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ABSTRACT

Ultrasound image deconvolution has been extensively explored
in the literature as a powerful tool to enhance the spatial resolution
and the contrast of ultrasound (US) images, or to estimate the tissue
reflectivity function from the radiofrequency (RF) data. Its princi-
ple generally uses the first order Born approximation, which leads
a linear model relating the RF images to the tissue reflectivity func-
tion and the point spread function (PSF). Non linear interactions be-
tween the US waves and the tissues are the origin of harmonics in
the received signals allowing to extract the so-called harmonic im-
age. This paper deals with the joint restoration of fundamental and
harmonic images by taking into consideration the axial variation of
the PSF within a block-wise restoration process. The interest of the
proposed method is shown through phantom and in vivo results and
compared to joint restoration methods considering a spatially invari-
ant PSF.

Index Terms— ultrasound imaging, harmonic ultrasound imag-
ing, image deconvolution, image restoration.

1. INTRODUCTION

Among medical imaging modalities, ultrasound (US) imaging main-
tains its position as the most used one due to its non-ionizing risks,
low cost, ease of use and its abilities to reveal anatomy. During
propagation, a distortion of the US waves may occur due to non-
linear interactions with the tissues. The origin of this nonlinearity
may be the contrast agents previously injected for blood perfusion
measurements and lesion characterization or the tissues themselves
that interact nonlinearly with the US waves. The latter is at the ori-
gin of the so-called tissue harmonic imaging (THI) [1]. The trans-
ducer bandwidth usually limits the study of the harmonics to the
second harmonic of central frequency 2f0. In this case, two imag-
ing modalities are available, called fundamental and harmonic im-
ages. Fundamental images can be obtained by band-pass filtering
the RF images around f0. Harmonic images can be obtained ei-
ther by pre-processing techniques such as pulse inversion [2], by
post-processing techniques as system identification [3] or simply by
linear filtering around 2f0 the case of low overlap between the fun-
damental and harmonic spectra. THI can improve spatial resolution
and contrast to noise ratio and reduce near field artifacts compared
to fundamental images. However, harmonic images suffer from high
attenuation with depth.

This paper focuses on image restoration in US imaging. Un-
der the first Born approximation, the full acoustic model allows the
RF signals to be expressed as the convolution between a spatially

varying pulse and a function expressing the inhomegeneity of the
field [4–6]. US image restoration or deconvolution aims at recover-
ing an image of the tissues by mitigating the effect of the transducer
spatial impulse response, also called point spread function (PSF).
While few studies consider a spatially varying PSF [7–9], most of the
existing approaches assume a stationary PSF to reduce the complex-
ity of the restoration problem [10–13]. In this case, image restoration
is applied to image segments where the hypothesis of non-stationary
PSF may hold. Consequently, stitching artifacts may appear after
merging the different restored segments in order to rebuild the whole
restored image [14]. The objective of this paper is twofold: (i) in-
clude THI in the image restoration process, and (ii) propose a fast
and efficient way to restore US image by solving an appropriate in-
verse problem and using a block-wise approach.

The remainder of this paper is organized as follows. Section II
introduces the adopted US image formation models and the decon-
volution technique. Section III describes the proposed block-wise
restoration method. Section IV presents the experimental data acqui-
sition and the restoration results obtained using phantom and in-vivo
data. Conclusions and perspectives are reported in Section V.

2. PROBLEM STATEMENT

2.1. US image formation model

This paper solves a joint deconvolution problem based on fundamen-
tal and harmonic US images. In the case of linear propagation and
under the first order Born approximation, RF images can be mod-
elled as the convolution between a spatially variant PSF and the tis-
sue reflectivity function (TRF) [4–6]. In the case of nonlinear propa-
gation, the linear RF image formation model can still hold under the
condition of weak nonlinearities in the medium, which is the case in
THI [4,15]. To further simplify these models, a common assumption
is to consider the PSF invariant within image segments, which results
into the following local fundamental and harmonic image formation
models:

yf = Hfr + nf , (1)
yh = WHhr + nh, (2)

where yf and yh ∈ RN are observed fundamental and harmonic
blocks or segments extracted from RF images and arranged in lexi-
cographical order, r ∈ RN is the TRF to be estimated and nf and
nh ∈ RN are white Gaussian additive noises with variances σ2

f and
σ2
h. The matrices Hf and Hh ∈ RN×N are supposed to be block

circulant with circulant blocks matrices accounting for the funda-
mental and harmonic system PSF and N is the number of image



samples. Due to the attenuation of the harmonic image with depth,
we consider in the second model a diagonal matrix W ∈ RN×N

modeling the level of attenuation at each depth.

2.2. TRF estimation

The objective of this work is to estimate the TRF from the fundamen-
tal and harmonic RF images, based on the direct models in (1) and
(2). Assuming independence between the two additive noises nf

and nh, and a sparse TRF (which corresponds to a Laplace prior)
leading to an `1-norm regularization term (see, e.g., [13, 16] for a
similar choice), the TRF r can be estimated by solving the follow-
ing problem [17]:

min
r

1

2
‖yf −Hfr‖2︸ ︷︷ ︸

Fundamental data fidelity term

+
1

2
‖yh −WHhr‖2︸ ︷︷ ︸

Harmonic data fidelity term

+ µ‖r‖1︸ ︷︷ ︸
regularization

, (3)

where µ is a hyperparameter weighting the contribution of the sparse
regularization with respect to the two data fidelity terms.

Note that the restoration problem in (3) requires to know the at-
tenuation matrix W and the two PSFs Hf and Hh. In practice, W
is estimated from the real data, as the ratio between the spectral en-
ergy of fundamental and harmonic components within sliding blocks
extracted from the RF image at each depth. Moreover, we propose to
estimate the PSFs from fundamental and harmonic images using the
homomorphic filter [18,19] and a phase refining approach described
in [11] .

After determining the matrices W ,Hf and Hh, the mini-
mization problem (3) can been solved using the alternating direc-
tion method of multipliers (ADMM) framework [20], as suggested
in [21].

3. BLOCK-WISE JOINT DECONVOLUTION

The image restoration method presented in Section 2.2 considers a
spatially invariant PSF. However, this assumption does not hold in
practice, because of the non-stationarity of the PSF caused for ex-
ample by the defocusing of the US waves. In the case of standard
focused US imaging, the variations of the PSF are mainly within the
axial direction [4]. Therefore, in order to avoid a high computational
complexity resulting from a spatially variant PSF in the deconvo-
lution process, most restoration methods assume a spatially invari-
ant PSF within small image segments extracted at different imag-
ing depths. Once the deconvolution has been applied to each seg-
ment, the different restored images are merged to produce the final
restored image. Stitching effects of joining the results may how-
ever occur [14]. The method presented in this paper studies new
approach considering a stationary PSF in each image segment. Note
that a similar approach has been already shown to provide interest-
ing results in simulating fundamental and harmonic US images [22].
This approach considers different PSFs at different depths and then
creates a sequence of images by convolution between the medium
scattering map and the sequence of PSFs. Finally, a PSF weighting
function is applied in order to build the final image. In the inverse
solution considered in this work, a similar method is investigated,
which can be summarized into two steps. First, n PSFs are esti-
mated at n different depths from image segments extracted from the
RF images. As a result, n RF restored images are obtained from
the deconvolution of the fundamental and harmonic RF images with
the n estimated PSFs (see Fig. 1). Note that n different weighting
functions are created corresponding to the n PSFs. Each weighting
function wi reaches its maximum at the depth where the ith PSF is
estimated. The amplitudes of the different weights wi are defined

using continuous windows along the z-axis illustrated in Fig. 2 in
the particular case of 8 PSFs and are normalized in order to obtain:

∀z ∈ R,
n∑

i=1

wi(z) = 1. (4)

Finally, in order to obtain the final restored image R, the n restored
images are merged using a linear combination defined as:

R =

N∑
i=1

wiri (5)

In other words, in the region of the ith PSF, the ri result is weighted
with amplitude of 0.5 and where the ri−1 and ri+1 are weighted
with values from the negative and positive slope respectively (going
between 0 and 0.5).

4. RESULTS

The experimental data was acquired with a ULA-OP 256 research
scanner connected to the wide band 192-element linear array probe
LA533 (Esaote S.p.A., Florence, Italy), with a 110% bandwidth cen-
tered at 8MHz and a 245 µm pitch. The TX excitation signal was a
10-cycle sine burst at 5MHz with Hanning tapering for all the per-
formed scans [23]. The size of the RF images is 384 × 4480 pixels
and the sampling frequency is 78.125MHz. Two acquisitions were
considered to test the proposed method, as described hereafter.
Phantom image: The first data was acquired on a tissue mimicking
phantom (model 404GS LE, Gammex Inc., Middleton, WI, USA)
including both anechoic/hypoechoic cysts and wire targets. The sim-
ple structures in this phantom allowed us to objectively evaluate the
resolution gain enabled by the proposed method.
Carotid image: The second acquisition was done in vivo by scan-
ning the carotid artery and jugular vein of a young healthy volunteer.
This image contains more complicated structures and represents a
more difficult challenge than the previous phantom to prove the func-
tionality of the proposed restoration procedure.
In both experiments the images were divided into eight segments
for PSF estimation and block-wise image restoration. The proposed
method is compared to the joint deconvolution technique in [21] that
considers a spatially invariant PSF. In the phantom experiment, the
full width at half maximum (FWHM) computed around the wire lo-
cations was calculated as a metric of spatial resolution. In the carotid
experiment, the resolution gain [24] was calculated for both solu-
tions obtained using stationary and non-stationary block-wise PSFs.
The images corresponding to the phantom experiment are shown in
Fig. 3. The interest of image deconvolution can be appreciated in
Fig. 3(c,d), in particular the improved spatial resolution compared to
the fundamental image in Fig. 3(a) and the better signal to noise ra-
tio at high depth compared to the harmonic image in Fig. 3(b). Thus,
the improved resolution obtained using a spatially-varying PSF can
be clearly observed: An FWHM improvement is presented in (f) at
different depths confirming the advantage of the proposed method.
The FWHM improvement is the difference between the FWHM of a
wire in the result of the proposed method and the FWHM of the cor-
responding wire in the joint solution considering stationary PSFs.
The images corresponding to the carotid experiment are shown in
Fig. 4. One can observe that the proposed method eliminates the re-
verberation effect caused generally by the deconvolution, while pre-
serving a good restoration result. In particular, an improvement of
the resolution gain of 0.49 is obtained by comparing the resolution
gain of the proposed method (Fig. 4(b)) to the deconvolution method



Fig. 1. PSF estimation and image deconvolution using a sequence of estimated PSFs.

Fig. 2. Principle of block weighting and weighting functions wi corresponding to the different PSFs as a function of depth.

using only one stationary PSF (Fig. 4(a)). Finally, one can note that
there is no boundary artifact between the several blocks thanks to the
choice of the weighting functions.

5. CONCLUSION

The objective of this work was to study the interest of considering
a non-stationary PSF in the process of TRF restoration from funda-
mental and harmonic US images. Combining the harmonic image
with its fundamental counterpart showed interesting deconvolution
results by taking into account the properties of both images. While
the majority of existing restoration methods considers a stationary
PSF, this work presents an efficient block-wise restoration approach
allowing the spatial variability of the PSF to be considered. The pro-
posed method is easy to implement, does not present stitching arti-
facts, and can be coupled to any restoration solution. Future work
will be devoted to generalize the method in order to jointly esti-
mate the PSF and the TRF. Considering a nonlinear model for the
harmonic image could widen the application of the joint restoration
allowing us to consider contrast agent imaging modalities.
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