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ABSTRACT

SHAP explanations aim at identifying which features contribute the most to the
difference in model prediction at a specific input versus a background distribution.
Recent studies have shown that they can be manipulated by malicious adversaries
to produce arbitrary desired explanations. However, existing attacks focus solely
on altering the black-box model itself. In this paper, we propose a complementary
family of attacks that leave the model intact and manipulate SHAP explanations
using stealthily biased sampling of the data points used to approximate expecta-
tions w.r.t the background distribution. In the context of fairness audit, we show
that our attack can reduce the importance of a sensitive feature when explaining
the difference in outcomes between groups while remaining undetected. More
precisely, experiments performed on real-world datasets showed that our attack
could yield up to a 90% relative decrease in amplitude of the sensitive feature
attribution. These results highlight the manipulability of SHAP explanations and
encourage auditors to treat them with skepticism.

1 INTRODUCTION

As Machine Learning (ML) gets more and more ubiquitous in high-stake decision contexts (e.g. ,
healthcare, finance, and justice), concerns about its potential to lead to discriminatory models are
becoming prominent. The use of auditing toolkits (Adebayo et al., 2016; Saleiro et al., 2018; Bellamy
et al., 2018) is getting popular to circumvent the use of unfair models. However, although auditing
toolkits can help model designers in promoting fairness, they can also be manipulated to mislead both
the end-users and external auditors. For instance, a recent study of Fukuchi et al. (2020) has shown
that malicious model designers can produce a benchmark dataset as fake “evidence” of the fairness of
the model even though the model itself is unfair.

Another approach to assess the fairness of ML systems is to explain their outcome in a post hoc
manner (Guidotti et al., 2018). For instance, SHAP (Lundberg & Lee, 2017) has risen in popularity as
a means to extract model-agnostic local feature attributions. Feature attributions are meant to convey
how much the model relies on certain features to make a decision at some specific input. The use of
feature attributions for fairness auditing is desirable for cases where the interest is on the direct impact
of the sensitive attributes on the output of the model. One such situation is in the context of causal
fairness (Chikahara et al., 2021). In some practical cases, the outputs cannot be independent from the
sensitive attribute unless we sacrifice much of prediction accuracy. For example, any decisions based
on physical strength are statistically correlated to gender due to biological nature. The problem in
such a situation is not the statistical bias (such as demographic parity), but whether the decision is
based on physical strength or gender, i.e. the attributions of each feature.

The focus of this study is on manipulating the feature attributions so that the dependence on sensitive
features is hidden and the audits are misled as if the model is fair even if it is not the case. Recently,
several studies reported that such a manipulation is possible, e.g. by modifying the black-box model
to be explained (Slack et al., 2020; Begley et al., 2020; Dimanov et al., 2020), by manipulating
the computation algorithms of feature attributions (Aïvodji et al., 2019), and by poisoning the data
distribution (Baniecki et al., 2021; Baniecki & Biecek, 2022). With these findings in mind, the current
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possible advice to the auditors is not to rely solely on the reported feature attributions for fairness
auditing. A question then arises about what “evidence” we can expect in addition to the feature
attributions, and whether they can be valid “evidence” of fairness.

In this study, we show that we can craft fake “evidence” of fairness for SHAP explanations, which
provides the first negative answer to the last question. In particular, we show that we can produce not
only manipulated feature attributions but also a benchmark dataset as the fake “evidence” of fairness.
The benchmark dataset ensures the external auditors reproduce the reported feature attributions using
the existing SHAP library. In our study, we leverage the idea of stealthily biased sampling introduced
by Fukuchi et al. (2020) to cherry-pick which data points to be included in the benchmark. Moreover,
the use of stealthily biased sampling allows us to keep the manipulation undetected by making the
distribution of the benchmark sufficiently close to the true data distribution. Figure 1 illustrates the
impact of our attack in an explanation scenario with the Adult Income dataset.

0.10 0.08 0.06 0.04 0.02 0.00
Shap value
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age
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Figure 1: Example of our attack on
the Adult Income dataset. After the at-
tack, the feature gender moved from
the most negative attribution to the 6th,
hence hiding some of the model bias.

Our contributions can be summarized as follows:

• Theoretically, we formalize a notion of foreground dis-
tribution that can be used to extend Local Shapley Val-
ues (LSV) to Global Shapley Values (GSV), which can
be used to decompose fairness metrics among the fea-
tures (Section 2.2). Moreover, we formalize the task of
manipulating the GSV as a Minimum Cost Flow (MCF)
problem (Section 4).

• Experimentally (Section 5), we illustrate the impact of
the proposed manipulation attack on a synthetic dataset
and four popular datasets, namely Adult Income, COM-
PAS, Marketing, and Communities. We observed that
the proposed attack can reduce the importance of a
sensitive feature while keeping the data manipulation
undetected by the audit.

Our results indicate that SHAP explanations are not robust
and can be manipulated when it comes to explaining the
difference in outcomes between groups. Even worse, our results confirm we can craft a benchmark
dataset so that the manipulated feature attributions are reproducible by external audits. Henceforth,
we alert auditors to treat post-hoc explanation methods with skepticism even if it is accompanied by
some additional evidence.

2 SHAPLEY VALUES

2.1 LOCAL SHAPLEY VALUES

Shapley values are omnipresent in post-hoc explainability because of their fundamental mathematical
properties (Shapley, 1953) and their implementation in the popular SHAP Python library (Lundberg
& Lee, 2017). SHAP provides local explanations in the form of feature attributions i.e. given an input
of interest x, SHAP returns a score φi P R for each feature i “ 1, 2, . . . , d. These scores are meant
to convey how much the model f relies on feature i to make its decision fpxq. Shapley values have a
long background in coalitional game theory, where multiple players collaborate toward a common
outcome. In the context of explaining model decisions, the players are the input features and the
common outcome is the model output fpxq. In coalitional games, players (features) are either present
or absent. Since one cannot physically remove an input feature once the model has already been fitted,
SHAP removes features by replacing them with a baseline value z. This leads to the Local Shapley
Value (LSV) φipf,x, zq which respect the so-called efficiency axiom (Lundberg & Lee, 2017)

d
ÿ

i“1

φipf,x, zq “ fpxq ´ fpzq. (1)

Simply put, the difference between the model prediction at x and the baseline z is shared among the
different features. Additional details on the computation of LSV are presented in Appendix B.1.
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2.2 GLOBAL SHAPLEY VALUES

LSV are local because they explain the prediction at a specific x and rely on a single baseline input z.
Since model auditing requires a more global analysis of model behavior, we must understand the
predictions at multiple inputs x„F sampled from a distribution F called the foreground. Moreover,
because the choice of baseline is somewhat ambiguous, the baselines are sampled z „ B from
a distribution B colloquially referred to as the background. Taking inspiration from Begley et al.
(2020), we can compute Global Shapley Values (GSV) by averaging LSV over both foreground and
background distributions.
Definition 2.1.

Φipf,F ,Bq :“ E
x„F
z„B

rφipf,x, zq
‰

, i “ 1, 2, . . . , d. (2)

Proposition 2.1. The GSV have the following property

d
ÿ

i“1

Φipf,F ,Bq “ E
x„F

rfpxqs ´ E
x„B

rfpxqs. (3)

2.3 MONTE-CARLO ESTIMATES

In practice, computing expectations w.r.t the whole background and foreground distributions may
be prohibitive and hence Monte-Carlo estimates are used. For instance, when a dataset is used to
represent a background distribution, explainers in the SHAP library such as the ExactExplainer
and TreeExplainer will subsample this dataset 1 by selecting 100 instances uniformly at random
when the size of the dataset exceeds 100. More formally, let

CpS,ωq :“
ÿ

xpjqPS

ωjδpx
pjqq (4)

represent a categorical distribution over a finite set of input examples S, where δp¨q is the Dirac
probability measure, wj ě 0 @j, and

ř

j ωj “ 1. Estimating expectations with Monte-Carlo amounts
to sampling M instances

S0 „ FM S1 „ BM , (5)
and computing the plug-in estimate

pΦpf, S0, S1q :“Φpf, CpS0,1{Mq, CpS1,1{Mqq

“
1

M2

ÿ

xpiqPS0

ÿ

zpjqPS1

φpf,xpiq, zpjqq.
(6)

When a set of samples is a singleton (e.g. S1 “ tzpjqu), we shall use the convention
pΦpf, S0, tz

pjquq ” pΦpf, S0, z
pjqq to improve readability. In Appendix B.2, pΦpf, S0, S1q is shown

to be a consistent and asymptotically normal estimate of Φpf,F ,Bq meaning that one can compute
approximate confidence intervals around pΦ to capture Φ with high probability. In practice, the
estimates pΦ are employed as the model explanation which we see as a vulnerability. As discussed in
Section 4, the Monte-Carlo estimation is the key ingredient that allows us to manipulate the GSV in
favor of a dishonest entity.

3 AUDIT SCENARIO

This section introduces an audit scenario to which the proposed attack of SHAP can apply. This sce-
nario involves two parties: a company and an audit. The company has a datasetD “ tpxpiq, ypiqquNi“1

with xpiq P Rd and ypiq P t0, 1u that contains N input-target tuples and also has a model
f : X Ñ r0, 1s that is meant to be deployed in society. The binary feature with index s (i.e.
xs P t0, 1u) represents a sensitive feature with respect to which the model should not explicitly

1
https://github.com/slundberg/shap/blob/0662f4e9e6be38e658120079904899cccda59ff8/shap/maskers/_tabular.py#

L54-L55

3

https://github.com/slundberg/shap/blob/0662f4e9e6be38e658120079904899cccda59ff8/shap/maskers/_tabular.py#L54-L55
https://github.com/slundberg/shap/blob/0662f4e9e6be38e658120079904899cccda59ff8/shap/maskers/_tabular.py#L54-L55
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(a) The data initially provided by the company to the
audit is fpD0q and fpD1q i.e. the model predictions for
all instances in the private dataset for different values
of xs. This dataset can later be used by the audit to
assess whether or not the subsets S1

0, S
1
1 provided by

the company where cherry-picked.

xs

x´s

f1

f2

F

B

(b) Two models f1 and f2 (decision boundaries in
dashed lines) with perfect accuracy exhibit a dispar-
ity in outcomes w.r.t groups with xs ă 0 and xs ą 0.
Here, Φspf1,F ,Bq “ ´1 while Φspf2,F ,Bq “ 0.
Hence, f2 is indirectly unfair toward xs because of
correlations in the data.

Figure 2: Illustrations of the audit scenario.

discriminate. Both the data D and the model f are highly private so the company is very careful
when providing information about them to the audit. Hence, f is a black box from the point of view
of the audit. At first, the audit asks the company for the necessary data to compute fairness metrics
e.g. the Demographic Parity (Dwork et al., 2012), the Predictive Equality (Corbett-Davies et al.,
2017), or the Equal Opportunity (Hardt et al., 2016). Note that our attack would apply as long as the
fairness metric is a difference in model expectations over subgroups. For simplicity, the audit decides
to compute the Demographic Parity

Erfpxq|xs “ 0s ´ Erfpxq|xs “ 1s, (7)

and therefore demands access to the model outputs for all inputs with different values of the sensitive
feature : fpD0q and fpD1q, where D0 “ txpiq : x

piq
s “ 0u and D1 “ txpiq : x

piq
s “ 1u are

subsets of the input data of sizes N0 and N1 respectively. Doing so does not force the company to
share values of features other than xs nor does it requires direct access to the inner workings of the
proprietary model. Hence, this demand respects privacy requirements and the company will accept to
share the model outputs across all instances, see Figure 2a. At this point, the audit confirms that the
model is indeed biased in favor of xs “ 1 and puts in question the ability of the company to deploy
such a model. Now, the company argues that, although the model exhibits a disparity in outcomes, it
does not mean that the model explicitly uses the feature xs to make its decision. If such is the case,
then the disparity could be explained by other features statistically associated with xs. Some of these
other features may be acceptable grounds for decisions. To verify such a claim, the audit decides
to employ post-hoc techniques to explain the disparity. Since the model is a black-box, the audits
shall compute the GSV. The foreground F and background B are chosen to be the data distributions
conditioned on xs “ 0 and xs “ 1 respectively

F :“ CpD0,1{N0q B :“ CpD1,1{N1q. (8)

According to Equation 3, the resulting GSV will sum up to the demographic parity (cf. Equation 7).
If the sensitive feature has a large negative GSV Φs, then this would mean that the model is explicitly
relying on xs to make its decisions and the company would be forbidden from deploying the model.
If the GSV has a small amplitude, however, the company could still argue in favor of deploying the
model in spite of having disparate outcomes. Indeed, the difference in outcomes by the model could
be attributed to more acceptable features. See Figure 2b for a toy example illustrating this reasoning.

To compute the GSV, the audit demands the two datasets of inputs D0 and D1, as well as the ability
to query the black box f at arbitrary points. Because of privacy concerns on sharing values of x
across the whole dataset, and because GSV must be estimated with Monte-Carlo, both parties agree
that the company shall only provide subsets S0 Ă D0 and S1 Ă D1 of size M to the audit so they
can compute a Monte-Carlo estimate pΦpf, S0, S1q. The company first estimate GSV on their own by
choosing S0, S1 uniformly at random from F and B (cf. Equation 5) and observe that pΦs indeed has a
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large negative value. They realize they must carefully select which data points will be sent, otherwise,
the audit may observe the bias toward xs “ 1 and the model will not be deployed. Moreover, the
company understands that the audit currently has access to the data fpD0q and fpD1q representing
the model predictions on the whole dataset (see Figure 2a). Therefore, if the company does not
share subsets S0, S1 that were chosen uniformly at random from D0, D1, it is possible for the audit
to detect this fraud by doing a statistical test comparing fpS0q to fpD0q and fpS1q to fpD1q. The
company needs a method to select misleading subsets S10, S11 whose GSV is manipulated in their
favor while remaining undetected by the audit. Such a method is the subject of the next section.

4 FOOL SHAP WITH STEALTHILY BIASED SAMPLING

4.1 MANIPULATION

To fool the audit, the company can decide to indeed sub-sample S10 uniformly at random S10 „ FM .
Then, given this choice of foreground data, they can repeatedly sub-sample S11 „ BM , and choose
the set S11 leading to the smallest |pΦspf, S10, S

1
1q|. We shall call this method “brute-force”. Its issue

is that, by sub-sampling S11 from B, it will take an enormous number of repetitions to reduce the
attribution since the GSV pΦspf, S

1
0, S

1
1q is concentrated on the population GSV Φspf,F ,Bq.

A more clever method is to re-weight the background distribution before sampling from it i.e. define
B1ω :“ CpD1,ωq with ω ‰ 1{N1 and then sub-sample S11 „ B1Mω . To make the model look fairer,
the company needs the pΦs computed with these cherry-picked points to have a small magnitude.

Proposition 4.1. Let S10 be fixed, and let p
Ñ represent convergence in probability as the size M of

the set S11 „ B1Mω increases, we have
pΦspf, S

1
0, S

1
1q

p
Ñ

ÿ

zpjqPD1

ωj pΦspf, S
1
0, z

pjqq. (9)

We note that the coefficients pΦspf, S
1
0, z

pjqq in Equation 9 are tractable and can be computed and
stored by the company. We discuss in more detail how to compute them in Appendix B.3. An
additional requirement is that the non-uniform distribution B1ω remains similar to the original B.
Otherwise, the fraud could be detected by the audit. In this work, the notion of similarity between
distributions will be captured by the Wasserstein distance in output space.
Definition 4.1 (Wassertein Distance). Any probability measure π over D1 ˆD1 is called a coupling
measure between B and B1ω, denoted π P ∆pB,B1ωq, if 1{N1 “

ř

j πij and ωj “
ř

i πij . The
Wassertein distance between B and B1ω mapped to the output-space is defined as

WpB,B1ωq “ min
πP∆pB,B1ωq

ÿ

i,j

|fpzpiqq ´ fpzpjqq|πij , (10)

a.k.a the cost of the optimal transport plan that distributes the mass from one distribution to the other.

We propose Algorithm 1 to compute the weights ω by minimizing the magnitude of the GSV
while maintaining a small Wasserstein distance. The trade-off between attribution manipulation and
proximity to the data is tuned via a hyper-parameter λ ą 0. We show in the Appendix A.2 that the
optimization problem at line 5 of Algorithm 1 can be reformulated as a Minimum Cost Flow (MCF)
and hence can be solved in polynomial time (more precisely rOpN2.5

1 q as in Fukuchi et al. (2020)).

4.2 DETECTION

We now discuss ways the audit can detect manipulation of the sampling procedure. Recall that the
audit has previously been given access to fpD0q, fpD1q representing the model outputs across all
instances in the private dataset. The audit will then be given sub-samples S10, S

1
1 of D0, D1 on which

they can compute the output of the model and compare with fpD0q, fpD1q. To assess whether or
not the sub-samples provided by the company were sampled uniformly at random, the audit has to
conduct statistical tests. The null hypothesis of these tests will be that S10, S

1
1 were sampled uniformly

at random from D0, D1. The detection Algorithm 2 with significance α uses both the Kolmogorov-
Smirnov and Wald tests with Bonferonni corrections (i.e. the α{4 terms in the Algorithm). The
Kolmogorov-Smirnov and Wald tests are discussed in more detail in Appendix C.
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Algorithm 1 Compute non-uniform weights

1: procedure COMPUTE_WEIGHTS(D1, tpΦspf, S
1
0, z

pjqquj , λ)
2: β :“ signr

ř

zpjqPD1

pΦspf, S
1
0, z

pjqq s

3: B :“ CpD1,1{N1q Ź Unmanipulated background
4: B1ω :“ CpD1,ωq ŹManipulated background as a function of ω
5: ω “ arg minω β

ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq ` λWpB,B1ωq Ź Optimization Problem
6: return ω;

Algorithm 2 Detection with significance α

1: procedure DETECT_FRAUD(fpD0q, fpD1q, fpS
1
0q, fpS

1
1q, α, M )

2: for i “ 0, 1 do
3: fpSiq „ CpfpDiq,1{Niq

M Ź Subsample without cheating.
4: p-value-KS “ KSp fpSiq, fpS1iq q Ź KS test comparing fpSiq and fpS1iq
5: p-value-Wald “ Waldp fpS1iq, fpDiq q ŹWald test
6: if p-value-KS ă α{4 or p-value-Wald ă α{4 then Ź Reject the null hypothesis
7: return 1
8: return 0;

4.3 WHOLE PROCEDURE

The procedure returning the subsets S10, S
1
1 is presented in Algorithm 3. It conducts a log-space

search between λmin and λmax for the λ hyper-parameter (line 6) in order to explore the possible
attacks. For each value of λ, the attacker runs Algorithm 1 to obtain B1ω (line 7), then repeatedly
samples S11 „ B1Mω (line 10) and attempts to detect the fraud (line 11). The attacker will choose B1ω
that minimizes the magnitude of pΦs while having a detection rate below some threshold τ (line 12).
An example of search over λ on a real-world dataset is presented in Figure 3.

Algorithm 3 Fool SHAP

1: procedure FOOL_SHAP(f,D0, D1,M, λmin, λmax, τ, α)
2: S10 „ CpD0,1{N0q

M Ź S10 is sampled without cheating
3: Compute pΦspf, S

1
0, z

pjqq @zpjq P D1 Ź cf. Section B.3
4: B‹ “ CpD1,1{N1q

5: Φ‹s “ 1{N1

ř

zpjqPD1

pΦspf, S
1
0, z

pjqq Ź Initialize the solution
6: for λ “ λmax, . . . , λmin do
7: ω “ COMPUTE_WEIGHTS(D1,

 

pΦspf, S
1
0, z

pjqq
(

j
, λ)

8: Detection “ 0
9: for rep “ 1, . . . , 100 do Ź Detect the manipulation

10: S11 „ B1Mω
11: Detection += DETECT_FRAUD(fpD0q, fpD1q, fpS

1
0q, fpS

1
1q, α, M )

12: if |
ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq| ă |Φ‹s| and Detection ă 100τ then
13: B‹ “ B1ω
14: Φ‹s “

ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq Ź Update the solution
15: S11 „ B‹M Ź Cherry-pick by sampling from the non-uniform background
16: return S10, S11

One limitation of Fool SHAP is that it manipulates a single sensitive feature. In Appendix E.4,
we present a possible extension of Algorithm 1 to handle multiple sensitive features and present
preliminary results of its effectiveness. A second limitation is that it only applies to “interventional”
Shapley values which break feature correlations. This choice was made because most methods in the
SHAP library2 are “interventional”. Future work should port Fool SHAP to “observational” Shapley
values that use conditional expectations to remove features (Frye et al., 2020).

2except the TreeExplainer when no background data is provided
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Figure 3: Example of log-space search over values of λ using an XGBoost classifier fitted on Adults.
(a) The detection rate as a function of the parameter λ of the attack. The attacker uses a detection rate
threshold τ “ 10%. (b) For each value of λ, the vertical slice of the 11 curves is the GSV obtained
with the resulting B1ω . The goal here is to reduce the amplitude of the sensitive feature (red curve).

4.4 CONTRIBUTIONS

The first technique to fool SHAP with perturbations of the background distribution was a genetic
algorithm Baniecki & Biecek (2022). Although promising, the cross-over and mutation operations
it employs to perturb data do not take into account feature correlations and can therefore generate
unrealistic data. Moreover, the objective to minimize does not enforce similarity between the original
and manipulated backgrounds. We show in Appendix E.3 that these limitations lead to systematic
fraud detections. Hence, our contributions are two-fold. First, by perturbing the background via non-
uniform weights over pre-existing instances (i.e. B1ω :“ CpD1,ωq ) rather than a genetic algorithm,
we avoid the issue of non-realistic data. Second, by considering the Wasserstein distance, we can
control the similarity between the original and fake backgrounds.

Since the Stealthity Biased Sampling technique introduced in Fukuchi et al. (2020) also leverages a
non-uniform distribution over data points and the Wasserstein distance, it makes sense to adapt it to
fool SHAP. Still, the approach of Fukuchi et al. is different from ours. Indeed, in their work, they
minimize the Wasserstein distance while enforcing a hard constraint on the number of instances that
land on the different bins for the target and sensitive feature, That way, they can set the Demographic
Parity to any given value while staying close to the original data. In our setting of manipulating
the model explanation, we leave the Demographic Parity intact and instead manipulate its feature
attribution. In terms of the optimization objective, we now minimize a Shapley value with a soft
constraint on the Wasserstein distance.

5 EXPERIMENTS

5.1 TOY EXPERIMENT

The task is predicting which individual will be hired for a job that requires carrying heavy objects.
The causal graph for this toy data is presented in Figure 4 (left). We observe that sex (S) influences
height (H), and that both these features influence the Muscular Mass (M ). In the end, the hiring
decisions (Y ) are only based on the two attributes relevant to the job: H and M . Also, two noise
features N1, N2 were added. More details and justifications for this causal graph are discussed in
Appendix D.1. Since strength and height (two important qualifications for applicants) are correlated
with sex, any model f that fits the data will exhibit some disparity in hiring rates between sexes.
Although, if the model decisions do not rely strongly on feature S, the company can argue in favor
of deployment. GSV are used by the audit to measure the amount by which the model relies on the
sex feature, see Figure 4 (Middle). By employing Fool SHAP with M “ 100, the company can
reduce the GSV of feature S considerably compared to the brute-force and genetic algorithms. More
importantly, the audit is not able to detect that the provided samples S10, S

1
1 were cherry-picked, see

Figure 4 (Right). More results are presented in Appendix E.1.

7



Published as a conference paper at ICLR 2023

S

H M

Y

−0.4 −0.3 −0.2 −0.1 0.0
GSV

Sex

Height

Muscle Mass

N1

N2 Original

Brute

Genetic

Fool SHAP

0.0 0.2 0.4 0.6 0.8 1.0
Output

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

f(D1)

f(S ′1)

f(D0)

f(S ′0)

Figure 4: Toy example. Left: Causal graph. Middle: GSV for the different attacks with M “ 100.
Right: Comparison of the CDF of the Fool SHAP subsets fpS10q, fpS

1
1q and the CDF over the whole

data fpD0q, fpD1q. Here the audit cannot detect the fraud using their detection algorithm.

5.2 DATASETS

We consider four standard datasets from the FAccT literature, namely COMPAS, Adult-Income,
Marketing, and Communities.

• COMPAS regroups 6,150 records from criminal offenders in Florida collected from 2013-2014.
This binary classification task consists in predicting who will re-offend within two years. The
sensitive feature s is race with values xs “ 0 for African-American and xs “ 1 for Caucasian.

• Adult Income contains demographic attributes of 48,842 individuals from the 1994 U.S. census.
It is a binary classification problem with the goal of predicting whether or not a particular person
makes more than 50K USD per year. The sensitive feature s in this dataset is gender, which took
values xs “ 0 for female, and xs “ 1 for male.

• Marketing involves information on 41,175 customers of a Portuguese bank and the binary classifi-
cation task is to predict who will subscribe to a term deposit. The sensitive attribute is age and
took values xs “ 0 for age 30-60, and xs “ 1 for age not30-60

• Communities & Crime contains per-capita violent crimes for 1994 different communities in
the US. The binary classification task is to predict which communities have crimes below
the median rate. The sensitive attribute is PercentWhite and took values xs “ 0 for
PercentWhite<90%, and xs “ 1 for PercentWhite>=90%.

Three models were considered for the two datasets: Multi-Layered Perceptrons (MLP), Random
Forests (RF), and eXtreme Gradient Boosted trees (XGB). One model of each type was fitted on
each dataset for 5 different train/test splits seeds, resulting in 60 models total. Values of the test set
accuracy and demographic parity for each model type and dataset are presented in Appendix D.2.

5.3 DETECTOR CALIBRATION

Table 1: False Positive Rates (%) of the de-
tector i.e. the frequency at which S0, S1 are
considered cherry-picked when they are not.
No rate should be above 5%.

mlp rf xgb

COMPAS 4.0 4.6 4.0
Adult 4.3 4.3 4.2
Marketing 4.9 5.0
Communities 3.8 4.2

Detector calibration refers to the assessment that,
assuming the null hypothesis to be true, the prob-
ability of rejecting it (i.e. false positive) should
be bounded by the significance level α. Remem-
ber that the null hypothesis of the audit detec-
tor is that the sets S10, S

1
1 provided by the com-

pany are sampled uniformly from D0, D1. Hence,
to test the detector, the audit can sample their
own subsets fpS0q, fpS1q uniformly from at ran-
dom from fpD0q, fpD1q, run the detection algo-
rithm, and count the number of detection over
1000 repeats. Table 1 shows the false positive
rates over the five train-test splits using a signifi-
cance level α “ 5%. We observe that the false positive rates are indeed bounded by α for
all model types and datasets implying that the detector employed by the audit is calibrated.
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5.4 ATTACK RESULTS AND DISCUSSION

COMPAS Adult Marketing C&C
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Figure 5: Relative decrease in amplitude of
the sensitive feature attribution induced by the
various attacks on SHAP.

The first step of the attack (line 3 of Algorithm
3) requires that the company run SHAP on their
own and compute the necessary coefficients to
run Algorithm 1. For the COMPAS and Adults
datasets, the ExactExplainer of SHAP was used.
Since Marketing and Communities contain more
than 15 features, and since the ExactExplainer
scales exponentially with the number of features,
we were restricted to using the TreeExplainer
(Lundberg et al., 2020) on these datasets. The
TreeExplainer avoids the exponential cost of
Shapley values but is only applicable to tree-based
models such as RFs and XGBs. Therefore, we could
not conduct the attack on MLPs fitted on Marketing
and Communities.

The following step is to solve the MCF for various
values of λ (line 7 of Algorithm 3). As stated previ-
ously, solving the MCF can be done in polynomial
time in terms of N1, which was tractable for a small dataset like COMPAS and Communities, but not
for larger datasets like Adult and Marketing. To solve this issue, as was done in Fukuchi et al. (2020),
we compute the manipulated weights multiple times using 5 bootstrap sub-samples of D1 of size
2000 to obtain a set of weights ωr1s,ωr2s, . . . ,ωr5s which we average to obtain the final weights ω.

Results of 46 attacks withM“200 are shown in Figure 5. Specific examples of the conducted attacks
are presented in Appendix E.2. As a point of reference, we also show results for the brute-force and
genetic algorithms. To make comparisons to our attack more meaningful, the brute-force method
was only allowed to run for the same amount of time it took to search for the non-uniform weights
ω (about 30-180 seconds). Also, the genetic algorithm ran for 400 iterations and was stopped early
if there were 10 consecutive detections. We note that, across all datasets, Fool SHAP leads to
greater reductions of the sensitive feature attribution compared to brute-force search and the genetic
perturbations of the background.

Now focusing on Fool SHAP, for the datasets COMPAS and Marketing, we observe median reductions
in amplitudes of about 90%. This means that our attack can considerably reduce the apparent
importance of the sensitive attribute. For the Adult and Communities datasets, the median reduction
in amplitude is about 50% meaning that we typically reduce by half the importance of the sensitive
feature. Still, looking at the maximum reduction in amplitude for Adult-Income and Communities,
we note that one attack managed to reduce the amplitude by 90%. Therefore, luck can play a part in
the degree of success of Fool SHAP, which is to be expected from data-driven attacks.

Finally, the audit was consistently unable to detect the fraud using statistical tests. This observation
raises concerns about the risk that SHAP explanations can be attacked to return not only manipulated
attributions but also non-detectable fake evidence of fairness.

6 CONCLUSION

To conclude, we proposed a novel attack on Shapley values that does not require modifying the
model but rather manipulates the sampling procedure that estimates expectations w.r.t the background
distribution. We show on a toy example and four fairness datasets that our attack can reduce the
importance of a sensitive feature when explaining the difference in outcomes between groups using
SHAP. Crucially, the sampling manipulation is hard to detect by an audit that is given limited access
to the data and model. These results raise concerns about the viability of using Shapley values to
assess model fairness. We leave as future work the use of Shapley values to decompose other fairness
metrics such as predictive equality and equal opportunity. Moreover, we wish to move to use cases
beyond fairness, as we believe that the vulnerability of Shapley values that was demonstrated can
apply to many other properties such as safety and security.
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A PROOFS

A.1 PROOFS FOR GLOBAL SHAPLEY VALUES (GSV)

Proposition A.1 (Proposition 2.1). The GSV have the following property

d
ÿ

i“1

Φipf,F ,Bq “ E
x„F

rfpxqs ´ E
x„B

rfpxqs. (11)

Proof. As a reminder, we have defined the vector

Φpf,F ,Bq “ E
x„F
z„B

rφpf,x, zq
‰

, (12)

whose components sum up to

d
ÿ

i“1

Φipf,F ,Bq “
d
ÿ

i“1

E
x„F
z„B

rφipf,x, zq s (13)

“ E
x„F
z„B

„ d
ÿ

i“1

φipf,x, zq



(14)

“ E
x„F
z„B

r fpxq ´ fpzq s (15)

“ E
x„F

rfpxqs ´ E
z„B

rfpzqs (16)

“ E
x„F

rfpxqs ´ E
x„B

rfpxqs, (17)

where at the last step we have simply renamed a dummy variable.

Proposition A.2 (Proposition 4.1). Let S10 be fixed, and let p
Ñ represent convergence in probability

as the size M of the set S11 „ B1M increases, then we have

pΦspf, S
1
0, S

1
1q

p
Ñ

N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq. (18)

Proof.

pΦpf, S10, S
1
1q “

1

M2

ÿ

xpiqPS10

ÿ

zpjqPS11

φpf,xpiq, zpjqq

“
1

M

ÿ

zpjqPS11

ˆ

1

M

ÿ

xpiqPS10

φpf,xpiq, zpjqq

˙

“
1

M

ÿ

zpjqPS11

pΦpf, S10, z
pjqq.

(19)

Since S10 is assumed to be fixed, then the only random variable in pΦspf, S
1
0, z

pjqq is zpjq which
represents an instance sampled from the B1. Therefore, we can define ψpzq :“ pΦspf, S

1
0, zq and we

get

pΦspf, S
1
0, S

1
1q “

1

M

ÿ

zpjqPS11

pΦspf, S
1
0, z

pjqq

“
1

M

ÿ

zpjqPS11

ψpzpjqq with S11 „ B1M .
(20)
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By the weak law of large number, the following holds as M goes to infinity (Wasserman, 2004,
Theorem 5.6)

1

M

ÿ

zpjqPS11

ψpzpjqq
p
Ñ E

z„B1
rψpzqs. (21)

Now, as a reminder, the manipulated background distribution is B1 :“ CpD1,ωq with ω ‰ 1{N1.
Therefore

pΦspf, S
1
0, S

1
1q

p
Ñ E

z„B1
rψpzqs

“ E
z„CpD1,ωq

rψpzqs

“

N1
ÿ

j“1

ωjψpz
pjqq

“

N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq

(22)

concluding the proof.
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A.2 PROOFS FOR OPTIMIZATION PROBLEM

A.2.1 TECHNICAL LEMMAS

We provide some technical lemmas that will be essential when proving Theorem A.1. These are
presented for completeness and are not intended as contributions by the authors. Let us first write the
formal definition of the minimum of a function.
Definition A.1 (Minimum). Given some function f : D Ñ R, the minimum of f over D (denoted
f‹) is defined as follows:

f‹ “ min
xPD

fpxq ðñ Dx‹ P D s.t. f‹ “ fpx‹q ď fpxq @x P D.

Basically, the notion of minimum coincides with the infimum inf fpDq (highest lower bound) when
this lower bound is attained for some x‹ P D. By the Extreme Values Theorem, the minimum always
exists when D is compact and f is continuous. For the rest of this appendix, we shall only study
optimization problems where points on the domain set D “ tpx, yq : x P X , y P Yx Ă Yu can be
selected by the following procedure

1. Choose some x P X
2. Given the selected x, choose some y P Yx Ă Y , where the set Yx is non-empty and depends

on the value of x.

When optimizing functions over these domains, one can optimize in two steps as highlighted in the
following lemma.
Lemma A.1. Given a compact domain D of the form described above and a continuous objective
function f : D Ñ R, the minimum f‹ is attained for some px‹, y‹q and the following holds

min
px,yqPD

fpx, yq “ min
xPX

min
yPYx

fpx, yq.

Proof. Let rfpxq :“ infyPYx fpx, yq, which is a well defined function on X . We can then take its
infimum f‹ “ infxPX rfpxq. But is f‹ an infimum of fpDq? By the definition of infimum

f‹ ď rfpxq @x P X
“ inf
yPYx

fpx, yq

ď fpx, yq @ y P Yx,
so that f‹ is a lower bound of fpDq. In fact, it is the highest lower bound possible so

inf
px,yqPD

fpx, yq “ inf
xPX

inf
yPYx

fpx, yq. (23)

By the Extreme Value Theorem, since D is compact and f is continuous, there exists px‹, y‹q P D
s.t. f‹ “ infpx,yqPD fpx, yq “ maxpx,yqPD fpx, yq “ fpx‹, y‹q. Since the infimum is attained on
the left-hand-side of Equation 23, then it must also be attained on the right-hand-side and therefore
we can replace all inf with min in Equation 23, leading to the desired result.

Lemma A.2. Given a compact domain D of the form described above and two continuous functions
h : X Ñ R and g : Y Ñ R, then

min
px,yqPD

ˆ

hpxq ` gpyq

˙

“ min
xPX

ˆ

hpxq ` min
yPYx

gpyq

˙

Proof. Applying Lemma A.1 with the function fpx, yq :“ hpxq ` gpyq proves the Lemma.
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s t

`j ri

apeq “ βpΦspf, S
1
0, z

pjqq

cpeq “ 8
fpeq ” rωj

apeq “ λ |fpzpiqq ´ fpzpjqq|
cpeq “ 8
fpeq ” rπi,j

apeq “ 0
cpeq “ 1
fpeq “ 1

Figure 6: Graph G on which we solve the MCF. Note that the total amount of flow is d “ N1 and
there are N1 left and right nodes `j , ri.

A.2.2 MINIMUM COST FLOWS

Let G “ pV, Eq be a graph with vertices v P V with directed edges e P E Ă V ˆ V , c : E Ñ R` be a
capacity and a : E Ñ R be a cost. Moreover, let s, t P E be two special vertices called the source and
the sink respectivelly, and d P R` be a total flow. The Minimum-Cost Flow (MCF) problem of G
consists of finding the flow function f : E Ñ R` that minimizes the total cost

min
f

ÿ

ePE
apeqfpeq

s.t. 0 ď fpeq ď cpeq @e P E

ÿ

ePu`

fpeq ´
ÿ

ePu´

fpeq “

$

&

%

0 u P V z ts, tu
d u “ s

´d u “ t

(24)

where u` :“ tpu, vq P Eu and u´ :“ tpv, uq P Eu are the outgoing and incoming edges from u. The
terminology of flow arises from the constraint that, for vertices that are not the source nor the sink,
the outgoing flow must equal the incoming one, which is reminiscent of conservation laws in fluidic.
We shall refer to fppu, vqq as the flow from u to v.

Now that we have introduced minimum cost flows, let us specify the graph that will be employed to
manipulate GSV, see Figure 6. We label the flow going from the sink s to one of the left vertices as
rωi ” ωi ˆN1, and the flow going from `j to ri as rπi,j ” πi,j ˆN1. The required flow is fixed at
d “ N1.
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Theorem A.1. Solving the MCF of Figure 6 leads to a solution of the linear program in Algorithm 1.

Proof. We begin by showing that the flow conservation constraints in the MCF imply that π is a
coupling measure (i.e. π P ∆pB,B1ωq), and ω is constrained to the probability simplex ∆pN1q.
Applying the conservation law on the left-side of the graph leads to the conclusion that the flows
entering vertices `j must sum up to N1

N1
ÿ

j“1

rωj “ N1.

This implies that ω is must be part of the probability simplex. By conservation, the amount of flow
that leaves a specific vertex `j must also be rωj , hence

ÿ

i

rπij “ rωj .

For any edge outgoing from ri to the sink t, the flow must be exactly 1. This is because we have N1

edges with capacity cpeq “ 1 going into the sink and the sink must receive an incoming flow of N1.
As a consequence of the conservation law on a specific vertex ri, the amount of flow that goes into
each ri is also 1

ÿ

j

rπij “ 1.

Putting everything together, from the conservation laws on G, we have that ω P ∆pN1q, and
π P ∆pB,B1ωq. Now, to make the parallel between the MCF and Algorithm 1, we must use Lemma
A.2. Note that ω is restricted to the probability simplex, while π is restricted to be a coupling measure.
Importantly, the set of all possible coupling measures ∆pB,B1ωq is different for each ω because B1ω
depends on ω. Hence, the domain has the same structure as the ones tackled in Lemma A.2 (where
x P X becomes ω P ∆pN1qq and y P Yx becomes π P ∆pB,B1ωq). Also, the set of possible ω and π
is a bounded simplex in RN1pN1`1q so it is compact, and the objective function of the MCF is linear,
thus continuous. Hence, we can apply the Lemma A.2 to the MCF.

min
f

ÿ

ePE
fpeqapeq “ min

rω,rπ

N1
ÿ

j“1

βrωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij |fpz
piqq ´ fpzpjqq|

“ min
rω,rπ

N1

N1

ˆ

β
N1
ÿ

j“1

rωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
rω,rπ

ˆ

β
N1
ÿ

j“1

rωj
N1

pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij
N1
|fpzpiqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q,πP∆pB,B1ωq

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

πi,j |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q,πP∆pB,B1ωq

ˆ

hpωq ` gpπq

˙

“ N1 min
ωP∆pN1q

ˆ

hpωq ` min
πP∆pB,B1q

gpπq

˙

(cf. Lemma A.2)

“ N1 min
ωP∆pN1q

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λ min
πP∆pB,B1ωq

ÿ

i,j

πi,j |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λWpB,B1ωq
˙

which (up to a multiplicative constant N1) is a solution of the linear program of Algorithm 1.
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B SHAPLEY VALUES

B.1 LOCAL SHAPLEY VALUES (LSV)

We introduce Local Shapley Values (LSV) more formally. First, as explained earlier, Shapley values
are based on coalitional game theory where the different features work together toward a common
outcome fpxq. In a game, the features can either be present or absent, which is simulated by replacing
some features with a baseline value z.
Definition B.1 (The Replace Function). Let x be an input of interest x, S Ď t1, 2, . . . , du be a subset
of input features that are considered active, and z be a baseline input, then the replace-function
rS : Rd ˆ Rd Ñ Rd is defined as

rSpz,xqi “

"

xi if i P S
zi otherwise.

(25)

We note that this function is meant to “activate” the features in S.

Now, if we let π be a random permutation of d features, and πi denote all features that appear before
i in π, the LSV are computed via

φipf,x, zq :“ E
π„Ω

“

fp rπiYtiupz,xq q ´ fp rπi
pz,xq q

‰

, i “ 1, 2, . . . , d, (26)

where Ω is the uniform distribution over d! permutations. Observe that the computation of LSV is
scales poorly with the number of features d hence model-agnostic computations are only possible
with datasets with few features such as COMPAS and Adult-Income. For datasets with larger amounts
of features the TreeExplainer algorithm (Lundberg et al., 2020) can be used to compute the LSV
(cf. Equation 26) in polynomial time given that one is explaining a tree-based model.

B.2 CONVERGENCE

As a reminder, we are interested in estimating the GSV Φ ” Φpf,F ,Bq which requires estimating
expectations w.r.t the foreground and background distributions. Said estimations can be conducted
with Monte-Carlo where we sample M instances

S0 „ FM S1 „ BM , (27)

and compute the plug-in estimates

pΦpf, S0, S1q :“ Φpf, CpS0,1{Mq, CpS1,1{Mqq

“
1

M2

ÿ

xpiqPS0

ÿ

zpjqPS1

φpf,xpiq, zpjqq.
(28)

We now show that, pΦpf, S0, S1q is a consistent and asymptotically normal estimate of Φpf,F ,Bq
Proposition B.1. Let f : X Ñ r0, 1s be a black box, F and B be distributions on X , and pΦ ”

pΦpf, S0, S1q be the plug-in estimate of Φ ” Φpf,F ,Bq, the following holds for any δ P s0, 1r and
k “ 1, 2 . . . , d

lim
MÑ8

P
ˆ

|pΦk ´ Φk| ě
F´1
N p0,1qp1´ δ{2q

2
?
M

b

σ2
10 ` σ

2
01

˙

“ δ,

where F´1
N p0,1q is the inverse Cumulative Distribution Function (CDF) of the standard normal

distribution, σ2
10 “ Vx„F rEz„Brφipf,x, zqqs s and σ2

01 “ Vz„BrEx„F rφipf,x, zqqs s.

Proof. The proof consists simply in noting that LSV φkpf,x
piq, zpjqq are a function of two indepen-

dent samples xpiq „ F and zpjq „ B. The model f is assumed fixed and hence for any feature k we
can define hpxpiq, zpjqq :“ φkpf,x

piq, zpjqq. Now, the estimates of GSV can be rewritten

pΦkpf, S0, S1q “
1

|S0| |S1|

ÿ

xpiqPS0

ÿ

zpjqPS1

hpxpiq, zpjqq, (29)
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which we recognize as a well-known class of statistics called two-samples U-statistics. Such statistics
are unbiased and asymptotically normal estimates of

Φkpf,F ,Bq “ E
x„F
z„B

rhpx, zqs. (30)

The asymptotic normality of two-samples U-statistics is characterized by the following Theorem
(Lee, 2019, Section 3.7.1).

Theorem B.1. Let pΦk ” pΦkpf, S0, S1q be a two-samples U-statistic with |S0| “ N, |S1| “ M ,
moreover let hpx, zq have finite first and second moments, then the following holds for any δ P s0, 1r

lim
N`MÑ8

s.t.N{pN`MqÑpPp0,1q

P
ˆ

|pΦk ´ Φk| ě
F´1
N p0,1qp1´ δ{2q
?
M `N

d

σ2
10

p
`

σ2
01

1´ p

˙

“ δ,

where σ2
10 “ Vx„F rEz„Brhpx, zqs s and σ2

01 “ Vz„BrEx„F rhpx, zqs s.

Proposition B.1 follows from this Theorem by choosing N “M,p “ 0.5 and noticing that having
a model with bounded outputs (f : X Ñ r0, 1s) implies that |hpx, zq| ď 1 @x, z P X which means
that hpx, zq has bounded first and second moments.

B.3 COMPUTE THE LSV

Running Algorithm 1 requires computing the coefficients pΦspf, S
1
0, z

pjqq for j “ 1, 2, . . . , N1. To
compute them, first note that they can be written in terms of LSV for all instances in S10

pΦspf, S
1
0, z

pjqq “
1

M

ÿ

xpiqPS10

φspf,x
piq, zpjqq. (31)

The LSV φspf,x
piq, zpjqq are computed deeply in the SHAP code and are not directly accessible

using the current API. Hence, we had to access them using Monkey-Patching i.e. we modified
the ExactExplainer class so that it stores the LSV as one of its attributes. The attribute can
then be accessed as seen in Figure 7. The code is provided as a fork the SHAP repository. For the
TreeExplainer, because its source code is in C++ and wrapped in Python, we found it simpler to
simply rewrite our own version of the algorithm in C++ so that it directly returns the LSV, instead of
Monkey-Patching the TreeExplainer.

Figure 7: How we extract the LSV from the ExactExplainer via Monkey-Patching.
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C STATISTICAL TESTS

C.1 KS TEST

A first test that can be conducted is a two-samples Kolmogorov-Smirnov (KS) test (Massey Jr, 1951).
If we let

pFSpxq “
1

|S|

ÿ

zPS

1pz ď xq (32)

be the empirical CDF of observations in the set S. Given two sets S and S1, the KS statistic is

KSpS, S1q “ sup
xPR

| pFSpxq ´ pFS1pxq|. (33)

Under the null-hypothesis H0 : S „ D|S|, S1 „ D|S1| for some univariate distribution D, this
statistic is expected to not be too large with high probability. Hence, when the company provides the
subsets S10, S

1
1, the audit can sample their own two subsets fpS0q, fpS1q uniformly at random from

fpD0q, fpD1q and compute the statistics KSpfpS0q, fpS
1
0qq and KSpfpS1q, fpS

1
1qq to detect a fraud.

C.2 WALD TEST

An alternative is the Wald test, which is based on the central limit theorem. If S1 „ BM , then the
empirical average of the model output over S1 is asymptotically normally distributed as M increases

WaldpfpS1q, fpBqq :“

1
M

ř

zPfpS1q
z ´ µ

σ{
?
M

ù N p0, 1q, (34)

where µ :“ Ez„fpBqrzs and σ2 :“ Vz„fpBqrzs are the expected value and variance of the model
output across the whole background. The same reasoning holds for S0 and the foreground F .
Applying the Wald test with significance α would detect fraud when

|WaldpfpS11q, fpBqq | ą F´1
N p0,1qp1´ α{2q, (35)

where F´1
N p0,1q is the inverse of the CDF of a standard normal variable.
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D METHODOLOGICAL DETAILS

D.1 TOY EXAMPLE

The toy dataset was constructed to closely match the results of the following empirical study compar-
ing skeletal mass distributions between men and women (Janssen et al., 2000). Firstly, the sex feature
was sampled from a Bernoulli

S „ Bernoullip0.5q. (36)
According to Table 1 of Janssen et al. (2000), the average height of women participants was 163
cm while it was 177cm for men. Both height distributions had the same standard deviation of 7cm.
Hence we sampled height via

H|S“man „ N p177, 49q

H|S“woman „ N p163, 49q
(37)

It was noted in Janssen et al. (2000) that there was approximately a linear relationship between height
and skeletal muscle mass for both sexes. Therefore, we computed the muscle mass M as

M |tH“h, S“manu “ 0.186h` 5ε

M |tH“h, S“womanu “ 0.128h` 4ε

with ε „ N p0, 1q
(38)

The values of coefficients 0.186, 0.128 and noise levels 5 and 4 were chosen so the distributions
of M |S would approximately match that of Table 1 in Janssen et al. (2000). Finally the target was
chosen following

Y |tH“h,M“mu „ BernoullipP pH,Mq q

with P pH,Mq “
“

1` expt100ˆ1pH ă 160q ´ 0.3pM ´ 28qu
‰´1

.
(39)

Simply put, the chances of being hired in the past (Y ) were impossible for individuals with a smaller
height than 160cm. Moreover, individuals with a higher mass skeletal mass were given more chances
to be admitted. Yet, individuals with less muscle mass could still be given the job if they displayed
sufficient determination. In the end, we generated 6000 samples leading to the following disparity in
Y .

PpY “ 1|S“manq “ 0.733 PpY “ 1|S“womanq “ 0.110. (40)
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Table 2: Models Test Accuracy % (mean ˘ stddev).

mlp rf xgb

COMPAS 68.2˘ 0.9 67.7˘ 0.8 68.6˘ 0.8
Adult 85.6˘ 0.3 86.3˘ 0.2 87.1˘ 0.1
Marketing 91.1˘ 0.1 91.4˘ 0.3
Communities 83˘ 2 82˘ 2

Table 3: Models Demographic Parity (mean ˘ stddev).

mlp rf xgb

COMPAS ´0.12˘ 0.01 ´0.11˘ 0.01 ´0.11˘ 0.02
Adult ´0.20˘ 0.01 ´0.19˘ 0.01 ´0.192˘ 0.004
Marketing ´0.104˘ 0.005 ´0.11˘ 0.01
Communities ´0.50˘ 0.01 ´0.54˘ 0.02

D.2 REAL DATA

The datasets were first divided into train/test subsets with ratio 4
5 : 1

5 . The models were trained
on the training set and evaluated on the test set. All categorical features for COMPAS, Adult, and
Marketing were one-hot-encoded which resulted in a total of 11, 40, and 61 columns for each dataset
respectively. A simple 50 steps random search was conducted to fine-tune the hyper-parameters with
cross-validation on the training set. The resulting test set performance and demographic parities
for all models and datasets, aggregated over 5 random data splits, are reported in Tables 2 and 3
respectively.
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(b) CDFs for genetic algorithm.
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(c) CDFs for brute-force.
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(d) CDFs for Fool SHAP.

Figure 8

E ADDITIONAL RESULTS

E.1 TOY EXAMPLE

Figure 8 presents additional results for the toy example. More specifically, Figure 8 (a) illustrates
the evolution of the detection and amplitude of the sensitive feature during the genetic algorithm.
We note that beyond 90 iterations, the detector is systematically able to assert that the dataset is
manipulated. The smallest value of amplitude that can be reached via the genetic algorithm without
being detected is around 0.05. Figures 8 (b) (c) and (d) show the CDFs of fpS11q where S11 is chosen
via the genetic algorithm, brute-force, and Fool SHAP respectively. We observe that Fool SHAP
is the method where the resulting CDF for fpS11q is closest to the CDF for fpD1q. This is why the
audit is not able to detect fraud using statistical tests. The fact that Fool SHAP generates fake CDFs
that are close to the data CDFs is a consequence of minimizing the Wasserstein distance. These
results highlight the superiority of Fool SHAP compared to the brute-force approach and the genetic
algorithm.
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E.2 EXAMPLES OF ATTACKS

In this section, we present 8 specific examples of the attacks that were conducted on COMPAS, Adult,
Marketing, and Communities.
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Figure 9: Attack of RF fitted on COMPAS. Left: GSV before and after the attack with M “ 200. As
a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading subsets
fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 10: Attack of XGB fitted on COMPAS. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 11: Attack of XGB fitted on Adults. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 12: Attack of RF fitted on Adults. Left: GSV before and after the attack with M “ 200. As a
reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading subsets
fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 13: Attack of RF fitted on Marketing. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 14: Attack of XGB fitted on Marketing. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 15: Attack of XGB fitted on Communities. Left: GSV before and after the attack with
M “ 200. As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF
of the misleading subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 16: Attack of RF fitted on Communities. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF of the
misleading subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.

E.3 GENETIC ALGORITHM

This section motivates the use of stealthily biased sampling to perturb Shapley Values in place of the
method of Baniecki et al. (2021), which fools SHAP by perturbing the background dataset S11 via a
genetic algorithm. In said genetic algorithm, a population of P fake background datasets tS1pkq1 uPk“1
evolves iteratively following three biological mechanisms

• Cross-Over: Two parents produce two children by switching some of their feature values.
• Mutation: Some individuals are perturbed with small Gaussian noise.

• Selection: The individuals S1pkq1 with the smallest amplitudes |Φspf, S10, S
1pkq
1 q| are selected for

the next generation.

Although the use of a genetic algorithm makes the method of Baniecki et al. (2021) very versatile, its
main drawback is that there is no constraint on the similarity between the perturbed background and
the original one. Moreover, the mutation and cross-over operations ignore the correlations between
features and hence the perturbed dataset can contain unrealistic instances. To highlight these issues,
Figure 17 presents the first two principal components of D1 and S11 for the XGB models used in
Section 5.4. On COMPAS and Marketing especially, we see that the fake samples S11 lie in regions
outside of the data manifold. For Adult-Income and Marketing, the fake data overlaps more with the
original one, but this could be an artifact of only visualizing 2 dimensions.

For a more rigorous analysis of “similarity” between S11 and D1, we must study the detection rate of
the audit detector. To this end, Figures 18 and 19, present the amplitude reduction and the detection
rate after a given number of iterations of the genetic algorithm. These curves show the average and
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Figure 17: First two principal components of D1 (Blue) and S11 (Red) returned by the genetic
algorithm on XGB models.

standard deviation across the 5 train/test splits employed in our main experiments. Moreover, window
20 convolutions were used to smooth the curves and make them more readable. On the Marketing
and Communities datasets, we see that for both XGB and Random Forests models, the detector is
quickly able to assert that the data was manipulated. We suspect the genetic algorithm cannot fool
the detector on these two datasets because they contain a large number of features (Marketing has 20,
Communities has 98). Such a large number of features could make it harder to perturbate samples
while staying close to the original data manifold. Since the model behavior is unpredictable outside
of the data manifold, it is impossible for the genetic algorithm to guarantee that the CDF of fpS11q
will be close to the CDF of fpD1q. For adult-income, the detection rate appears to be lower but still,
the largest reductions in amplitude of the sensitive feature were about 15%, even after 2.5 hours of
run-time.

Contrary to the genetic algorithm, our method Fool SHAP addresses both constraints of making the
fake data realistic and keeping it close to the original dataset. Indeed, our objective is tuned to make
sure that the Wasserstein distance between the original and perturbed data is small. Moreover, since
we do not generate new samples but rather apply non-uniform weights to pre-existing ones, we do
not run into the risk of generating unrealistic data.
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Figure 18: Iterations of the genetic algorithm applied to 5 XGB models per dataset.
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Figure 19: Iterations of the genetic algorithm applied to 5 RF models per dataset.

.
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E.4 MULTIPLE SENSITIVE ATTRIBUTES

We present preliminary results for settings where one wishes to manipulate the Shapley values
of multiple sensitive features s each part of a set s P S. For example, in our experiments, we
considered gender as a sensitive attribute for the Adult-Income dataset and we showed that one
can diminish the attribution of this feature. Nonetheless, there are two other features in Adult-
Income that share information with gender: relationship and marital-status. In-
deed, relationship can take the value widowed and marital-status can take the value
wife, which are both proxies of gender=female. For this reason, these two other features
may be considered sensitive and decision-making that relies strongly on them may not be ac-
ceptable. Hence, we must derive a method that reduces the total attributions of the features in
S “ tgender,relationship,marital-statusu.
We first let βs :“ signr

ř

zpjqPD1

pΦspf, S
1
0, z

pjqq s for any s P S. In our experiments, all these signs
will typically be negative. The proposed approach is to minimize the `1 norm

}ppΦspf, S
1
0, S

1
1qqsPS}1 :“

ÿ

sPS
| pΦspf, S

1
0, S

1
1q |, (41)

which we interpret as the total amount of disparity we can attribute to the sensitive attributes. Re-
member that pΦspf, S10, S

1
1q converges in probability to

ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq (cf. Proposition
4.1). Therefore minimizing the `1 norm will require minimizing

ÿ

sPS
βs

ÿ

zpjqPD1

ωj pΦspf, S
1
0, z

pjqq “
ÿ

zpjqPD1

ωj
ÿ

sPS
βs pΦspf, S

1
0, z

pjqq, (42)

which is again a linear function of the weights. We present Algorithm 4 as an overload of Algorithm
1 that now supports taking multiple sensitive attributes as inputs.

Algorithm 4 Compute non-uniform weights for multiple sensitive attributes s P S
1: procedure COMPUTE_WEIGHTS(D1,

 

pΦspf, S
1
0, z

pjqq
(

s,j
, λ)

2: βs :“ signr
ř

zpjqPD1

pΦspf, S
1
0, z

pjqq s @s P S;
3: B :“ CpD1,1{N1q Ź Unmanipulated background
4: B1ω :“ CpD1,ωq ŹManipulated background as a function of ω
5: ω “ arg minω

ř

zpjqPD1
ωj

ř

sPS βs
pΦspf, S

1
0, z

pjqq ` λWpB,B1ωq
6: return ω;

The only difference in the resulting MCF is that we must use the cost apeq “
ř

sPS βs
pΦspf, S

1
0, z

pjqq

for edges ps, `jq in the graph G of Figure 6. This new algorithm is guaranteed to diminish the `1
norm of the attributions of all sensitive features. However, that this does not imply that all sensitive
attributes will diminish in amplitude. Indeed, minimizing the sum of multiple quantities does not
guarantee that each quantity will diminish. For example, 4 ` 7 is smaller than 6 ` 6 although 4
is smaller than 6 and 7 is higher than 6. Still, we see reducing the `1 norm as a natural way to
hide the total amount of disparity that is attributable to the sensitive features. Another important
methodological change is the way we select the optimal hyper-parameter λ in Algorithm 3. Now at
line 12, we use the `1 norm

ř

sPS |
ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq| as a selection criterion.

Figures 20 and 21 present preliminary results of attacks on three RFs/XGBs fitted on Adults with
different train/test splits. We note that in all cases, before the attack, the three sensitive features had
large negative attributions. By applying our method, we can considerably reduce the amplitude of
the two sensitive attributes. The attribution of the remaining sensitive feature remains approximately
constant or slightly becomes more negative. We leave it as future work to run large-scale experiments
with multiple sensitive features for various datasets.
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Figure 20: Example of log-space search over values of λ using RFs classifier fitted on Adults and
three sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as
a function of the parameter λ of the attack. (Right) For each value of λ, the vertical slice of the
11 curves is the GSV obtained with the resulting B1ω. The goal here is to reduce the amplitude all
sensitive features (red curves) in order to hide their contribution to the disparity in model outcomes.
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Figure 21: Example of log-space search over values of λ using XGBs classifier fitted on Adults and
three sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as
a function of the parameter λ of the attack. (Right) For each value of λ, the vertical slice of the
11 curves is the GSV obtained with the resulting B1ω. The goal here is to reduce the amplitude all
sensitive features (red curves) in order to hide their contribution to the disparity in model outcomes.
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