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The emergence of the SARS-CoV-2 virus and new viral variations with higher transmission and mortal-
ity rates have highlighted the urgency to accelerate vaccination to mitigate the morbidity and mortal-
ity of the COVID-19 pandemic. For this purpose, this paper formulates a new multi-vaccine, multi-depot
location-inventory-routing problem for vaccine distribution. The proposed model addresses a wide variety

Keywords: of vaccination concerns: prioritizing age groups, fair distribution, multi-dose injection, dynamic demand,
Distribution etc. To solve large-size instances of the model, we employ a Benders decomposition algorithm with a
Vaccine distribution number of acceleration techniques. To monitor the dynamic demand of vaccines, we propose a new ad-
Fairness justed susceptible-infectious-recovered (SIR) epidemiological model, where infected individuals are tested

Dynamic demand

and quarantined. The solution to the optimal control problem dynamically allocates the vaccine demand
Benders decomposition

to reach the endemic equilibrium point. Finally, to illustrate the applicability and performance of the pro-
posed model and solution approach, the paper reports extensive numerical experiments on a real case
study of the vaccination campaign in France. The computational results show that the proposed Benders
decomposition algorithm is 12 times faster, and its solutions are, on average, 16% better in terms of qual-
ity than the Gurobi solver under a limited CPU time. In terms of vaccination strategies, our results suggest
that delaying the recommended time interval between doses of injection by a factor of 1.5 reduces the
unmet demand up to 50%. Furthermore, we observed that the mortality is a convex function of fairness
and an appropriate level of fairness should be adapted through the vaccination.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction from governments such as quarantine and border controls, to name

a few, and pharmaceutical propositions resorting to vaccination as

As of 20 March 2022, the ongoing SARS-CoV-2 virus (COVID-
19, hereafter) pandemic has engendered approximately 427 mil-
lion confirmed cases and 6.09 million fatalities worldwide (Johns
Hopkins University & Medicine, 2021). Since the beginning of the
pandemic, almost all countries around the world have adopted
a variety of measures to restrict the propagation of COVID-19.
These measures include individual precautions ranging from wear-
ing face masks to social distancing, non-pharmaceutical measures
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the most effective way (Kaplan, 2020; Pagliusi et al., 2020). In this
regard, the accelerated advancement and outset of some innovative
COVID-19 vaccines is a remarkable and exceptional achievement of
contemporary science, where Pfizer-BioNTech was the first vaccine
to be conferred a temporary authorization for emergency uses in
the United Kingdom (Shaw et al., 2021).

Although the rapid development of such effective vaccines
against COVID-19 in a short time is among the greatest scientific
achievements (Graham, 2020; Lurie et al., 2020), successfully vac-
cinating the global population encounters many challenges, from
production to distribution, deployment, and even social acceptance.
More precisely, two significant concerns need to be handled to
guarantee the success of a vaccination plan in pandemic situations.

Firstly, coming up with an accurate estimation of the demand
for vaccines, regardless of their types, which can immune people
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against COVID-19 to confine its propagation. This challenge be-
comes even more critical knowing that the number of companies
producing COVID-19 vaccines is minimal, and almost all countries
have to meet their needs by purchasing vaccines from them. How-
ever, countries that can produce vaccines prioritize meeting their
own needs first (Alam et al,, 2021). This issue forces other coun-
tries to be more accurate in estimating their demand when pur-
chasing vaccines. Nonetheless, the precision of such estimation in
the COVID-19 pandemic could be jeopardized due to many fac-
tors, including the emergence of new variants of the virus, non-
compliance with health protocols by some individuals, monopo-
lies in the distribution and consumption of vaccines by developed
countries, and insufficient infrastructure and distribution capacity
of vaccines (Alam et al.,, 2021; Burgos et al., 2021; Tyagi et al.,
2021; Wouters et al., 2021). Such factors lead to important fluctu-
ations and dynamicity in vaccine demand (Besiou & Van Wassen-
hove, 2021). Hence, providing a precise estimation of the progres-
sion of the pandemic allows more fruitful management of the lo-
gistics challenges. In this regard, in order to provide an accurate
estimation of disease propagation, a broad range of efficient ap-
proaches have been employed in the literature, including artifi-
cial intelligence approaches such as time series (Betcheva et al.,
2021; Qi et al., 2020), machine learning (Kushwaha et al., 2020),
and deep learning (Yang et al., 2020), agent-based approaches (Kai
et al., 2020), metrological and meta-population models (Ma et al.,
2021), and compartmental epidemiological models (Arfan et al.,
2021). From the technical point of view, apart from compartmental
epidemiological models, the other approaches hang on data acces-
sibility. Hence, these approaches almost become inapplicable since
data is unavailable and unreliable in the early phases of a pan-
demic (Gnanvi et al.,, 2021). Also, historical data cannot be ex-
ploited due to the occurrence of different virus variants. Moreover,
these approaches cannot consider various government strategies,
such as quarantine and raising people’s awareness (Biswas & Alfan-
dari, 2022; Nikolopoulos et al., 2021). Finally, they cannot optimize
the measures related to implementing the policies established by
the governments, such as reducing the number of deaths or min-
imizing system costs to control the propagation of a pandemic. In
this regard, the synergy between compartmental epidemiological
models and the optimal control problem (OCP) as a powerful dy-
namic optimization approach not only tackles the barriers men-
tioned above (Castilho, 2006) but also offers an endemic equilib-
rium point of the COVID-19 contagious influence (Gaff & Schae-
fer, 2009). However, due to the complexity of implementing these
methods, researchers have rarely used them.

Secondly, it is naive to believe that most of the vaccination
process has been completed by purchasing the estimated amount
of vaccine. In fact, distributing vaccines, especially COVID-19 vac-
cines with miscellaneous concerns such as minimal supplies, pri-
oritizing age groups, fair distribution, multi-dose injection, split
delivery of vaccines, vaccine loss during transit, and vial-opening,
is the second challenge that makes it a highly daunting process
(Abbasi et al., 2020; Chen et al., 2020; De Boeck et al., 2020;
Ivanov, 2020). Hence, this paper aims to develop an efficient vac-
cine distribution network to deliver a limited supply of vaccines
between different vaccination centers. Developing such a network
requires a broad range of decisions to be made (Duijzer et al.,
2018c; Manupati et al., 2021): 1) Location-allocation, where to lo-
cate vaccine distribution centers and allocate vaccination centers to
them (Ahmadzadeh & Vahdani, 2017; Mohammadi et al., 2014; Ni
et al., 2021; Niakan et al., 2015; Rahimi-Vahed et al., 2015; Vahdani
& Ahmadzadeh, 2019; Vahdani et al., 2017), 2) Inventory, where
(at which center) to hold inventory considering the perishability
of vaccines (Tang et al., 2022; Vahdani & Ahmadzadeh, 2021; Vah-
dani et al., 2011), and 3) Delivery-Routing, what amount of vaccines
to be delivered/routed between different centers using which ve-
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hicles (Alam et al., 2021; Capelle et al., 2019; Gmira et al., 2021;
Nabavi et al., 2022; Rahimi-Vahed et al., 2015; Rostami et al., 2021;
Vidal et al., 2012; 2021).

Speaking of which, a careful examination of the COVID-19 pan-
demic reveals that additional factors should also be addressed in
new pandemics when planning vaccine distribution. This paper ac-
counts for four additional factors to design an efficient vaccination
network. These factors are classified into prioritizing the popula-
tion for vaccination, fair distribution of vaccine, multi-dose vaccina-
tion planning, and split delivery.

First, since the supply of COVID-19 vaccines has initially been
restricted, the world realized that to pilot a vaccination campaign
efficiently, governments all over the world should make a tough
decision on who to vaccinate first. In fact, health policy-makers
all around the world came to a global consensus on vaccination
strategies to prioritize the vaccination of front-line workers (e.g.,
healthcare workers) against the disease, then vulnerable popula-
tions such as older people and people with weak immune systems.
Accordingly, such prioritization decisions should be taken into ac-
count when designing a vaccine distribution network (Mohammadi
et al., 2022).

Second, the lack of COVID-19 vaccines raises the issue of a fair
distribution of the produced vaccines among or within countries.
In fact, vaccine distribution presents a slew of complicated and
contentious matters, including public health, finance, public per-
suasion, and diplomacy (DeRoo et al., 2020; Forni & Mantovani,
2021). Various global organizations, national administrators, and
vaccine manufacturers realized that ethics is vital in making de-
cisions. However, inadequate progress has been achieved in defin-
ing the fair distribution of vaccines globally and nationally. An “eq-
uitable vaccine distribution” is often praised without specifying a
structure or offering any suggestions. This paper investigates the
fairness in the distribution of vaccines among different vaccination
centers, each being responsible to vaccinate the population of their
corresponding region.

Third, another factor affecting the operation of vaccine distribu-
tion centers is multi-dose vials of vaccines recommended/imposed
by the manufacturers to achieve a sufficient level of immunity
against COVID-19. Such recommendation/necessity for multi-dose
vaccination encounters the distribution center with important
challenges. As a matter of fact, multi-dose vaccination imposes a
commitment to the distribution network to imperatively fulfill the
demand for the second dose, if the first dose has previously been
fulfilled. Another point to note is that individuals must receive the
second dose of a vaccine after a given time interval, depending on
the type of their first-dose vaccine (Silva-Cayetano et al., 2021). In
this regard, a number of recent studies have articulated that inject-
ing a second dose from another type of vaccine is possible if it is
compatible with the first dose, although the majority of evidence
has recommended that it is better if two doses have the same kind
(Sampath et al., 2021).

Fourth, the delivery of multi-dose vaccinations puts far more
pressure on the distribution network. This becomes even more
problematic when we know that COVID-19 vaccines must be trans-
ported in refrigerators or freezers, limiting the number of accessi-
ble vehicles. One of the most efficient strategies to cope with this
obstacle is to use the split delivery method (Haddad et al., 2018;
Mohammadi et al., 2020; Veysmoradi et al., 2018).

According to the above-mentioned description, we address the
two problems as a comprehensive two-stage framework. The first
stage concentrates on estimating the dynamic demand for vaccines
and assesses the number of vaccines that need to be provided to
control the pandemic. The second stage focuses on offering a ded-
icated multi-vaccine, multi-depot location-inventory-routing prob-
lem (MVMDLIRP) to distribute vaccines among vaccination centers,
wherein a broad range of characterful concerns of the COVID-19
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vaccine distribution is reflected. The first stage offers an adjusted
SIR model with the optimal control problem for controlling the dy-
namicity of demand for vaccines, and the resulting model provides
the number of vaccines needed during the vaccination campaign.
The second stage formulates a dedicated MVMDLIRP, where a
broad range of decisions are considered, including supply, location-
allocation, shipment, inventory, and routing concerning various
concerns, including perishability, split delivery, capacity, popula-
tion priorities, and multi-dose delivery. To the best of our knowl-
edge, the MVMDLIRP has yet to be investigated, let alone the other
reflected considerations in the current study that make it more
realistic and sophisticated. Hence, the contributions of this study
regarding the investigated literature in the next section are as
follows:

o Introducing a comprehensive and exclusive optimization frame-
work to distribute vaccines to control the pandemic situation,
Proposing an adjusted SIR model with the optimal control prob-
lem to overcome the demand dynamicity and determine the
number of vaccines that need to be supplied to control the pan-
demic, and

Formulating the MVMDLIRP regarding a broad range of applica-
ble concerns, including prioritizing age groups, fair distribution,
multi-dose injection, split delivery of vaccines, vaccine fraction
during transit and vial-opening, vaccine deterioration, and dy-
namic demand.

The remainder of the paper is organized as follows.
Section 2 scrutinizes related literature. Section 3.1 provides
the description of the SIR epidemiological model with the optimal
control problem. Section 4 presents the MVMDLIRP formulation.
Section 5 offers the details of the accelerated Benders decompo-
sition algorithm. Section 6 describes the case study and provides
numerical results. Next, Section 7 provides a set of sensitivity
analyses and managerial insights. Finally, this study is concluded,
and future research directions are proposed in Section 8.

2. Literature review

The current research focuses on two main phases: estimating
the demand for vaccines through disease progression modeling via
epidemiological models and the logistics planning of vaccine distri-
bution. Hence, this section scrutinized the related literature of the
two mentioned subjects to illustrate research gaps and our contri-
butions.

2.1. Phase I—Epidemiological models at the service of vaccine
distribution

Asano et al. (2008) suggested a modified Susceptible-Infected-
Recovered (SIR) model with the optimal control problem for man-
aging vaccine bait distribution to control the spread of rabies in
raccoons, where the rate of vaccine bait distribution was consid-
ered as a control variable and determined the number of vac-
cines needed to control the disease. Nguyen & Carlson (2016) ex-
tended the conventional SIR model as a semi-Markovian process
to reflect the real-time circumstances of an outbreak for control-
ling vaccine allocation. Biiyiiktahtakin et al. (2018) proposed an
epidemics-logistics optimization model to control the Ebola virus.
This model’s decisions include allocating resources regarding ca-
pacity and budget restrictions. The objective function minimized
the total number of infected people and deaths of infected indi-
viduals, where a modified SIR model was proposed to model the
Ebola disease transmission. Duijzer et al. (2018b) considered the
conventional SIR model to investigate two vaccination strategies,
including early and later vaccines. They suggested that a hybrid
strategy can diminish the number of infected individuals by more
than 50% compared to the best absolute strategy. Duijzer et al.
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(2018a) employed the conventional SIR model to introduce an ana-
lytical model for allocating the necessitated number of vaccines in
order to control an epidemic, where the objective function maxi-
mized the health benefit, which was defined as the total number
of people who escaped from infection with or without vaccination.
Enayati & Ozaltin (2020) proposed a modified susceptible-exposed-
infected-recovered (SEIR) model to manage influenza vaccine dis-
tribution by minimizing the number of vaccines used to immunize
people and control such an outbreak, where the Gini coefficient
reflected the equity concern. Westerink-Duijzer et al. (2020) ap-
plied the conventional SIR model to formulate an influenza dis-
ease transmission as part of an analytical model to explore shar-
ing vaccines as a redistribution problem, where health agencies
might cooperate based on cooperative game theory. Gamchi et al.
(2021) proposed a bi-objective mathematical model for influenza
vaccine distribution, where the conventional SIR model with the
optimal control problem, adapted from Alcaraz & Vargas-De-Le6n
(2012), was employed to prioritize regions and individuals for vac-
cination. Then a classical vehicle routing problem was used to dis-
tribute vaccines. The first objective function minimized the social
costs of infected individuals before and after vaccination, and the
second objective function minimized the fixed costs of vehicles
used in the distribution process.

2.2. Phase II—Vaccine distribution problem

Chen et al. (2014) proposed a mathematical model to formulate
an inventory-transshipment problem for vaccine distribution in de-
veloping countries. The objective function maximizes the number
of immunized children and additional doses of vaccines. The au-
thors consider two types of vaccines (frozen and refrigerated), vac-
cine fractions during transit and vial-opening, and deterioration
of vaccine inventory have been the main contributions. Lim et al.
(2022) proposed a multi-modal location-transshipment model to
design a distribution network of vaccines, where the objective
function minimizes the total costs of opening and operating facil-
ities and transportation. The main feature is the consideration of
a replenishment frequency, where two discrete options, including
monthly and quarterly, were reckoned. Abbasi et al. (2020) pro-
posed a transshipment-assignment problem to allocate COVID-19
vaccine to people, where the objective function minimized the in-
fection risk of people based on the susceptibility rating of target
groups, transshipment time, and the number of over-supplied vac-
cines.

They also considered the possibility of transmitting vaccines
between vaccination centers, and different target groups to re-
ceive vaccines. Larissa et al. (2021) proposed a mathematical model
to formulate a classical vehicle routing and scheduling problem,
where the objective function minimized the transit time and ve-
hicle and road penalties, which represented unreliable conditions
that can jeopardize vaccine distribution. However, none of the
specific considerations of vaccine distribution were considered in
the suggested model. Yang et al. (2021) presented a multi-period
location-routing model to distribute vaccines.

The considered problem accounts for vehicle and facility ca-
pacities, and the objective function minimized the costs of open-
ing facilities and transportation. The authors applied the replen-
ishment frequency suggested by Lim et al. (2022). Rastegar et al.
(2021) proposed a multi-period inventory-location model to dis-
tribute the influenza vaccine during the COVID-19 pandemic. The
model accounts for fairness concerns, where the objective func-
tion maximized the minimum delivery-to-demand ratio as an eq-
uity measurement. They considered multiple target groups for vac-
cination without priorities, but a minimum coverage rate for each
group was considered as another equitable feature. Tavana et al.
(2021) made a similar study to Rastegar et al. (2021), with the
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Fig. 1. The SIR model.

exception that they formulated the COVID-19 vaccine distribution.
The main feature was the consideration of various vaccines, which
required very cold and ultra-cold refrigeration for equipping distri-
bution centers and their storage.

Chen et al. (2021) proposed an agent-based simulation model to
allocate COVID-19 vaccines to people with the help of social con-
tact network. They concluded that the proposed simulation model
was much more effective than other simulations whose dialectics
were based on the number of infected, hospitalized, or dead peo-
ple. Tang et al. (2022) proposed a bi-objective location-inventory
model for a vaccination planning problem, where the first ob-
jective minimized the total operational costs and the second one
minimized the travel distance of people to vaccination centers.
Also, they offered a genetic algorithm and dynamic programming
method to solve the proposed model. Gilani & Sahebi (2022) con-
sidered a sustainable production-inventory-transshipment vaccine
problem as a vaccine supply chain during the COVID-19 pandemic,
where the decisions of manufacturers’ capacity and capacity ex-
pansion, the locations of the packing centers of different vaccines
and their distribution centers, and transshipment of vaccines were
considered. They proposed a multi-objective mathematical model
under uncertain supply to formulate the addressed problem. The
first objective function minimized the total costs, the second one
minimized the total environmental effects, and the third maxi-
mized the number of created jobs. Moreover, they offered a ro-
bust data-driven approach to tackle the challenges of the uncertain
supply of vaccines. Finally, Table 1 summarizes the significant con-
cerns of the investigated literature to demonstrate research gaps
and our contributions.

3. The estimation of demand for COVID-19 vaccine
3.1. Epidemiological model

In order to formulate the propagation of contagious disease and
calculate the number of susceptible, infected, and recovered indi-
viduals in a population, the standard SIR model with the possi-
bility of vaccination, as the well-known epidemiological model, is
depicted in Fig. 1(a). As can be seen, susceptible individuals be-
come either infected once exposed to the disease or recover if vac-
cinated, where the population size is fixed and predetermined. No-
tably, the standard model cannot consider the unique concerns of
spreading COVID-19 because one of the crucial factors in model-
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ing the spread of this virus is considering the test results on in-
fected people. So, according to the test results, people must be
divided into two groups: quarantined and unquarantined (Anand
et al., 2020). Consequently, the adjusted version of the SIR model
with the possibility of vaccination is offered to model the spread of
COVID-19. The configuration of this model is depicted in Fig. 1(b),
and its notations are presented in Table 2.

As can be seen, the susceptible individuals (S) become either
infected (I) once exposed to the disease via the term (811 + 8,Q +
B3U)S, or they get recovered (R) if vaccinated via term uS. Un-
like the classical SIR model, the adjusted SIR model considers that
infected individuals become either quarantined (Q) or unquaran-
tined (U) via rates kr and k(1 — t), respectively. In fact, the Q
compartment consists of the infected individuals whose test has
been positive. These individuals are quarantined/isolated from the
rest of the population, and they no longer jeopardize the health of
other susceptible individuals. On the other hand, the U compart-
ment represents a group of individuals who are infected but have
not still been tested. Contrary to the Q individuals, the U individ-
uals pose the risk of infection to the susceptible individuals. More
importantly, these two compartments are correlated with the test-
ing factor t. Indeed, the higher the level of this factor, the higher
the number of individuals who become quarantined. Hence, there
are fewer unquarantined people and less risk of infection for sus-
ceptible individuals. Finally, the quarantined and unquarantined in-
dividuals are differently removed from the system and become re-
covered (R). It is indeed assumed that the vaccinated individuals
will never get infected again.

The justified SIR model of Fig. 1(b) is mathematically formu-
lated as the system of Eq. (1). Indeed, the system of Eq. (1) rep-
resents the balance of input and output time-dependent flows at
each state and models its fluctuation and dynamicity.

% — A= (Bul+BQ+pU)S—dS—uS  S(0) > O,

%z (Bil + 2Q + B3U)S — (d+ 81 + k) 1(0) =0,

CCIT? =ktl-(d+8)Q-1Q Q(0)=0,

C:T[t] =k(1-7)[-(d+83)U—-1U U(0) =0,

%’: =11Q+1U—-dR+uS R(0) >0, (1)
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Table 1
Classification of the relevant papers.
Ref. Phase 1 Phase 2 Solution Method®
Epidemiological model® Vaccine supply chain
woOCP  wOCP  Adjusted Disease Cooperation®  Decisions Specification®  Uncertainty

Location  Allocation  Transshipment Inventory Routing

Asano et al. (2008) J Vv Rabies in raccoons

Nguyen & Carlson (2016) v N General SMP

Biiyiiktahtakin et al. (2018) v N Ebola OR

Duijzer et al. (2018b) v Influenza OR

Duijzer et al. (2018a) J Influenza AM

Enayati & Ozaltin (2020) v N Influenza OR

Westerink-Duijzer et al. (2020) ./ Influenza AM

Gamchi et al. (2021) J General OR J J J D,N

Chen et al. (2014) N i J ABJ,K,M,N CPLEX
Lim et al. (2022) v J J M,N MH
Abbasi et al. (2020) J J D,M,N CPLEX
Larissa et al. (2021) N N J B.N Gurobi
Yang et al. (2021) Vv N Vv Vv M,N Heuristic
Rastegar et al. (2021) Vv v N N N A,B,D,M GAMS
Tavana et al. (2021) J v N J ABDM CPLEX
Chen et al. (2021) N DM

Tang et al. (2022) N J N AM MH
Gilani & Sahebi (2022) J J J J ABLMN GAMS
Thul & Powell (2023) COVID-10 SMP N AC Stochastic Analytical
Yin et al. (2023) v N COVID-19 OR VA AM Dynamic CPlex
Current study J Vv COVID-19 OR J J J J J All Dynamic BD

2 woOCP: without OCP; wOCP: with OCP; SMP: Semi-Markovian Process; OR: Operations Research; AM: Analytical Model.

b A: Multi-period; B: Multiple vaccines; C: Fairness; D: Age groups; E: Prioritized age groups; F: Split delivery; G: Multi-dose; H: Cumulative demand in the second dose; I: Time lag between injection of doses; J: Vaccine
fraction; K: Vaccine deterioration; L: Unmet demand; M: Storage capacity; N: Shipping capacity.

¢ MH: Meta-heuritic.
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Table 2
Notations of the adjusted SIR model.

European Journal of Operational Research 310 (2023) 1249-1272

Notation Description

A Total population at the beginning of the pandemic

d Natural death rate of individuals

N(t) Total population at time ¢t

S Number of susceptible individuals

I Number of infected individuals

Q Number of quarantined individuals

U Number of unquarantined individuals

R Number of recovered individuals

B1/B2/B3 Disease contagion rates per contact by infected/quarantined/unquarantined individuals
u Proportion of susceptible individuals who are vaccinated

k Information interaction rate through which individuals admit to taking a test

T The probability of a test to be positive

v/V1 [V Progression rate by which infected/quarantined/unquarantined individuals get recovered
81/82/83 Particular death rate among infected/quarantined/unquarantined individuals

By solving the isoclines, the basic reproduction ratio %, and the
endemic equilibrium point can be calculated. In this regard, two
equilibrium points are considered as the disease-free equilibrium
point (i.e., Eg(Sp,0,0,0,0) = (%, 0,0,0,0))) and the endemic equi-
librium point (i.e., E*(S*, I*, Q*, U*, R*), where %, < 1).

The basic reproduction ratio %, (Wallinga et al., 2010) is de-
fined as the number of new infections caused by a single infec-
tious individual in a completely susceptible population (Duijzer
et al., 2018b). Accordingly, in the case of %, > 1, the pandemic is
anticipated to progress. Next, the method proposed by (Van den
Driessche & Watmough, 2002) is used to calculate %,. For this
purpose, let x= (I, Q,U) and constitute %, $H(x), and v(x), where
$H(x) refers to the segments in which new infection terms are in-
troduced, and v(x) refers to the remainder of the segments. Ac-
cordingly, we have:

dx
o = - (2)
(Bl + B2Q + B3U)S
Hx) = 0 (3)
0
(d+ 681+ k)1
v(x) = —ktl+ (d+ 8, +v1)Q (4)

k(1 - )+ (d+ 85 + 1)U

In the following, the equivalent linearized matrices of $(x) and
v(x) at disease-free equilibrium Ey = (Sp,0,0,0,0) can be con-
structed as (5) and (6), respectively.

B1So  B2So  BsSo
F=Dsx))(E)=| O 0 0 (5)
0 0 0
V = (Dv(x)) (Eo)
(d+61+k) 0 0
= —kt (d+6,+17) 0 (6)
—k(1-1) 0 (d+6835+v3)

Finally, the basic reproduction number is equal to the spectral
radius of FV-1 (ie., Zy = p(FV~1), where p(A) is the spectral ra-
dius of the matrix A). The endemic equilibrium point is then ob-
tained by solving the system of Eq. (7).

A — (BilI" + B2Q* 4 B3U*)S* —dS* —uS* =0,
(B1l* + BoQ* + B3U)S* — (d + 81 + k)I* =0,
kTl* — (d + 8,)Q* — 11Q* =0,

k(1 = T)I* = (d + 83)U* — 1,U* = 0,
11Q* + 1,U* — dR* + uS* =0,

1254

3.2. The optimal control problem (OCP)

At this stage, we investigate how intervention measures can
mitigate the population’s disease burden. For this aim, the system
of Eq. (1) is revised to reflect the impact of the control variable
u(t) over time. In this regard, the aim is to minimize the cost
incurred by infected and quarantined individuals and the immu-
nization program in order to maximize the number of recovered
individuals using the possible minimal control variable u(t). The
optimal value of the control variable u(t) (i.e., u*(t)) can be found
through the optimal control problem (8) and (9). Indeed, this value
makes the system follow a trajectory state variable that minimizes
the performance measure J, where positive parameters wy, w,, and
ws are weight constants balancing the units of the integrand.

Jlu®] = /Orf[wd(n +wQ(t) +wsu?(6)]de (8)
s.t..

B A Bl B0+ pU)S - dS - us,

% — (Bl + B2Q + BsU)S — (d + 81 + )L,

%‘f — kel — (d+6,)Q - 1:Q.

& k(1 — D)~ @+ 83U - U,

i—f =110 + 1,U — dR + u(t)S 9)
with  initial  conditions  S(0) > 0,1(0) > 0,Q(0) >0,U(0) >

0,R(0) > 0. The objective function (8) denotes the total in-
curred cost, where the first term calculates the cost when infected
individuals consult medical professionals concerning symptoms
and intend to take a test. The second term also represents the
cost imposed on the government for quarantined individuals (e.g.,
social and home-care aids). The third term computes the cost of
the immunization program. Noteworthy, the square of the control
variable u(t) reflects the severity of vaccination side effects (Laarbi
et al., 2013). So, the region for the control intervention u(t) € [0, 1]
is given as n={u(t) |u(t)€[0,1].t €[0,Tf]}, where T; is the
final time up to which the control policy is executed, and also
u(t) is a measurable and bounded function. The optimal control
intervention u*(t) exists in n that minimizes the cost function J.

Theorem 1. The optimal control intervention u* in n of the optimal
control problem (8) and (9) exists such that J(u*) = min[J(u)].

Proof. A mathematical proof is provided in Appendix A. O
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In what follows, in order to obtain the optimal control vari-
able u*, the Hamiltonian function is formulated by introducing ad-
joint variables A = (A1, Ay, ..., As5) € R°, and minimized by apply-
ing Pontryagin’s Maximum Principle (Pontryagin, 1987) (please see
more explanations in Appendix B).

Theorem 2. If u* is the optimal control variable and S*, I*, Q*, U*,
R* are optimal state variables of the optimal control problem (8) and
(9), there exist then adjoint variables A = (A1, Ay, ..., As5) € R® that
satisfy the canonical system of Eq. (10):

% =M (Bil+ BQ+ BsU +d +u)
=X (Bil + B2Q + B3U) — As(u),
% = —W1+A1(B1S) — A (B1S—d -1 — k)
—A3(kt) — Ag(k(1 -1)),
% = =Wy 4+ A1(B2S) — A2(B2S) + As(d + 82 + 1) — As (1),
Bt 30(859) Mo (B5S) + had + 85 +v2) — s ().
dXis
Tl As(d), (10)

With the transversality conditions A;(Tf) =0,i=1,...,5, the op-
timal control variable u* is given as:

0 (A )\5)5}’1}’

u _mm{max{ , w3 (11)
Proof. A mathematical proof is provided in Appendix C. O

Finally, we can establish the optimal system by replacing the
obtained optimal control variable (11) at the optimal control prob-
lem (8) and (9) with optimal state variables. Noteworthy, as far
as the pandemic is not over, uS(t) helps estimate the demand for
vaccines for the population that should be provided. More impor-
tantly, at the endemic equilibrium point (i.e., Zy < 1), the demand
for the vaccines can be estimated as u = S* resulting from the opti-
mal system. Accordingly, the government should increase the value
of u until it reaches its optimal value u* to enter the endemic equi-
librium point.

4. Mathematical formulation

This section formulates the MVMDLIRP to distribute purchased
vaccines from a central storage hub to a set of vaccination cen-
ters through a set of intermediate distribution centers/depots. In
this network, the location of the central storage hub and vacci-
nation center is fixed, while the locations of the distribution cen-
ters need to be determined. Both distribution and vaccination cen-
ters are able to hold an inventory of vaccines in different periods.
Moreover, two groups of vaccines are available that differ in their
physicochemical properties, including mRNA vaccines (e.g., Pfizer-
BioNTech and Moderna) and Adenovirus vector vaccines (e.g., As-
traZeneca and Sputnik V). These vaccines require different storage
modes while the former should be stored in ultra-cold freezers be-
tween [—80 °C, —15 °C], the latter should be stored in refrigerators
between [2 °C, 8 °C]. Therefore, different inventory holding costs
are applied to each type of vaccine. It is also considered that a
fraction of the vaccines might perish/deteriorate from one period
to the next and be lost. To make the problem more realistic, the
population is divided into different classes based on their age, and
each class has a particular priority to be vaccinated.

According to the description, in order to provide an applica-
ble plan for vaccine distribution, three main categories of decisions
should be made simultaneously: design, distribution, and inventory.
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The design decision focuses on locating distribution centers from
a set of potential locations. Notably, these potential places have
specialized storage facilities and usually only need to make small
changes in the deployment of equipment. Therefore, when the
pandemic spread is controlled, we need to close these centers or
reduce their numbers. So, this can be performed with minimal en-
ergy, time, and cost, and these facilities can return to their previ-
ous activities. Therefore, this level of decision should be reviewed
periodically according to the volume of demand for vaccination.
Therefore, in the presented model, we have periodically reviewed
the decisions related to this level, confirming that the location de-
cision in the current problem does not belong to strategic level
decisions. Next, decisions related to the distribution of vaccines
should be made. In this regard, the vaccine distribution should be
performed from opened distribution centers as intermediate nodes
between the central storage hub and vaccination centers. In fact,
the inventory levels in opened distribution centers and vaccination
centers are the decision criteria for supplying vaccines from the
central storage hub and sending them to vaccination centers.

Additionally, the delivery of vaccines from opened distribution
centers to vaccination centers is performed via a limited number
of refrigerated trucks, and each truck has a limited capacity. At
each distribution center, the trucks are loaded with appropriate
vaccines, and each truck is responsible for delivering a number of
vaccines to different vaccination centers. Consequently, the ship-
ping of vaccines from distribution centers to vaccination centers
is addressed as a vehicle routing problem. What is more, due to
the dynamic nature of demand, resource limitations, and capaci-
ties of trucks and vaccination centers, in most cases, it is impossi-
ble to meet the vaccine demand of vaccination centers in one visit.
Therefore, in order to overcome this problem, split delivery is in-
tended for the distribution of vaccines. Thus, several trucks from
different distribution centers can meet the demand for a vaccina-
tion center.

Moreover, since the amount of vaccines produced is much
lower than the current demand, a fair distribution system is con-
sidered between vaccination centers. For the sake of fairness, a ser-
vice gap level is defined, which guarantees that the difference be-
tween the ratio of satisfied demand to the demand of two different
vaccination centers cannot exceed the specified service gap. There-
fore, we can guarantee that all vaccination centers can supply the
vaccine demand of the people assigned to them within an accept-
able boundary. Also, a predetermined percentage of each vaccina-
tion center’s total demand is guaranteed to be met. In this regard,
the shortage of vaccines is also considered by unmet demand that
happens when the demand for vaccines is more significant than
the supply power. Additionally, the cost of unmet demand is cor-
respondent by morbidity and mortality costs that an unvaccinated
individual imposes on the health system. Notably, we have consid-
ered this cost to be the same for all target age groups because, on
the one hand, this issue is of equal importance to all residents in a
community, and on the other hand, it expresses a kind of fairness
in the distribution of vaccines.

More importantly, COVID-19 vaccines should be injected in two
doses, which should be done in a predefined time interval. Al-
though this time has a lower bound according to the assessment of
the World Health Organization and vaccine-producing companies,
this lag is not necessarily fixed. In fact, the inventory of purchased
vaccines, the severity of the disease’s spread, and the government’s
policies in the vaccination process can change the time interval. In
addition, as previously discussed, the second dose should be the
same as the first dose, so each vaccination center must respond to
two types of demand in each period. The first type, which we call
new demand, is related to people who want to inject their first
dose. The second type of demand is related to people who want
to inject their second dose, and the type of vaccine required for
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the second injection must be the same as the first dose. Therefore,
each period’s cumulative demand must be calculated for each dis-
tribution center. The main assumptions of the described problem
are as follows:

o The locations of the central storage hub and vaccination centers
are predefined;

The capacities of the central storage hub, distribution centers,
vaccination centers, and vehicles are limited;

The shortage of vaccines is allowed, which is considered by un-
met demand;

COVID-19 vaccines must be injected twice with a predefined
time interval;

The second dose of vaccines must be injected the same as the
first dose for each individual;

People are classified into a number of classes based on their
ages;

The satisfaction of demand for vaccines is based on the priority
of each class of people;

Each vaccine center can be visited by vehicles more than once,
which is implied by the split delivery;

The demand for vaccines is uncertain and has a dynamic pat-
tern, which is estimated by the proposed adjusted SIR model
with OCP;

Vaccines can become unusable due to fractions during shipping
or opening and deterioration;

The unit cost of unmet demand is an estimation of the cost that
an unvaccinated individual imposes on the health system (e.g.,
test, treatment, hospitalization, and death costs);

The government obliges the people to receive the total dose of
vaccines in order to receive social services.

4.1. Notations

Table 3 lists the notations to formulate the MVMDLIRP.

4.2. The MVMDLIRP formulation

This section formulates the MVMDLIRP in terms of a mixed-
integer non-linear programming model using the notations de-
scribed in Section 4.1, where the demand for vaccines is estimated
from the proposed modified SIR model (9). The non-linear terms
are linearized afterward.

4.2.1. Objective function
The objective function of the MVMDLIRP formulation is pre-
sented as (12) which minimizes the total costs of the system.

minZ =Y "> fiZy+Y_ > Y cpiUpic
jeJ teT peP je] teT
+ 2,202 cspiThie + D D D Milyie
peP je iel teT peP jeJ teT

22D My + 32000 > A iXiie

peP iel teT jeM ieM veV teT
P 3T S (G )

peP keK iel teT

The objective function (12) includes seven different terms, in-
cluding 1) fixed cost of opening distribution centers, 2) variable
transportation cost of shipping vaccines from the central storage
hub to distribution centers, 3) variable transportation cost of ship-
ping vaccines from distribution centers to vaccination centers, 4)
variable inventory holding cost of vaccines in distribution centers,
5) variable inventory holding cost of vaccines in vaccination cen-
ters, 6) variable transportation cost (per distance) of vehicles, and

Rpit

12
d pkit ( )
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7) unmet demand cost. The last term also guarantees the priori-
tization of different age groups for vaccination. In fact, this term
seeks to minimize the total remaining fraction of unmet demand,
wherein the fraction of unmet demand of a given vaccination cen-
ter is weighted by its related priority score.

4.2.2. Constraints

In the following, the constraint body of the proposed
MVMDLIRP formulation is explained. The first set of constraints,
i.e,, (13)-(17), determine different quantities in the model from dis-
tributed vaccines to unmet demands.

Z(l — Vpit) Upje = ZZTpﬁthit VjelteT (13)
peP peP iel
> Gprie <> (1= wpji)TpjYie  VpePielteT (14)
keK jeJ
ﬂkdpkit < kait < dpki[ Vp e P, ke K, ie ILteT,t< Lp (15)
Brdpiic + Gpiier < Gpkie < dpiie

+Gpir  VpePkeKieclteT t>Lpt =t—1Lp, (16)
Rpkit = Rpki,t—l + dpkit — kait Vp ePkekKielteT (17)

Constraint (13) guarantees that the number of vaccines dis-
tributed from each distribution center should be less than the
number of arrival vaccines to that center, incorporating the ship-
ping lost rate. Similarly, constraint (14) holds the same condition
on arrival and distributed vaccines at each vaccination center. Con-
straints (15) and (16) determine the amount of demand that needs
to be fulfilled for the first and the second dose of each vaccine, re-
spectively, such that the fulfilled demand of a vaccine for its first
dose in period t should be re-fulfilled in period t + L. Finally, con-
straint (17) monitors the unmet demands at each period based on
the actual demand and the amount of demand that each vaccina-
tion center fulfills.

By involving inventory and shipping lost rates, the set of con-
straints (18) and (19) preserve the inventory level of vaccines in
distribution and vaccination centers, respectively.

If,’ﬁ = _apj.t—l)lgﬁt_l
+ (1= YpjUpj =Y Tpju  VpePjelteT (18)
iel
IZE = (1 - }”pi,t—l )IZ,‘C,tq + Z(l - ijit)ijit
Jjel
Gapi
_ Lk Gpit VpePielteT (19)
1- ¢pit

The set of constraints (20) and (24) ensure the capacity restric-
tions such that (20) represents the supply capacity for the number
of vaccines transferred from the central storage hub; constraints
(21) limit the number of vaccines delivered to each vaccination
center; constraints (22) ensure the capacity of vehicles when ship-
ping vaccines; and finally, constraints (23) and (24) limit the level
of inventory at distribution and vaccination centers, respectively.

> Upe<QH VpePteT (20)
je]

D (= ppi)Tyie <Qpf  VpePielteT (21)
jeJ

D TZKw <Q)  VjelveV.teT (22)
iel peP
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Table 3

Notations of the proposed multi-period PISP model.

European Journal of Operational Research 310 (2023) 1249-1272

Notation

Description

Sets & Indices

je] Set of distribution centers

ii'el Set of vaccination centers

meM Set of entire nodes in the network; M =1U]

peP Set of vaccines

kekK Set of population classes

veV Set of shipping vehicles

t.t'eT Set of time periods

Parameters

Wopkie /dpiic Priority/demand of each population class k at each vaccination center i for receiving vaccine p in period t

Br Minimum percentage of the demand of each population class k that should be fulfilled

§ Service level gap at which a fair distribution of vaccine among different vaccination centers should be established; § > 1. This is also called the
maximum ratio among the proportions of fulfilled demand at all vaccination centers

Ly Time interval between two doses of vaccines. In fact, It is imposed to the system that each population class must receive two doses of the same
vaccine. Therefore, the demand level in the network is indeed doubled

fi Fixed cost of establishing the distribution center j

Vit Lost rate of vaccines while shipping the vaccine p from the central storage hub to distribution center j in period t

Mpjit Lost rate of vaccines while shipping the vaccine p from distribution center j to vaccination center i in period t

Cpj Unit shipment cost of vaccine p from the central storage hub to distribution center j

CSpji Unit shipment cost of vaccine p from distribution center j to vaccination center i

Ajj Distance between each pair of nodes i and j in the network (i, j € M)

Ty Variable (per distance unit) cost of vehicle v

l?ﬁo/lgfo Initial inventory of vaccine p hold at distribution center j/vaccination center i

hg]ﬁ/h‘;g Unit inventory holding cost of vaccine p at distribution center j/vaccination center i in period t

Apjt Perishing (deterioration) rate of vaccine p at distribution center j at the end of period t

Aot [Dpic Perishing/deterioration rate of vaccine p at vaccination center i at the end of period t

g"’ Storage capacity constraint of vaccine p at the central storage hub

QEJF/Q“;C Storage capacity of vaccine p at distribution center j/vaccination center i

QY Shipping capacity of vehicle v

Q_l‘j’f Arrival capacity of vaccine p at vaccination center i

cu Unit cost of unmet demand

M A big enough number

Decision variables

The remaining set of constraints (27)-(42) are to design
the distribution network. Constraint (27) ensures that only
opened/established distribution centers can distribute vaccines to
vaccination centers. Constraints (28) and (29), respectively, guar-

lgjft/l"{ift Inventory level of vaccine p at distribution center j/vaccination center i at the end of period t
Upjt Amount of vaccine p shipped from the central storage hub to distribution center j in period t
Tyjic Amount of vaccine p shipped from distribution center j to vaccination center i in period t
Gt Amount of fulfilled demand of population class k for vaccine p from vaccine center i in period t
Ropkie Amount of demand of population class k for vaccine p left unmet from vaccine center i in period t; R0 =0
Z; 1 if distribution center j is opened/utilized in period t; 0 otherwise
Yjie 1 if vaccination center i is assigned to distribution center j in period t; 0 otherwise
Xjive 1 if node j is on the route of vehicle v before node i at time period t; 0 otherwise
ZKjy 1 if node j is on the route of vehicle v at time period t; 0 otherwise
UUiy The subtour elimination variable

I <Q)Zy VpePjelteT (23)

I <Qy VpePielteT (24)

In order to address the fairness in distributing the vaccines
among different vaccination centers, constraints (25) and (26) are
introduced such that the former determines the service gap, i.e.,
the maximal ratio between fulfilled demand proportions to the
whole demand for all vaccines among all population classes. The
latter also signifies that all vaccination centers that are served by
the same distribution center will receive the same proportions of
their demand.

Zpep Zkel( kait < Zpel’ ZkeK kai’t

8 Vijiilelii#i,teT

> pep 2okek Apkic — 2 pep kek Dpkie

(25)
> pep 2_kek Gplit - > pep 2kek Gpkire
> pep 2okek Apkit ~ 2pep Xokek dpiire

+(2—Yﬁ[—Yj,‘rt) Vi,i/el;igéi’,je],teT

(26)

antee that each vaccination center is assigned to at least one dis-
tribution center at each period as well as more than a single vac-
cination center is assigned to each distribution center at each pe-
riod. Constraints (30) and (31) ensure that shipping vehicles serve
only established distribution centers and only the established links
between them and vaccination centers. Constraint (32) forces that
each vehicle can travel through the link from node i to node j if
and only if it is decided that node j be on the path of the vehi-
cle v. Constraint (33) guarantees that each vehicle is assigned to
at most a single distribution center. Constraint (34) indicates that
each node should be on the path of at least one vehicle.

intfzjt VjE],iGI,tET (27)
Y'Yi=1 VielteT (28)
jel
D Yiez=1 VjejteT (29)
iel
th ZZKjUt Vjej,veV,t eT (30)
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intZinvt Vje],iEI,UEV,tET (31)
ZKjy = Xjiy VjeMjielveV,teT (32)
> ZKjw <1 VveViteT (33)
iel
> ZKjw =1 VjeMteT (34)
veV

Constraint (35) states that a vaccination center can be assigned
to a distribution center if both centers are on the same route. Con-
straint (36) allows split delivery and ensures that each vaccina-
tion center is visited at least once. That is to say, the number of
vaccines required by each vaccination center can be fulfilled not
as a whole but through smaller deliveries by different vehicles
from distribution centers. Constraint (37) ensures that each vehi-
cle should be dispatched from at most a single distribution center.
Constraint (38) forces that each distribution center dispatches at
least one vehicle. In addition, constraint (39) ensures that at most
one vehicle could be assigned for each route. The connectivity con-
dition for vehicles is guaranteed by constraint (40), and constraint
(41) indicates that distribution centers can deliver vaccines only to
the assigned vaccination centers. Constraint (42) guarantees sub-
tour elimination. Finally, constraint (43) determines the types of
decision variables.

Y X+ Xpjw—Yye <1 VieljeJveV.iteT (35)
jeM jeM

DY Xjw=1 VielteT (36)
jeM veV

Y Xjiw<1 VveViteT (37)
jel el

Y Xjiw=1 VjelteT (38)
veV iel

Y Xjww<1 VijeMii#jteT (39)
vev

> X — Y Xiju=0 VjeMuveV.teT (40)
ieM ieM

Tpji <MYy VpePjejielteT (41)
UUjye —UUpye + [IXjie < 1 =1 VijjelveV.teT (42)

. . 2 2 . / .
Upjts Tp]m kazta Rpkm ijrs Ip,-ts UU]vr >0 VpePjeliclveV.teT
Zjt, Yjie, ZKe, Xjine € {0, 1}

(43)

The proposed formulation of this section is a non-linear pro-
gramming model due to the multiplication T,;Yj; in constraints
(13) and (14) as well as the multiplication Ty;;ZKj,; in constraint
(22). The linearization has been provided in Appendix D.

The employment of SIR models in a vaccine distribution net-
work is twofold: Apriori or Interactive. In an apriori way (Gamchi
et al., 2021), the SIR model is used to estimate the dynamic de-
mand with a given vaccination strategy (i.e., fixed rate of vacci-
nation (i.e., u in 1)). In this approach, once the demand is esti-
mated for the whole planning horizon, the demand is given as an
input parameter to the optimization model. Furthermore, the deci-
sions in one period do not affect the estimated demand of further
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periods, except the unmet demand accumulated over periods. In
an interactive way (Bertsimas et al., 2022), the SIR model interacts
with an optimization model in each period. In this way, the vac-
cination rate u is a decision variable, and the optimization model
determines it according to the technical constraints of the distri-
bution network. In this way, the decisions in each period directly
affect the estimated demand for further periods, and no unmet de-
mand is considered. Accordingly, the SIR model is updated at the
end of each period based on the output of the optimization model
in that period, and it estimates the demand for the next period.
The new demand is then given to the optimization model for fur-
ther vaccination decisions. These optimization models, which are
executed for each period, are called myopic models. In this pa-
per, we have employed the apriori approach with a given vacci-
nation rate u, where the SIR model is executed once throughout
the whole planning horizon.

5. Benders decomposition - BD

This section employs a Benders decomposition algorithm
(Benders, 1962) to solve the proposed model for the MVMDLIRP.
Benders (1962) proposed the BD algorithm to deal with prob-
lems with complicated variables, where it decentralizes the struc-
ture of a problem to provide an easier formation of the prob-
lem to reduce the computational burden (Abou-Ismail, 2020; Rah-
maniani et al., 2018). From then until now, it has been gaining
prestige as one of the most powerful exact algorithms to solve a
broad range of NP-hard problems, such as vehicle routing (Corréa
et al., 2007), facility location (Boland et al., 2016), logistics network
design (Cordeau et al., 2006), transportation (Coelho & Laporte,
2014), and inventory vehicle routing (Alkaabneh et al., 2020). What
is more, many studies in the literature have used the BD algo-
rithm to solve the vehicle routing problem and its derivatives, such
as location-routing (Calik et al., 2021), location-inventory-routing
(Zheng et al., 2019), and production-inventory-routing (Cordeau
et al., 2015) problems. As a result, several efficient valid inequal-
ities have been presented for these problems that could limit the
solution space and improve the convergence speed of the BD.
Hence, since the proposed model in the current research is one
of the derivatives of the vehicle routing problem, the BD algorithm
is employed to solve the proposed model.

5.1. BD in general

The idea behind the BD algorithm is to divide the original prob-
lem into a master problem and a set of sub-problems, with the
hope that the decomposed problem be easier to be solved (Abou-
[smail, 2020; Rahmaniani et al.,, 2018). The master problem in-
corporates a part of the original model with only integer vari-
ables. On the other hand, sub-problems are formed by applying
programming duality over the rest of the original model, know-
ing that the value of the integer variables is given. Along with
the integer variables in the master problem, an artificial variable
is considered that describes a lower bound (upper bound) on the
sub-problems’ objective function for a minimization (maximiza-
tion) problem. Through the BD algorithm (see Fig. 2), master and
sub-problems are solved iteratively, such that the master problem
is solved first and the values of the integer variables are deter-
mined. Next, the sub-problems are solved for the given value of
the integer variables from the master problem. Finally, a feasibility
cut (based on the values of the sub-problems’ variables) is added
to the master problem if some sub-problems are infeasible or un-
bounded; else, an optimality cut is added. If sub-problems are fea-
sible, an upper bound can be obtained, and if the optimal solution
is obtained by solving the master problem, a lower bound can be
obtained. This procedure is repeated for further iterations until a
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Fig. 2. BD’s flowchart.

stopping criterion is met (i.e., the maximum number of iterations
or a threshold for the gap between the obtained lower and upper
bounds). Afterward, a set of accelerators, in terms of inequalities,
are employed to enhance BD’s performance, the so-called acceler-
ated BD (ABD) algorithm. In the following subsection, a set of valid
inequalities are introduced.

5.2. Valid inequalities

The first set of valid inequalities (44)-(46) have been widely
used in the literature for inventory and location routing problems
(Coelho & Laporte, 2014; Darvish et al., 2019). These inequalities
are employed to empower the linear programming relaxation of
the MVMDLIRP formulation.

7]
DN ZKiw

veV t'=t
7] vC
- Zﬂ:tl ZpeP ZkeK dpkit’ - Zpel’ Ipi,:1

= ) Vielti,hbeT;tp >t
zt’:t] zpel’ ZkeK dpkit’

(44)
Xiw=0 VieMuveVteT (45)
2 ZKjye <Y Xje + ) Xijw  VieJveV.teT (46)

iel iel

The idea behind the valid inequality (44) relates to whether the
inventory held at each vaccination center at each period is suffi-
cient to fulfill future demands. More precisely, if the inventory held
in period t; by vaccination center i is sufficient to fulfill its demand
for periods [ty,ty], then no delivery of vaccines to vaccination

. : ; vVC 5
center i is required. Indeed, if }°,.p Ipit1 > Zﬁ:t] > pep 2kek Apkit’s
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then Y,y Z?=tl ZK;s > 0. On the other hand, if the inventory is

not sufficient to fulfill future demands, then a delivery must take
place. Moreover, the valid inequality (45) eliminates links between
a node and itself. Finally, the valid inequality (46) forces that one
route can start and end at a distribution center in each period if
the distribution center is opened/established.

Another type of valid inequality, called knapsack inequality
(Santoso et al., 2005), is used in the proposed ABD algorithm. The
knapsack inequality is added to the master problem with the aim
of accelerating the branch-and-bound process of the solver. In-
deed, the convergence speed of Benders decomposition can be im-
proved by adding the knapsack inequality, which assists progres-
sive solvers like Gurobi in deriving a range of valid inequalities.

LB" <> fiZip+ D ) D) TAiXjiw +¢

jel teT jel] ieM veV teT

(47)

where LB" represents the best lower bound found so far (i.e., the
objective function value (the best lower bound found by the solver)
in the previous iteration in case of feasibility (infeasibility)), and ¢
is an additional variable representing the total cost except fixed
opening cost distribution centers as well as the variable shipping
cost of the vehicles.

The Benders reformulation of the MVMDLIRP is provided in
Appendix E.

6. Computational experiments

This section presents the computational results of the designed
vaccine distribution network under demand dynamicity. In the fol-
lowing, Section 6.1 designs a set of experiments based on a real
case study, the vaccination campaign during the COVID-19 pan-
demic in France. Next, Section 6.2 presents a comparative anal-
ysis between the proposed ABD algorithm and the Gorubi solver
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(GRB). Finally, a set of comprehensive sensitivity analyses are con-
ducted in Section 7 to investigate the behavior of the proposed
MVMDLIRP model to any changes of its input parameters. These
sensitivity analyses help to draw valuable insights for health poli-
cymakers (Fig. 3).

6.1. Experimental design and case study

This section describes a real case study (see Fig. 3) on the vac-
cination campaign in France. France encompasses a total number
of 18 regions (i.e., 13 metropolitan and 5 overseas regions) and is
divided into 101 departments (i.e., 96 metropolitan and 5 overseas
departments). Among all, a number of 12 metropolitan regions (see
Fig. 3(a) with the total eligible-for-vaccination population of each
region in parentheses) are considered to be the potential location
for establishing distribution centers (i.e., |J| = 12), and a number
of 80 metropolitan departments are considered as the vaccination
centers (i.e., |I| = 80) or the areas that have a particular demand
for vaccines. The metropolitan regions in France possess different
properties (e.g., demographic, educational, social, economic, etc.),
and these disparities among regions make vaccination a complex
work for France’s health policymakers. A summary of these prop-
erties has been provided per region in Table F.1 in Appendix F. In
this case study, the population in each area is divided into four
age-based classes (i.e., |K| =4; ages: “18-49”, “50-64", “65-74",
“> 75"), and each area includes a different number of individuals
per each age-based class (see Fig. 3(b)). The central storage hub
of the purchased vaccines is located in the capital (i.e., region de-
France). A total number of 24 refrigerated trucks are considered
(i.e., |V| = 24) to ship the vaccines from distribution centers to vac-
cination centers.

The dynamic demand for vaccines in each populated area is ob-
tained by running the proposed system dynamics model (9) for
that area, where the birth and death rates as well as the popu-
lation are different for each area. Detailed information on all other
parameters of the adjusted SIR model and the MVMDLIRP model
is provided in Table 4. Except for the birth and death rates as well
as the population in each set of populated areas, other parameters
of the adjusted SIR model are considered similar for the whole of
France (Angeli et al., 2021; OPECST, 2021).

In Table 4, the unit shipment costs ¢ and cs are calculated based
on the rent price of refrigerated trucks divided by their holding
capacity (per pallet of 10k vaccines). Depending on the type and
capacity of the truck, this cost varied from 10 to 40 euros. In ad-
dition, the variable (per distance) shipment cost 7w represents the
vehicles’ traveling cost (e.g., fuel). The unit holding costs hPC/VC
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are also proportional to the shipment cost of vaccines, c, since the
shipment cost is indeed the cost of utilizing mobile refrigerators to
hold vaccines. Furthermore, the unit unmet demand cost is calcu-
lated as the expected cost that an unvaccinated individual imposes
on the health system (e.g., treatments, medicines, hospitalization,
test costs, etc.).

Figure 4 illustrates the outcomes of the adjusted SIR model in
determining the state variables for two distinct populated areas,
the demand points of vaccines. As can be observed, the dynamic-
ity of the state variables in the two areas are significantly different,
and they do not follow a specific distribution. These issues demon-
strate the necessity of employing epidemiological-based system
dynamics models (i.e., the adjusted SIR model) to determine the
demand for vaccines. Remarkably, since the pandemic is not over
at the time of this research, the state variable uS (Fig. 4f) is used
to estimate the demand for vaccines in each populated area.

The performance of the proposed ABD algorithm is tested
through a set of 36 test problems with a different number of vac-
cination centers and time periods. All test problems except the last
one are indeed smaller parts of the case study with fewer vaccina-
tion centers or fewer time periods. Since the adjusted SIR model is
run for each populated area for a time horizon of 365 days, and it
is also impossible and illogical to plan the MVMDLIRP daily, each
period of the MVMDLIRP model represents a week and the demand
for each period is the cumulative demand of the whole week.

Both the MVMDLIRP model and the ABD algorithm were coded
in Python 3.8 using the Gurobi 9.1.2 library, and all experiments
were done on a server containing four Intel XEON processors with
5 gigabytes of RAM memory running at 2.3 gigahertz. Furthermore,
two stopping criteria were considered, when executing the ABD al-
gorithm and GRB, as 1) a gap of 1% and 2) a CPU time of 7200 sec-
onds. For the ABD algorithm, the first criterion is the gap (%) be-
tween the obtained lower-bound and upper-bound at each algo-
rithmic iteration; and for GRB, it is the gap (%) between the best-
found solution and the current obtained solution.

6.2. Numerical results

This section conducts a comparative analysis of the perfor-
mance of the proposed ABD algorithm with valid inequalities
(ABD-w-VI) and without valid inequalities (ABD-wo-VI) compared
to GRB. Table 5 shows the results of this comparison for 36 test
problems with a different number of vaccination centers (i.e., col-
umn |I|) and different periods (i.e., column “|T|”) in terms of objec-
tive function values (i.e., columns “Obj. Values”) and computational
time (i.e., columns “Time (s)”). In columns “Obj. Values”, the values
are proportional to the objective value of the test problem #1. The
goal of this comparison is to evaluate the performance of the pro-
posed ABD algorithm compared to GRB and evaluate the benefits
of valid inequalities for the proposed ABD algorithm.

As can be seen in Table 5, both ABD-w-VI and ABD-wo-VI algo-
rithms have been able to obtain solutions with a gap of less than
1% for all test problems before reaching the maximum allowable
CPU time of 7200 seconds, even for larger test problems. However,
GRB has been unable to find the optimal solution for test prob-
lems (|1, |T|) € {(60,20 — 24), (70,14 — 18), (80,8 — 12)} under a
computational effort of 7200 seconds. Furthermore, GRB has not
even been able to find a feasible solution for larger test problems
(I, |T]) € {(70, 20 — 24), (80, 14 — 24)} under the limited compu-
tational time. Moreover, columns “Gap” compare the performance
of the ABD-wo-VI algorithm and GRB with the ABD-w-VI algorithm
in terms of objective function gap (%) and the computational time
ratio. Regarding the objective function gap, we only compare the
performance of GRB, since the ABD-wo-VI has reached the same
solutions as those of the ABD-w-VI algorithm. In terms of objec-
tive function gap, the ABD-w-VI algorithm has obtained much bet-
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Table 4
Input data.
Parameter Value Parameter Value Parameter Value
I 80 A [0.05,0.1] L (week) [2,6]
] 12 QCH [2M, 5M] cu (€) 2000
P 3 QPe [0.5M, 1M] B 3.70E - 6
K 4 Q_VC [2E + 4, 10E + 4] B 1.48E -5
v 24 gve [5E + 4. 2E + 5] Bs 7.00E -4
T 24 Qv [0.3M, 0.5M] k 0.05
w [0,0.5] f (e [0.2M, 0.5M] 81 [1E —4,1E - 3]
B [0.1,0.25] c(€) [10, 40] 8, [2E — 4,2E - 3]
8 1.5 cs (€) [5%,20%] x ¢ 83 [5E — 4, 5E — 3]
y [0.05,0.1] hPC (€) [5%, 10%] x ¢ T 0.2
n [0.05,0.1] h¥e (€) [5%, 10%] x ¢ vy 0.2
o [0.05,0.1] T (€) 1% x ¢ 23 0.05

ter solutions than GRB with a mean gap of 16% over test problems
for which GRB has reached at least a feasible solution. In terms of
computational time, a paired comparative analysis has only been
done over the test problems for which both corresponding meth-
ods have obtained the optimal solution with a gap of less than 1%
within the computational time of 7200 seconds.

It can be observed that the ABD-w-VI algorithm is faster than
both the ABD-wo-VI algorithm and GRB for all the correspond-
ing test problems with mean ratios of 1.75 and 12, indicating that
the ABD-w-VI algorithm is, on average, 1.752 and 12 times faster
than the ABD-wo-VI algorithm and GRB for solving the MVMDLIRP
model. To better show the difference between algorithms, Fig. 5
illustrates the comparison between three solution techniques (i.e.,
ABD-w/wo-VI and GRB) in terms of both objective function values
(Fig. 5(a)) and the computational time (Fig. 5(b)).

In order to explore the detail of results, Table 6 reports different
information for all test problems, including the number of opened
distribution centers (“OCD” in %), the unmet demand (“UMD” in %)
for each age-based class, and the contribution of each vaccine to
the vaccination of each age-based class (“CVG” in %).

Looking at column “ODC (%)", we observe that the larger the
size of the problem (i.e., the number of vaccination centers and
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planning periods), the higher the number of distribution centers
to fulfill the demand. Overall, about 82% of the total number of
distribution centers have been used to fulfill the demand in the
distribution network. The reason for the value “0” for instances
with |T| =2 (i.e., two weeks) is that the initial inventory of vac-
cines in the vaccination centers is sufficient to fulfill the demand
for such a short planning horizon. When solving the original case
study with |I| = 80 for planning horizons of |T| > 8 (i.e., greater
than 8 weeks), the whole capacity of the distribution network is
utilized by opening 100% of the distribution centers.

The results of columns “UMD (%)” indicate that, in overall, 6.4%,
9.4%, 13.8%, and 23.1% of the demand have remained unmet for
age-based classes “> 75", “65-74", “50-64", and “18-49”, respec-
tively. Comparing age-based classes shows that a lower percentage
of the population remains unvaccinated, from elders to younger
individuals. This comes from the prioritization of the age-based
classes in the objective function. More importantly, it can be seen
that the unmet demand of elders remains fixed when increasing
the number of vaccination centers (or indirectly increasing the po-
tential demand for vaccination); however, the unmet demand of
younger individuals increases. The reason is that no matter how
much the population is, the system put its all efforts into vac-
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Table 5
ABD vs. GRB.
# |1 |T| Obj. values Time (seconds) Gap (... vs. ABD-w-VI)
ABD-w-VI ABD-wo-VI GRB ABD-w-VI ABD-wo-VI GRB 0Obj. (%) Time (ratio)

GRB ABD-wo-VI GRB
1 60 2 1.000X 1.000X 1.000X 57 62 130 0 1.09 2.29
2 60 4 2.066X 2.066X 2.066X 75 83 393 0 1.1 5.28
3 60 6 3.152X 3.152X 3.152X 88 97 749 0 1.1 8.48
4 60 8 4.251X 4.251X 4.251X 104 118 1818 0 1.13 17.52
5 60 10 5.361X 5.361X 5.361X 132 168 2560 0 1.27 19.37
6 60 12 6.481X 6.481X 6.481X 190 314 3496 0 1.65 18.45
7 60 14 7.610X 7.610X 7.610X 206 340 4386 0 1.65 21.30
8 60 16 8.752X 8.752X 8.752X 282 488 5976 0 1.73 21.21
9 60 18 9.906X 9.906X 9.906X 347 618 6666 0 1.78 19.22
10 60 20 11.075X 11.075X 14.790X 389 700 7200 33.54 1.8 *
11 60 22 12.258X 12.258X 17.430X 470 879 7200 42.19 1.87 *
12 60 24 13.457X 13.457X 20.761X 556 1073 7200 54.27 1.93 *
13 70 2 1.005X 1.005X 1.005X 46 58 193 0 1.27 4.20
14 70 4 2.075X 2.075X 2.075X 66 89,1 531 0 1.35 8.02
15 70 6 3.158X 3.158X 3.158X 139 204 1154 0 1.47 8.29
16 70 8 4.257X 4.257X 4.257X 187 275 2283 0 1.47 12.23
17 70 10 5.367X 5.367X 5.367X 191 302 3608 0 1.58 18.92
18 70 12 6.489X 6.489X 6.489X 378 631 6967 0 1.67 18.43
19 70 14 7.624X 7.624X 10.636X 422 709 7200 39.51 1.68 *
20 70 16 8.772X 8.772X 12.837X 487 891 7200 46.34 1.83 *
21 70 18 9.934X 9.934X 14.631X 516 970 7200 47.29 1.88 *
22 70 20 11.112X 11.112X *x 537 1208 o *x 2.25 *x
23 70 22 12.308X 12.308X *x 685 1569 o *x 2.29 *x
24 70 24 13.467X 13.467X ** 727 1687 o ** 2.32 *x
25 80 2 1.007X 1.007X 1.007X 56 77 296 0 1.37 5.29
26 80 4 2.080X 2.080X 2.080X 121 190 1855 0 1.57 15.32
27 80 6 3.168X 3.168X 3.168X 193 326 4558 0 1.69 23.60
28 80 8 4.275X 4.275X 6.648X 283 501 7200 55.49 1.77 *
29 80 10 5.416X 5.416X 8.570X 385 689 7200 58.24 1.79 *
30 80 12 6.497X 6.497X 9.704X 482 877 7200 49.35 1.82 *
31 80 14 7.638X 7.638X *x 598 1244 o *x 2.08 *x
32 80 16 8.786X 8.786X *x 711 1536 *x *x 2.16 *x
33 80 18 9.945X 9.945X o 1026 2319 o o 2.26 o
34 80 20 11.118X 11.118X ** 1359 3126 o *x 23 *x
35 80 22 12.314X 12.314X *x 1958 4836 *x *x 2.47 *x
36 80 24 13.474X 13.474X *x 2842 7133 o *x 2.51 *x

* Time limit of 7200 seconds reached Average: ~ 16 ~ 1.75 ~ 12.
* No feasible solution after 7200 seconds.

201 mmm ABD-w-VI
[ ABD-wo-VI
1591 3 GRB

6000 -~

4000 +

b) CPU Time (s)

2000 4

0 - Lo L “ L L ]
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Fig. 5. Comparison between ABD and GRB.
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Table 6
Detailed results.
# 1] |IT|  ODC (%) UMD (%) CVG (%)
“18-49”  “50-64"  “65-74" “> 75"  “18-49” “50-64" “65-74" “> 75"
AZ MO Pf AZ MO Pf AZ MO Pf AZ MO Pf

1 60 2 0 25.0 23.9 23.0 21.5 7.9 139 782 79 139 782 83 138 779 89 137 774
2 60 4 50 35.2 31.0 26.9 22.1 8.1 161 758 63 158 779 78 153 768 88 155 75.7
3 60 6 67 34.1 274 20.9 14.9 7.8 219 704 6.0 197 743 7.1 194 735 75 189 736
4 60 8 75 31.7 223 15.3 9.1 106 198 696 74 198 727 6.1 192 748 6.0 179 760
5 60 10 80 25.0 16.1 8.8 2.2 111 186 703 68 202 729 52 189 759 52 168 780
6 60 12 83 219 121 4.1 0.0 120 182 698 59 206 735 47 185 769 50 163 787
7 60 14 86 18.7 9.2 0.0 0.0 132 176 692 49 215 736 43 186 771 5.1 16.1 787
8 60 16 88 15.7 4.2 0.0 0.0 142 175 683 44 224 732 44 192 764 54 158 7838
9 60 18 89 11.9 0.7 0.0 0.0 15.1 170 678 36 237 727 45 192 764 58 153 7838
10 60 20 90 11.9 0.0 0.0 0.0 162 164 674 34 239 727 45 190 765 62 154 784
1 60 22 91 10.1 0.0 0.0 0.0 17.7 148 675 34 237 728 47 184 768 65 150 785
12 60 24 92 2.6 0.0 0.0 0.0 192 140 669 34 238 728 49 186 765 67 150 783
13 70 2 0 25.1 24.1 23.2 21.6 7.9 139 782 79 139 782 83 138 778 88 13.7 775
14 70 4 60 35.5 314 274 22.6 8.4 126 790 65 133 801 80 128 792 93 122 785
15 70 6 72 36.9 29.9 23.2 16.4 8.7 120 792 64 133 803 78 121 801 82 123 795
16 70 8 84 33.2 25.0 16.5 9.2 8.6 171 743 57 151 792 67 151 783 7.1 152 777
17 70 10 93 30.7 19.2 10.3 2.3 8.9 181 729 53 177 770 59 167 774 66 158 77.6
18 70 12 96 26.3 14.0 4.4 0.0 9.5 191 714 50 182 768 55 172 773 69 164 76.7
19 70 14 98 22.0 9.4 0.0 0.0 106 200 694 46 187 767 55 179 766 73 156 771
20 70 16 100 18.5 4.6 0.0 0.0 121 196 683 43 194 764 58 178 764 7.7 152 771
21 70 18 100 14.7 0.6 0.0 0.0 155 176 669 4.1 19.7 762 6.1 175 763 79 145 777
22 70 20 100 12.7 0.0 0.0 0.0 175 163 662 41 200 759 62 173 764 79 141 780
23 70 22 100 11.5 0.0 0.0 0.0 19.1 152 657 43 201 757 67 174 759 79 139 782
24 70 24 100 8.0 0.0 0.0 0.0 21.1 142 647 53 191 757 87 194 719 79 129 792
25 80 2 0 27.4 26.3 24.7 229 7.9 139 782 79 139 782 84 138 778 90 13.7 773
26 80 4 75 38.5 34.0 28.9 23.6 8.4 125 790 67 133 800 84 126 790 96 123 78.0
27 80 6 88 37.5 31.9 24.0 16.8 9.0 109 801 67 127 806 84 116 800 85 125 79.0
28 80 8 100 36.2 29.0 19.5 12.2 110 218 671 75 199 727 63 196 741 6.6 194 740
29 80 10 100 34.7 25.2 15.3 8.3 111 201 688 66 205 729 54 195 751 56 184 76.0
30 80 12 100 29.3 19.0 114 5.0 124 190 686 58 206 736 48 187 766 54 174 773
31 80 14 100 26.0 124 8.0 1.0 132 186 682 49 208 743 44 185 771 57 175 768
32 80 16 100 23.5 9.6 2.0 0.0 144 179 677 44 217 739 45 190 766 59 162 779
33 80 18 100 19.7 2.6 0.0 0.0 154 174 672 36 230 734 45 192 763 62 163 775
34 80 20 100 16.7 1.0 0.0 0.0 163 165 672 34 234 732 46 188 766 63 156 78.1
35 80 22 100 14.5 0.0 0.0 0.0 178 152 671 34 237 729 47 184 769 6.6 153 78.1
36 80 24 100 11.0 0.0 0.0 0.0 190 137 673 35 235 731 50 180 770 6.7 148 784
Average: 82.1 23.2 13.8 94 6.4 127 166 707 53 193 754 6.0 172 767 7.0 154 77.6

cinating the elders as many as possible. The rest of the results
in columns “CVG (%)” show that Pfizer (Pf) is always higher than
Moderna (MO) and AstraZeneca (AZ) vaccines. The main reason is
the higher quantity of Pfizer vaccines purchased and stored by the
French government. These results of Table 6 are helpful to extract
some rules for the government when designing a vaccine distribu-
tion network. For instance, when planning to vaccinate eligible in-
dividuals through a set of |I| = 80 vaccination centers for a horizon
of |T| = 24 weeks, the optimal vaccination strategy would be open-
ing the whole distribution centers and allocating, on average, 74%
(average over 67.3, 73.1, 77.0, and 78.4), 17.5% (average over 13.7,
23.5, 18.0, and 14.8), and 8.5% (average over 19.0, 3.5, 5.0, and 6.7)
of the available capacity (purchased or stored) of vaccines Pfizer,
Moderna, and AstraZeneca vaccines to vaccinate the population.

7. Sensitivity analyses and managerial insights
7.1. Sensitivity analyses

This section provides a comprehensive sensitivity analysis of
three main criteria, including the total cost of the system, the to-
tal inventory of different vaccines, and the total unmet demand of
each age-based class with respect to changes of certain input pa-
rameters, including the minimum percentage of demand to be met
(B), the maximum supply of vaccines at vaccination centers (QVC),
inventory holding capacity at vaccination centers (QVC), inventory
holding cost at vaccination centers (hVC), the demand of vaccines

(d), the time interval between two doses injection (L), fairness
service level gap (8), and unmet cost (cu). Figures 6-13 illustrate
these sensitivities, wherein the value “1.00” on x-axis represents
the original level of the corresponding parameter in the case study
and other values on x-axis are proportional to the original value.

Figure 6 illustrates how altering parameter § affects the three
mentioned criteria. Precisely, Fig. 6(a) shows that increasing B
forces the system to vaccinate more individuals, and consequently,
the corresponding costs also increase linearly. Figure 6(b) illus-
trates that the level of inventory for all three vaccines decreases
since a larger demand should be fulfilled, and consequently, a
larger portion of the inventory should be spent. Since a higher
amount of inventory belongs to the Pfizer vaccine, its decrease
happens with a higher slope. Finally, Fig. 6(c) illustrates that im-
posing the system to fulfill more demands causes more unmet de-
mand for all age-based classes. The reason goes back to the lim-
ited availability of vaccines in the distribution system. Indeed, the
system’s capacity to fulfill extra demand is limited, and the extra
demand remains unmet.

Figure 7 investigates whether changing the supply capacity of
vaccines in vaccination centers impacts the concerned three crite-
ria. Figure 7(a) shows that the total cost of the system decreases as
more vaccines are allowed to be supplied in the vaccination center.
The potential reason for this decrease is twofold, the reduction in
the total inventory holding cost or the reduction in the unmet de-
mand cost. As Fig. 7(b) illustrates, the level of inventory increases,
while Fig. 7(c) shows that the unmet demand decreases.
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Fig. 7. Impact of the maximum supply of vaccines on total cost, inventory, and unmet demand.

What can be inferred is that the reduction of the unmet de-
mand cost outweighs the increase of the inventory holding cost.
Consequently, the total cost of the system decreases. The trends
in Fig. 7(b) and (c) were expected since any increase in the sup-
ply capacity of the vaccines permits to store of more vaccines (i.e.,
an increase of the inventory level), and much larger storage helps
to vaccinate more individuals (i.e., less unmet demand). What can
be extracted more from Fig. 7(c) is that the unmet demand of
age-based classes with lower priority (i.e., “18-49”) always re-
mains higher than the unmet demand of high-priority classes (i.e.,
“> 75").

Moreover, Fig. 8 investigates whether any change in the stor-
age capacity of vaccination centers affects the performance of the
distribution system. As can be seen, by increasing the storage ca-
pacity, all three concerned criteria show a decreasing trend.

Importantly, significant decreases (e.g., 80% for age-based class
“18-49”) happen in the unmet demand for all age-based classes
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when the capacity of the vaccination centers increases up to 40%
(from 0.6 to 1.0 on x-axis of Fig. 8(c)). Indeed, the increase of the
capacity could be either increasing the capacity of the current vac-
cination centers by adding more vaccination lines or even opening
new vaccination centers. It can also be observed that increasing the
current capacity of the vaccination campaign in France up to 80%
(point 1.8 on x-axis) will cause important reductions in the unmet
demand in all age-based classes; however, any increase higher than
80% will not affect the unmet demands. Similar to Fig. 7(c), the
unmet demand of age-based class “18-49” always remains higher
than other classes; however, a significant decrease happens on the
unmet of this class when increasing the capacity.

Since the vaccines require special modes of storage (i.e., ultra-
cold freezers/refrigerators), the inventory holding cost plays a vi-
tal role in the distribution centers’ performance. In this regard,
Fig. 9 illustrates how the system reacts to the increase in the in-
ventory holding cost. As can be seen in Fig. 9(a), the total cost
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(a): Change in the objective function

European Journal of Operational Research 310 (2023) 1249-1272

1.006

1.004

1.002

Ratio

1.000

0.998

0.996

(b): Change in the total inventory of products

1.075

1.050

Ratio

1.025

—#— AstraZeneca
Moderna
Pfizer

1.000

0.975

1.02

0.98

18-49
ke 50-64
—%- 6574
- 375

1.00

B

1.50

Change ratio of parameter h'C

Fig. 9. Impact of inventory holding cost on total cost, inventory, and unmet demand.

of the system increases with the increase of the holding cost.
When this parameter increases, the reaction of the system is to ab-
sorb such an increase by decreasing the inventory level (Fig. 9(b)),
with the hope to reduce the total inventory holding cost. On
the other hand, any reduction in the inventory level of vaccines
signifies less capability of the system to vaccinate the popula-
tion. Accordingly, the unmet demand increases as illustrated in
Fig. 9(c). In such a situation, the increase of the total unmet de-
mand cost prevails to the reduction of the total holding inven-
tory cost; hence, the system’s total cost increases. In addition,
Fig. 9(b) reveals that by increasing the inventory holding cost, the
system puts its effort into reducing the share of Pfizer and Mod-
erna since they require ultra-cold freezers and possess a higher
holding cost. However, the inventory level of the AstraZeneca
vaccine remains stable since it costs less in terms of inventory
holding.
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Figure 10 depicts the impact of demand alteration on the per-
formance of the system and illustrates how the increase in demand
affects the cost of the system as well as the levels of inventory and
unmet demand. Figure 10(a) represents the reaction of the objec-
tive function to the increase in demand. As can be seen, this re-
action consists of two phases: a decreasing trend followed by an
increasing trend in the total cost of the system. In the decreasing
phase, the demand for vaccines is small, and it is mostly fulfilled
via the initial inventory of the vaccines in both distribution and
vaccination centers. During the time that the system consumes the
initial inventory in this phase, no extra vaccines are neither dis-
tributed nor stored in the network. Hence, both inventory holding
and transportation costs are reduced, leading to a reduction in the
system’s total cost. On the other hand, once the system runs out of
the initial inventory, the system starts distributing and storing new
vaccines. This phenomenon then increases the total cost of the sys-
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Fig. 11. Impact of the time interval between two doses injection on total cost, inventory, and unmet demand.

tem. In Fig. 10(b), the decrease in the inventory level of Pfizer and
Moderna is higher than AstraZeneca, since a more significant initial
inventory has been considered for the two former vaccines. Finally,
Fig. 10(c) shows an expected trend for the unmet demand, as any
increase in the demand for vaccines increases the potential unmet
demand due to the limited availability of the vaccines in the sys-
tem.

A more interesting result has been obtained when investigat-
ing the impact of the time interval between two doses of injection
of the vaccines on the performance of the system, as depicted in
Fig. 11. Figure 11(a) illustrates that if the time interval is reduced
to half of their recommended delay, the unmet demand increases
by a factor of 2.5 as shown in Fig. 11(c). Indeed, when the system
focuses on a complete vaccination with a short time interval, more
individuals are completely vaccinated, but a considerable part of
the population remains un-vaccinated (i.e., unmet demand).

Furthermore, if the recommended time interval increases by a
factor of 1.5, the unmet demand decreases up to 50%. Increasing
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the time interval signifies that more individuals receive at least
one dose of vaccines. On the other hand, this increase will not al-
ways reduce the unmet demand since, in further periods, the ac-
cumulated demand for the second dose of vaccines in early peri-
ods is summed up with new demands for the first dose; hence,
augmented demand for vaccines is imposed on the system. There-
fore, the unmet demand starts to be increasing when the system
is disabled to absorb such an augmented increase in the demand.
Accordingly, Fig. 11(a) and (b), collectively, show that the optimal
performance of the system happens when delaying the time inter-
val between two doses of injection of vaccines with a factor of 1.5.

Figure 12 depicts the impact of the fairness service level on the
unmet demand. Lower values of this service level guarantee fair ac-
cess for the population among different regions to vaccines. On the
contrary, higher values of this service level allow a higher disper-
sion of vaccine allocation among different regions. The former situ-
ation should provide a higher equity and higher satisfaction among
the whole population; however, the latter puts more effort into al-



B. Vahdani, M. Mohammadi, S. Thevenin et al.

European Journal of Operational Research 310 (2023) 1249-1272

1.006
1.004
1.002
2
T
&1.000
0.998
0.996
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Change ratio of parameter 6
Fig. 12. Impact of fairness service level gap on the unmet demand.
(a): Change in the objective function
1.0150
1.0125
1.0100
2
© 1.0075
o
1.0050
1.0025
1.0000
(b): Change in Distribution cost vs. Unmet demand —e— Dist. Cost
2.00
0.885 175
1.50
© 0.880 1.25 o
© T
o 1.00 <
0.875 0.75
0.50
0.870 0.25
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Change ratio of parameter cu

Fig. 13. Impact of unmet cost on the objective function and the amount of unmet demand.

locating vaccines to high-populated regions with a higher risk of
infection due to higher social contacts. Figure 12 illustrates that
increasing fairness (i.e., decreasing &) is not always the best strat-
egy in vaccination campaigns to stop pandemics. In fact, an opti-
mum level of fairness leads to the minimum level of unmet de-
mand. More explanations have been provided through managerial
insights in Section 7.2.

In another sensitivity analysis, we investigate the impact of un-
met demand cost cu on the objective function (12) (Fig. 13(a)), the
total distribution cost (i.e., the objective function (12), except the
last term), and the total amount of unmet demand (i.e., the last
part of the objective function (12)). As can be seen from Fig. 13(a),
increasing the unit of unmet demand cost increases the objective
function, since the network aims to vaccinate as many individuals
as possible to alleviate the impact of unmet demand. Figure 13(b)
shows, in detail, how increasing the unit unmet demand cost in-
creases (decreases) the total distribution cost (amount of unmet
demand).

7.2. Discussion and managerial insights

In this section, some of the more interesting results are dis-
cussed, and a sort of managerial insights are provided.

We observed that if the recommended time interval increases
by a specific factor, the unmet demand decreases significantly. It
means that vaccinating a higher number of individuals, even with
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a single dose, remarkably decreases the death rate. However, it im-
plies vaccines with a high level of efficacy for their first-dose injec-
tion. Therefore, the availability of vaccines also plays a vital role
in piloting a vaccination campaign. In reality, depending on the
availability of vaccines, several countries have recommended an in-
crease in time intervals between two injections (ECD, 2021). In this
regard, by June 2021, 16 EU countries increased the time interval
to provide more individuals with their first vaccination dose. Ro-
mania applied for such extension only in particular cases Dascalu
et al. (2021); however, seven other EU countries (Iceland, Latvia,
Lithuania, Malta, Slovakia, Slovenia, and Spain) did not apply such
a strategy. Shortly after, seven countries removed this extension in
September 2021 (Austria, Belgium, Czechia, Finland, Ireland, Portu-
gal, and Spain). The possibility of such an increase in the interval
between two injections introduced the concept of fractional dosing.
Actually, due to the limited availability of vaccines, especially at
the beginning of the pandemic, fractional dosing could be a crucial
decision to make a trade-off between reducing the number of po-
tential deaths (by vaccinating individuals with complete doses) or
decelerating the pandemic (by providing a higher number of indi-
viduals with the first dose).

Scientists have always debated the impact of equity and fair-
ness in pandemics (Enayati & Ozaltin, 2020; Mohammadi et al.,
2022). Although a higher level of fairness in vaccine allocation pro-
vides more social satisfaction among the population, the fair dis-
tribution of vaccines is not always the best barrier strategy to stop
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pandemics. In this paper, we observed that the unmet demand is
a convex function of fairness with a global minimum. Therefore,
low and high levels of fairness do not represent the optimum al-
location strategy. In fact, a low level of fairness puts more focus
on the vaccination of populated areas with a higher risk of in-
fection while ignoring less populated areas where the virus may
transmit without sufficient barriers (e.g., vaccination). On the con-
trary, a high level of fairness guarantees fair access to the popula-
tion to vaccines. However, there would be an imbalance between
high and low-populated areas regarding barrier actions. Therefore,
there should always be a trade-off between efforts for fair access
to vaccination and attempts to control/stop the pandemic in high-
risk (populated) areas. The focus on populated areas reveals the
importance of the level of social contact between individuals dur-
ing the progress of the pandemic. Therefore, from an optimization
viewpoint, the effort of health policymakers should not only be
vaccinating high-risk individuals to decrease deaths but also vac-
cinating the population with higher social contacts (i.e., populated
areas). Although the former may directly decrease the number of
deaths among the population, the latter directly breaks/decreases
the circulation of the virus in society and indirectly reduces the
number of deaths among the population. In this regard, one way
to control social contact could be imposing quarantine restrictions
in some regions while vaccinating others.

An important practicality of the proposed model for health pol-
icymakers can be highlighted from the results shown in Fig. 13(b).
In fact, parameter cu takes the role of an interplay between two
viewpoints, cost-oriented or mortality-oriented vaccination strate-
gies. As a matter of fact, increasing this parameter drives the
proposed model from a cost-oriented network toward a more
mortality-oriented network. Accordingly, although the objective
function of the proposed model is apparently a business objec-
tive, adjusting the unit unmet demand cost can satisfy mortality-
related concerns. In this regard, a possibility could be separating
the two parts of the objective function (i.e., distribution cost and
amount of unmet demand) and optimizing them through a bi-
objective model. The gain of such a model could be generating a
set of non-dominated solutions and providing health policymakers
with a portfolio of different vaccination strategies.

8. Conclusions

The most effective intervention strategy to control the COVID-
19 pandemic, which requires careful preparation due to its avail-
ability, is vaccination, the principal hope of today’s communi-
ties. In this regard, we proposed a novel exhaustive scheme that
contains three phases of demand regulating, location-inventory-
routing planning, and solution approach, wherein a broad range
of concerns of the COVID-19 vaccine procurement and distribu-
tion have been considered. In the first stage, we proposed a mod-
ified SIR epidemiological model for handling the dynamicity of
the vaccine demands, where the optimal control problem was in-
volved in determining the number of vaccines that need to be
purchased to control the pandemic situation. In the second stage,
we have presented and formulated a multi-period, multi-vaccine,
multi-depot location-inventory-routing problem in the form of a
mixed-integer programming model, where various realistic con-
cerns of the COVID-19 vaccine distribution, ranging from multi-
dose vaccine regimen to prioritizing age groups, have been re-
flected. Finally, we offered an accelerated Benders decomposition
algorithm to solve sizable test problems in the third stage. Al-
though the primary aim of the current research was to cope with
the concerns of the COVID-19 vaccine procurement and distribu-
tion, the soundness outcomes revealed that it could indeed be ap-
plied to cope with various vaccine distribution problems. In fact,
due to the complexity of the considerations that had to be re-
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flected in the distribution planning of the COVID-19 vaccines, the
proposed optimization model factored in almost all essential con-
cerns in the vaccine distribution. As a result, it could be fruitful to
distribute existing or forthcoming vaccines. The computational re-
sults demonstrated that the proposed framework could provide a
practical plan for the preparation and distribution of vaccines. In
this regard, we provided operational planning to prioritize vacci-
nation target groups, and we were also able to schedule a time in-
terval between injections of different vaccines if possible to control
the pandemic better.

For future research, we can mention a number of interest-
ing cases that can be considered in both levels of the presented
framework. Regarding the first level of the framework (i.e., the
adjusted SIR model), considering the efficacy of various vaccines
would be interesting to be considered in the model. Various facets
of this problem make it worthwhile to study. If immunizations
are only moderately effective, the booster dose should be admin-
istered sooner. Furthermore, if the vaccine’s efficiency is excellent,
the option of delaying the second dosage of the vaccine rises, al-
lowing a more significant percentage of the target population to
get vaccinated. The second involves anti-vaccination individuals.
These people increase the possibility of infection and raise mis-
trust among others who have not yet been vaccinated. Regarding
the second phase of the framework (i.e., vaccine distribution net-
work), the proposed optimization model can be integrated with
the adjusted SIR model in an interactive way to develop a myopic
model. In this model, the SIR model and the optimization model
interact in each period, and the vaccination rate u in Section 1 is
considered as a decision variable, and the vaccination decisions in
each period directly affect the estimated demand of the further
periods.

Appendix A. Proof of Theorem 1

Proof. The optimal control intervention exists when the following
conditions are satisfied:

o The solution space of system dynamics (1) with control variable
uin M # ¢.

o The mentioned set n is closed, and convex, and the state sys-
tem is represented with a linear function of the control variable
where coefficients depend on time and also on state variables.

e Integrand of (8): L is convex on n and L(S,1,Q,UQ, R, u) > f(u),
where f(u) is continuous, and |[u||~1f(u) — oo, when |Ju|| —
co. Indeed, ||.|| indicates the L(0, Tf) norm.

From the system dynamics (1), the total population N =
S+1+Q+UQ+R. Hence, 9 = A —dN—5§1-5,Q-85UQ < A —
dN, and 0 < N(t) < N(0)e~% + & (1 — =), where N(0) = S(0) +
1(0) +Q(0) +UQ(0) + R(0). Also, when t— oo, we have 0 <
N(t) < 4.

For the control variable in m, the solution of the system dy-
namics (1) is bounded and right-hand side functions are also lo-
cally Lipschitzian. The Picard Lindelof theorem demonstrates that
the first condition is met (Coddington & Levinson, 1955). The con-
trol set n is closed and convex by definition. Again, all the equa-
tions of the system dynamics (1) are written as linear equations in
u where state variables depend on the coefficients, and hence the
second condition is also satisfied. Moreover, the quadratic nature of
the control variable guarantees the convex property of integrand
L(S,1,Q,UQ, R, u). Let f(u) =wsuy, next L(S,1,Q,UQ, R, u) > f(u).
Here, f is continuous and ||u|~! f(u) — oo, when ||lu|| — co. Hence,
the third condition is also met. Therefore, it is concluded that there
is the control variable u* with the condition J(u*) = min[J(u)]
(Fleming et al., 2012; Gaff & Schaefer, 2009). O
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Appendix B. Pontryagin’s maximum principle (Pontryagin,
1987)

By Pontryagin’s Maximum Principle, we have derived here the
necessary conditions for optimal control functions for the opti-
mal control problem (8) and (9) (Fleming et al., 2012; Pontryagin,
1987). Let us define the Hamiltonian function as (B.1) and (B.2):

ds dI
dar + A ar
duQ dR

H(S,1,Q,UQ,R,u,)) = L(S,1,Q,UQ, R, u) + X
dQ

+ABE+A4T+ASE (B.1)
Hence,
H = wql(t) + w2Q(t) + wsUQ(t)
+3a[A = (Bl + B2Q + UQ)S - dS — u(©)s]
22 (Bil + B0 + BUQ)S — (d+ 81 + )
+aafkel = (@ +8)Q - 11Q]
+ha[k(1 = ) = (d + 85)UQ — szQ]
+A5[U1Q+UZUQ—dR+u(t)S] (B2)

Appendix C. Proof of Theorem 2

Proof. Let u* be optimal control variable and S*, I*, Q*, UQ*, R*
be optimal state variables of system dynamics (1) that minimize
the objective function (8). With the help of Pontryagin’s Maxi-

mum Principle and the defined adjoint variables A;,i=1,...,5, we
have%—_M& _9oH dig _oA dhy __ 8H dis __ BH

d ~ TS’ dt T T 9l' d ~ T 8Q’ dt _ _9UQ’ dt ~ ~ oR’
which lead to obtain Eq. (10). In regard to the transversality con-
ditions A;(Tf) =0, i=1,...,5 and optimality conditions, we have:
0H
—lu=u"=0
au |
0H
ﬁ'u =u*=2wsU* — A S+ As5=0

(A1 — As)S%
QP ERALT A C1
2w (C1)

Now from these findings along with the characteristics of con-
trol set n, we have:

0 if g <0
we= § Guziase g < Gudase o (C2)
1 if  Cagle

which is equivalent to (11). O

Appendix D. Linearization

With the help of auxiliary variables TY,;; and TZjiy
(TYpjit, TZpjiye = 0), these two multiplications are linearized by the
set of constraints (D.1)-(D.3) and constraints (D.4)-(D.6), respec-
tively.
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TYpjie <Tpjie VYpePjelielteT (D.1)
TYpji <MYy VpePjelielteT (D.2)
TYpjie = Tpjie —M(1—-Yj) VpeP jelielteT (D.3)
TZpjie <Tpjit VYpeP jejielveV.teT (D.4)
TZpjir <MZK;y VpeP jeliclveV,teT (D.5)

Tijiv[ > Tpﬁ[ — M(] 7ZK]'W) Vp € P,] 6], iclveV,teT

(D.6)

Finally, the constraints (13), (14), and (22) are replaced by the
following constraints (13), (14), and (22), respectively.

D= ypidUpie =Y Y TYye  VjelteT (D.7)
peP peP iel

> Gpie <Y (1= ppji)TYpje  VpePielteT (D.8)
kek jel

>3 TZpjiw<Q VjelveV.teT (D.9)
iel peP

Appendix E. The MVMDLIRP Benders reformulation

Let Zje, Yji¢, ZK jy, and Xy be the vectors of fixed Zj, Yjir, ZKjyr,
and Xj;, variables, respectively. The Benders sub-problem can be
written as follows:

minZ = Y"3"Y " cpUpic+ 22 D> cspiTyjic + Y>> hbShyi

peP jeJ teT peP jeJ el teT peP jeJ teT
R..:
VCy pkit
T T a Y S Swe(5)  (E)
peP iel teT DPeP keK iel teT phit

s.t.: Constraints (15)-(21), (24), (25), (D.1), (D.4), (D.7)-(D.9) and,

j Qg]c Zi (E2)

it < VpeP jeteT

ZpeP Zkel( kait < ZpeP ZkeK kai’t

> pep 2kek dpkit — 2pep Xokek dpiire
+(2 - ?jit - ?ji’[)

Vil elii#£i,jelteT

(E3)
Ty <MYy VpePjelielteT (E4)
UUjye — UUiye + I Xjie < 11l =1 VijelveV,teT (E5)
TYpju <MYy, VpePjelielteT (E6)
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TYpjic = Tpje —M(1—Yj) VpePjejielteT (E.7)

TZyjwe <MZK;x VpePjejiclveV,teT (E.8)

TZyjie = Tpjie —M(1 —ZK;x)  VpePjeliclveV,teT

(E.9)

Let A:{Apt20|pEP,I'ET}, B:{BjtZOUEJ,tET}, C=
{Chir =0lpePiclteT}, D={Dyj>0lpePicljelteT}
E={&jt=0lpePicl jelteT} F={Fpj=0lpePiec
LjelteT}, G={GyrecRlpeP jelteT}, H={Hy=0lpe
P je]teT}, T ={Jpkit z0lpePiclkeKteT;t<Lp},
K ={Kpig =0lpePiclkeKteT;t <L} L={Lyi>0lpe
PielkeKteT;t>Lp}, M={Mpy;>0pePiclkekte
T;t>Lp}. N:{/\/ﬁ/[20|i,i’€1,teT;i!:i’}, OZ{O“‘/]‘[E
Oli,i’ el,je] teT;il =i}, P ={Ppc =0lpePiclteT}
Q={QpreR|pePiclteT}, R={Rp>0lpePiclteT},
S={SuicRlpePicl kek} T ={Tpic €cRlpePicl ke
KteT), U={Uy>0ljejveV.teT}, V={Vyu=0lpePic
LjelveV,teT}, W={Wyyu=0lpePiclje]veV teT}
X ={Xpju =0|lpePicljeveV,teT},, Y ={Vj=0licl je
JveV.teT), Z={Z,; >=0|pePicl jej.teT} be the vectors
of the dual variables associated with the Benders sub-problem
constraints. The Benders master problem can be written as
follows:
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+ Z Z Z Z lgkdpkitﬁpkit - Z Z Z Z dpkitMpkit

peP iel keK teTl peP iel keK teTl
t>Lp t>Lp

- Z Z Z 2(2 —Yiie — Yjire) O je

iel i'el jeJ teT

- Z Z Z Qz‘;icppit - Z Z Z Q_X,-Can

peP iel teT peP iel teT

+ZZZdei,1Spki+ZZZ Z kit Tpkit

peP iel keK peP iel keK teT\{1}

=22 QU= 03D 3 Y M ZK i Wijue

jeJ VeV teT peP iel je VeV teT

=222 D M (1 = ZKGue) Xpijue

peP iel jeJ VeV teT

+ 0 D+ T+ X ) Vi

iel jeJ VeV teT

=220 D MY Zpii <€ (E11)
peP iel je] teT
§=0 (E12)

VA B, C, D, E F, G H T, K, L, M N, O P,OQ R, S T,
Uu, v, w, X, Y, ZePy where V signifies the polyhedron speci-
fied by the constraints of the problem, and Py implicates the set
of extreme points of V. Constraint (E.11) represents the optimality
cut which can be generated consecutively in accordance with Ben-
ders sub-problem solution and the vectors of the dual variables.

minZ = Zijth + ZZZZ””AUXJW +¢ (E10)  In addition, Mj; and My, are obtained via Egs. (E.13) and (E.14),
jeJ teT jeJ ieM veV teT respectively.
s.t.: Constraints (27)-(40), (44-47), and T
Mje = min {Q, Q% QY. 33" Y dya)  VieljejteT (EI3)
cH J P pj > i p
=22 QG A =200 ) MY peP kel 1=t
peP teT peP iel je] teT
T
=22, 2. 2 M (1= Yiio) Fyie My = min {QXF. Q1 YY) VielveVieeT (E14)
peP iel je] teT peP keK el 1=t
DC
=222 Qi Zii + )220 ) Pildpie T
peP je teT peP iel keK ttET
<
=P . . . .
Appendix F. Properties of French metropolitan properties
=222 ) Ay
peP iel keK ttselz, Table E1.
Table F1
Properties per region in France (Insee.fr, 2022).
Region Population Education (%) GDP (€)° Poverty (%)°
Density (ratio) Male (%) Female (%)
Auvergne-Rhne-Alpes 1,92 48,64 51,36 79,65 33,205 12,7
Bourgogne-Franche-Comté 1,00 48,66 51,34 76,24 27,026 12,9
Bretagne 2,05 48,60 51,40 81,70 29,500 10,9
Centre-Val de Loire 1,12 48,50 51,50 76,25 27,859 131
Grand Est 1,64 48,75 51,25 76,78 27,529 14,8
Hauts-de-France 3,20 48,45 51,55 74,31 26,948 18
Ile-de-France 17,10 48,26 51,74 81,27 57,600 15,6
Normandie 1,88 48,36 51,64 74,62 27,168 13,5
Nouvelle-Aquitaine 1,19 48,07 51,93 79,05 28,467 13,6
Occitanie 1,36 48,34 51,66 79,61 28,157 17,2
Pays de la Loire 1,97 48,71 51,29 78,85 30,258 10,8
Provence-Alpes-Cte d’Azur 2,71 47,76 52,24 78,64 31,580 17,3

2 Rate of total regional population with a high school education and higher.
b Gross Domestic Product of each individual.
¢ Rate of total regional population with a salary less than poverty threshold.
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