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ABSTRACT Although the design of hybrid precoders and combiners separately from the complete channel
state information (CSI) offers satisfactory performance, the resulting spatial multiplexing channel may
not always be orthogonal during communication. Also, acquiring CSI to design optimal precoders and
combiners poses several challenges, particularly in millimeter wave (mmWave) channel estimation, and
getting the sensing matrix is equivalent to designing the precoders and combiners. For this, we propose a
new iterative method based on alternating minimization to design the optimal sensing matrix (incoherent
projection matrix) with the given dictionary to minimize the mutual coherence values (µmx , µave and µall )
simultaneously according to the equiangular tight frame (ETF) properties for achieving better-compressed
sensing (CS) recovery performance. Then, in order to derive the best hybrid precoders and combiners jointly
from the optimally designed sensing matrix, we formulate the optimization design problem as the nearest
Kronecker product (NKP) problem. The proposed sensing matrix design works better at lowering the mutual
coherence values concurrently with the straightforward shrinkage function, according to simulation findings
of mutual coherence values evolution versus outer iteration numbers. In comparison to existing codebook-
based hybrid precoder/combiner schemes, the proposed joint hybrid precoder and combiner design improves
the performance of the simulation results obtained by multi-stage CS-based mmWave channel estimation in
terms of channel estimation accuracy and spectral efficiency (SE).

INDEX TERMS Millimeter-wave channel estimation, Multi-stage CS approach, Hybrid mmWave MIMO
transceiver, Joint hybrid precoder and combiner design, Equiangular tight frame, Mutual coherence values,
Incoherent projection matrix.

I. INTRODUCTION

DUE to the bandwidth scarcity in the sub-6 GHz radio
spectrum, all cutting-edge signal processing methods

in this band have numerous challenges in order to meet the
enormous demand for high data rate wireless communica-
tion. In order to address the increasing expansion of mobile
network data traffic and high-speed communication require-
ments, a new spectrum band is the primary option. Therefore,
due to its potential enormous spectrum resources to achieve
multiGigabit-per-second (Gbps) data rates and provide a great
opportunity to meet the capacity requirements of future-
generation wireless systems and networks, millimeter wave
(mmWave) communications are thought to be a promising
candidate technology for the new era of wireless communica-

tions [1]–[4]. Large bandwidth channels are actually the key
advantage of switching to mmWave carrier frequencies [5].
However, despite the mmWave spectrum’s wide bandwidth,
mmWave signals are highly vulnerable to environmental and
climate variables, which result in significant path loss, nu-
merous blockages, and significant penetration losses [6] [7].
Unexpectedly, the increased signal-to-noise ratio (SNR) ad-
vantages will boost the capacities of wireless communica-
tions. As is common knowledge, using N antennas improves
the SNR in the receiver side by 10 log10(N ) and increases
the signal intensity by a factor of 20 log10(N ) in the transmit
side in the desired direction [8]. Therefore, concentrating the
highest signal gain within the desired directivity is crucial to
overcoming the overall propagation losses when employing
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a multiple-input multiple-output (MIMO) system [9] [10].
A large number of antenna elements can be deployed at the
mmWave transceiver devices in a reasonable physical form
factor thanks to the small wavelength of mmWave signals.
To apply MIMO in mmWave communications, hybrid archi-
tectures have attracted considerable attention as an efficient
and promising candidate to strike a better balance among
power consumption, hardware complexity, and system perfor-
mance. Typically, when wireless communication devices are
equipped with large antenna arrays, communication protocols
are based on signal processing techniques such as precoding
and combining. The precoding and combining matrices must
be developed from complete knowledge of channel state in-
formation (CSI) decomposition for attaining optimal results
similar to the ideal performance [11]–[13]. This will enable
numerous independently controlled beams to be generated
with the highest gains. In contrast, due to the substantial
training overhead associated with the usage of large antenna
arrays at the transceivers and the extremely low received SNR
prior to beamforming as a result of the increased noise pro-
duced by the huge bandwidth, acquiring themmWave channel
is a challenging process [14]. Therefore, the primary chal-
lenge for mmWave MIMO communication systems is hybrid
beamformer designs. Due to the use of large antenna arrays
for mmWave signals and their limited-scattering propagation,
mmWave MIMO channels have sparse structures that easily
allow the leveraging of compressed sensing (CS) tools and
approaches to develop the mmWave channel estimation algo-
rithm [15]. On the other hand, despite the blessing ability of
the CS reconstruction approach to recover the high-dimension
channels, beam training is the primordial step in the sparse
mmWave channel estimation process as a spatial searching
mechanism, where the estimation performance is based on
the design quality of beams and their selection strategies
[16]. To avoid exhaustive beam training, the authors in [17]–
[20] proposed an adaptive CS algorithm with a predesigned
multi-resolution hierarchical codebook for developing multi-
layer beam selection strategies. For adaptive CS-based chan-
nel estimation methods, the hybrid precoding problem is
formulated as an Euclidean norm-minimization between the
established precoder from the hierarchical codebook at each
stage and predefined analog beam set to design the analog and
digital precoders. In [15], the analog beam sets generation
is complex to realize accurate RF phase shifters due to a
large number of quantization bits. To avoid the limitations of
the quantized phase shifters, the proposed beamspace MIMO
method in [21] can transform the conventional spatial channel
into a beamspace channel to capture the sparsity of channel
by using the lens antenna array. Unfortunately, this method
does not provide uniform performance across a broad range
of angles [22]. In [20], an adaptive CS-based mmWave chan-
nel estimation algorithm using parallel beams powered by
orthogonal sequences are developed to generate narrowmulti-
resolution beams with low complexity and without power
allocation for reducing the complexity of hybrid architecture.
Nevertheless, the computational complexity of the designed

multi-resolution codebooks increases linearly with the num-
ber of dominant channel paths. To avoid excessive channel
feedback requirements during the estimation process, CS-
based open-loop techniques proposed in [23]–[25] are used
to perform the estimation of the mmWave channel explicitly
with low computational complexity whatever the number of
paths. These techniques apply the CS formulation directly
for allowing the use of greedy algorithms with a low mutual
coherence as recovery guarantees to improve the channel
estimation accuracy. The CS formulation problem in [23]
is solved thanks to the orthogonal matching pursuit (OMP)
algorithm by employing a redundant dictionary as a sens-
ing matrix on which the design of optimal beam patterns is
based on the minimum total coherence (MTC). In [24], a
design of a completely deterministic beamformer codebook
and pilot symbols are proposed tominimizemutual coherence
by using a precoder column ordering algorithm, where the
pilot symbol columns are chosen from the discrete Fourier
transform (DFT) matrix. In general, the orthogonality of the
deterministic pilots is limited by their number. For this reason,
the pilot orthogonality in [24] is affected, because the pilot
column size is equal to RF chain numbers in hybrid mmWave
MIMO systems. Unlike the design of symbol pilots based
on the total coherence minimization problem, the authors
in [25] decompose the minimization problem into separate
transmit and receive coherence minimization problems. In
our previous work [26], we proposed a multi-stage CS-based
algorithm to estimate the channel of the hybrid mmWave
MIMO transceiver by using limited random pilot numbers
and detected data symbols as training beams for reducing the
effect of the overlapping between training beams throughout
the estimation process to maximize spatial diversity. In the
all discussed works above, the hybrid precoder and combiner
are designed separately to estimate the mmWave channel. Al-
though satisfactory performance is provided by the separate
design of the hybrid precoder and combiner, the orthogonality
of the resulting spatial multiplexing channel cannot be guar-
anteed [27]. Therefore, the conventional hybrid precoder and
combiner designs may cause significant performance loss in
realistic mmWavemultiplexing system [28]. In [4], [28], [27],
the joint precoding and combining design are considered by
assuming the perfect CSI which is hard to acquire inmmWave
systems as mentioned above. The quality of the equivalent
dictionary, which is essential for improving the accuracy of
estimation algorithm-based open loop techniques, will be
taken into consideration for the first time as we build a new
method in this paper to jointly design the hybrid precoder and
hybrid combiner so as to acquire the mmWave channel. In
order to achieve this, our key contributions are listed below:
• We propose a new iterative method based on alternating
minimization to design the optimal sensing matrix (incoher-
ent projection matrix) with the given dictionary for minimiz-
ing the mutual coherence values (µmx , µave and µall) simulta-
neously. And thus to obtain better CS recovery performance
by using the classical shrinkage function in the updating
process of the target Gram matrix G̃t . With the help of the
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suggested technique, we can indirectly take advantage of
the lower mutual coherence indices between the dictionary
matrix and the sensing matrix as new recovery guarantees to
increase the channel estimate accuracy.
• We suggest a new joint hybrid precoder and combiner
design method for enhancing the performance in practical
mmWave multiplexing systems by suppressing the interfer-
ence between different data streams. We formulate the op-
timization design problem as the nearest Kronecker product
(NKP) problem to derive the optimal joint design of hybrid
precoders and combiners simultaneously from the optimally
designed sensing matrix by taking into account the hybrid
architecture constraint.
•We use constrained random pilot numbers and detected data
symbols that are forming the training beams throughout the
estimation process to take advantage of the jointly developed
hybrid precoding and combining with the multi-stage CS
approach to explicitly estimate the channel of the hybrid
mmWave MIMO transceiver. In order to maximize spatial
diversity, the multi-stage CS approach-based open-loop tech-
nique lowers the influence of training beam overlapping.
The remainder of the paper is structured as follows. For es-
timating the mmWave channel, we discuss the system model
in Section II and review the sparse formulation based on a
multi-stage CS technique. In Section III, we first outline the
suggested approach for creating the ideal sensingmatrix. Sec-
tion IV then goes into detail about the joint hybrid precoder
and combiner design. Section V is devoted to explain how
to estimate the mmWave channel using the multi-stage CS
approach-based open-loop strategy and the suggested joint
hybrid design. The findings of simulation experiments are
discussed in Section VI. Section VII presents the conclusion.

The notations used throughout this paper are: A denotes a
matrix, a is a vector, a is a scalar, and A is a set. Whereas
A∗, AT ,and AH represents the conjugate, the transpose, and
the conjugate transpose of a matrix A, respectively. ‖A‖F
and |A| are Frobenius norm and the determinant of matrix A,
respectively, and Tr(A) is a matrix trace. ‖a‖p is Lp norms
of vector a, and diag(a) is a diagonal matrix with the entries
of a on its diagonal. Im indicates the identity matrix of size
m×m, and 0m×n is them×n all-zeros matrix. vec(A) denotes
the vector operator to vectorize matrix A. [A]:,i denotes i

th

column of the matrix A. A⊗B is the Kronecker product of
A, andB. CN (a,A) is a complex Gaussian vector withmean
a and covariance matrix A. E [.] represents expectation.

II. SYSTEM MODEL AND SPARSE FORMULATION

In this section, we present the system model and sparse
formulation based on a multi-stage CS approach to estimate
the mmWave channel.

A. SYSTEM MODEL
Since the fully connected hybridMIMO architecture provides
full beamforming gain, we consider the hybrid analog/digital
MIMO architecture at both the transmitter (Tx) and receiver

(Rx) as illustrated in Fig. 1. The Tx employs Ntx antennas
and Ntx

RF radio frequency (RF) chains to perform the simul-
taneous transmission of Ns data streams to the Rx which is
equipped withNrx antennas andNtx

RF RF chains. For ensuring
the effectiveness of multiple stream transmission, Ns is con-
strained to be bounded at the Tx and Rx by Ns ≤ Ntx

RF ≤ Ntx
andNs ≤ Nrx

RF ≤ Nrx, respectively. For a practical transceiver
architecture, the number of RF chains at the Rx is usually less
than that of the Tx, but without loss of generality, we assume
that the number of data streams and the number of RF chains
are equal as, Ns = Ntx

RF = Nrx
RF .
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FIGURE 1: Block diagram of hybrid mmWave MIMO archi-
tecture with the fully-connected structure.

According to the time-division duplexing protocol (TDD)
and the downlink communication scenario, the Tx precodes
the transmitted signal at the time sample n using a hybrid
precoder Fn ∈ CNtx×Ns which can be written as the product
of an Ntx

RF × Ns baseband precoder FBB,n and an Ntx × Ntx
RF

RF precoder FRF,n where Fn = FRF,nFBB,n. Therefore, the
discrete-time transmitted signal at the time sample n can be
defined as

rn =
√
γ Fnxn =

√
γ FRF,nFBB,nxn (1)

where γ represents the average transmit power, and xn ∈
CNs×1 is the instantaneous transmitted signal vector. For the
hybrid architecture, the total transmit power constraint is en-
forced by normalizing FBB,n to satisfy ‖FRF,nFBB,n‖2F = Ns.
Due to the fewer dominant paths and a uniform linear array
(ULA) configuration at the transceiver, we adopt the geomet-
ric Saleh-Valenzuela model to represent the sparse mmWave
channel with L paths as following [23]–[25]

H =

√
NrxNtx

L

L∑
i=1

αi arx(θi)aHtx(φi) (2)

where αi is the complex gain of the ith path and it can define
the channel type (Rayleigh, Rician or Nakagami), whereas
the variables φi and θi ∈ [0, 2π] are the ith path’s azimuth
angles of departure and arrival (AoDs/AoAs) of the Tx and
Rx, respectively. The functions atx(φi) and arx(θi) are the
transmit and receive array response vectors corresponding to
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the ith AoD/AoA, respectively. For a uniform linear array,
these functions can be expressed as

atx(φi) =
1√
Ntx

[
1, ej

2π
λ d sin(φi), . . . , ej(Ntx−1) 2π

λ d sin(φi)
]T

arx(θi) =
1√
Nrx

[
1, ej

2π
λ d sin(θi), . . . , ej(Nrx−1) 2π

λ d sin(θi)
]T

where d denotes the distance between antenna elements, and
λ denotes the wavelength of the signal. Moreover, the channel
model in (2) can be rewritten in a more compact form as

H = Arx Hd AH
tx (3)

where Hd = diag(α) is the diagonal path gains ma-

trix, such that α =
√

NrxNtx
L [α1, . . . , αL ]

T . Whereas, the
matrices Atx = [atx(φ1), . . . ,atx(φL)] and Arx =
[arx(θ1), . . . ,arx(θL)] include the Tx and Rx array response
vectors.

On the receiving side, the Rx applies a hybrid combiner
Wn ∈ CNtx×Ns which is composed of an Nrx

RF × Ns baseband
combiner WBB,n and an Nrx × Nrx

RF RF combiner WRF,n to
process the received signal. Therefore, the received signal
vector yn ∈ CNtx×1 at the same instant can be expressed as

yn =
√
γWH

n HFnxn + WH
n ηn (4)

=
√
γWH

BB,nW
H
RF,nHFRF,nFBB,nxn + WH

BB,nW
H
RF,nηn

where ηn ∼ CN (0, σ2
ηI) is the additive noise vector. As

the analog RF part is implemented by analog phase shifters,
FRF,n andWRF,n must be designed by taking into account the
constant modulus constraints on their entries.

B. SPARSE FORMULATION BASED ON A MULTI-STAGE CS
APPROCH
In this subsection, we revisit the sparse representation of
the channel estimation problem proposed in [26] which is
based on themulti-stage CS approach. For enabling the sparse
formulation of mmWave channel estimation, we exploit the
open-loop beam training method, where the Tx sends M
known pilot followed byN−(M+1) unknown data symbols.
By vectorizing the right-hand side of the signal model in (4),
the received signal vector can be expressed as follows

yn =
√
γ (xTnFT

n ⊗WH
n ) vec(H) + ηn (5)

n = 1, . . . ,N
where ηn = WH

n ηn is the noise vector after the hybrid
combining. To estimate the sparse mmWave channel by the
CS reconstruction, we adopt the concept of the virtual an-
gular domain (VAD) representation [29] to provide a dis-
crete approximation of the physical channel in the quan-
tized angle space. In the VAD representation, the AoDs and
AoAs are taken from grids with resolution G, where φi, θi ∈
{0, 2π

G , . . . ,
2π(G−1)

G } with G � L. Then, the physical chan-
nel matrix H in (2) can be rewritten as

H = Arx Hα A
H
tx (6)

where Hα ∈ CG×G is a L-sparse channel matrix that stores
only L non-zero elements in the positions corresponding to
the AoAs and AoDs. Arx ∈ CNrx×G and Atx ∈ CNtx×G are
angle dictionary matrices which include the steering vectors
corresponding to the transmit and receive virtual angle grids
with the same resolution at the Tx and Rx, respectively. By
substituting (6) into (5), we exploit the Kronecker product
properties to vectorize the channel matrix as vec(H) = Ψhα,
where Ψ ∈ CNrxNtx×G2

is an overcomplete dictionary matrix
(NrxNtx < G2), such that Ψ = A

∗
tx ⊗ Arx. hα ∈ CG2×1 is

a vector containing the path gains of the channel matrix H.
Hence, the received signal vector in (5) can be expressed as

yn =
√
γ(xTnFT

n ⊗WH
n )Ψhα + ηn (7)

By stacking the N instantaneous received signal vector, we
can obtain

ỹG =
√
γ
[
xT1 FT

1 ⊗WH
1 , . . . ,x

T
NFT

N ⊗WH
N

]T
Ψhα + η̃G

=
√
γ [φ1, . . . ,φN ]

T
Ψhα + η̃G

=
√
γΦGΨhα + η̃G (8)

where ỹG =
[
yT

1 , . . . ,y
T
N

]T
is the collected received signal.

ΦG = [φ1, . . . ,φN ]
T is the global collected sensing matrix

(a.k.a projection matrix), where the sensing submatrix at the
nth time sample can be defined as φn = xTnFT

n ⊗ WH
n ,

and η̃G =
[
ηT1 , . . . ,η

T
N

]T
is the collection of the combined

noise vector. To apply the multi-stage CS approach, we di-
vide the compressed sensing resulting model in (8) to split
the total sensing matrice ΦG into two sensing matrices, one
corresponds to random pilots and the other corresponds to
unknown data symbols as given by

y1

...
yM

yM+1

...
yN


=
√
γ

ΦP

ΦD

Ψhα +



η1
...

ηM
ηM+1

...
ηN


(9)

In the end, we have two separate stages, theM random pilots
are used at the first stage to estimate the channel where its
received training signal model can be expressed as

ỹP = ΦPΨhα + η̃P (10)

For the second stage, we can exploit the estimated channel
from the first stage to detect the unknown data symbols, then
the received signal model of the second stage is written as
follows

ỹD = ΦDΨhα + η̃D (11)
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III. SENSING MATRIX DESIGN FOR CS-BASED CHANNEL
ESTIMATION
In CS reconstruction, using the mutual coherence minimiza-
tion directly as a sparse recovery guarantee metric to derive
the optimization problem can be misleading [30]. Hence,
finding the optimal beamformers design via mutual coher-
ence minimization of the sensing matrix as proposed in [23]–
[25] does not always guarantee the CS-based mmWave chan-
nel estimation performance. Thus, for recovering the sparse
signal with higher accuracy in CS, theremust be a smallermu-
tual coherence between the sensing matrix and the dictionary
matrix. As result, CS theory requires that Φ, the sensing ma-
trix, andΨ, the dictionarymatrix, be as incoherent as possible
[31]. In other words, the correlation between any distinct pair
of columns in the equivalent dictionary D (D = ΦΨ) should
be very small, and that means having a nearly orthogonal dic-
tionary D [32]. In the CS-based mmWave channel estimation
model, designing the sensingmatrix is equivalent to designing
the precoders and combiners indirectly. For this purpose, we
adopt in this work the incoherent projection method to pro-
vide an incoherent equivalent dictionary and find the optimal
design of the sensing matrix with the given dictionary to
improve the estimation accuracy. In the literature, the design
of the optimal sensing matrix is achieved by designing an
equiangular tight frame (ETF) for the corresponding Gram
matrix and updating the frame to reduce the mutual coherence
[30]. We should review the definition of mutual coherence
indexes and the concept of frames used to design the sensing
matrix [31]. Without loss of generality, we take the CS model
at first stage as an example to present the proposed method
for designing the sensing matrix ΦP.
Definition 1: The maximum mutual coherence of a matrix
DP ∈ CMNtx

RF×G
2

, is defined as the largest absolute and
normalized inner product between different columns in DP

that can be expressed as

µmx(DP) = max
i6=j,1≤i,i≤G2

{ ∣∣dT
PidPj

∣∣
‖dPi‖

2
2 .
∥∥dPj

∥∥2

2

}
(12)

with µwelch ≤ µmx(DP) ≤ 1, where µwelch
4
=
√

G2−MNtx
RF

MNtx
RF (G2−1)

is the Welch bound or ranking bound. As DP = ΦPΨ,
the desired ΦP must have a small µmx(ΦPΨ) with respect
to Ψ for obtaining better recovery performance. In the CS
framework, the optimal design ofΦP is gained byminimizing
the µmx of the corresponding Gram matrix G̃P = D̃H

P D̃P,
where D̃P is column-normalized version of DP. In addition,
other mutual coherence values of G̃P can be used as measure
metrics for evaluating the sensing matrix quality. These met-
rics are the maximum, averaged, and global mutual coherence
values (µmx , µave andµall) of the off-diagonal elements of G̃P,
and they can be expressed respectively as [30]–[34]

µmx = max
i 6=j

∣∣g̃Pij ∣∣ (13)

µave =

∑
i 6=j

(∣∣g̃Pij ≥ t
∣∣) ∣∣g̃Pij ∣∣∑

i 6=j g̃Pij ≥ t
(14)

µall =
∑
i 6=j

g̃2
Pij (15)

where g̃Pij = g̃TPi g̃Pj is the entry at the position of row i and
column j in G̃P. The value t is the threshold proposed by
Elad [34] to minimize the mutual coherence where µave ≥ t .
To obtain the best sparse recovery, the incoherence of the
equivalent dictionary must achieve theWelch bound as a min-
imal correlation between any pair of columns. Thanks to ETF
properties, the different mutual coherence values can reach
the Welch bound [35]. As a result, optimizing a dictionary to
approximate ETF is an effective method to design the sensing
matrix with minimizing the mutual coherence values [30]. As
frames play a crucial role to get the optimal sensing matrix,
we briefly revisit the concept of a frame and its important
properties in the general framework.
Definition 2: The matrix D = [d1, . . . ,dn] ∈ Cm×n is called
a frame with m � n, if there exist two constants 0 < α ≤
β ≤ +∞ such that

α ‖v‖2 ≤
∥∥DTv

∥∥
2
≤ β ‖v‖2 ,∀v ∈ Cm (16)

where α and β are the lower and the upper bound of frames
respectively [36]. If α = β in (16), the frame D is called α-
tight frame, and when α = β = 1, is called a Parseval frame.
Definition 3 (see [37]): Let D ∈ Cm×n with m � n whose
columns are d1,d2, . . . ,dn. The overcomplete dictionary D
is called ETF, if the following conditions are satisfied
• Each column has a unit norm : ‖di‖2 for i = 1, . . . , n.
• The columns are equiangular. For some nonnegative δ,

we get∣∣di
Tdj
∣∣ = δ when i 6= j, i, j = 1, . . . , n.

• The columns form a tight frame. That is, DDH =(
n
m

)
Im, where Im is identity matrix of size m× m.

According to the definition (2) and (3), frames are an over-
complete version of a basis set and tight frames are an
overcomplete version of an orthogonal basis set [30], [32].
Whereas, the ETF generalizes the geometric properties of an
orthonormal basis [37]. To design the sensingmatrix based on
the ETF properties, many algorithms are proposed to solve the
minimizing problem of the Frobenius norm of the difference
between the Gram matrix and the target Gram matrix [32],
[34], [38]. For the first stage, the collected sensing matrix
design problem with respect to Ψ can be formulated as

arg min
ΦP,G̃tP

∥∥∥G̃tP −ΨHΦH
P ΦPΨ

∥∥∥2

F
(17)

where the target gram matrix G̃tP is chosen from a convex set
Hµwelch which contains the ideal ETF [39]

Hµwelch =
{

G̃tP ∈ CG2×G2

: G̃tP = G̃H
tP ,

diag(G̃tP),max
i6=j

∣∣∣G̃tP(i, j)
∣∣∣ ≤ µwelch} (18)

From the cost function in (17), the main minimization prob-
lem challenges are finding the ideal G̃tP which is close as pos-
sible to an ETF and the optimal design of ΦP simultaneously.
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In [34], an iterative approach is developed to reduce the t-
averaged mutual coherence (14) as recovery guarantee met-
ric. However, this design approach cannot reach the optimal
solution for µmx and µave, respectively, which ruins the worst-
case guarantees of the reconstruction algorithms. Authors
in [32] propose a gradient-based alternating minimization
approach to update the projection matrix with a target Gram
matrix. To decrease the above three mutual coherence values
simultaneously, new thresholding of the shrinkage function
is developed in [38] for reducing the off-diagonal elements of
the target Gram matrix. The main drawback of this shrinkage
approach is that there is no analytical solution to find a
suitable threshold for any CS applications. Our main goal
is to design the sensing matrix and solve the problem in
(17) with classical target gram matrix design defined in (18)
for minimizing the mutual coherence values simultaneously.
Algorithm 1 summarizes all steps for designing the optimal
sensing matrix. Starting with the first stage,ΦP is constructed
by random pilots and hybrid training precoders/combiners
which are generated randomly using six quantization bits to
design RF phase shifters according to the multi-stage CS ap-
proach [26]. Moreover, we introduceΨ as a given sparsifying
dictionary to get the equivalent dictionaryDP = ΦPΨ. After-
ward, we normalize the columns in DP during each iteration
to provide a column-normalized version of the equivalent
dictionary D̃P that is used to compute the gram matrix as
G̃P = D̃H

P D̃P.

Algorithm 1 sensing matrix designing algorithm
Input: sparsifying basis Ψ which has an SVD form Ψ =
UΨ [ΣΨ 0]VΨ

H ,
µwelch, number of iterations Iter
Output: Sensing matrix Φ̂P

Initialization: CreateΦP with randomly generation ofF/W
and random pilots
for k to Iter do

1) ΦP(k) ← ΦP

2) Compute the equivalent matrix DP = ΦPkΨ
3) Compute the Gram matrix G̃P = D̃H

P D̃P (D̃P is
normalization version of DP)

4) Update G̃P to obtain G̃tP using (19)
5) Compute the positive semidefinite matrix Θ =

VH
ΨG̃tPVΨ

6) Apply eigenvalue decomposition to obtain Θ =
XΘAΘXΘ

H

• Find ΛΘ ∈ Cm×m including m maximum eigenvalues of
AΘ

• Find P ∈ Cn×m containing the first columns of XΘ

7) Update ΦP(k+1)
using (20)

end for

According to ETF properties, we update G̃tP to be close
to the corresponding ETF designed by projecting the Gram
matrix elements gtPij onHµwelch to have unit diagonal elements
and reducing the off-diagonals by using the Welch bound as

∀ i, j i 6= j : G̃tP(i, j) =
{

g̃tPij
∣∣gtPij∣∣ < µwelch

sign(g̃tPij) otherwise
(19)

In this paper, the optimal sensing matrix is obtained by the
following theorem for minimizing mutual coherence values
simultaneously
Theorem 1: Let Ψ = UΨ [ΣΨ 0]VH

Ψ be an SVD of Ψ
where UΨ ∈ Cm×m and VΨ ∈ Cn×n are unitary matrices,
if Rank(Ψ) = m < n the matrix ΣΨ contains m singular
values with σ1 ≥ σ2 . . . ≥ σm. Suppose that G̃tP ∈ Hµwelch ,
if Θ = VH

ΨG̃tPVΨ is positive semidefinite matrix, then
Θ = XΘAΘXΘ

H is the eigendecomposition of Θ. The
optimal ΦPopt can be find by the following solution to solve
the problem in (17)

ΦPopt = Λ
1
2

ΘP
H
[
Σ−1

Ψ 0
]H

UH
Ψ (20)

where ΛΘ ∈ Cm×m is diagonal matrix that contain m maxi-
mum eigenvalues of Θ, whereas P ∈ Cn×m denotes the first
m columns of XΘ corresponding to the top m eigenvalues.
The proof of this theorem is detailed in the Appendix A.

IV. JOINT HYBRID PRECODER AND COMBINER DESIGN
In this section, we present the proposed joint hybrid precoder
and combiner design method to improve the multiplexing
performance in practical mmWave systems by suppressing
the interference between different training beams. After the
design of the collected sensing matrix at first stage by us-
ing the algorithm 1, we can jointly design each precoder
and combiner at each nth time sample. Since the collected
sensing matrix at the first stage is the concatenation of nth

sensing submatrix, the optimal sensing matrix can be written

as Φ̂P =
[
φ̂1, . . . , φ̂M

]T
withM is the random pilot numbers

where each optimal sensing submatrix at the mth sample
can be rewritten as φ̂m = sTm ⊗ Wm, the precoder pilot
sm is defined as sm = Fmxm . Therefore, the joint hybrid
precoder/combiner design problem can be expressed as

{soptm ,Wopt
m } = arg min

soptm ,W
opt
m

∥∥∥φ̂m − sTm ⊗WH
m

∥∥∥
F

s.t. ‖sm ⊗Wm‖2F ≤ Nrx
RF

(21)

This optimization problem is similar to the NKP problem. In
[40], the authors propose a general technique to establish a
key result that converts this minimization problem to a rank−
1 approximation problem as the following theorem
Theorem 2 (see [40]): Assume that A ∈ Rm×n with m =
m1m2 and n = n1n2. If B ∈ Rm1×n1 and C ∈ Rm2×n2 , then

‖A−B⊗C‖F =
∥∥R(A)− vec(B)vec(C)T

∥∥
F (22)

where R(A) define the rearrangement of A after applying
the vec operator on each submatrix Aij in A and stacking its
columns as this example, for the 2-by-2 blocks of A, R(A)
can be written as

A =

[
A11 A12

A21 A22

]
⇒ R(A) =


vec(A11)

T

vec(A21)
T

vec(A12)
T

vec(A22)
T

 (23)
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The approximation of a given matrix by a rank − 1 matrix
has a well-known solution in terms of the singular value
decomposition (SVD) [40]. Since the SVD decomposition is
a general form of the eigendecomposition for any matrix. The
solution to the optimization problem in (21) can be found by
computing the largest singular value and associated singular
vectors of a permuted version of φ̂m asR(φ̂m). Therefore, the
joint hybrid precoding and combining will be designed by the
corollary below.
Corollary 1 (see [40]): Assume that A ∈ Rm×n with m =
m1m2 and n = n1n2. If Ã = R(A) has singular value
decomposition

UT ÃV = Σ = diag(σi)
where σ1 is the largest singular value, and U(:, 1) and

V(:, 1) are the corresponding singular vectors, then the
matrices B ∈ Cm1×n1 and C ∈ Cm2×n2 defined by
vec(B)opt =

√
σ1U(:, 1) and vec(C)opt =

√
σ1V (:, 1)

minimize ‖A−B⊗C‖F .
To deal with the hybrid architecture, we add the total
transceiver power constraint to ensure the efficiency of the
communication. The total transceiver power can be defined
in our case as follows
Lemma 3: Let z ∈ Cm be a vector such that ‖z‖22 = 1, and
Γ ∈ Cm×n be an arbitrary matrix, then

‖z⊗ Γ‖2F ≤ ‖Γ‖
2
F (24)

Algorithm 2 Joint hybrid precoding and combining design
algorithm

Input: Φ̂P,Ntx, Nrx, Ntx
RF ,N

rx
RF , M

Output: S
opt
,Wopt

Initialization:
• divide Φ̂P into submatrix sets Ξ each one has the size of
Ntx
RF × NrxNrx
• S

opt
an empty matrix to concatenate soptm

• Wopt an empty matrix to concatenate Wopt
m

for T to M do
1) φ̂T = Ξ {T} . extract each submatrix
2) constructR(φ̂T ) using equation in (23)
3) Computing SVD decomposition ofR(φ̂T )
4) Find soptT and Wopt

T using corollary (1)

5) S
opt {T} = (soptT )T

‖(soptT )T‖
2

6) Wopt {T} =
√
Nrx
RF

(Wopt
T )H

‖(Wopt
T )H‖

F
end for

The proof of this lemma is detailed in the Appendix B. Based
on this lemma, we define the added power constraint in (21)
to bound the total power of hybrid communication system
with limited number of RF chains as

∥∥soptm ⊗Wopt
m
∥∥2

F ≤ Ntx
RF .

From the previous discussion, it is clear that the optimal
sensingmatrix design plays an important role to design hybrid
precoders/combiners and offers the satisfactory performance
improvement. After the design of the optimal sensing matrix
by using the algorithm 1. The proposed approach to design
the jointly hybrid precoding and combining is summarized

in Algorithm 2 that starts by the initialization process to
divide ΦP into submatrix sets Ξ where each submatrix has
the size of Ntx

RF × NtxNrx, which means that each submatrix
represents an optimal sensing submatrix φ̂m that is corre-
sponding to the mth time sample. In step (1), each optimal
sensing submatrix φ̂T is extracted from submatrix sets Ξ
to construct the rearrangement of φ̂T using equation (23)
for the purpose of formulating the rank − 1 approximation
problem as shown in theorem (2). Then, SVD decomposition
of resultant matrix R(φ̂T ) is computed in step (3). As φ̂T is
separable, such that φ̂T = sTm ⊗WH

m , the largest singular
value and corresponding singular vectors are found by the
corollary (1) to minimize the objective in (21). After finding
soptT and Wopt

T , the transceiver power constraint is enforced
by normalizing the transpose of soptT and conjugate of Wopt

T .
Finally, each designed precoder and combiner are appended
to S

opt
and Wopt matrices respectively at each iteration. The

process is repeated for all M random pilot numbers until all
precoder and combiner vectors of the first stage have been
designed.
For computational complexity evaluation, we exploit the

required number of floating point operations (FLOPs) as a
evaluation metric with O notation and omit terms of the low
exponent. The complexity of algorithm 2 is dominated by
the truncated SVD decomposition in each iteration, where
its computational complexity is located at step 3 and it is
about O(2Ntx

RFNtxNrx). Thus, the complexity of algorithm 2
is approximately O(2Ntx

RFNtxNrxM) to accomplish the joint
design process where the computational load is function of
antenna numbers at the transceiver, RF chain numbers at the
receiver, and the random pilot numbers.
As mentioned above, the second stage is dedicated to

detect unknown data symbols by employing the estimated
channel from the first stage. As in [26], we adopt in this
work the QPSK modulation scheme to transmit unknown
data. From the system model in (11), each sensing submatrix
φn of the collected sensing matrix ΦD can be expressed as
φn =

(
xd,n

TFd,n
T ⊗Wd,n

H), where Fd,n and Wd,n denote
the precoder and combiner that are used to send and measure
the unknown data xd,n at the nth time sample with M + 1 ≤
n ≤ N . To design the hybrid precoder and combiner jointly,
we cancel the effect of unknown data symbols from ΦD by
averaging the Gram matrix as

E
[
G̃D

]
= E

[
D̃H

DD̃D

]
= E

[
ΨHΦH

DΦDΨ
]

= E

[
ΨH

N∑
n=M+1

φH
n φnΨ

]

= E

[
ΨH

N∑
n=M+1

(
xd,n

TFd,n
T ⊗Wd,n

H)H
(

xd,n
TFd,n

T ⊗Wd,n
H
)

Ψ

]
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= E

[
Ψ

N∑
n=M+1

(
Fd,n

∗xd,n
∗xd,n

TFd,n
T⊗

Wd,nWd,n
H
)

Ψ

]

= ΨH
N∑

n=M+1

(
Fd,n

∗E
[
xd,n

∗xd,n
T ]︸ ︷︷ ︸

Es

Fd,n
T ⊗Wd,nWd,n

H

)
Ψ

= (N − (M + 1))EsΨH(
FD
∗FD

T ⊗WDWD
H)Ψ

= (N − (M + 1))EsΨH (FD
T ⊗WD

H)H(
FD

T ⊗WD
H)Ψ

E
[
G̃D

]
= kΨH Φ̃H

D Φ̃DΨ (25)

where D̃D is normalized version of the equivalent dictionary
DD, such that DD = ΦDΨ, and Ψ is the same sparsifying
dictionary used at the first stage. Es represents the energy
per symbol and FD is the precoding matrix given by the
concatenation of allmth precoder. Whereas WD is combining
matrix which is containing all combiners at second stage.
Before the joint design of hybrid precoding and combining,
we must design the collected sensing matrix Φ̃D as applied in
the first stage by using the following objective function

arg min
G̃tD

∥∥∥G̃tD − E
[
G̃D

]∥∥∥2

F

arg min
G̃tD ,ΦD

∥∥∥G̃tD − E
[
ΨHΦH

DΦDΨ
]∥∥∥2

F

arg min
G̃tD ,Φ̃D

∥∥∥G̃tD − kΨH Φ̃H
D Φ̃DΨ

∥∥∥2

F

(26)

As k = (N − (M + 1))Es is a constant term, it does not
change the set of optimal solutions, hence, it can be ignored
from (26). G̃tD is the target gram matrix which is chosen
from a convex set Hµwelch as defined in (18). The problem
in (26) can be solved using the Algorithm 1 to design the
optimal sensing matrix at the second stage. We initialize Φ̃D

to a random matrix as used at first stage. After obtaining the
optimal design of the sensing matrix Φ̂D, we formulate the
NKP problem to design the hybrid precoder/combiner jointly
as

{Fopt
d,n,W

opt
d,n} = arg min

Fopt
d,n,W

opt
d,n

∥∥∥φ̂d,n − FT
d,n ⊗WH

d,n

∥∥∥
F

s.t. ‖Fd,n ⊗Wd,n‖2F ≤ Ntx
RFN

rx
RF

(27)

In a similarmanner, we adopt the added constraint onFd,n and
Wd,n to satisfy the total power constraints of hybrid systems.
For designing the joint hybrid precoding and combining at the
second stage, we change the size of each submatrix in Ξ to
Ntx
RFN

rx
RF × NtxNrx in the initialization phase in algorithm 2.

V. MULTI-STAGE COMPRESSED SENSING-BASED
CHANNEL ESTIMATION

After the joint design of hybrid precoders and combiners
from the optimal sensing matrix, we revisit in this section
the multi-stage CS-based algorithm suggested in our previ-
ous paper [26] to estimate the mmWave channel. We recall
that the multi-stage CS-based algorithm performs explicit
sparse channel estimation in the angular domain with limited
random pilots and detected data symbols as training beams.
Using limited random pilot numbers reduces the effect of the
overlapping between training beams which maximizes spatial
diversity. Further, using the detected data symbols as training
beams improves the performance of CS recovery algorithms
by increasing the measurement numbers of sensing matrices.
In addition to this, the spectral efficiency (SE) of mmWave
MIMO systems is enhanced by exploiting the detected data
symbols.

A. FIRST STAGE
To improve the computational complexity of channel estima-
tion at the first stage , we adopt the open-loop approach to ac-
complish the explicit channel estimation. The system model
in (10) represents the CS formulation which allows using the
greedy algorithms to estimate the mmWave channel. In our
case, we can construct the sensing matrix Φ̆P to estimate the
channel at the first stage by using the joint design of hybrid
precoders S

opt
and combiners Wopt matrices obtained by the

Algorithm 2. The estimation problem of channel hα can be
defined by the following optimization problem

ĥα = arg min
hα

∥∥∥ỹP −√γΦ̆PΨhα

∥∥∥
2

subjet to ‖hα‖0 6 L
(28)

Obviously, the optimization problem in (28) is a non-convex
optimization with L0 norm constraint. Therefore, the finding
of its solution will be difficult and intractable. When the
signal is sparse in a known basis, we use the orthogonal
matching pursuit (OMP) algorithm to estimate the mmWave
channel.

B. SECOND STAGE
As mentioned previously, we exploit the estimated channel
in the second stage to detect unknown data symbols and
exploit it in the next stage as training beams. Although many
MIMO detection algorithms have been proposed in the lit-
erature. The major challenges of the MIMO detectors are
the implementation difficulty and performance issue on the
receiver side.When trying to pick the bestMIMOdetector, we
used different detection techniques such as least square (LS),
Zero-Forcing (ZF), Minimum mean square error (MMSE),
minimum mean-squared error with successive interference
cancellation (MMSE-SIC), simplicity [41], and semidefinite
relaxation row-by-row (SDR-RBR) [42]. According to the
obtained detection results in [26], the SDR-RBR detector
achieves high performance with low complexity, especially in
the QPSK scenario. Thus, we choose the SDR-RBR detector
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as a promising MIMO detector in the second stage to detect
the unknown data symbols. By considering the N − (M + 1)
unknown data symbols transmitted via the estimated channel.
At each sample transmission, each received data signal of the
system model in (11) can be rewritten as

yd,n =
√
γWH

d,nĤFd,n︸ ︷︷ ︸
Θd,n

xd,n + ηd,n

n = M + 1, . . . ,N

(29)

where yd,n ∈ CNrx
RF×1 denotes the received signal vector at

the nth time sample, and Ĥ is the estimated channel matrix at
the first stage. ηd,n indicates the noise vector after combining
at Rx.
The MIMO data detection problem to examine all possible
signals in the symbol constellation set X = {±1± j} can be
expressed as

x̂d,n = arg min
xd,n∈X

‖yd,n −
√
γΘd,nxd,n‖2 . (30)

According to the literature on MIMO detectors, the issue
in (30) can be resolved by a maximum likelihood (ML)
detector to offer the best performance during the second
stage of data detection. However, ML detection requires high
computational complexity due to exhaustively searching for
all the candidate vectors. Moreover, the ML detector can be
prohibitively complex even for a small-scale MIMO detec-
tion [43]. Therefore, SDR-RBR detector deals with the ML
detection problem to reduce the computational complexity,
especially when using the BPSK/QPSK modulation.
To apply the SDR-RBR solution, we convert themodel in (29)
to an equivalent real-valued system as follows

yc,n =
√
γΘc,nxc,n + ηc,n (31)

where yc,n ∈ R2Nrx
RF×1 represents the real-valued received

signal vector, and Θc,n ∈ R2Nrx
RF×2Ntx

RF denotes the real-
valued matrix version of Θd,n, whereas xc,n ∈ R2Ntx

RF×1 is
a real-valued unknown data vector, and ηc,n is a real-valued
additive gaussian noise vector. Hence, the SDR problem can
be defined by the following formulation

x̂c,n=arg min
xc,n∈S2NrxRF

{
Tr(ΘT

c,n Θc,nX)− 2sTc,nΘ
T
c,nyc,n

+‖yc,n‖22

}
.

subject to X � xTc,nxc,n
xii = 1, i = 1, . . . , 2Nrx

RF

(32)

For detecting the unknown data symbols, we adopt the row-
by-row (RBR) method proposed in [42] to solve this SDR

detection problem.

Algorithm 3Multi-stage CS-basedmmWave channel estima-
tion using Joint hybrid precoding and combining design
Initialization: i) H; ii) randomly generation of F/W
First stage : Estimating ĥα

Design Φ̂P using Algorithm (1)
Design Jointly S

opt
/Wopt using Algorithm (2)

Construct Φ̆P using S
opt
/Wopt

Formulate the model defined in(10) using Φ̆P

estimate hαby solving:ĥα = arg min
hα

∥∥∥ỹP −√γΦ̆PΨhα

∥∥∥
2

subjet to ‖hα‖0 ≤ L
. using OMP

Second stage: Detecting x̂d,n

Input Ĥ,Construct Φ̃D randomly generation of FD/WD

Design Φ̂D using Algorithm (1)
Design jointly Fopt

D ,Wopt
D using Algorithm (2)

for M + 1 6 n 6 N do
Training Fopt

d,n,W
opt
d,n

∀ n : yc,n =
√
γΘc,nsc,n + ηc,n[

Detection xc,n
by solving problem in (32)

. using SDR-RBR

end for
Last stage: Re-estimating h̃α
Construct Φ̆G using S

opt
/Wopt and Fopt

D ,Wopt
D

Formulate the model defined in (8)
re-estimate hα by solving:h̃α= arg min

hα

∥∥∥ỹG −√γΦ̆GΨhα

∥∥∥
2

subjet to ‖hα‖0 ≤ L
. using gOMP

C. LAST STAGE

We exploit random pilots of the first stage, and the detected
data symbols in the second stage to construct the sensing
matrix Φ̆G to form the CS model (8). In the last stage, we
refine the re-estimation of the mmWave channel by solving
the optimization problem with the following form

h̃α = arg min
hα

∥∥∥ỹG −√γ Φ̆GΨhα

∥∥∥
2

subjet to ‖hα‖0 ≤ L
. (33)

As established, increasing the measurement set always means
better performance. It seems from the last stage, we havemore
measurements which lead certainly to enhance the recovery
process performance of the true support of hα. Since the
measurement numbers increase due to using the detected
data as training beams. We exploit the gOMP algorithm
to accomplish the mmWave channel re-estimation with fast
processing speed and competitive computational complexity
[44]. Algorithm 3 summarizes all algorithms that are used in
each stage for estimating the mmWave channel.
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VI. SIMULATION RESULTS
This section compares the performance of the proposed
method for designing the sensing matrix to the outcomes of
other methods for designing sensing matrices, such as Ren-
jie’s method [38], Elad’s method [34], and Hong’s method
[33]. We illustrate the simulation results of the mutual co-
herence values minimizing obtained by the proposed method.
Then, utilizing the suggested joint hybrid precoding and com-
bining design, we evaluate the performance of each stage that
is used to estimate the mmWave channel according to the
multi-stage CS technique. In this study, simulations were run
without regard to established standards. In addition to using
a single carrier modulation in the simulations, all developed
techniques are processed in the time domain.

A. PERFORMANCE OF MINIMIZING THE MUTUAL
COHERENCE VALUES
In this subsection, we provide the performance of mutual
coherence values as measure metrics to evaluate the quality
of the designed sensing matrix over 40 outer iterations, where
the given dictionary matrix Ψ ∈ R80×120 is a random
Gaussian matrix and Φ ∈ R28×80 is generated randomly as
the initial matrix. For Elad’s method [34], the parameter t is
set to 0.2 with three different values of γ: γ1 = 0.25, γ2 =
0.55, γ3 = 0.95. The parameters ζ and inner iteration number
for Hong’s method [33] are set to µwelch and 2, respectively,
with the normalization of the equivalent dictionary D during
each iteration. Due to the absence of an analytical solution
for choosing the suitable parameter c to establish the thresh-
olding of the shrinkage function, c is set to 0.01 for Renjie’s
method [38] with the same sizes of the sensing matrix Φ and
dictionary Ψ used in [38]. Fig.2 shows the evolution results
of mutual coherence values versus outer iteration numbers.
According to this figure, the mutual coherence values corre-
sponding to each method decrease with different convergence
speeds. Moreover, it is depicted in Fig.2 (a), (b), and (c) that
the proposed method for designing the sensing matrix has a
better and more significant evolution in the decrease of the
mutual coherence values (µmx , µave and µall) simultaneously
with a simple shrinkage function to update the target Gram
matrix G̃t . Reconstruction performance analyses of the pro-
posed sensingmatrix design for CS frameworkwill be studied
in future work.
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FIGURE 2: Evolution results of: (a) the t-averaged mutual
coherence µave, (b) the maximal coherence µmx , and (c) the
global mutual coherence µall , all versus iteration number for
an 28×80 random matrix Φ as initial matrix and an 80×120
dictionary matrix Ψ with Gaussian distribution.

To analyze the complexity of the sensing matrix design
algorithm, we assume that Φ and Ψ have the size m× n and
n × L respectively. The table 1 presents the computational
complexity to design the sensing matrix by the proposed
method compared with Elad’s method [34], Hong’s method
[33], and Renjie’s method [38]. As mentioned above, the
algorithm is based on an iterative approach. The main com-
putational complexity of algorithm 1 in each iteration lies in
calculating the complexity functions at steps 2, 3, 5, 6, and
7. Therefore, the flops required for those steps are O(mnL),
O(mL2), O(L3), and O(n3) respectively. The computational
complexity of algorithm 1 is equal to O(IterL3). From the
table 1, it seems that Hong’s method [33] reduces slightly
the complexity of the sensing matrix design . On the other
hand, the proposed algorithm designs the sensing matrix with
affordable computation and better performance in terms of
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decreasing the mutual coherence values (µmx , µave and µall)
simultaneously.

TABLE 1: Computational complexity comparison of different
methods used to design the matrix sensing

Method Located complexity Complexity
Hong’s method [33] 3, 12, 13, 15, 19, 20 O(ItermL2)
Elad’s method [34] 1,2,5,7 O(IterL3)
Renjie’s method [38] 1,2,4,7 O(IterL3)
Proposed method 2,3,5,6,7 O(IterL3)

B. PERFORMANCE COMPARISON OF MMWAVE CHANNEL
ESTIMATION
We present in this subsection the simulation results of the
proposed joint hybrid precoder and combiner design used to
estimate the mmWave channel according to the multi-stage
CS approach [26]. Indeed, we compare the performance of
the proposed method with the results of the existing methods
that are based on codebook schemes. In our simulations, the
Tx and the Rx are equipped with Ntx = Nrx = 32 an-
tennas arranged in ULA configuration with spacing between
antenna elements equal to λ

2 . The analog part at each side
is implemented using analog phase shifters as depicted in
Fig.1, where the number of RF chains at both Tx and Rx
are Ntx

RF = Nrx
RF = 2. As mentioned above, we assume

that Ns = 2 data streams per transmission for ensuring the
effectiveness of multiple-stream communications. According
to the Saleh-Valenzuela model in (2), the mmWave channel
is generated with L = 9 paths that folllow the Rayleigh
distribution. However, the AoA/AoD azimuth angles of each
path are random and uniformly distributed over [0, 2π]. We
assume that the mmWave transceiver operates at 28GHzwith
transmission bandwidthBw = 500MHz [45], where the noise
power can be written as σ = −174+10 log10(Bw). As power
allocation methods increase the mmWave architecture com-
plexity due to the use of power amplifiers (PAs). The same to-
tal power constraint is adopted throughout the simulationwith
equal power allocation at each nth time sample as presented in
equation (1). Hence, we can define the SNR as γ/σ. The per-
formance of the proposed method is evaluated via the SE and
the normalized mean squared error (NMSE) that is defined as

E[
∥∥∥H− Ĥ

∥∥∥2

F
/ ‖H‖2F ], where H and Ĥ are the true channel

and the estimated channel, respectively. As mentioned above,
to formulate the CS reconstruction model according to the
VAD representation, we use G = 100 as number of angle
grids at the tranceiver for generating the overcomplete dic-
tionary matrix Ψ. The hybrid training precoders/combiners
of each transmitted sample are randomly generated using 6
quantization bits to design RF phase shifters to realize analog
beamformers/combiners. The outer iteration numbers used in
algorithm 1 equal 2 for designing the optimal sensing matrix
at the first and second stages. For estimating the mmWave
channel at the first stage, random pilot numbers are set to
250. While we exploit the symbol error rate (SER) perfor-
mance comparison to evaluate the detection of the unknown

transmitted data at the second stage by exploiting the QPSK
modulation due to its low error probability results.
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FIGURE 3: NMSE performance of mmWave channel esti-
mation at first stage vs. SNR with the proposed joint design
method, the method random design [26] by using OMP, Ora-
cle and LS algorithms.

Fig. 3 depicts NMSE performance versus SNR using the
proposed joint hybrid precoder and combiner design, and the
method random design [26] for estimating themmWave chan-
nel via OMP, Oracle, and LS estimators. The NMSE results of
LS estimator with the random designmethod proposed in [26]
(LS-RD estimator) are lower compared to the others due to
the underdetermination of the received training signal model
in (10) that raised from the fewer measurement numbers
than the product of Ntx and Nrx in the construction of the
sensing matrix ΦP at the first stage. In addition, the use of
LS estimator in sparsity recovery needs more measurements
to obtain the highest results regardless of the matrix sensing
quality. In general, the oracle estimator can be exploited as a
lower bound to evaluate the estimation performance due to
the prior knowledge of AoDs/AoAs that correspond to the
true dominant paths. The oracle estimator with the proposed
joint hybrid design (Oracle-JD estimator) provides the best
NMSE performance than the oracle estimator with random
hybrid design in [26] (Oracle-RD estimator). For the OMP
algorithm performance, the results obtained with the pro-
posed joint hybrid design (OMP-JD estimator) has significant
superiority compared to random hybrid design in [26](OMP-
RD estimator), especially in the low SNR regime. From this
figure, the results of estimator algorithms obtained by using
the proposed joint hybrid design achieve the best perfor-
mance due to the smaller mutual coherence of the equivalent
dictionary which contributes to enhance and improve the
channel estimation accuracy. According to the multi-stage
CS approach, we use the estimated channels provided by the
proposed method and the method proposed in [26] at the first
stage to send and detect the unknown data. Fig. 4 compares
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the SER performance of various detection techniques (ZF-JD,
MMSE-JD, MMSE-SIC-JD, Simplicity-JD, SDR-RBR-JD)
by using the proposed joint hybrid design and the results of
SDR-RBR detector with the random hybrid design proposed
in [26] (SDR-RBR-RD).
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FIGURE 4: SER performance results vs. SNR of the ZF-
JD, MMSE-JD, MMSE-SIC-JD, Simplicity-JD, SDR-RBR-
JD with the proposed joint hybrid design and SDR-RBR-RD
with the random hybrid design proposed in [26] at the second
stage.

As depicted in Fig. 4, from the SNR − 10dB, we can find
that the SER performance gap between the SDR-RBR-JD
and SDR-RBR-RD enlarges noticeably and strikingly with
the increasing of SNR values. In particular, as proven in
[26], the use of SDR-RBR-based detector can achieve the
best results for hybrid MIMO architecture when the data are
transmitted via QPSK modulation. Thanks to the proposed
joint design, the orthogonality of the spatial multiplex channel
is guaranteed for reducing the effect of inter-symbol interfer-
ence (ISI) on the performance of the SER. Therefore, using
the MMSE, MMSE-SIC, and Simplicity algorithms with the
proposed joint hybrid design in the detection process can
produce better SER performance compared with the result
of the SDR-RBR-RD detector. Further, the high accuracy of
channel estimation at the first stage by the proposed method
improves also the detection results. Utilizing detected data
as training beams ensures spatial diversity by lowering the
overlapping effect and expanding the measurement set, which
in turn increases the accuracy of mmWave channel estimation
without any correlation between the training beams. This thus
results in improved communication performance. Therefore,
the detected data symbols using the semidefinite relaxation
(SDR) algorithms (SDR-RBR-RD, SDR-RBR-JD) are re-
used as beam training to re-estimate the channel again at the
last stage. Fig. 5 shows the NMSE performance and results of
mmWave channel estimation at the last stage by the suggested
joint design method, the method random design [26] via
gOMP and Oracle algorithms using G = 100 compared with

other methods based on codebook schemes by usingG = 160
as codebook based minimal total coherence (MTC) scheme
[23], codebook based ordering scheme [24], codebook based
Versatile scheme [25], codebook based random scheme.
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FIGURE 5: NMSE performance results of mmWave channel
estimation at the third stage vs. SNR of the proposed joint
design method, the method random design [26] via gOMP,
Oracle algorithms by using G = 100 compared with other
methods based on codebook schemes by using G = 160
as codebook based minimal total coherence (MTC) scheme
[23], codebook based ordering scheme [24], codebook based
Versatile scheme [25], codebook based random scheme.

As depicted in Fig. 5, the oracle estimator with the pro-
posed joint hybrid design (Oracle-JD estimator) achieve bet-
ter results in term of the NMSE performance compared with
the results obtained by all the other methods. The gOMP
estimator with the proposed joint hybrid design (gOMP-JD
estimator) has the same NMSE performance as the obtained
results by methods based on codebook schemes at the low
SNR range although the use of high grid size by those meth-
ods, whereas, from SNR 0dB, the gOMP-JD estimator shows
good outcomes compared to codebook-based schemes with a
similar trend to oracle estimators performance.
The Fig. 6 represents the achieved SE by the precoding
and combining matrices derived from the SVD decompo-
sition of mmWave channel which is estimated by the pro-
posed joint hybrid method and random hybrid method [26],
codebook-based minimal total coherence (MTC) scheme
[23], codebook-based ordering scheme [24], codebook-based
Versatile scheme [25], and codebook based-random scheme.
The obtained SE using the perfect CSI can be considered as
the upper bound in the comparison. According to this figure,
the oracle algorithm with the proposed joint hybrid design
and random hybrid design [26] reach a better performance
than the others. On the other hand, the gOMP algorithm
with the proposed joint hybrid design has best results than
the codebook-based schemes. The achieved high SE of the
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proposed joint hybrid design is obtained thanks the high
channel estimation accuracy by taking into account the mul-
tiplexing system factor during the design of hybrid precoders
and combiners process.Moreover, the SE ofmmWaveMIMO
systems is enhanced by exploiting the detected data symbols.
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FIGURE 6: SE comparison with the varying SNR using SVD
decomposition to derive the precoders and combiners from of
mmWave channel matrices estimated by different methods.

For evaluating the computational complexity of algorithm
3, we analyze the complexity of the used algorithm and
method at each stage to achieve the task of sensing matix
design, estimation, detection, and re-estimation. At the first
stage, we designed the sensing matrix using algorithm 1
where this step has a complexity of O(IterG3). After that,
we jointly designed the hybrid precoder and hybrid com-
biner thanks to algorithm 2 which has the complexity of
O(2Ntx

RFNtxNrxM). The estimation channel step is per-
formed by the OMP algorithm, thus the complexity of this
task is about O(LMG2), where L is the number of paths,
M indicates the number of pilots, and G is the number of
angle grids used in our simulation. Then, the complexity of
the sensing matrix design is O(IterG3) at the second stage,
and with its parameters, the computational complexity of
the joint design method is O(2Ntx

RFNtxNrx(N − M − 1)).
As mentioned above, we adopted the SDR-RBR detector to
reduce the complexity and perform the detection results. For
the detection process, the complexity of row-by-row (RBR)
method is O((2NRF + 1)3(N − M − 1)). The last stage is
concretized by the gOMP algorithm with a complexity of
O(NG2). From table 2, the computational complexity of algo-
rithm 3 has the same computational load as the sensing matrix
design complexity which is proportional to G3. To reduce the
complexity of algorithm 3, we can perform both the sensing
matrix design and derive the joint hybrid separately before
executing algorithm 3 as used in the design of the Grassman-
nian codebook for mmWaveMIMO communication systems.
Therefore, the complexity of the proposed method can be

expressed by the complexity of the OMP algorithm where
its complexity depends on the grid size. From the simulation
parameters, the offline complexity of the proposed method
is less than the complexity of the proposed methods in [26],
[23], [24], and [25] because the proposed method requires
less grid size to achieve better performance as verified by the
simulation comparison.

TABLE 2: Computational complexity comparison of algo-
rithm 3
Operation Online

complexity
Offline
complexity

First stage:
Sensing matrix design:
O(IterG3)
Joint hybrid design:
O(2Ntx

RFNtxNrxM)
Estimate hα:
O(LMG2)
Second stage:
Sensing matrix design:
O(IterG3)
Joint hybrid design:
O(2Ntx

RFNtxNrx(N −M − 1))
Data detection :
O((2NRF + 1)3(N −M − 1))
Third stage:
Re-estimate h̃α:O(NG2)

O(IterG3) O(LMG2)

VII. CONCLUSION
In this paper, we proposed a new joint hybrid precoders
and combiners design to improve the mmWave multiplexing
system which also ensures the spatial diversity. As the small
mutual coherence of the sensing matrix does not contribute
to guaranteeing the high-performance results of CS-based
mmWave channel estimation algorithms, we propose a new
iterative method based on alternating minimization to de-
sign the optimal sensing matrix with the given dictionary
for minimizing the mutual coherence values simultaneously
according to ETF properties. Then, we exploit this optimally
to derive jointly the hybrid precoders and combiners simul-
taneously for each transmitted sample by using the NKP
problem as an optimization design problem. The evolution
results of mutual coherence values versus outer iteration
numbers demonstrated that the proposed sensing matrix de-
sign has a better and more significant evolution in terms of
decreasing the mutual coherence values (µmx , µave and µall)
simultaneously with the simple shrinkage function. Also, the
proposed joint hybrid design produces highmmWave channel
estimation accuracy and achieves the best results in terms of
SE performance.

APPENDIX A
Proof of theorem (1)
To design the optimal sensing matrix, the objective func-

tion can be expressed in general manner as

f =
∥∥∥G̃t −ΨHΦHΦΨ

∥∥∥2

F
(34)
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Let Ψ = UΨΣΨVH
Ψ the SVD decomposition of Ψ. f can be

rewritten as

f =
∥∥∥G̃t −VΨΣH

ΨUH
ΨΦHΦUΨΣΨVH

Ψ

∥∥∥2

F
(35)

By suggesting that

M = ΦUΨΣΨ (36)

So the function in (35) can be expressed as

f =
∥∥∥G̃t −VΨMHMVH

Ψ

∥∥∥2

F
(37)

As VΨ is orthonormal matrix. The Frobenius norm expres-
sion can be written by using linearity and cyclic properties of
trace as:

f =
∥∥∥VH

ΨG̃tVΨ −MHM
∥∥∥2

F
(38)

We denote Θ = VH
ΨG̃tVΨ

f =
∥∥Θ−MHM

∥∥2

F (39)

ifΘ = VH
ΨG̃tVΨ is a positive semidefinite matrix, thenΘ =

XΘAΘXΘ
H be the eigendecomposition of Θ where XΘ ∈

Cn×n is orthonormal matrix, and AΘ is the diagonal matrix
which contains the eigenvalues of Θ

f =
∥∥XΘAΘXΘ

H −MHM
∥∥2

F (40)

By using linearity and cyclic property of trace, we can get

f =
∥∥AΘ −XΘ

HMHMXΘ

∥∥2

F (41)

To get the minimum value of (39), Θ = MHM, there-
fore MHM eigenvalues decomposition have the same or-
thonormal basis of Θ according to the spectral theorem [46].
Thereby, there exist unitary matix XΘ such that

XΘ
HMHMXΘ = ΛΘ =

[
ΛΘm 0
0 0

]
(42)

ΛΘm 6= 0 if rank(MHM) = min(m, n), so that the objective
function in (41) becomes

f =

∥∥∥∥AΘ −
[
ΛΘm 0
0 0

]∥∥∥∥2

F
(43)

To get the minimum in (43), AΘ =

[
ΛΘm 0
0 0

]
. There-

fore MHM = XΘ

[
ΛΘm 0
0 0

]
XΘ

H = Pn×mΛΘmP
H
n×m,

where Pn×m is the matrix that contains the eigenvectors cor-
responding to the non-zero eigenvalues. ΛΘm can be writing
as ΛΘm = Λ

1/2
Θm

Λ
1/2
Θm

As eigenvaules matrix is a symmetric matrix, M can be
defined as

M = Λ
1/2
Θm

PHn×m (44)

By substituting (44) in (36), we can find ΦUΨΣΨ =

Λ
1/2
Θm

PH
n×m

In the end, we get Φ1 = Λ
1/2
Θm

PH
n×m

[
Σ−1

Ψ 0
]H

UH
Ψ

APPENDIX B
Proof of Lemma (3)
Let the squared Frobenius norm of matrix Γ is given by

‖Γ‖2F = Tr(ΓΓH )

by using the kronecker product properties, we can get

= Tr((z⊗ Γ)(z⊗ Γ)H )

= Tr(zzH︸︷︷︸
A

⊗ ΓΓH︸︷︷︸
B

)

= Tr(A⊗B)

where A,B ∈ Cm×m are square matrices, by applying the
Cauchy-Schwarz inequality and matrix trace rule, we can
obtain

‖A⊗B‖2F ≤ Tr(A)Tr(B) (45)

where Tr stands for a matrix trace, the inequality in (45) can
be rewritten as

‖A⊗B‖2F ≤ ‖A‖
2
F ‖B‖

2
F (46)

when ‖A‖2F = 1, the last inequality can be represented as

‖A⊗B‖2F ≤ ‖B‖
2
F (47)
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