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Abstract

Post-hoc feature attribution methods are progressively being employed to explain decisions
of complex machine learning models. Yet, it is possible for practitioners to obtain a diversity
of models that provide very different explanations to the same prediction, making it hard to
derive insight from them. In this work, instead of aiming at reducing the under-specification
of model explanations, we fully embrace it and extract logical statements about feature
attributions that are consistent across multiple models with good performance. We show
that a partial order of feature importance arises from this methodology enabling more
nuanced explanations by allowing pairs of features to be incomparable when there is no
consensus on their relative importance. We prove that every relation among features present
in these partial order also holds in the rankings provided by existing approaches. Finally,
we present use cases on three datasets where partial orders allow one to extract knowledge
from models despite their under-specification.

Keywords: XAI, Feature Attribution, Under-Specification, Rashomon Set, Uncertainty

1. Introduction

The Machine Learning (ML) framework has proven to be an essential tool in many data-
intensive domains such as software engineering, medicine, and cybersecurity (Esteves et al.,
2020; Kaieski et al., 2020; Salih et al., 2021). However, the lack of interpretability of
complex models is still an important limitation to their applicability. For this reason, vari-
ous model-agnostic techniques such as LIME (Ribeiro et al., 2016), SHAP (Lundberg and
Lee, 2017), and Integrated/Expected Gradient (IG/EG) (Sundararajan et al., 2017; Erion
et al., 2021) have recently been developed to provide explanations of model decisions in
the form of feature attributions. These attributions are meant to indicate the contribu-
tion (positive/negative/null) of individual features toward the model prediction, and their
magnitudes (positive/null) can be used for feature selection or to rank features in order of
importance. As researchers and practitioners have started to apply these model-agnostic
explanations to real-world settings, it has become apparent that they are subject to vari-
ability. First, given a fixed model, re-running the explainer can yield different explanations
(Visani et al., 2020; Slack et al., 2021; Zhou et al., 2021). Second, retraining the model
can induce different explanations for the same decisions (Fel et al., 2021; Shaikhina et al.,
2021; Schulz et al., 2021). This phenomenon, known as under-specification, arises when one
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Partial Order in Chaos

employs a rich hypothesis space containing various models that all fit the data while having
very different behaviors (D’Amour et al., 2020).

In this work, we focus on uncertainty induced by retraining the model (the model under-
specification), while controlling the variability arising from the explainer. Current literature
addresses this uncertainty by aggregating explanations from an ensemble of independently
trained models. The aggregation is either conducted by averaging the models (Shaikhina
et al., 2021), or averaging the feature importance ranks (Schulz et al., 2021). We find
that, although these methods provide a single feature attribution to explain all models, it
is unclear what statements practitioners are allowed to make with confidence using said
feature attribution.

Our characterization of explanations uncertainty departs from the current ones by fo-
cusing on statements about feature attribution. Our motto in this context of model under-
specification is: only consider statements on which all models with good performance agree
Concretely, we are going to work with the set of all models with an empirical loss at most
ε, or equivalently, with all models in the Rashomon Set (Fisher et al., 2019). At a fixed tol-
erance ε, all feature attribution statements on which there is a consensus in the Rashomon
Set form partial orders, instead of the total orders typically used to rank features. The
advantage of partial orders is that they enable safer interpretations by allowing two fea-
tures to be incomparable. When two features are incomparable, they could be interpreted
as “equivalently important” so a practitioner may leverage their background knowledge to
select which of the two features is truly more important in the phenomenon being modeled.
Here is a brief summary of the contributions of this work:

1. We identify feature attribution statements on which there is a perfect consensus across
all models with an empirical loss at most ε (i.e., all models in the Rashomon Set).
These statements result in partial orders, which differ from the total orders com-
monly used to visualize feature attributions. Our methodology currently supports the
Rashomon Sets of Linear/Additive Regression, Kernel Ridge Regression, and Random
Forests Classification/Regression.

2. We prove that if feature i is more important than feature j in our partial orders, then
the same relation holds in the total rankings proposed by (Shaikhina et al., 2021;
Schulz et al., 2021). This property is crucial given the lack of ground truth in explain-
ability, which restricts quantitative comparisons between competing approaches.

3. We finally present empirical evidence on three open-source datasets that our partial
orders are indeed more cautious than total orders, while still conveying important
information about the predictions. Each use-case employs a different class of models
to better highlight the versatility of our framework.

The rest of the paper is structured as follow: Section 2 introduces Machine Learning,
feature attributions, and the problem of model under-specification, Section 3 presents a
toy-example that serves as the motivation behind our method, Section 4 discusses our
methodology for asserting consensus in the Rashomon Set, while Sections 5, 6, and 7
apply said methodology to Linear/Additive models, Kernel Ridge Regression, and Random
Forests respectivelly. Finally, Section 8 discusses the results and Section 9 concludes the
paper.
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2. Background & Related Work

2.1 Machine Learning

Machine Learning (ML) is a programming paradigm where instead of hard-coding logic
and rules, we let models adapt their internal logic based on data. We work with an input
space X ⊆ Rd, an output space Y, an hypothesis space H : X → Y ′, and a loss function
` : Y ′ × Y → R+. When the target variable is continuous (Y = R), the task is called
Regression, and when the target is binary (Y = {0, 1}), the task is called Classification. We
suppose there exists a distribution D over X ×Y from which examples from the dataset S =
{(x(i), y(i))}Ni=1 ∼ DN are sampled iid. The ultimate goal of the ML paradigm is to find a
model h? ∈ argminh∈H LD(h), with minimal population loss LD(h) := E(x,y)∼D[`(h(x), y)].
However, since the data-generating distribution D is unknown, we cannot compute the
population loss LD(h) and must resort to studying the empirical loss on the dataset S

L̂S(h) :=
1

N

N∑
i=1

`(h(x(i)), y(i)), (1)

which can be minimized over H to get an estimate hS ∈ argminh∈H L̂S(h) of h?. In this
work, we studied the hypothesis spaces H of Additive Splines (Hastie et al., 2009, Chapter
5), Kernel Ridge Regression (Mohri et al., 2018, Chapters 6 & 11) and Random Forests
(Breiman, 2001a). The two loss functions ` that were considered were the squared loss
`(y′, y) = (y′ − y)2 for regression and the 0-1 loss `(y′, y) = 1(y′ 6= y) for classification.

2.2 Feature Attribution

The ML paradigm has been successful in tackling tasks where traditional programming
methods fail. Still, the lack of transparency of some of the state-of-the-art models such
as Random Forests and Multi-Layered Perceptrons prohibits their wide-spread application
(Arrieta et al., 2020). To meet this novel challenge, the community of eXplainable Artificial
Intelligence (XAI) has recently been growing with the ambition of explaining black box
models. Formally, given a black box model h and a specific input of interest x ∈ X , there
is increased interest in capturing the reasons/logic behind the decision h(x). One family
of techniques that aim at providing such information are feature attributions, which are
vector-valued functionals φ : H×X → Rd whose vector output represents the contribution
of each feature towards the prediction h(x). We are going to focus on feature attributions
that are linear w.r.t to the model:

φ(h1 + αh2,x) = φ(h1,x) + αφ(h2,x), (2)

for any models h1, h2 ∈ H, and α ∈ R. Additionally, we will only study feature attributions
that are “additive” in the sense that they sum up to a quantity G(h,x) called the gap

G(h,x) := h(x)− E
z∼B

[h(z)] =
d∑
i=1

φi(h,x), (3)

where B is a background distribution which is usually a subset of the training data that
arises naturally from asking the contrastive question: why is h(x) so high/low compared
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to the average prediction on B? The magnitude |φi(h)| is called the local importance of
feature i.

We now present two linear additive feature attributions methods that have previously
been used to understand black box predictions: SHAP (Lundberg and Lee, 2017), and
Expected Gradient (EG) (Erion et al., 2021).

2.2.1 Shapley Values

The Shapley values are a fundamental concept from cooperative game theory (Shapley,
1953). Letting [d] = {1, 2, . . . , d} be the set of all d features, and given a subset P ⊆ [d] of
features, we define the replace function rP : Rd × Rd → Rd as

rP (z,x)i =

{
xi if i ∈ P
zi otherwise.

(4)

Moreover, let π be a permutation of [d], π(i) be the position of the feature i in π, and
π:i = {j ∈ [d] : π(j) < π(i)}. The Shapley values, as defined in the library SHAP
(Lundberg and Lee, 2017), are the average marginal contributions of specifying the ith
feature from the background distribution across all coalitions

φSHAP
i (h,x) = E

π∼Ω
z∼B

[
h( rπ:i∪{i}(z,x) )− h( rπ:i(z,x) )

]
, (5)

where Ω is the uniform distribution over all d! permutations of the features. Since Ω encodes
2d possible permutations, the computational cost of Shapley values is exponential in the
number of features, although a method called TreeSHAP was recently developed to reduce
the complexity to polynomial assuming the model being explained is an ensemble of decision
trees (Lundberg et al., 2020).

2.2.2 Integrated/Expected Gradient

The Integrated/Expected Gradient (IG/EG) originates from a different background: cost-
sharing in economics. It is also known as the Aumann-Shapley value and has been previously
used to compute saliency maps of Convolutional Neural Networks (Sundararajan et al., 2017;
Erion et al., 2021). The general definition of EG is

φEG
i (h,x) := E

z∼B,
t∼U(0,1)

[
(xi − zi)

∂h

∂xi

∣∣∣∣
tx+(1−t)z

]
. (6)

The main idea of this approach is to average the gradient along linear paths between
reference inputs sampled from the background and the input x of interest. When the
background distribution degenerates to a single atom at input z (B = δz), the Expected
Gradient falls back the so-called Integrated Gradient.

This work focuses on SHAP and EG feature attributions, but there exist many more
post-hoc methods for feature attributions. For instance, LIME (Ribeiro et al., 2016) com-
putes local feature attributions by training a linear model to mimic the behavior of h around
x. Moreover, some post-hoc techniques, such as Permutation Feature Importance (Breiman,
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2001a) and SAGE (Covert et al., 2020), extract global feature importance that is not spe-
cific to any given input. These other methods are not studied in this work because they do
not respect Equations 2 and 3.

2.3 Under-specification and Rashomon Set

The Rashomon Effect (Breiman, 2001b), also known as model under-specification (D’Amour
et al., 2020) or model multiplicity (Marx et al., 2020) refers to the observation that there
often exists a large diversity of models that fit the data well. This is especially true when one
is employing a hypothesis space with a large capacity. Formally, model under-specification
can be characterized via the Rashomon Set (Fisher et al., 2019)

Definition 1 (Rashomon Set) Given a hypothesis space H, a loss function `, a data set
S, and a tolerance threshold ε > 0, the Rashomon set is defined as

R(H, ε) :=
{
h ∈ H : L̂S(h) ≤ ε

}
, (7)

where we leave the dependence in S and ` implicit from the context.

Note that if ε is chosen low enough, then the set could simply be empty. Although Rashomon
Sets have an appealing and simple interpretation, their computation is intractable unless
one is fitting linear models with squared loss. Hence, in general settings, the Rashomon
Sets have to be estimated, which can be done by sampling models and keeping the ones
with satisfactory performance (Dong and Rudin, 2019; Semenova et al., 2019). However, this
method can be time-consuming and requires extensive memory to store hundreds/thousands
of models.

Other approaches work implicitly with the Rashomon Set by solving optimization prob-
lems over H under the constraint that L̂S(h) ≤ ε. By doing so, one can explore the
different characteristics of models in the Rashomon Set without ever needing to represent
the set explicitly. Such optimization problems have been studied to characterize the under-
specification of model predictions (Marx et al., 2020; Coker et al., 2021), and Global Feature
Importance (Fisher et al., 2019). However, there are currently no studies that explore the
range of possible feature attributions φ(h,x) across all models from the Rashomon Set.

2.4 Under-Specification of Feature Attributions.

In the words of Leo Breiman (2001b) “The multiplicity problem and its effect on conclusions
drawn from models needs serious attention.” Indeed, since models are under-specified, so
are their interpretations via feature attributions. In practice, this translates to situations
where a large set of independently trained models all yield different explanations to the
same decision. If our goal is to understand not just one model, but also get insight from
the data-generating mechanism, then contradicting explanations of the same decision are
problematic. Previous work tackles this uncertainty by aggregating the feature attributions
of multiple independently trained models. They both consider an ensemble E = {hk}Mk=1

of M models trained independently from a stochastic learning algorithm hk ∼ A(S). The
feature attribution of each of these models are computed {φ(hk,x)}Mk=1 and aggregated.
Uncertainty scores are provided in tandem with the aggregated attributions as means to
convey how “confident” the attributions are.
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For instance, Shaikhina et al. (2021) aggregate feature attributions by explaining the av-
erage model and the uncertainty scores are the variances of feature attributions among mod-
els. That is, they define the average model hE = 1

M

∑M
i=1 hk and compute its corresponding

feature attributions φ(hE ,x), which the authors show to be equivalent to averaging the fea-
ture attributions of each individual model when attribution is a linear functional. The uncer-
tainty score for the attribution of feature i is the variance 1

M

∑M
k=1(φi(hk,x)−φi(hE ,x) )2.

Additionally, Schulz et al. (2021) obtain an aggregated explanations by averaging the
ranks of the feature importance across models 1

M

∑M
k=1 r[ |φ(hk,x)| ], where r : Rd+ → [d]

is the rank function that maps each component of a vector to its rank among the other
components. The uncertainty score for feature i is the Ordinal consensus metric, which
takes values between 0 and 1 and measures the consistency between the rankings. As we
shall see in Section 3, both of these approaches share the same limitations: it is unclear
what statements we can/cannot make with confidence when analyzing the resulting feature
attributions. Indeed, they both end up providing a total order of feature importance which
suggests that any feature i or more/less important than another feature j, irrespective of
the explanation uncertainty. Moreover, the uncertainty scores shown in tandem with the
explanations do not provide useful confidence scores to the statement: feature i is less
important than feature j. Finally, they do not consider the whole Rashomon Set but rather
employ ensembles of M independently trained models, which may under-estimate the true
under-specification of the ML task.

3. Motivation

We show the limitation of current methods and motivate our own with a toy regression
problem. We sampled 1000 4-dimensional points x ∼ N (0,Σ) where Σ is identity, except
for Σ1,2 = Σ2,1 = 0.75, labelled them via y := f(x)+ε, with f(x) = −8 cos(x1−x2) cos(x1 +
x2)+1.5x3 (x4 is a dummy variable) and ε is Gaussian noise with standard deviation σ = 0.1.
We then independently trained 5 Multi-Layered Perceptrons (MLP) with layerwidths=
50, 20, 10 and ReLU activations. All models ended up having test set RMSE between
0.47 and 0.62, while the target had a standard deviation of 4.91. Given this satisfactory
level of performance (and the lack of conviction for choosing one model over the other),
we decided to study each individual model. We analyzed all their predictions at the input
x = (π2 ,

π
2 ,

π
2 ,

π
2 ) which ranged from 9.05 to 10.05 (the ground truth being f(x) = 0.75π+8 ≈

10.36). To provide insight into the model decisions, Figure 1 (Left) presents the SHAP
feature attributions for all five models as blue lines. We see that the various MLPs lead to
different interpretations. To make sense of these, we used the two state-of-the-art methods
for feature attribution aggregation.

Following Shaikhina et al. (2021), we average the predictions of our 5 models, leading
to a single predictor hE with a test RMSE of 0.42. The resulting SHAP feature attribution
is shown as an orange line in Figure 1 (Left). The total order of feature importance for this
average model is represented in the first column of Table 1. In particular, this explanation
suggests that x2 is more important than x1, which given our knowledge of the symmetry of
the ground truth seems somewhat spurious. Indeed, since the underlying data-generating
distribution, the target function f , and the point x to explain are all symmetric w.r.t x1

and x2, an ideal explanation would certainly not support that x2 is more important than
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0 1 2 3 4 5
x4 = 1.57

x3 = 1.57

x1 = 1.57

x2 = 1.57

Test RMSE

0.422

0.471

0.512

0.525

0.585

0.620

x1=1.57
mean=3.902

x3=1.57
mean=2.230

x2=1.57
mean=4.648

Figure 1: Left: Feature attributions for the average model hE (orange line) and each
individual model (blue lines). Right: Partial order of local feature importance. There is
a directed path from feature xi to feature xj if all good models agree that feature xi is
more important than xj .

Feature Attribution hE Variance Mean rank Ordinal Consensus

x2 = 1.57 4.65 0.46 2.8 0.87
x1 = 1.57 3.90 0.34 2.2 0.87
x3 = 1.57 2.23 0.10 1.0 1.00
x4 = 1.57 -0.15 0.12 0.0 1.00

Table 1: Aggregated feature attributions and uncertainty scores following previous methods.

x1. The uncertainty of the feature attribution is characterized via the variance across the
five models, see the second column of Table 1. We note that variance is higher for the attri-
butions of features x1 and x2, suggesting that their contribution toward the output is more
uncertain. Still, it is unclear what variance values are low/high enough to label attributions
as trustworthy/untrustworthy. Moreover, despite their higher variance, features x1 and x2

are consistently more important than features x3 and x4. Thus, we argue that variance
provides a pessimistic picture of the insights one can gather from feature attributions of
multiple models.

Following Schulz et al. (2021), we averaged the ranks of the SHAP feature importance,
see the third column of Table 1. This method again suggests that x2 is more important
than x1, which goes against with our knowledge of the data-generating mechanism. Using
the Ordinal Consensus as an uncertainty metric (fourth column of Table 1) suggests that all
feature importance ranks are confident. Indeed, both x1 and x2 have an Ordinal Consensus
of 0.87 seeing that there is only a single model for which the ranks of these two features
are switched. Nonetheless, looking at Figure 1 (Left), the model that contradicts all others
has a test RMSE of 0.512, which is the second best of the whole ensemble. Simply put,
this model offers a different but still valid perspective on the data. However, its opinion is
“washed out” by the other four models in the computation of the Ordinal Consensus. Hence,
we argue that the Ordinal Consensus offers a view of uncertainty that is too optimistic.
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As we have just highlighted, the methods of Shaikhina et al. (2021) and Schulz et al.
(2021) share the same limitations:

• It is unclear what statements one can/cannot make using these frameworks. For
instance, is x2 really more important than x1? Both approaches return a total order
of feature importance, which suggests one statement of relative importance for every
pair of features i.e. feature i is less/more important than feature j. As we have
seen, the uncertainty metrics provided in tandem with the total orders (Variance or
Ordinal Consensus) do not help to decide what statements on relative importance are
trustworthy.

• It is unclear what is the impact of model performances on the insights provided by
these two methods. For instance, the second-best model in the ensemble contradicts
all others regarding the relative importance of x1 and x2. However, its opinions are
diluted when aggregating all feature attributions.

In light of those takeaways, we decide to focus our method directly on statements about
relative feature importance, and whether or not all good models agree on them. For instance,
how can we decide if feature x2 is more important than x1? As noted earlier, one model
considers, contrary to the other four, that x1 is more important than x2. Given that
this model is as good as any other, we can simply decide to abstain from claiming any
relation of importance between x1 and x2. In this case, abstention seems indeed a cautious
position given the symmetry of the ground truth. Following this logic, for every other pair
of features, we check if all five models agree on their relative importance. For instance, all
five models agree that x1 is more important than x3. We decide to record this consensus as
trustworthy information and we represent it with an arrow from x1 to x3 in Figure 1 (Right).
Furthermore, we observe that while all five models agree that x1, x2 and x3 have a positive
attribution, this is not the case for x4 (our dummy variable). Based on this observation,
we decide to keep only the variables for which all models agree on the sign and exclude x4

from our final explanation.
All relations of importance among pairs of features for which there is consensus among

all five models actually form a partial order, a generalization of total orderings which can
be conveniently represented using a Directed Acyclic Graph (DAG) called a Hasse diagram.
The partial order of Figure 1 (Right) summarizes our explanation. Note that the partial
order suggests that the only relative importance statements we can make are that features
x1 and x2 are more important than x3. These two statements are also supported by the
total orders of Shaikhina et al. (2021) and Schulz et al. (2021), a fact that always holds as
discussed in Section 4.5.

8



Partial Order in Chaos

4. Methodology

4.1 Statements on Feature Attributions

Having introduced a basic motivation for considering the consensus among diverse models
with good performance, we now present a formal description of the approach. First and
foremost, our theory focuses on statements s : H× X → {0, 1} about feature attributions.
Given a performance threshold ε > 0, end-users will only be presented statements on which
there is a perfect consensus for all models in the Rashomon Set

∀h ∈ R(H, ε) s(h,x) = 1. (8)

We focus on the following statements about feature attributions.

Definition 2 (Positive (Negative) Gap) We say that the gap G(h,x) is positive (resp.
negative) according to h if G(h,x) > 0 (resp. G(h,x) < 0). Formally, the statements take
the form s(h,x) = 1[G(h,x) > 0] and s(h,x) = 1[G(h,x) < 0].

Before running SHAP or EG, it is primordial to understand the sign of the gap as it is the
basis behind the contrastive question we attempt to answer. There may exist instances x(i)

in the data where there is no consensus on the sign of the gap. Therefore, we let

SG(ε) =
{
i ∈ [N ] : ∀h1, h2 ∈ R(H, ε) sign[G(h1,x

(i))] = sign[G(h2,x
(i))]
}
, (9)

be the sets of data instances on which a contrastive question makes sense. Once a contrastive
question has been formulated, we can run SHAP or EG and analyze the feature attributions.

Definition 3 (Positive (Negative) Attribution) We say that feature i has positive (resp.
negative) attribution according to h if φi(h,x) > 0 (resp. φi(h,x) < 0). More formally, the
statements are s(h,x) = 1[φi(h,x) > 0] and s(h,x) = 1[φi(h,x) < 0].

We can now define the sets

SA(ε,x) =
{
i ∈ [d] : ∀h1, h2 ∈ R(H, ε) sign[φi(h1,x)] = sign[φi(h2,x)]

}
, (10)

which store the features whose attribution has a consistent sign across all good models. After
identifying the sign of the feature attributions, it makes sense to order them according to
their magnitude.

Definition 4 (Relative Importance) We say that feature i is less important than j (or
equivalently j is more important than i) according to h if |φi(h,x)| ≤ |φj(h,x)|. Formally,
the statements take the form s(h,x) := 1[|φi(h,x)| ≤ |φj(h,x)|].
Note that model consensus on relative importance leads to a partial order �ε,x such that:
for all i, j ∈ SA(ε,x)

i �ε,x j ⇐⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)|. (11)

By requiring a perfect consensus on the Rashomon Set, we guarantee that the order relations
will be transitive. Partial orders differ from the common total orders by allowing some pairs
of features to be incomparable when there exist two models with conflicting evidence on
relative importance.

9
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4.2 Asserting Consensus on Statements

We now show the equivalence between asserting a consensus on the Rashomon Set (i.e.,
verifying that ∀h1, h2 ∈ R(H, ε), s(h1,x)=s(h2,x)=1) and solving optimization problems.

Definition 5 (Computing Consensus on the Rashomon Set) Given a tolerance level
ε > 0, a Rashomon Set R(H, ε), and a feature attribution φ : H × X → Rd, consensus on
statements are asserted via the following optimization problems.

1. Positive (Negative) Gap : There is a consensus that the gap G(h,x) is positive
(resp. negative) if infh∈R(H,ε)G(h,x) > 0 (resp. suph∈R(H,ε)G(h,x) < 0).

2. Positive (Negative) Attribution : There is a consensus that feature i has a positive
(resp. negative) attribution if infh∈R(H,ε) φi(h,x) > 0 (resp. suph∈R(H,ε) φi(h,x) < 0).

3. Relative Importance : Let there be a consensus that the attribution of features i
and j have signs si and sj. Under this assumption, the feature importance becomes
|φi(h,x)| = siφi(h,x) for any h ∈ R(H, ε), and similarily for feature j. Consequently,
there is a consensus that i is less important than j if

sup
h∈R(H,ε)

siφi(h,x)− sjφj(h,x) ≤ 0.

These optimization problems may potentially be intractable depending on the hypothesis
set H and loss functions `. Nonetheless, we will see that they can be solved exactly and
efficiently for Linear/Additive Regression, Kernel Ridge Regression, and Random Forests.

4.3 Tune the Error Tolerance

Once we can assert model consensus on a feature attribution statement, we are left with
specifying the error tolerance ε. By increasing the tolerance, we can explore the under-
specification of our ML task via the Rashomon Set. Still, if our tolerance becomes too
high, we might reach a point where we always abstain from making statements and our
explainability system loses all practical utility. Therefore, tuning the parameter ε involved a
trade-off: it should be high enough so that we can characterize the under-specification of our
problem, but also low enough so that we don’t always abstain from making statements. The
way we propose to measure the utility of the system is to compute the ratio of statements
we make to the ratio of statements we could have made had we known the best-in-class
model h?. Had we known h?, for each instance in the dataset, we could run SHAP or EG
and get d statements on the sign of the attribution and d(d − 1)/2 statements of relative
importance, which leads to Nd(d + 1)/2 statements total. The utility of our framework is
thus defined as

u(ε) =

(
N
d(d+ 1)

2

)−1 ∑
i∈SG(ε)

|{(j, k) ∈ SA(ε,x(i))2 : j �ε,x(i) k}|. (12)

Simply put, it is the sum of the cardinality of all partial orders that we can define for
data instances where the contrastive question is well-defined. We note that u(ε) is a mono-
tonically decreasing function of ε. The trade-off between ε and u(ε) should be visualized
graphically in order to select the tolerance ε? used in practice.

10
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4.4 Full Methodology

We enumerate all the required steps to apply our methodology to a given problem.

1. Program optimization routines to assess feature attribution consensus for any error
tolerance level ε (cf. Definition 5).

2. Apply a linesearch over R+ for ε and compute u(ε). Choose a preferred value ε?.

3. Only present users with statements on which all models with an empirical loss at most
ε? agree. This will implies visualizing feature attributions as partial orders.

4.5 Relation To Prior Work

Prior methods for characterizing the effect of model uncertainty on feature attributions have
mainly focused on explaining an ensemble of models E = {hk}Mk=1 trained with the same
stochastic learning algorithm hk ∼ A(S) (Shaikhina et al., 2021; Schulz et al., 2021). We
go a step further by studying the feature attributions of all models in the Rashomon Set.
For this reason, it may not be immediately clear how our method compares to prior work.
The following proposition shows that what we propose is a more conservative alternative
to both existing methods.

Proposition 6 Let φ(·,x) be a linear feature attribution functional, and E = {hk}Mk=1

be an ensemble of M models from H trained with the same stochastic learning algorithm
hk ∼ A(S). Said feature attribution and ensemble will be employed in the methods of
(Shaikhina et al., 2021; Schulz et al., 2021). Moreover let ε ≥ max{L̂S(hk)}Mk=1 be an error
tolerance, and let �ε,x be the consensus order relation on SA(ε,x) (cf. Equation 11). If
the relation i �ε,x j holds, we have that i is less important than j in the two total orders of
prior work (Shaikhina et al., 2021; Schulz et al., 2021).

This proposition is key as it implies that our framework will not provide users with
statements that are not supported by existing approaches. In a way, all we do is abstain from
making statements whose uncertainty is highest. We think this is an important property to
have because, unlike model predictions, there are no ground truths for feature attributions.
For example, a practitioner can apply multiple aggregation mechanisms to model predictions
(Arithmetic Mean, Geometric Mean, Majority Vote etc.) and compare the resulting test
set performances using the target y as ground truth. However, when aggregating feature
attributions using different schemes, there is no metric for what feature importance ranking
is the best, or closest to ground truth. This is one of the major challenges currently faced
by the explainability community. Still, since our framework only highlights statements
supported by existing approaches, we eliminate the need for quantitative comparisons.

11
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5. Application to Linear/Additive Regression

5.1 Rashomon Set

One of the simplest hypothesis spaces H is the set of Additive models of the form h(x) =
ω0 +

∑d
j=1 hj(xj) where each function hj only depends on the feature xj . We note that

linear models are a subset of additive models with hj(xj) = ωjxj . The particularity of
Linear/Additive models is that the output is the sum of the contributions of d functions hj
which each only depend on one input feature. When employing such models, the contribu-
tion of each individual feature toward the output is readily available, which is why additive
models are advertised as being transparent. To fit an additive model, one must find a
way to represent the univariate functions hj . A first method is to represent each of the
functions non-parametrically via a sum of univariate decision trees. This scheme is what is
currently done in the ExplainableBoostingRegressor of the InterpreML Python library

(Nori et al., 2019) for instance. The parametric alternative is to define a basis {hjk}Mj

k=1

along each dimension j (for example using Splines) and represent the additive model using
linear combinations of these basis functions (Hastie et al., 2009, Chapter 5)

hω(x) = ω0 +
d∑
j=1

Mj∑
k=1

ωjkhjk(xj)︸ ︷︷ ︸
hj(xj)

, (13)

where

ω := [ω0, ω11, ω12, . . . , ω1,M1︸ ︷︷ ︸
feature 1

, ω21, ω22, . . . , ω2,M2︸ ︷︷ ︸
feature 2

, . . . , ωd1, ωd2, . . . , ωd,Md︸ ︷︷ ︸
feature d

]T .

In that case, be letting H be the N × (1 +
∑d

j=1Mj) matrix whose ith row is

[1, h11(x(i)), h12(x(i)), . . . , h1M1(x(i))︸ ︷︷ ︸
feature 1

, . . . , hd1(x(i)), hd2(x(i)), . . . , hdMd
(x(i))︸ ︷︷ ︸

feature d

],

the empirical loss minimizer takes the familiar form

ωS = (HTH)−1HTy. (14)

Definition 7 (Rashomon Set for Parametric Additive Regression) Let H be the set
of Parametric Additive Regression models (cf Equation 13), ` be the squared loss, S be a
dataset of size N , and ωS = argminh∈H L̂S(h) be the least-square estimate. If one uses the

performance threshold ε ≥ L̂S(ωS), then the Rashomon set R(H, ε) contains all models hω
s.t.

(ω − ωS)T
HTH

N
(ω − ωS) ≤ ε− L̂S(ωS), (15)

where H is the N × (1 +
∑d

j=1Mj) augmented feature matrix. We see that the Rashomon

Set is isomorphic to an ellipsoid. Moreover, if we let ε < L̂S(ωS), then the Rashomon Set
is empty.

This result is a simple generalization of the Rashomon of Linear Regression models
derived in Semenova et al. (2019) to Parametric Additive Regression models.

12
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5.2 Asserting Model Consensus

Beyond the fact that the Rashomon Set has an analytical expression, additive models are
the only types of models where the notion of feature attribution is not ambiguous. For
instance, running SHAP and EG on a Parametric Additive model while taking the whole
dataset S as the background yields the same answer

φSHAP
j (h,x) = φEG

j (h,x) = hj(xj)−
1

N

N∑
i=1

hj(x
(i)
j )

=

Mj∑
k=1

ωjk

(
hjk(xj)−

1

N

N∑
i=1

hjk(x
(i)
j )

)
,

(16)

which is a linear function of the weights ωjk. We have seen previously in Definition 5
that asserting the consensus on feature attribution statements amounts to optimization
problems that are linear with respect to the attributions. Therefore, asserting a consensus
on the Rashomon Set of Parametric Additive models requires maximizing/minimizing a
linear function on an ellipsoid

min/max
ω

aTω

with (ω − ωS)TA(ω − ωS) ≤ ε− L̂S(ωS),
(17)

with A := HTH
N and assuming ε ≥ L̂S(ωS). This optimization problem has an analytical

solution that can be computed rapidly using the Cholesky decomposition A = A
1
2A

1
2

T

.
The optimal values of Equation 17 are

±
√
ε− L̂S(ωS) ‖a′‖+ aTωS , (18)

where a′ = A−
1
2a and A−

1
2 :=

(
A

1
2

)−1
, see Appendix A.2 for more details. This result

is a generalization of Theorem 4 from Coker et al. (2021) to Parametric Additive models
and arbitrary linear functionals of the weights aTω. We deduce from Equation 18 that the
minimum and maximum values of any linear functional evaluated on the Rashomon Set are

a deviation of

√
ε− L̂S(ωS)‖a′‖ from aTωS the value of the functional evaluated on the

least-square. Since the deviation is an explicit function of the tolerance ε, a consensus on
feature attribution statements can be asserted at any tolerance level.

13
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5.3 House Price Prediction

The Houses regression dataset, available on Kaggle1, consists of predicting the selling price
in USD of 1446 houses based on 79 numerical and categorical features. For simplicity, only
numerical features were selected and, when feature pairs had a high Spearman correlation
(>0.55), only one feature was kept. Correlated features were removed because we suspect
they would aggravate under-specification of feature attributions since competing models
would rely on different subsets of correlated features. Moreover, we removed the two time-
related features YearSold and YearRemodAdd, since we are only interested in the physical
properties of the houses. We were finally left with 15 features total.

We decided to train an additive regression model with uni-variate spline bases. The
first modeling step was deciding which features to represent with spline bases and which
to keep linear (i.e. hj(xj) = ωjxj). We regressed the target on each feature individually
using a depth-3 decision tree and selected the four features with the highest R2 score
as candidates for spline modeling. The reasoning behind this approach is that additive
models only consider the main effects of the features and hence, following Occams’s razor,
our modeling efforts focus on features that are highly predictive on their own. We ended
up using spline bases with 4 knots on the features LotArea,OverallQual,1stFlrSF, and
GarageArea, see Figure 2(a) and (b) for examples. The function SplineTransformer of
the Scikit-Learn Python library (Pedregosa et al., 2011) was used to generate the bases.
We left the polynomial degree of splines as a hyper-parameter to tune between values 1, 2,
and 3. Figure 2(c) presents the test set empirical loss of ωS for the three hypothesis spaces,
along with Asymptotic-Gaussian confidence intervals of the population loss LD(ωS). We
see that none of these polynomial degrees results in a test error that is significantly better
than the others. This is an opportunity to compute the error-utility trade-off for all three
hypothesis spaces and see the effects of model complexity on the under-specification of
feature attributions.

The result of such an analysis is presented in Figure 2(d). We show the excess tolerance
ε − L̂S(ωS) instead of the absolute tolerance ε to ease comparisons between the three
hypothesis spaces. Contrary to our intuition, we see that the smallest hypothesis space
(degree 1) exhibits the steepest decrease in utility w.r.t increases in tolerance. We suspect
this is because the simpler models perform worst on the training set and for the same excess
of error relative to the least-square, the Rashomon Set contains worst models than other
hypothesis spaces. We also note that polynomials of degree 3 have a steeper decrease of
utility compared to degree 2, which could be attributed to their higher capacity, leading
to more contradictions between competing models. As splines of degree 2 show the most
gradual decreases in utility, we select this hypothesis space and fix ε? = 200 + L̂S(ωS) to
coincide with an “elbow” in Figure 2(d). We illustrate the selected value with a red star.
The reason we search for an “elbow” is that we do not want our statements to cease to hold
if we were to slightly increase our tolerance to error. Bear in mind that an extra tolerance
of 200 USD in error is negligible considering the models are predicting prices of houses that
range from 50k to 500k USD.

1. https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Figure 2

Having selected the tolerance ε? and hypothesis space H2, we can extract statements on
feature attributions for which there is a consensus on R(H2, ε

?). The first instance we wish
to explain is the house with the smallest price in the dataset: 52K USD. The predictions for
this instance ranged from 40k to 83k across the Rashomon Set. Figure 3 (Top) shows the
feature attribution on this instance and the partial order that summarizes all the statements
we make with confidence. We observe that features OverallQual=4 (quality of materials
and finish of the house from a scale of 1 to 10) and 1stFlrSF=very small have maximal
importance when explaining the drop in price relative to the mean. Also, we note that
GarageArea=0 is not part of the partial order despite clearly having a negative attribution
according to the bar chart. This is because, as indicated by the error bars, the models in
the Rashomon Set do not agree on the sign of this feature’s attribution. This highlights the
danger of explaining a single model and the nuance introduced by explaining a set of good
models.
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Figure 3: Feature attributions on two houses instances. (Top) House with the smallest
price. (Bottom) House with the third largest price.

The second instance we explain is the house with the third highest price: 466k USD. The
predictions on this instance ranged from 350k to 415k across the Rashomon Set. Figure 3
(Bottom) shows the feature attribution on this instance and the partial order that summa-
rizes all the statements on which the models agree. We see that feature OverallQual=10

has maximum importance to explain the increase in price predictions. This is a strong
statement because it means that all models with satisfactory performance put this fea-
ture at the top 1. We also observe that three other features 2ndFlrSF=0,1stFlrSF=very
large, and GarageArea=very large are all important for the prediction but are all mutu-
ally incomparable. Indeed, we abstain from claiming that any one of these features is more
important than the others. By allowing features to be incomparable and putting them on
the same vertical position in the partial order, we make the explanation more nuanced and
allow end-users to focus their attention on whichever feature they prefer. Note that, unlike
Figure 3 (Top), the feature GarageArea does appear in the partial order for this instance
since all models agree that this feature has a positive attribution. This means that whether
or not there is a consensus on the sign of a feature’s attribution can depend on the instance
being explained.
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6. Application to Kernel Ridge Regression

6.1 Rashomon Set

Let k : X ×X → R+ be a symmetric positive definite kernel. Then such a kernel induces a
functional space called a Reproducing-Kernel-Hilbert-Space (RKHS), which is actually the
completion of the Pre-Hilbert space (Mohri et al., 2018)

Hk :=

{
h(x) =

R∑
j=1

αjk(x, r(j)) for R ∈ N,α ∈ RR, r(j) ∈ X
}

(19)

endowed with the scalar product

〈 k(·, r(i)) , k(·, r(j)) 〉Hk
= k(r(i), r(j)), (20)

from which the terminology “Reproducing-Kernel” arises. The space Hk is impossibly large
since it requires specifying any integer R and any R reference inputs r(j). For simplicity,
we will fix the R reference inputs in advance and store them in a dictionary D := {r(j)}Rj=1.
We will then employ the much simpler space

HDk :=

{
hα(x) =

R∑
j=1

αjk(x, r(j)) for α ∈ RR
}

(21)

s.t. HDk ⊂ Hk as was done in (Fisher et al., 2019). Since these spaces are still considerably
expressive, it is common to apply regularization when learning models from them. From
the Rashomon perspective, this implies studying the Rashomon Set

R(HDk , ε) :=

{
hα ∈ HDk : L̂D(hα) + λ‖hα‖2 ≤ ε

}
, (22)

where λ > 0 is a regularization hyper-parameter that is fine-tuned by cross-validation and
‖hα‖2 = 〈hα, hα〉Hk

=
∑R

i,j=1 αiαjk(r(i), r(j)) is the functional norm induced by the scalar

product on Hk. We let K ∈ RR×R be the symmetric positive definite matrix of kernel
evaluations on the dictionary K[i, j] = k(r(i), r(j)). The regularized least-square solution is

αD = (K + λRI)−1y. (23)

Given this notation, we can present the Rashomon Set of Kernel Ridge Regression.

Definition 8 (Rashomon Set for Kernel Ridge Regression) Let HDk be the space in-
duced by the kernel k and dictionary D, ` be the squared loss, λ > 0 be a regularization
hyper-parameter, and αD be the solution of the regularized least-square. If one uses the
performance threshold ε ≥ L̂D(hαD) + λ‖hαD‖2, then the Rashomon set R(HDk , ε) contains
all models hα s.t.

(α−αD)T (K/R+ λI)K(α−αD) ≤ ε− L̂D(hαD)− λ‖hαD‖2. (24)

We see that the Rashomon Set is isomorphic to an ellipsoid in RR.

The proof is mutatis mutandis like the proof for Ridge Regression in Semenova et al.
(2019) but with Kernel Ridge instead.
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6.2 Asserting Model Consensus

Unlike the previous section, the model hα is no longer additive, and hence there is no
universal way to assign a score φi to each input feature when explaining a model decision.
Hence we must rely on either SHAP or Integrated Gradient, which are two principled
approaches for computing said scores. Because the exponential burden of Shapley values
has not yet been solved for kernel methods, SHAP was not used and we instead employed
the Integrated Gradient with a single baseline input z. Henceforth, assuming the kernel is
continuous and has continuous partial derivatives (k ∈ C1(X × X )), we compute the IG as
follows.

φi(hα,x, z) = (xi − zi)
∫ 1

0

∂hα
∂xi

∣∣∣∣
tx+(1−t)z

dt

=
R∑
j=1

αj

[
(xi − zi)

∫ 1

0

∂k(·, r(j))

∂xi

∣∣∣∣
tx+(1−t)z

dt

]
︸ ︷︷ ︸

φij

=
R∑
j=1

αiφij ,
(25)

which is a linear function of the coefficients α. Consequently, asserting a consensus on IG
feature attributions will again amount to optimizing a linear function over an ellipsoid so
we can leverage results from the previous section. The only additional step required for
Kernel Ridge is to pre-compute the path integrals φij with common quadrature methods.

6.3 Criminal Recidivism Prediction

COMPAS is a proprietary model currently employed in the United States to predict the
risk of recidivism from individuals that were recently arrested. These risks are encoded
as scores going from 1 (low-risk) to 10 (high-risk). The use of this automated tool in the
justice system is driven by the promise of providing objective information to judges based
on empirical data, thus circumventing human biases. Still, the strong reliance of models on
historical data means they can reproduce/perpetuate past injustices. To test such claims,
ProPublica has collected several thousands of COMPAS scores from 2013-2014 in the Florida
Broward County (Larson et al., 2016). In the resulting article, several pairs of Caucasian and
African-American defendants are presented along with their COMPAS scores, the former
often being lower than the latter despite the Caucasian defendant having a longer criminal
history. These examples of pairs along with the subsequent analysis from the article seem to
imply that the proprietary model depends on race. However, the methodology of ProPublica
has been heavily criticized alongside the claim that COMPAS depends explicitly on race
(Rudin et al., 2018). Hence, there may exist alternative explanations besides race for the
discrepancy between scores, so it is pertinent to study the feature attributions of the whole
Rashomon Set of reasonable models for predicting COMPAS scores.

To analyze the dependencies of risk scores on the various features, we repeated the
experiments of Fisher et al. (2019) where a Kernel Ridge Regression model was fitted
directly on the 1-10 scores from the ProPublica dataset. The same features were employed
while adding two additional ones related to juvenile misdemeanors and felonies. We utilized
Polynomial Kernel k(x,x′) = (γ〈x,x′〉 + 1)p with degree p = 3 and the Gaussian Kernel
k(x,x′) = exp(−γ‖x − x′‖2). The kernel scale hyper-parameter γ and the regularization
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Figure 4

Input Name Score Race Age Priors Charge

x Robert Cannon 6 African-American 22 0 Misdemeanor
z James Rivelli 3 Caucasian 54 3 Felony

Table 2: Comparison of the COMPAS scores of two individuals.

factor λ were fine-tuned with 5-fold cross-validation, see the results for Gaussian Kernels
in Figure 4 (a). Similar results were obtained with Polynomial Kernels. The resulting test
set RMSE was 2.11 for Gaussian Kernels and 2.12 for Polynomial Kernels. We note that
the performances are worst than Fisher et al. (2019) because, unlike them, we predict the
recidivism risk scores and not the risk scores for violent recidivism, which seem easier to
predict. The reason we did not predict the same COMPAS scores was that we wanted to
study the scores which were actually discussed in the ProPublica article.

After fitting the models, we identified a pair of Caucasian/African-American individuals
who were highlighted in the ProPublica piece and applied our explainability framework on
them. More specifically, we compared Robert Cannon and James Rivelli, see Table 2. James
Rivelli is a 54-year-old Caucasian man who was arrested for shoplifting. Despite having a
criminal record with three priors, he was assigned a low COMPAS score. In contrast, Robert
Cannon, a 22-year-old African-American charged with petit theft, was assigned a high risk
of recidivism. Letting Robert be the input of x and James be the input z, we observe
that the differences in scores are also present for the Kernel Ridge models: h(x) = 4.9 and
h(z) = 2.5 for Gaussian Kernels, and h(x) = 4.9 and h(z) = 2.5 for Polynomial Kernels.
Therefore, we have a prediction gap G(h,x) = h(x)− h(z) that is positive.
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Figure 5: Feature attributions comparing Robert Cannon to James Rivelli. (Top) Gaussian
Kernels. (Bottom) Polynomial Kernels. The features on the left of the bar charts represent
James while the values on the right represent Robert.

Given the historical racism in the United States, it is very tempting to look at these
two individuals and say that Robert Cannon is predicted to have a higher risk “because of
his race”. Still, there may exist a diversity of alternative explanations for this discrepancy,
which we can study by exploring the Rashomon Set of our Kernel Ridge models. To obtain
feature attributions, the Integrated Gradient was employed using Robert as the input of
interest x and James as the reference input z. Since computing the IG feature attributions
requires estimating the integrals of Equation 25 with quadratures, we ended up with esti-
mates φ̂(h,x) of the real attributions φ(h,x). We characterized the estimation error of this
discretization by reporting the Gap Error

∣∣∣∣ d∑
i=1

φ̂i(h,x)−G(h,x)

∣∣∣∣, (26)
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and used it as a proxy of how well φ̂(h,x) approximates φ(h,x). By simplicity, the Trape-
zoid quadrature was implemented, see Figure 4 (b) for the convergence of the Gap Error as
the number of steps in the quadrature increases. We note that, as expected, the quadra-
ture converges to the second order. For the remainder of the analysis, we have employed
quadratures with 1000 steps.

Seeing that the regularized loss L̂D(hα) + λ‖hα‖2 does not have interpretable units, we
decided to set the error tolerance ε to a multiple of the regularized least-squared solution.
More specifically, we set ε = 1.02 ×

[
L̂D(hαD) + λ‖hαD‖2

]
≈ 4.27 (an increase of 2% of

the minimum loss value). Unlike the previous section, we did not conduct a full line search
over the possible values of ε. Rather, by setting it to a small value, we only wish to prove
the existence of competing models that disagree on their explanation for the discrepancy
between James and Robert.

Figure 5 presents the feature attributions across the Rashomon Sets R(HDk , 4.27) of
Gaussian and Polynomial Kernels. Since the results are consistent across the two types of
Kernels, we will only discuss Gaussian Kernels. Inspecting the top bar plot, we see that, ac-
cording to the regularized least-square solution αD plotted as the blue/red bars, the features
Age=22 and Race=Black have positive attributions while the features Charge=Misdemeanor
and Prior=0 have negative attributions. This suggests that one of the possible explanations
for the high risk of Robert is racial discrimination toward African-Americans. However,
when we additionally consider the opinion of models with slightly worst performance on
the training data, some of our previous statements on feature attribution cease to hold.
Importantly, there exist competing models that yield a negative attribution to the fea-
ture Race=Black, and therefore there are reasonable explanations for the disparity between
Robert and James, that do not rely on Robert being African-American. Even when con-
sidering the whole Rashomon Set R(HDk , 4.27), there remain statements on which models
reach consensus. Notably, the attribution of the feature Age=22 remains positive and has
maximum importance. The only way for age to be a negligible factor in explaining the
difference in scores between Robert and James would be to consider models with worst
performances than what we considered.

These observations are concordant with previous work of Rudin et al. (2018) which hy-
pothesizes that COMPAS depends strongly on age and (at most) weakly on race. Nonethe-
less, our analysis must not be taken as absolute facts about the proprietary model COMPAS.
This is because we do not have access to the model and we are surrogating it with Kernel
Ridge models fitted on 7 features. The original COMPAS model, on the contrary, takes 137
different factors into consideration to produce a score (Rudin et al., 2018). Our analysis is
more of a proof of concept that our explainability framework can make sense of the feature
attributions of competing models and that it can highlight the diversity of explanations for
the discrepancies between two individuals.
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7. Application to Random Forests

7.1 Rashomon Set

A Random Forest (RF) is an ensemble of independently trained decision trees whose pre-
dictions are averaged to yield the final predictions Breiman (2001a). To increase diversity,
each tree is trained on a different bootstrap sample of the original dataset and each inner
split is done on a random subset of features. We let s represent the random seed encoding
all pseudo-random processes in the training of a single tree ts. If S is a distribution over
all possible seeds on a computer, the theoretical definition of a RF is

h(x) = E
s∼S

[ts(x)]. (27)

For simplicity, we will assume that the set of possible seeds is finite and of size M . Then,
a reasonable choice of distribution over seeds is the uniform over M seeds i.e. S =
U({1, 2 . . . ,M}). The number of seeds M will be fixed to 1000 for reasons we will see
later. In practice, the expectation Es∼S has to be approximated using Monte-Carlo sam-
pling. Given m < M , we sub-sample m seeds uniformly at random S ∼ Sm, and return the
sample average as our estimate of the RF

hS(x) =
1

m

∑
s∈S

ts(x). (28)

By the weak law of large numbers, the estimated RF should converge to the true RF (cf.
Equation 27) as m increases. Since sampling m seeds out of M with/without replacement
assigns a non-zero probability to any subset of m seeds, we conceptualize the space of all
possible RFs as the collection of all subsets of trees.

Definition 9 Given a large set T = {ts}Ms=1 of M trees trained with M different seeds, the
set of all possible RFs of m trees is

Hm :=

{
1

m

∑
t∈T

t : T ⊆ T and |T | = m

}
, (29)

i.e. all averages of subsets of m trees from T . Moreover we define Hm: := ∪Mk=mHk as all
RFs with least m trees.

Figure 6 illustrates an example of space Hm which highlights their combinatoric nature.
Note the monotonic relation m < m′ ⇒ Hm: ⊃ Hm′: meaning that decreasing m increases
the number of models considered. We can interpret H1: as the set of all possible Random
Forests that can ever appear in practice and so we aim at characterizing its Rashomon Set
R(H1:, ε). Such a Rashomon Set cannot be explicitly computed because of the exponential
size of H1: (|H1:| = 2M − 1). Still, we will see that studying the space Hm: for a carefully
chosen m can help us characterize a large subset of the Rashomon Set.

A desirable property of the spaces Hm: is that optimizing a linear functional over them
is tractable, as highlighted by the following proposition.

Proposition 10 Let T := {ts}Ms=1 be a set of M trees, Hm: be the set of all subsets of at
least m trees from T , and φ : Hm: → R be a linear functional, then minh∈Hm: φ(h) amounts
to averaging the m smallest values of φ(ts) for s = 1, 2, . . .M .
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Figure 6: Example of the space H2 representing all the possible groupings of 2 decision
trees out of M = 4.

The proof of this proposition is presented in Appendix A.3. Now, by letting the linear
functionals φ be the SHAP feature attributions, we can use TreeSHAP (Lundberg et al.,
2020) to compute φ(ts) for all seeds s = 1, 2, . . . ,M given that M is not too large.

At this point, we assume that the desired tolerance on error ε has been fixed and so
we wish to identify a value m(ε) that guarantees that Hm(ε): ⊆ R(H1:, ε). This value m(ε)
should be as small as possible so that the space Hm(ε): is as large as possible. With this
goal in mind, we let ` be the 0 -1 loss or the squared loss and define

ε+(m) =
1

N

N∑
i=1

max
h∈Hm:

`(h(x(i)), y(i)), (30)

which can be computed efficiently at any m by leveraging Proposition 10 to identify the
two most extreme predictions at any given x(i). Note that maxh∈Hm: L̂S(h) ≤ ε+(m) ∀m
so that ε+(m) is a pessimistic measure of the performance of all RFs containing at least
m trees. Given an absolute tolerance ε on the empirical loss, we search for the smallest
number of trees m we can keep while ensuring that ε+(m) ≤ ε

m(ε) := min
m=1,2,...,M

m

s.t. ε+(m) ≤ ε.
(31)

The intuition behind the computation of m(ε) is presented in Figure 7. Since setting
m = m(ε) guarantees that maxh∈Hm: L̂S(h) ≤ ε+(m) ≤ ε, we have Hm(ε): ⊆ R(H1:, ε).
Hence, we are going to employ Hm(ε): as a conservative estimate of the Rashomon Set over
which we can efficiently optimize linear functionals such as model predictions or the SHAP
attributions.

We end this subsection by discussing a toy example of how to compute ε+(m). We
designed a regression task where the input follows a standard Gaussian and the output y is
a quadratic function of x plus some noise of amplitude 0.9. A total of M = 1000 different
seed values were used to independently generate 1000 decision trees. Figure 8 (a) shows the
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Figure 8

upper bound ε+(m) of any RF containing at least m trees. Given a threshold on the RMSE
of ε = 1, the smallest m we can safely consider is m(ε) = 691. Hence, we suggest to employ
the set H691: as a subset of R(1, S,H1:). Figure 8 (b) presents the minimum and maximum
predictions minh∈H691: h(x) and maxh∈H691: h(x) at various values of x. We see that the
min-max prediction intervals are wider in low data density regions near the boundaries.
This means that there are more disagreements between individual trees on these points.
Such an observation makes sense because each tree is fitted on a bootstrap sample of the
dataset and therefore some trees have never seen the boundary points.
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7.2 Asserting Model Consensus

Given an error tolerance ε, we set m to m(ε) and assert the consensus on Hm: via opti-
mization problems (cf. Definition 5) that we solve efficiently with Proposition 10. For
example, to compute minh∈Hm: φi(h,x), we calculate the vector of feature attributions of
all trees [φi(t1,x), φi(t2,x), . . . , φi(tM ,x)]T with TreeSHAP, then we sort it and average its
m smallest values. The overall complexity of this procedure w.r.t M is O(M logM), which
is why we must keep M at a large but reasonable value.

7.3 Income Prediction

The Census Income dataset (aka Adults) also available on the UCI repository2 contains the
census data of 48,842 individuals collected in 1994. It consists of a binary classification task
with the goal of predicting whether or not an individual makes more (y = 1) or less (y = 0)
than 50k USD per year based on 14 attributes. Out of all these features, we removed fnlwgt

because we do not fully understand what it represents and native-country because it is
a categorical feature with very high cardinality. We were finally left with five numerical
features and seven categorical ones that were one-hot-encoded. After encoding, we were left
with a data matrix of 41 columns. The data was split into train and test sets with ratios
0.8 and 0.2 respectively. The training set was used to obtain the set T of M iid trees while
the test set was used to compute the upper bound ε+(m) on error (cf. Equation 30). Given
an error tolerance ε, the upper bound ε+(m) was used to set m(ε) the minimum number
of trees in our RFs (cf. Equation 31). Since Adult is a classification task, the 0-1 loss was
employed.

For the model, we utilized Scikit-Learn’s RandomForestClassifiers whose hyperpa-
rameters were tuned with a 100 steps random search and 5-fold cross-validation. Then, we
trained M = 1000 trees in order to generate a set T . The training was actually repeated
5 times so that we ended up with 5 distinct sets of 1000 trees Ti with i = 1, 2, . . . , 5. We
do not expect practitioners to fit several sets Ti when applying our methodology. This was
done to verify our assumption that T is representative of all trees trained with bootstrapped
data and random splits.

The model outputs h(x) ∈ [0, 1] must be interpreted as estimates of the conditional
probabilities of y given x and not as hard 0/1 predictions. Therefore, feature attributions
should sum up to a difference in conditional probabilities. Since we are employing tree-
based models, we decided to compute feature attributions with TreeSHAP. In fact, seeing
that categorical features were one-hot-encoded, which is not supported in the TreeSHAP
implementation of the SHAP library, we used the Partition-TreeSHAP algorithm described in
(Laberge and Pequignot, 2022). The feature attribution requires a background distribution
B to serve as a reference and we decided to use the empirical distribution of the whole
training set. Still, given the considerable size of the Adult dataset, we had to sub-sample
B instances from the training set and use them to estimate Shapley values. So, we ended
up explaining the models with estimates φ̂ rather than ground-truths φ. A proxy of the
error made by sub-sampling is the Gap Error presented in Equation 26. Figure 9 (a)
presents distributions of the Gap Errors when explaining 2000 test instances using various
background sizes. We note that across five reruns, the errors start to stagnate at about

2. https://archive.ics.uci.edu/ml/datasets/adult
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Figure 9

50 background instances. As extra security, we decided to run TreeSHAP with B = 500
background instances as our best estimates. This led to a one-hour runtime for explaining
M = 1000 decision trees on 2000 test instances. Figure 9 (b) presents the resulting trade-
offs between utility and test error. We observe that the five curves are very similar which
suggests that fitting M = 1000 trees can be representative of all trees possibly generated
for RFs. The red star indicates the utility 0.54 and error 0.17 that were selected for the
sequel. We accentuate that an upper bound of 0.17 on the test miss-classification rate is an
increase of approximately 0.03 relative to the best test error, which we view as a reasonable
tolerance. The associated m(ε) was 798 meaning that the following results consider the
consensus on all Random Forests with at least 798 trees. We now discuss three instances
that were explained with our framework.

The first instance is an individual who makes more than 50k per year and whose predic-
tions ranged from 0.76 to 0.86 across H798:. Figure 10 (Top) illustrates this person’s feature
attribution and the resulting partial order that encodes the statements on which there is a
consensus among all models. We observe that the feature educational-num=very large

has maximum positive importance for understanding why this individual has higher-than-
average predictions. This means that all RFs of at least 798 trees put this feature in the top
1. The second most important feature is marital-status=Married. These two rankings
coincide with the ranking we would get by averaging all 1000 trees as indicated by the bar
chart. Still, the fact that these rankings remain intact even when considering the Rashomon
Set rather than a single model gives us more confidence in their robustness. The three next
features age,occupation,hours-per-week all appear at the same vertical position and are
all mutually incomparable. This is a type of information that cannot be conveyed when
simply averaging all models or averaging the ranks of their feature importance, as the work
of (Shaikhina et al., 2021; Schulz et al., 2021) would recommend.

The second instance is a person who makes more than 50k and whose predictions range
from 0.30 to 0.51. It is fair to say that this person is located near the decision boundary of
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the task. Figure 10 (Middle) shows how our framework would explain the model predictions.
We focus on the two features capital-gain=0 and workclass=Self-Employed which both
have a negative attribution according to the average model. Looking at the error bars on
the bar chart, we observe that the model uncertainty is higher for workclass than with
capital-gain. This means that there is more agreement among RFs that capital-gain=0
reduced the model output. For workclass=Self-Employed, the model uncertainty is so
high that the min-max interval crosses the origin, which implies the existence of RFs with
satisfactory performance that yield a positive attribution to this feature. Our framework
identified this ambiguity and hence removed the feature workclass from the partial order
despite it having a negative attribution according to the average model.

The final instance we explain is a female individual who makes more than 50k but whose
predictions ranged from 0.038 to 0.196. A hypothesis for why this person would have such
low outputs is gender bias, which we can investigate in Figure 10 (Bottom). Looking at
the bar chart, we note that the min-max interval of the feature gender=female is highly
concentrated toward the origin. This means that no RF considers gender important for this
individual. This is a stronger result than stating that the average model does not rely on
gender for this prediction. In fact, a company being sued by this individual could argue in
court that the probability any of their models rely on gender is null. Now, looking at the
partial order, we can get some insights into the model predictions. We see there are many
features with maximal importance and different signs for their attributions. Hence, there
are many strong opposing forces pushing the decision up and down. For instance, being
married drives the prediction up while not having a long education and hours per week
drives the prediction down.

We end this section by resuming this experiment and our conclusions. We have fitted
1000 decision trees on Adults and have studied the Rashomon Set of all RFs containing
at least 798 of the 1000 trees. By only presenting end-users with statements on which a
diversity of good models agree, we have derived more nuanced insights from feature attribu-
tions. A by-product of this methodology is that it is often the same features that come up in
the partial orders: educational-num, marital-status,age, occupation, hours-per-week,
relationship, and capital-gain. In a way, since these features have the most robust
feature attributions, our framework naturally focuses on them. For instance, the feature
education is less robust to model perturbations because education=HS-grad leads to am-
biguity regarding the sign of the feature attribution, see the bar charts of Figure 10 (Middle
and Bottom). Although the partial orders often contain the features, the sign of their at-
tribution and their relative order relations vary between instances which means that local
feature attributions are not redundant and can convey information relevant to a specific
individual.
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Figure 10: Feature attributions on three individuals. (Top) Person with a high prediction.
(Middle) Individual near the decision boundary. (Bottom) Person with a low prediction.

.

28



Partial Order in Chaos

8. Discussion

As suggested by our experiments, model under-specification has an important impact on
feature attributions on real data, and taking into account this uncertainty seems necessary
to derive reliable insight from machine learning models. Our conservative approach only
retains the information on features attributions on which all models agree and still succeeds
in finding partial order in this chaos. This in itself is an important observation because one
could have expected the partial orders to be trivial and contain no interesting structure (no
arrows).

The principal limitation of our approach is that we are currently restricted to Lin-
ear/Additive Regression, Kernel Ridge Regression, and Random Forests. It is therefore
primordial to extend our work to other models, especially to more Classifiers. We envision
using techniques from previous work to sub-sample models from the Rashomon Sets of Lo-
gistic Regression and Decision Trees (Dong and Rudin, 2019; Semenova et al., 2019). Once
such ensembles of good models are computed, applying our framework would be as simple
as sorting all models w.r.t their empirical error and asserting the consensus at any level of
tolerance ε.

Still, there may also exist hypothesis spaces whose Rashomon Set is too large to be real-
istically estimated, for instance, Neural Networks. Moreover, the cost of training/explaining
multiple models may be too high for practitioners to see any benefit. A potential solution
to derive careful conclusions from these large models would be to employ only a few models,
but train them in a way that ensures they are as diverse as possible. This application of
our framework is left as future work as it involves unique and novel challenges regarding
the training of Neural Networks.

The main characteristic of our approach is that we require a perfect consensus among
all good models. However, when employing our methodology with a finite ensemble of
models, one may wonder why not also consider statements on which a majority of models
agree (or at least 90% of the models agree). As a more extreme example, a practitioner
may have 1000 models and 999 of these models state something while a single one states
the opposite. Our approach would abstain from making any statement in that case, which
may seem unnecessarily strict. The technical justification for requiring a perfect consensus
is to guarantee the transitivity of the order relations. This property is crucial for the
interpretability of the feature orderings. Although there exist post-processing techniques
to ensure the transitivity of order relations derived from the consensus from at least τ%
of the models (Cheng et al., 2010), it becomes hard to interpret why certain arrows are
present/absent from the Hasse Diagram. Our diagrams, on the other hand, remain simple
to interpret: an arrow means that all models agree and the absence of an arrow means that
two models disagree. The philosophical justification for perfect consensus is that, given
that the error threshold ε was fixed at a value that represents satisfactory performances,
the single model that disagrees with the rest is still a good model, and its mear existence
is enough to put into question the claim supported by the other 999 models. If this single
model had worst performance than the 999 others, slightly reducing the error tolerance
would remove this model from the Rashomon Set and we would reach a consensus.

Speaking of tuning the error tolerance ε, similar to prior work, we apply a line search over
a realistic range of values and visually inspect the effect of under-specification on conclusions
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drawn from models. Nonetheless, it is not clear what is a good value for ε, although we
argue this is a limitation shared by most studies on the Rashomon Set (D’Amour et al.,
2020; Semenova et al., 2019; Coker et al., 2021). We think the most promising result tackling
this limitation is Proposition 7 from Fisher et al. (2019). There, the error threshold ε was
linked to the probability that the min-max interval of a statistic over the Rashomon Set
captures the statistic for the unknown best-in-class model h?. By extending Proposition
7, one could choose ε large enough so that the probability of making statements about h?

using our framework becomes close to 1. This promising research direction is left as future
work.

9. Conclusion

In this work, we propose a new approach to explanations in the context of model uncertainty.
Rather than considering the mean attributions or the mean rank, we identify properties
and relations of feature attributions that are consistent across a set of models with good
performance. These logical statements about feature attribution naturally lead to a partial
order of feature importance, which we show can provide more nuanced explanations than
the more common total orders based on mean attributions. As such, we believe that our
work opens a new perspective on post-hoc explanations in the context of model uncertainty.

In future work, we intend to study more Classifiers (Logistic Regression, Decision Trees,
Neural Networks) and other local/global post-hoc explanations (LIME, Permutation Im-
portance, SAGE). Moreover, we shall apply our methodology to more practical settings,
especially those where there are clear actionable features on which a human subject is able
to act upon. We hope that in these scenarios, the nuance introduced by partial orders will
prove most beneficial.
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A. Proofs

A.1 Relation to Prior Work

Proposition 11 (Proposition 6) Let φ(·,x) be a linear feature attribution functional,
and E = {hk}Mk=1 be an ensemble of M models from H trained with the same stochastic
learning algorithm hk ∼ A(S). Said feature attribution and ensemble will be employed in the
methods of (Shaikhina et al., 2021; Schulz et al., 2021). Moreover let ε ≥ max{L̂S(hk)}Mk=1

be an error tolerance, and let �ε,x be the consensus order relation on SA(ε,x) (cf. Equation
11). If the relation i �ε,x j holds, we have that i is less important than j in the two total
orders of prior work (Shaikhina et al., 2021; Schulz et al., 2021).

Proof We first note that, since i, j ∈ SA(ε,x), there is a consensus across the Rashomon
Set that these features attributions have sign si and sj respectively. As a reminder, this
simplifies the expression of the feature importance : ∀h ∈ R(H, ε) |φi(h,x)| = siφi(h,x).
Additionally, our assumption that ε ≥ max{L̂S(hk)}Mk=1, guarantees that E ⊆ R(H, ε). We
now prove that the order relation i �ε,x j is present in the two rankings from the literature.

Shaikhina et al. (2021) order features using the mean rank 1
M

∑M
k=1 r[ |φ(hk,x)| ],

where r : Rd+ → [d] is the rank function. By the definition, for any model h, we have
|φi(h,x)| ≤ |φj(h,x)| ⇐⇒ ri[ |φ(h,x)| ] ≤ rj [ |φ(h,x)| ]. Therefore,

i �ε,x j ⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ E |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ E ri[φ(h,x)] ≤ rj [φ(h,x)]

⇒ 1

M

M∑
k=1

ri[φ(hk,x)] ≤ 1

M

M∑
k=1

rj [φ(hk,x)],

which means that the order relation is also supported by the mean ranks.

Schulz et al. (2021) compute the average model hE = 1
M

∑M
k=1 hk and rank features

according to their importance for this model |φ(hE ,x)|. For any i, j ∈ SA(ε,x), we deduce

i �ε,x j ⇒ ∀h ∈ R(H, ε) |φi(h,x)| ≤ |φj(h,x)|
⇒ ∀h ∈ R(H, ε) siφi(h,x) ≤ sjφj(h,x)

⇒ ∀h ∈ E siφi(h,x) ≤ sjφj(h,x)

⇒ 1

M

M∑
k=1

siφi(hk,x) ≤ 1

M

M∑
k=1

sjφj(hk,x)

⇒ siφi(hE ,x) ≤ sjφj(hE ,x) (By Linearity of φ)

⇒ |φi(hE ,x)| ≤ |φj(hE ,x)|, (By Linearity of φ, si = sign[φi(hE ,x) ])

thus proving that the order relation is also present when explaining the average model.
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z1

z2

ω1

ω2

z = (ε− L̂S(ωS))−
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Figure 11: Mapping an ellipsoid to the unit sphere.

A.2 Optimization over a Ellipsoid

We study the optimization of a linear function over an ellipsoid

max
ω

aTω

with (ω − ωS)TA(ω − ωS) ≤ ε− L̂S(ωS),
(32)

which is necessary to compute the feature attribution consensus on the Rashomon Set of
Linear/Additive Regression and Kernel Ridge Regression. Solving this problem can be done

efficiently with a Cholesky decomposition of A = A
1
2A

1
2

T

, which we know exists since A

is positive definite. Letting A−
1
2 :=

(
A

1
2

)−1
, we also get A−1 = A−

1
2

T

A−
1
2 . Now, it is

always possible to map an ellipsoid back to the unit sphere by defining a new variable

z := (ε− L̂S(ωS))−
1
2A

1
2

T

(ω − ωS), (33)

see Figure 11. Applying the inverse change of variable to ω in Equation 32, we get

aTω = aT ((ε− L̂S(ωS))
1
2A−

1
2

T

z + ωS)

=

√
ε− L̂S(ωS)aTA−

1
2

T︸ ︷︷ ︸
a′T

z + aTωS ,
(34)

leading to the optimization problem

max
z

√
ε− L̂S(ωS)a′Tz + aTωS

with zTz ≤ 1,

. (35)

Importantly, the optimization problems of Equations 32 and 35 both reach the same optimal
values. Since a′Tz is a scalar product with a unit vector, it reaches its maximum objective
value ‖a′‖ when the vector z points in the exact direction of a′: when z? = a′/‖a′‖. The

maximum and maximum values of the objective are therefore ±
√
ε− L̂S(ωS)‖a′‖+aTωS .
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A.3 Random Forests

Proposition 12 (Proposition 10) Let T := {ts}Ms=1 be a set of M trees, Hm: be the set
of all subsets of at least m trees from T , and φ : Hm: → R be a linear functional, then
minh∈Hm: φ(h) amounts to averaging the m smallest values of φ(ts) for s = 1, 2, . . .M .

Proof We can compute the linear functional on every tree {φ(ts)}Ms=1 and store the index
of the m smallest ones in a set Cm s.t. |Cm| = m and

s ∈ Cm and s′ /∈ Cm ⇒ φ(ts) ≤ φ(ts′). (36)

Now, to prove to proposition, we must show that φ( 1
m

∑
s∈Cm

ts) ≤ φ(h) ∀h ∈ Hm:.
Since minh∈Hm: φ(h) = mink=m,...,M minh∈Hk

φ(h), the proof can be done two parts: first
for a fixed k we prove that φ( 1

k

∑
s∈Ck

ts) ≤ φ(h) ∀h ∈ Hk and secondly prove that

argmink=m,...,M φ( 1
k

∑
s∈Ck

ts) = m.

Part 1 By linearity φ( 1
k

∑
s∈Ck

tr) = 1
k

∑
s∈Ck

φ(tr). Also, remember that any model

h ∈ Hk is associated to a subset C ′k of k seeds i.e. h = 1
k

∑
s∈C′

k
tr. Importantly, since Ck

and C ′k have the same size, the two sets Ck\C ′k and C ′k\Ck have a one-to-one correspondence.
We get

1

k

∑
s∈Ck

φ(ts) =
1

k

( ∑
s∈Ck∩C′

k

φ(ts) +
∑

s∈Ck\C′
k

φ(ts)

)

≤ 1

k

( ∑
s∈Ck∩C′

k

φ(ts) +
∑

s′∈C′
k\Ck

φ(ts′)

)
(cf Equation 36)

=
1

k

∑
s∈C′

k

φ(ts) = φ

(
1

k

∑
s∈C′

k

ts

)
= φ(h).

Part 2 We now prove that argmink=m,...,M φ( 1
k

∑
s∈Ck

ts) = m. The key insight is that
given m′ > m, the set Cm contains the m smallest elements of Cm′ . We get

1

m′

∑
s∈Cm′

φ(ts) =
1

m′

( ∑
s∈Cm

φ(ts) +
∑

s′∈Cm′\Cm

φ(ts′)

)

≥ 1

m′

( ∑
s∈Cm

φ(ts) +
∑

s′∈Cm′\Cm

[
1

m

∑
s∈Cm

φ(ts)

])

=
1

m′

( ∑
s∈Cm

φ(ts) +
m′ −m
m

∑
s∈Cm

φ(ts)

)
=

1

m′
m′

m

∑
s∈Cm

φ(ts) =
1

m

∑
s∈Cm

φ(ts),

which ends the proof.
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