗∗ 711 1536 ∗∗ ∗∗ 2.16 ∗∗

33 80 18 9.945X 9.945X ∗∗ 1026 2319 ∗∗ ∗∗ 2.26 ∗∗

34 80 20 11.118X 11.118X ∗∗ 1359 3126 ∗∗ ∗∗ 2.3 ∗∗

35 80 22 12.314X 12.314X ∗∗ 1958 4836 ∗∗ ∗∗ 2.47 ∗∗

36 80 24 13.474X 13.474X ∗∗ 2842 7133 ∗∗ ∗∗ 2.51 ∗∗

∗ Time limit of 7200 seconds reached Average : ≈ 16 ≈ 1 . 75 ≈ 12 . 
∗ No feasible solution after 7200 seconds. 

Fig. 5. Comparison between ABD and GRB. 
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Table 6 

Detailed results. 

# | I| | T | ODC (%) UMD (%) CVG (%) 

“18–49” “50–64” “65–74” “> 75 ” “18–49” “50–64” “65–74” “> 75 ”

AZ MO Pf AZ MO Pf AZ MO Pf AZ MO Pf 

1 60 2 0 25.0 23.9 23.0 21.5 7.9 13.9 78.2 7.9 13.9 78.2 8.3 13.8 77.9 8.9 13.7 77.4 

2 60 4 50 35.2 31.0 26.9 22.1 8.1 16.1 75.8 6.3 15.8 77.9 7.8 15.3 76.8 8.8 15.5 75.7 

3 60 6 67 34.1 27.4 20.9 14.9 7.8 21.9 70.4 6.0 19.7 74.3 7.1 19.4 73.5 7.5 18.9 73.6 

4 60 8 75 31.7 22.3 15.3 9.1 10.6 19.8 69.6 7.4 19.8 72.7 6.1 19.2 74.8 6.0 17.9 76.0 

5 60 10 80 25.0 16.1 8.8 2.2 11.1 18.6 70.3 6.8 20.2 72.9 5.2 18.9 75.9 5.2 16.8 78.0 

6 60 12 83 21.9 12.1 4.1 0.0 12.0 18.2 69.8 5.9 20.6 73.5 4.7 18.5 76.9 5.0 16.3 78.7 

7 60 14 86 18.7 9.2 0.0 0.0 13.2 17.6 69.2 4.9 21.5 73.6 4.3 18.6 77.1 5.1 16.1 78.7 

8 60 16 88 15.7 4.2 0.0 0.0 14.2 17.5 68.3 4.4 22.4 73.2 4.4 19.2 76.4 5.4 15.8 78.8 

9 60 18 89 11.9 0.7 0.0 0.0 15.1 17.0 67.8 3.6 23.7 72.7 4.5 19.2 76.4 5.8 15.3 78.8 

10 60 20 90 11.9 0.0 0.0 0.0 16.2 16.4 67.4 3.4 23.9 72.7 4.5 19.0 76.5 6.2 15.4 78.4 

11 60 22 91 10.1 0.0 0.0 0.0 17.7 14.8 67.5 3.4 23.7 72.8 4.7 18.4 76.8 6.5 15.0 78.5 

12 60 24 92 2.6 0.0 0.0 0.0 19.2 14.0 66.9 3.4 23.8 72.8 4.9 18.6 76.5 6.7 15.0 78.3 

13 70 2 0 25.1 24.1 23.2 21.6 7.9 13.9 78.2 7.9 13.9 78.2 8.3 13.8 77.8 8.8 13.7 77.5 

14 70 4 60 35.5 31.4 27.4 22.6 8.4 12.6 79.0 6.5 13.3 80.1 8.0 12.8 79.2 9.3 12.2 78.5 

15 70 6 72 36.9 29.9 23.2 16.4 8.7 12.0 79.2 6.4 13.3 80.3 7.8 12.1 80.1 8.2 12.3 79.5 

16 70 8 84 33.2 25.0 16.5 9.2 8.6 17.1 74.3 5.7 15.1 79.2 6.7 15.1 78.3 7.1 15.2 77.7 

17 70 10 93 30.7 19.2 10.3 2.3 8.9 18.1 72.9 5.3 17.7 77.0 5.9 16.7 77.4 6.6 15.8 77.6 

18 70 12 96 26.3 14.0 4.4 0.0 9.5 19.1 71.4 5.0 18.2 76.8 5.5 17.2 77.3 6.9 16.4 76.7 

19 70 14 98 22.0 9.4 0.0 0.0 10.6 20.0 69.4 4.6 18.7 76.7 5.5 17.9 76.6 7.3 15.6 77.1 

20 70 16 100 18.5 4.6 0.0 0.0 12.1 19.6 68.3 4.3 19.4 76.4 5.8 17.8 76.4 7.7 15.2 77.1 

21 70 18 100 14.7 0.6 0.0 0.0 15.5 17.6 66.9 4.1 19.7 76.2 6.1 17.5 76.3 7.9 14.5 77.7 

22 70 20 100 12.7 0.0 0.0 0.0 17.5 16.3 66.2 4.1 20.0 75.9 6.2 17.3 76.4 7.9 14.1 78.0 

23 70 22 100 11.5 0.0 0.0 0.0 19.1 15.2 65.7 4.3 20.1 75.7 6.7 17.4 75.9 7.9 13.9 78.2 

24 70 24 100 8.0 0.0 0.0 0.0 21.1 14.2 64.7 5.3 19.1 75.7 8.7 19.4 71.9 7.9 12.9 79.2 

25 80 2 0 27.4 26.3 24.7 22.9 7.9 13.9 78.2 7.9 13.9 78.2 8.4 13.8 77.8 9.0 13.7 77.3 

26 80 4 75 38.5 34.0 28.9 23.6 8.4 12.5 79.0 6.7 13.3 80.0 8.4 12.6 79.0 9.6 12.3 78.0 

27 80 6 88 37.5 31.9 24.0 16.8 9.0 10.9 80.1 6.7 12.7 80.6 8.4 11.6 80.0 8.5 12.5 79.0 

28 80 8 100 36.2 29.0 19.5 12.2 11.0 21.8 67.1 7.5 19.9 72.7 6.3 19.6 74.1 6.6 19.4 74.0 

29 80 10 100 34.7 25.2 15.3 8.3 11.1 20.1 68.8 6.6 20.5 72.9 5.4 19.5 75.1 5.6 18.4 76.0 

30 80 12 100 29.3 19.0 11.4 5.0 12.4 19.0 68.6 5.8 20.6 73.6 4.8 18.7 76.6 5.4 17.4 77.3 

31 80 14 100 26.0 12.4 8.0 1.0 13.2 18.6 68.2 4.9 20.8 74.3 4.4 18.5 77.1 5.7 17.5 76.8 

32 80 16 100 23.5 9.6 2.0 0.0 14.4 17.9 67.7 4.4 21.7 73.9 4.5 19.0 76.6 5.9 16.2 77.9 

33 80 18 100 19.7 2.6 0.0 0.0 15.4 17.4 67.2 3.6 23.0 73.4 4.5 19.2 76.3 6.2 16.3 77.5 

34 80 20 100 16.7 1.0 0.0 0.0 16.3 16.5 67.2 3.4 23.4 73.2 4.6 18.8 76.6 6.3 15.6 78.1 

35 80 22 100 14.5 0.0 0.0 0.0 17.8 15.2 67.1 3.4 23.7 72.9 4.7 18.4 76.9 6.6 15.3 78.1 

36 80 24 100 11.0 0.0 0.0 0.0 19.0 13.7 67.3 3.5 23.5 73.1 5.0 18.0 77.0 6.7 14.8 78.4 

Average : 82.1 23.2 13.8 9.4 6.4 12.7 16.6 70.7 5.3 19.3 75.4 6.0 17.2 76.7 7.0 15.4 77.6 
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inating the elders as many as possible. The rest of the results 

n columns “CVG (%)” show that Pfizer (Pf) is always higher than 

oderna (MO) and AstraZeneca (AZ) vaccines. The main reason is 

he higher quantity of Pfizer vaccines purchased and stored by the 

rench government. These results of Table 6 are helpful to extract 

ome rules for the government when designing a vaccine distribu- 

ion network. For instance, when planning to vaccinate eligible in- 

ividuals through a set of | I| = 80 vaccination centers for a horizon

f | T | = 24 weeks, the optimal vaccination strategy would be open-

ng the whole distribution centers and allocating, on average, 74% 

average over 67.3, 73.1, 77.0, and 78.4), 17.5% (average over 13.7, 

3.5, 18.0, and 14.8), and 8.5% (average over 19.0, 3.5, 5.0, and 6.7) 

f the available capacity (purchased or stored) of vaccines Pfizer, 

oderna, and AstraZeneca vaccines to vaccinate the population. 

. Sensitivity analyses and managerial insights 

.1. Sensitivity analyses 

This section provides a comprehensive sensitivity analysis of 

hree main criteria, including the total cost of the system, the to- 

al inventory of different vaccines, and the total unmet demand of 

ach age-based class with respect to changes of certain input pa- 

ameters, including the minimum percentage of demand to be met 

 β), the maximum supply of vaccines at vaccination centers ( ̄Q 

VC ), 

nventory holding capacity at vaccination centers ( Q 

VC ), inventory 

olding cost at vaccination centers ( h VC ), the demand of vaccines 
1263 
 d), the time interval between two doses injection ( L ), fairness 

ervice level gap ( δ), and unmet cost ( cu ). Figures 6–13 illustrate

hese sensitivities, wherein the value “1.00” on x -axis represents 

he original level of the corresponding parameter in the case study 

nd other values on x -axis are proportional to the original value. 

Figure 6 illustrates how altering parameter β affects the three 

entioned criteria. Precisely, Fig. 6 (a) shows that increasing β
orces the system to vaccinate more individuals, and consequently, 

he corresponding costs also increase linearly. Figure 6 (b) illus- 

rates that the level of inventory for all three vaccines decreases 

ince a larger demand should be fulfilled, and consequently, a 

arger portion of the inventory should be spent. Since a higher 

mount of inventory belongs to the Pfizer vaccine, its decrease 

appens with a higher slope. Finally, Fig. 6 (c) illustrates that im- 

osing the system to fulfill more demands causes more unmet de- 

and for all age-based classes. The reason goes back to the lim- 

ted availability of vaccines in the distribution system. Indeed, the 

ystem’s capacity to fulfill extra demand is limited, and the extra 

emand remains unmet. 

Figure 7 investigates whether changing the supply capacity of 

accines in vaccination centers impacts the concerned three crite- 

ia. Figure 7 (a) shows that the total cost of the system decreases as 

ore vaccines are allowed to be supplied in the vaccination center. 

he potential reason for this decrease is twofold, the reduction in 

he total inventory holding cost or the reduction in the unmet de- 

and cost. As Fig. 7 (b) illustrates, the level of inventory increases, 

hile Fig. 7 (c) shows that the unmet demand decreases. 
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Fig. 6. Impact of minimum percentage of demand to be met on total cost, inventory, and unmet demand. 

Fig. 7. Impact of the maximum supply of vaccines on total cost, inventory, and unmet demand. 
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What can be inferred is that the reduction of the unmet de- 

and cost outweighs the increase of the inventory holding cost. 

onsequently, the total cost of the system decreases. The trends 

n Fig. 7 (b) and (c) were expected since any increase in the sup- 

ly capacity of the vaccines permits to store of more vaccines (i.e., 

n increase of the inventory level), and much larger storage helps 

o vaccinate more individuals (i.e., less unmet demand). What can 

e extracted more from Fig. 7 (c) is that the unmet demand of 

ge-based classes with lower priority (i.e., “18–49”) always re- 

ains higher than the unmet demand of high-priority classes (i.e., 

> 75 ”). 

Moreover, Fig. 8 investigates whether any change in the stor- 

ge capacity of vaccination centers affects the performance of the 

istribution system. As can be seen, by increasing the storage ca- 

acity, all three concerned criteria show a decreasing trend. 

Importantly, significant decreases (e.g., 80% for age-based class 

18–49”) happen in the unmet demand for all age-based classes 
1264 
hen the capacity of the vaccination centers increases up to 40% 

from 0.6 to 1.0 on x -axis of Fig. 8 (c)). Indeed, the increase of the

apacity could be either increasing the capacity of the current vac- 

ination centers by adding more vaccination lines or even opening 

ew vaccination centers. It can also be observed that increasing the 

urrent capacity of the vaccination campaign in France up to 80% 

point 1.8 on x -axis) will cause important reductions in the unmet 

emand in all age-based classes; however, any increase higher than 

0% will not affect the unmet demands. Similar to Fig. 7 (c), the 

nmet demand of age-based class “18–49” always remains higher 

han other classes; however, a significant decrease happens on the 

nmet of this class when increasing the capacity. 

Since the vaccines require special modes of storage (i.e., ultra- 

old freezers/refrigerators), the inventory holding cost plays a vi- 

al role in the distribution centers’ performance. In this regard, 

ig. 9 illustrates how the system reacts to the increase in the in- 

entory holding cost. As can be seen in Fig. 9 (a), the total cost 
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Fig. 8. Impact of inventory holding capacity on total cost, inventory, and unmet demand. 

Fig. 9. Impact of inventory holding cost on total cost, inventory, and unmet demand. 
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f the system increases with the increase of the holding cost. 

hen this parameter increases, the reaction of the system is to ab- 

orb such an increase by decreasing the inventory level ( Fig. 9 (b)), 

ith the hope to reduce the total inventory holding cost. On 

he other hand, any reduction in the inventory level of vaccines 

ignifies less capability of the system to vaccinate the popula- 

ion. Accordingly, the unmet demand increases as illustrated in 

ig. 9 (c). In such a situation, the increase of the total unmet de- 

and cost prevails to the reduction of the total holding inven- 

ory cost; hence, the system’s total cost increases. In addition, 

ig. 9 (b) reveals that by increasing the inventory holding cost, the 

ystem puts its effort into reducing the share of Pfizer and Mod- 

rna since they require ultra-cold freezers and possess a higher 

olding cost. However, the inventory level of the AstraZeneca 

accine remains stable since it costs less in terms of inventory 

olding. 
1265 
Figure 10 depicts the impact of demand alteration on the per- 

ormance of the system and illustrates how the increase in demand 

ffects the cost of the system as well as the levels of inventory and 

nmet demand. Figure 10 (a) represents the reaction of the objec- 

ive function to the increase in demand. As can be seen, this re- 

ction consists of two phases: a decreasing trend followed by an 

ncreasing trend in the total cost of the system. In the decreasing 

hase, the demand for vaccines is small, and it is mostly fulfilled 

ia the initial inventory of the vaccines in both distribution and 

accination centers. During the time that the system consumes the 

nitial inventory in this phase, no extra vaccines are neither dis- 

ributed nor stored in the network. Hence, both inventory holding 

nd transportation costs are reduced, leading to a reduction in the 

ystem’s total cost. On the other hand, once the system runs out of 

he initial inventory, the system starts distributing and storing new 

accines. This phenomenon then increases the total cost of the sys- 
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Fig. 10. Impact of demand on total cost, inventory, and unmet demand. 

Fig. 11. Impact of the time interval between two doses injection on total cost, inventory, and unmet demand. 
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em. In Fig. 10 (b), the decrease in the inventory level of Pfizer and

oderna is higher than AstraZeneca, since a more significant initial 

nventory has been considered for the two former vaccines. Finally, 

ig. 10 (c) shows an expected trend for the unmet demand, as any 

ncrease in the demand for vaccines increases the potential unmet 

emand due to the limited availability of the vaccines in the sys- 

em. 

A more interesting result has been obtained when investigat- 

ng the impact of the time interval between two doses of injection 

f the vaccines on the performance of the system, as depicted in 

ig. 11 . Figure 11 (a) illustrates that if the time interval is reduced

o half of their recommended delay, the unmet demand increases 

y a factor of 2.5 as shown in Fig. 11 (c). Indeed, when the system

ocuses on a complete vaccination with a short time interval, more 

ndividuals are completely vaccinated, but a considerable part of 

he population remains un-vaccinated (i.e., unmet demand). 

Furthermore, if the recommended time interval increases by a 

actor of 1.5, the unmet demand decreases up to 50%. Increasing 
1266 
he time interval signifies that more individuals receive at least 

ne dose of vaccines. On the other hand, this increase will not al- 

ays reduce the unmet demand since, in further periods, the ac- 

umulated demand for the second dose of vaccines in early peri- 

ds is summed up with new demands for the first dose; hence, 

ugmented demand for vaccines is imposed on the system. There- 

ore, the unmet demand starts to be increasing when the system 

s disabled to absorb such an augmented increase in the demand. 

ccordingly, Fig. 11 (a) and (b), collectively, show that the optimal 

erformance of the system happens when delaying the time inter- 

al between two doses of injection of vaccines with a factor of 1.5. 

Figure 12 depicts the impact of the fairness service level on the 

nmet demand. Lower values of this service level guarantee fair ac- 

ess for the population among different regions to vaccines. On the 

ontrary, higher values of this service level allow a higher disper- 

ion of vaccine allocation among different regions. The former situ- 

tion should provide a higher equity and higher satisfaction among 

he whole population; however, the latter puts more effort into al- 
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Fig. 12. Impact of fairness service level gap on the unmet demand. 

Fig. 13. Impact of unmet cost on the objective function and the amount of unmet demand. 
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ocating vaccines to high-populated regions with a higher risk of 

nfection due to higher social contacts. Figure 12 illustrates that 

ncreasing fairness (i.e., decreasing δ) is not always the best strat- 

gy in vaccination campaigns to stop pandemics. In fact, an opti- 

um level of fairness leads to the minimum level of unmet de- 

and. More explanations have been provided through managerial 

nsights in Section 7.2 . 

In another sensitivity analysis, we investigate the impact of un- 

et demand cost cu on the objective function (12) ( Fig. 13 (a)), the

otal distribution cost (i.e., the objective function (12) , except the 

ast term), and the total amount of unmet demand (i.e., the last 

art of the objective function (12) ). As can be seen from Fig. 13 (a),

ncreasing the unit of unmet demand cost increases the objective 

unction, since the network aims to vaccinate as many individuals 

s possible to alleviate the impact of unmet demand. Figure 13 (b) 

hows, in detail, how increasing the unit unmet demand cost in- 

reases (decreases) the total distribution cost (amount of unmet 

emand). 

.2. Discussion and managerial insights 

In this section, some of the more interesting results are dis- 

ussed, and a sort of managerial insights are provided. 

We observed that if the recommended time interval increases 

y a specific factor, the unmet demand decreases significantly. It 

eans that vaccinating a higher number of individuals, even with 
1267 
 single dose, remarkably decreases the death rate. However, it im- 

lies vaccines with a high level of efficacy for their first-dose injec- 

ion. Therefore, the availability of vaccines also plays a vital role 

n piloting a vaccination campaign. In reality, depending on the 

vailability of vaccines, several countries have recommended an in- 

rease in time intervals between two injections ( ECD, 2021 ). In this 

egard, by June 2021, 16 EU countries increased the time interval 

o provide more individuals with their first vaccination dose. Ro- 

ania applied for such extension only in particular cases Dascalu 

t al. (2021) ; however, seven other EU countries (Iceland, Latvia, 

ithuania, Malta, Slovakia, Slovenia, and Spain) did not apply such 

 strategy. Shortly after, seven countries removed this extension in 

eptember 2021 (Austria, Belgium, Czechia, Finland, Ireland, Portu- 

al, and Spain). The possibility of such an increase in the interval 

etween two injections introduced the concept of fractional dosing . 

ctually, due to the limited availability of vaccines, especially at 

he beginning of the pandemic, fractional dosing could be a crucial 

ecision to make a trade-off between reducing the number of po- 

ential deaths (by vaccinating individuals with complete doses) or 

ecelerating the pandemic (by providing a higher number of indi- 

iduals with the first dose). 

Scientists have always debated the impact of equity and fair- 

ess in pandemics ( Enayati & Özaltın, 2020; Mohammadi et al., 

022 ). Although a higher level of fairness in vaccine allocation pro- 

ides more social satisfaction among the population, the fair dis- 

ribution of vaccines is not always the best barrier strategy to stop 
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( Fleming et al., 2012; Gaff & Schaefer, 2009 ). �
andemics. In this paper, we observed that the unmet demand is 

 convex function of fairness with a global minimum. Therefore, 

ow and high levels of fairness do not represent the optimum al- 

ocation strategy. In fact, a low level of fairness puts more focus 

n the vaccination of populated areas with a higher risk of in- 

ection while ignoring less populated areas where the virus may 

ransmit without sufficient barriers (e.g., vaccination). On the con- 

rary, a high level of fairness guarantees fair access to the popula- 

ion to vaccines. However, there would be an imbalance between 

igh and low-populated areas regarding barrier actions. Therefore, 

here should always be a trade-off between effort s f or fair access 

o vaccination and attempts to control/stop the pandemic in high- 

isk (populated) areas. The focus on populated areas reveals the 

mportance of the level of social contact between individuals dur- 

ng the progress of the pandemic. Therefore, from an optimization 

iewpoint, the effort of health policymakers should not only be 

accinating high-risk individuals to decrease deaths but also vac- 

inating the population with higher social contacts (i.e., populated 

reas). Although the former may directly decrease the number of 

eaths among the population, the latter directly breaks/decreases 

he circulation of the virus in society and indirectly reduces the 

umber of deaths among the population. In this regard, one way 

o control social contact could be imposing quarantine restrictions 

n some regions while vaccinating others. 

An important practicality of the proposed model for health pol- 

cymakers can be highlighted from the results shown in Fig. 13 (b). 

n fact, parameter cu takes the role of an interplay between two 

iewpoints, cost-oriented or mortality-oriented vaccination strate- 

ies. As a matter of fact, increasing this parameter drives the 

roposed model from a cost-oriented network toward a more 

ortality-oriented network. Accordingly, although the objective 

unction of the proposed model is apparently a business objec- 

ive, adjusting the unit unmet demand cost can satisfy mortality- 

elated concerns. In this regard, a possibility could be separating 

he two parts of the objective function (i.e., distribution cost and 

mount of unmet demand) and optimizing them through a bi- 

bjective model. The gain of such a model could be generating a 

et of non-dominated solutions and providing health policymakers 

ith a portfolio of different vaccination strategies. 

. Conclusions 

The most effective intervention strategy to control the COVID- 

9 pandemic, which requires careful preparation due to its avail- 

bility, is vaccination, the principal hope of today’s communi- 

ies. In this regard, we proposed a novel exhaustive scheme that 

ontains three phases of demand regulating, location-inventory- 

outing planning, and solution approach, wherein a broad range 

f concerns of the COVID-19 vaccine procurement and distribu- 

ion have been considered. In the first stage, we proposed a mod- 

fied SIR epidemiological model for handling the dynamicity of 

he vaccine demands, where the optimal control problem was in- 

olved in determining the number of vaccines that need to be 

urchased to control the pandemic situation. In the second stage, 

e have presented and formulated a multi-period, multi-vaccine, 

ulti-depot location-inventory-routing problem in the form of a 

ixed-integer programming model, where various realistic con- 

erns of the COVID-19 vaccine distribution, ranging from multi- 

ose vaccine regimen to prioritizing age groups, have been re- 

ected. Finally, we offered an accelerated Benders decomposition 

lgorithm to solve sizable test problems in the third stage. Al- 

hough the primary aim of the current research was to cope with 

he concerns of the COVID-19 vaccine procurement and distribu- 

ion, the soundness outcomes revealed that it could indeed be ap- 

lied to cope with various vaccine distribution problems. In fact, 

ue to the complexity of the considerations that had to be re- 
1268 
ected in the distribution planning of the COVID-19 vaccines, the 

roposed optimization model factored in almost all essential con- 

erns in the vaccine distribution. As a result, it could be fruitful to 

istribute existing or forthcoming vaccines. The computational re- 

ults demonstrated that the proposed framework could provide a 

ractical plan for the preparation and distribution of vaccines. In 

his regard, we provided operational planning to prioritize vacci- 

ation target groups, and we were also able to schedule a time in- 

erval between injections of different vaccines if possible to control 

he pandemic better. 

For future research, we can mention a number of interest- 

ng cases that can be considered in both levels of the presented 

ramework. Regarding the first level of the framework (i.e., the 

djusted SIR model), considering the efficacy of various vaccines 

ould be interesting to be considered in the model. Various facets 

f this problem make it worthwhile to study. If immunizations 

re only moderately effective, the booster dose should be admin- 

stered sooner. Furthermore, if the vaccine’s efficiency is excellent, 

he option of delaying the second dosage of the vaccine rises, al- 

owing a more significant percentage of the target population to 

et vaccinated. The second involves anti-vaccination individuals. 

hese people increase the possibility of infection and raise mis- 

rust among others who have not yet been vaccinated. Regarding 

he second phase of the framework (i.e., vaccine distribution net- 

ork), the proposed optimization model can be integrated with 

he adjusted SIR model in an interactive way to develop a myopic 

odel. In this model, the SIR model and the optimization model 

nteract in each period, and the vaccination rate u in Section 1 is 

onsidered as a decision variable, and the vaccination decisions in 

ach period directly affect the estimated demand of the further 

eriods. 

ppendix A. Proof of Theorem 1 

roof. The optimal control intervention exists when the following 

onditions are satisfied: 

• The solution space of system dynamics (1) with control variable 

u in �  = φ. 
• The mentioned set � is closed, and convex, and the state sys- 

tem is represented with a linear function of the control variable 

where coefficients depend on time and also on state variables. 
• Integrand of (8) : L is convex on � and L (S, I, Q, UQ, R, u ) ≥ f (u ) ,

where f (u ) is continuous, and ‖ u ‖ −1 f (u ) → ∞ , when ‖ u ‖ →
∞ . Indeed, ‖ . ‖ indicates the L (0 , T f ) norm. 

From the system dynamics (1) , the total population N = 

 + I + Q + UQ + R . Hence, d N 
d t 

= � − dN − δ1 I − δ2 Q − δ3 UQ ≤ � −
N, and 0 < N(t) ≤ N(0) e −dt + 

�
d 
(1 − e −dt ) , where N(0) = S(0) +

(0) + Q(0) + UQ(0) + R (0) . Also, when t → ∞ , we have 0 <

(t) ≤ λ
d 

. 

For the control variable in � , the solution of the system dy- 

amics (1) is bounded and right-hand side functions are also lo- 

ally Lipschitzian. The Picard Lindelof theorem demonstrates that 

he first condition is met ( Coddington & Levinson, 1955 ). The con- 

rol set � is closed and convex by definition. Again, all the equa- 

ions of the system dynamics (1) are written as linear equations in 

 where state variables depend on the coefficients, and hence the 

econd condition is also satisfied. Moreover, the quadratic nature of 

he control variable guarantees the convex property of integrand 

 (S, I, Q, UQ, R, u ) . Let f (u ) = w 3 u 2 , next L (S, I, Q, UQ, R, u ) ≥ f (u ) .

ere, f is continuous and ‖ u ‖ −1 f (u ) → ∞ , when ‖ u ‖ → ∞ . Hence,

he third condition is also met. Therefore, it is concluded that there 

s the control variable u ∗ with the condition J(u ∗) = min [ J(u )]
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ppendix B. Pontryagin’s maximum principle ( Pontryagin, 

987 ) 

By Pontryagin’s Maximum Principle, we have derived here the 

ecessary conditions for optimal control functions for the opti- 

al control problem (8) and (9) ( Fleming et al., 2012; Pontryagin, 

987 ). Let us define the Hamiltonian function as (B.1) and (B.2) : 

¯
 (S, I, Q, UQ, R, u, λ) = L (S, I, Q, UQ, R, u ) + λ1 

d S 

d t 
+ λ2 

d I 

d t 

+ λ3 
d Q 

d t 
+ λ4 

d UQ 

d t 
+ λ5 

d R 

d t 
(B.1) 

Hence, 

¯
 = w 1 I(t) + w 2 Q(t) + w 3 UQ(t) 

+ λ1 

[
� − (β1 I + β2 Q + β3 UQ ) S − dS − u (t) S 

] 
+ λ2 

[
(β1 I + β2 Q + β3 UQ ) S − (d + δ1 + k ) I 

] 
+ λ3 

[
kτ I − (d + δ2 ) Q − v 1 Q 

] 
+ λ4 

[
k (1 − τ ) I − (d + δ3 ) UQ − v 2 UQ 

] 
+ λ5 

[
v 1 Q + v 2 UQ − dR + u (t) S 

] 
(B.2) 

ppendix C. Proof of Theorem 2 

roof. Let u ∗ be optimal control variable and S ∗, I ∗, Q 

∗, UQ 

∗, R ∗

e optimal state variables of system dynamics (1) that minimize 

he objective function (8) . With the help of Pontryagin’s Maxi- 

um Principle and the defined adjoint variables λi , i = 1 , . . . , 5 , we

ave 
d λ1 
d t 

= − ∂ ̄H 
∂S 

, 
d λ2 
d t 

= − ∂ ̄H 
∂ I 

, 
d λ3 
d t 

= − ∂ ̄H 
∂Q 

, 
d λ4 
d t 

= − ∂ ̄H 
∂UQ 

, 
d λ5 
d t 

= − ∂ ̄H 
∂R 

, 

hich lead to obtain Eq. (10) . In regard to the transversality con- 

itions λi (T f ) = 0 , i = 1 , . . . , 5 and optimality conditions, we have:

∂ H̄ 

∂u 

| u = u 

∗ = 0 

∂ H̄ 

∂u 

| u = u 

∗ = 2 w 3 u 

∗ − λ1 S + λ5 S = 0 

u 

∗ = 

(λ1 − λ5 ) S∗
2 w 3 

(C.1) 

Now from these findings along with the characteristics of con- 

rol set � , we have: 

 

∗ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if (λ1 −λ5 ) S∗
2 w 3 

< 0 

(λ1 −λ5 ) S∗
2 w 3 

if 0 ≤ (λ1 −λ5 ) S∗
2 w 3 

≤ 1 

1 if (λ1 −λ5 ) S∗
2 w 3 

> 1 

(C.2) 

hich is equivalent to (11) . �

ppendix D. Linearization 

With the help of auxiliary variables T Y pjit and T Z pji v t 
 T Y pjit , T Z pji v t ≥ 0 ), these two multiplications are linearized by the

et of constraints (D.1) –(D.3) and constraints (D.4) –(D.6) , respec- 

ively. 
1269 
 Y p jit ≤ T p jit ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (D.1)

 Y p jit ≤ M Y jit ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (D.2)

 Y p jit ≥ T p jit − M (1 − Y jit ) ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (D.3)

 Z p ji v t ≤ T p jit ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T (D.4)

 Z p ji v t ≤ M ZK jv t ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T (D.5)

 Z p ji v t ≥ T p jit − M (1 − ZK jv t ) ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T 

(D.6) 

Finally, the constraints (13), (14) , and (22) are replaced by the 

ollowing constraints (13), (14) , and (22) , respectively. 

 

p∈ P 
(1 − γp jt ) U p jt ≥

∑ 

p∈ P 

∑ 

i ∈ I 
T Y p jit ∀ j ∈ J, t ∈ T (D.7) 

 

k ∈ K 
G pkit ≤

∑ 

j∈ J 
(1 − μp jit ) T Y p jit ∀ p ∈ P, i ∈ I, t ∈ T (D.8)

 

i ∈ I 

∑ 

p∈ P 
T Z p ji v t ≤ Q 

V 
v ∀ j ∈ J, v ∈ V, t ∈ T (D.9)

ppendix E. The MVMDLIRP Benders reformulation 

Let Z̄ jt , Ȳ jit , ¯ZK jv t , and X̄ ji v t be the vectors of fixed Z jt , Y jit , ZK jv t ,

nd X ji v t variables, respectively. The Benders sub-problem can be 

ritten as follows: 

in Z = 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

t∈ T 
c pj U pjt + 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

i ∈ I 

∑ 

t∈ T 
cs pji T pjit + 

∑ 

p∈ P 

∑ 

j∈ J 

∑ 

t∈ T 
h DC 

pjt I pjt 

+ 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

t∈ T 
h VC 

pi I 
′ 
pit + cu 

∑ 

p∈ P 

∑ 

k ∈ K 

∑ 

i ∈ I 

∑ 

t∈ T 
w pkit 

(
R pkit 

d pkit 

)
(E.1) 

.t.: Constraints (15) –(21), (24), (25), (D.1), (D.4), (D.7) –(D.9) and, 

 

DC 
p jt ≤ Q 

DC 
p j Z̄ jt ∀ p ∈ P, j ∈ J, t ∈ T (E.2) 

∑ 

p∈ P 
∑ 

k ∈ K G pkit ∑ 

p∈ P 
∑ 

k ∈ K d pkit 

≤
∑ 

p∈ P 
∑ 

k ∈ K G pki ′ t ∑ 

p∈ P 
∑ 

k ∈ K d pki ′ t 

+ (2 − Ȳ jit − Ȳ ji ′ t ) ∀ i, i ′ ∈ I; i  = i ′ , j ∈ J, t ∈ T 

(E.3) 

 p jit ≤ M ̄Y jit ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (E.4)

 U jv t − U U i v t + | I | ̄X ji v t ≤ | I | − 1 ∀ i, j ∈ I , v ∈ V, t ∈ T (E.5)

 Y p jit ≤ M ̄Y jit ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (E.6)
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Table F.1 . 
 Y p jit ≥ T p jit − M (1 − Ȳ jit ) ∀ p ∈ P, j ∈ J, i ∈ I, t ∈ T (E.7)

 Z p ji v t ≤ M 

¯ZK jv t ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T (E.8)

 Z p ji v t ≥ T p jit − M (1 − ¯ZK jv t ) ∀ p ∈ P, j ∈ J, i ∈ I, v ∈ V, t ∈ T 

(E.9) 

Let A = {A pt ≥ 0 | p ∈ P, t ∈ T } , B = {B jt ≥ 0 | j ∈ J, t ∈ T } , C =
C pit ≥ 0 | p ∈ P, i ∈ I, t ∈ T } , D = {D pi jt ≥ 0 | p ∈ P, i ∈ I, j ∈ J, t ∈ T } ,
 = {E pi jt ≥ 0 | p ∈ P, i ∈ I, j ∈ J, t ∈ T } , F = {F pi jt ≥ 0 | p ∈ P, i ∈
, j ∈ J, t ∈ T } , G = {G pjt ∈ R | p ∈ P, j ∈ J, t ∈ T } , H = {H pjt ≥ 0 | p ∈
, j ∈ J, t ∈ T } , J = {J pkit ≥ 0 | p ∈ P, i ∈ I, k ∈ K, t ∈ T ; t ≤ L p } ,
 = {K pkit ≥ 0 | p ∈ P, i ∈ I, k ∈ K, t ∈ T ; t ≤ L } , L = {L pkit ≥ 0 | p ∈

, i ∈ I, k ∈ K, t ∈ T ; t > L p } , M = {M pkit ≥ 0 | p ∈ P, i ∈ I, k ∈ K, t ∈
 ; t > L p } , N = {N ii ′ t ≥ 0 | i, i ′ ∈ I, t ∈ T ; i ! = i ′ } , O = {O ii ′ jt ≥
 | i, i ′ ∈ I, j ∈ J, t ∈ T ; i ! = i ′ } , P = {P pit ≥ 0 | p ∈ P, i ∈ I, t ∈ T } ,
 = {Q pit ∈ R | p ∈ P, i ∈ I, t ∈ T } , R = {R pit ≥ 0 | p ∈ P, i ∈ I, t ∈ T } ,
 = {S pki ∈ R | p ∈ P, i ∈ I, k ∈ K} , T = {T pkit ∈ R | p ∈ P, i ∈ I, k ∈
, t ∈ T } , U = {U jv t ≥ 0 | j ∈ J, v ∈ V, t ∈ T } , V = {V pi jv t ≥ 0 | p ∈ P, i ∈
, j ∈ J, v ∈ V, t ∈ T } , W = {W pi jv t ≥ 0 | p ∈ P, i ∈ I, j ∈ J, v ∈ V, t ∈ T } ,
 = {X pi jv t ≥ 0 | p ∈ P, i ∈ I, j ∈ J, v ∈ V, t ∈ T } , Y = {Y i jv t ≥ 0 | i ∈ I, j ∈

, v ∈ V, t ∈ T } , Z = {Z pi jt ≥ 0 | p ∈ P, i ∈ I, j ∈ J, t ∈ T } be the vectors

f the dual variables associated with the Benders sub-problem 

onstraints. The Benders master problem can be written as 

ollows: 

in Z = 

∑ 

j∈ J 

∑ 

t∈ T 
f j Z jt + 

∑ 

j∈ J 

∑ 

i ∈ M 

∑ 

v ∈ V 

∑ 

t∈ T 
πv 	i j X ji v t + ζ (E.10) 

.t.: Constraints (27) –(40) , ( 44–47 ), and ∑ 

p∈ P 

∑ 

t∈ T 
Q 

CH 
p A pt −

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈ T 
M jit Y jit E pi jt 

−
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈ T 
M jit (1 − Y jit ) F pi jt 

−
∑ 

p∈ P 

∑ 

j∈ J 

∑ 

t∈ T 
Q 

DC 
p j Z jt H p jt + 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 

∑ 

t∈ T 
t≤L p 

βk d pkit J pkit 

−
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 

∑ 

t∈ T 
t≤L p 

d pkit K pkit 
Table F.1 

Properties per region in France ( Insee.fr, 2022 ). 

Region Population 

Density (ratio) Male (%) F

Auvergne-Rhne-Alpes 1,92 48,64 5

Bourgogne-Franche-Comté 1,00 48,66 5

Bretagne 2,05 48,60 5

Centre-Val de Loire 1,12 48,50 5

Grand Est 1,64 48,75 5

Hauts-de-France 3,20 48,45 5

Ile-de-France 17,10 48,26 5

Normandie 1,88 48,36 5

Nouvelle-Aquitaine 1,19 48,07 5

Occitanie 1,36 48,34 5

Pays de la Loire 1,97 48,71 5

Provence-Alpes-Cte d’Azur 2,71 47,76 5

a Rate of total regional population with a high school education and higher. 
b Gross Domestic Product of each individual. 
c Rate of total regional population with a salary less than poverty threshold. 
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+ 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 

∑ 

t∈ T 
t>L p 

βk d pkit L pkit −
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 

∑ 

t∈ T 
t>L p 

d pkit M pkit 

−
∑ 

i ∈ I 

∑ 

i ′ ∈ I 

∑ 

j∈ J 

∑ 

t∈ T 
(2 − Y jit − Y ji ′ t ) O ii ′ jt 

−
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

t∈ T 
Q 

VC 
pi P pit −

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

t∈ T 
Q̄ 

VC 
pi R pit 

+ 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 
d pki, 1 S pki + 

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

k ∈ K 

∑ 

t∈ T \{ 1 } 
d pkit T pkit 

−
∑ 

j∈ J 

∑ 

v ∈ v 

∑ 

t∈ T 
Q 

V 
v U jv t −

∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

v ∈ v 

∑ 

t∈ T 
M jv t ZK jv t W pi jv t 

−
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

v ∈ v 

∑ 

t∈ T 
M jv t (1 − ZK jv t ) X pi jv t 

+ 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

v ∈ v 

∑ 

t∈ T 
(−| I| + 1 + | I| X ji v t ) Y i jv t 

−
∑ 

p∈ P 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

t∈ T 
M jit Y jit Z p jit ≤ ζ (E.11) 

≥ 0 (E.12) 

 A , B , C , D , E , F , G , H , J , K , L , M , N , O , P , Q , R , S , T ,
 , V , W , X , Y , Z ∈ P ∇ 

where ∇ signifies the polyhedron speci- 

ed by the constraints of the problem, and P ∇ 

implicates the set 

f extreme points of ∇ . Constraint (E.11) represents the optimality 

ut which can be generated consecutively in accordance with Ben- 

ers sub-problem solution and the vectors of the dual variables. 

n addition, M jit and M jv t are obtained via Eqs. (E.13) and (E.14) , 

espectively. 

 jit = min 

{
Q 

CH 
p , Q 

DC 
p j , Q 

VC 
pi , 

∑ 

p∈ P 

∑ 

k ∈ K 

T ∑ 

l= t 
d pkil 

} ∀ i ∈ I, j ∈ J, t ∈ T (E.13)

 jv t = min 

{
Q 

DC 
p j , Q 

V 
v , 

∑ 

p∈ P 

∑ 

k ∈ K 

∑ 

i ∈ I 

T ∑ 

l= t 
d pkil 

} ∀ j ∈ J, v ∈ V, t ∈ T (E.14)

ppendix F. Properties of French metropolitan properties 
Education (%) a GDP ( €) b Poverty (%) c 

emale (%) 

1,36 79,65 33,205 12,7 

1,34 76,24 27,026 12,9 

1,40 81,70 29,500 10,9 

1,50 76,25 27,859 13,1 

1,25 76,78 27,529 14,8 

1,55 74,31 26,948 18 

1,74 81,27 57,600 15,6 

1,64 74,62 27,168 13,5 

1,93 79,05 28,467 13,6 

1,66 79,61 28,157 17,2 

1,29 78,85 30,258 10,8 

2,24 78,64 31,580 17,3 
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