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Introduction

We consider the Born-Infeld equation :

               ∂ t B + ∇ ∧ E = 0 ∂ t D -∇ ∧ H = 0 ∇ • B = 0 ∇ • D = 0 E = B∧V +D h , H = -D∧V +B h h = 1 + B 2 + D 2 + |D ∧ B| 2 , V = D ∧ B (1)
which is a nonlinear model of electromagnetism. Our main goal is to prove stability of this system around constant states under small and localized perturbations.

As shown by Brenier in [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF], the system (1) can be seen as a particular case of the so-called "augmented Born-Infeld system" (in short ABI), which consists in writing a conservation law satised by h, V and then considering them as independant variables. Then, applying a suitable change of variables, one can recover a very elegant and much more practical version of the system (2), in which all nonlinearities are quadratic and the hyperbolicity is an immediate consequence of the symmetry :

       ∂ t τ + v • ∇τ -τ ∇ • v = 0 ∂ t v + v • ∇v -b • ∇b -d • ∇d -τ ∇τ = 0 ∂ t b + v • ∇b -b • ∇v + τ ∇ ∧ d = 0 ∂ t d + v • ∇d -d • ∇v -τ ∇ ∧ b = 0
(2)

In the system above, we call a constant solution admissible if τ > 0. We can then restate the divergence-free conditions in terms of this new set of variables, and it appears natural in our analysis to add a similar condition on the additional variable V :

   τ ∇ • b = b • ∇τ τ ∇ • d = d • ∇τ τ ∇ ∧ v = b • ∇d -d • ∇b
(3) that we call "constraint equations", since they do not depend on the time and are preserved by the time evolution, thus only adding a constraint on the initial data. Given a constant state c ∈ R 10 , we denote by u : [0, T ) × R 3 → R 10 a smooth enough function such that c + u = (τ, v, b, d) is a solution to (2) under the constraints (3) on [0, T ), T ∈ R + * ∪ {+∞}. We can then state our main result :

Theorem 1 The admissible constant solutions c ∈ R 10 of the augmented Born-Infeld system consisting of (2) and (3) are stable under small and localized perturbations u 0 : R 3 → R 10 , in the sense that if the following norms are small enough (with respect to the constant state only) :

∥u 0 ∥ H N , ∥⟨x⟩ 2 u 0 ∥ H 6
and c + u 0 satises the constraint equations (3), then there exists a global solution to (2) starting from c + u 0 such that the L ∞ norm of the perturbation and its rst derivative decays like t -1 .

In particular, we get global existence and stability of constants for two physical subsystems : the original Born-Infeld system (1) and the irrotational Chaplygin gas, obtained from (2) + (3) when b ≡ d ≡ 0 (see section 3.1.2).

Our analysis relies on the space-time resonance method initially developped by Germain, Masmoudi and Shatah in [START_REF] Germain | Global solutions for 3D quadratic Schrödinger equations[END_REF], [START_REF] Germain | Global solutions for 2D quadratic Schrödinger equations[END_REF] and [START_REF] Germain | Global solutions for the gravity water waves equation in dimension 3[END_REF] for the quadratic Schrödinger equation and gravity water waves, and simultaneously by Gustafson, Nakanishi and Tsai in [START_REF] Gustafson | Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions[END_REF] and [START_REF] Gustafson | Scattering theory for the Gross-Pitaevskii equation in three dimensions[END_REF] for the Gross-Pitaevskii equation. More precisely, the Born-Infeld system around a constant is a quasilinear wave equation coupled with a non-linear non-dispersive part. In particular, for the purely wave part, we adapt the proof by Pusateri and Shatah in [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF] of the global existence result for semilinear quadratic wave equations satisfying a null form condition, that extended the classical results obtained by Klainerman in [START_REF] Klainerman | Global existence for nonlinear wave equations[END_REF], see also [START_REF] Klainerman | Long time behaviour of solutions to nonlinear wave equations[END_REF]. As we shall explain below some new diculties arise here due to the quasilinear structure of the Born-Infeld system (whereas [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF] only deals with semilinear rst order systems) and more importantly in order to handle the non-dispersive part by using the constraint equations.

The non-resonance structure, which will be satised if (ϵ 1 , ϵ 2 , ϵ 3 ) ∈ {+, -} 3 , states that m(ξ, η) = |ξ -η|µ 0 (ξ, η)∇ η φ(ξ, η) for some symbol µ 0 , homogeneous of order 0, and satisfying appropriate smoothness conditions that allow to control the bilinear terms above. The presence of such a factorisation allows then to integrate by parts in η, thus gaining a factor s -1 , up to the apparition of terms ∇ η f , which translates in the physical space to xf . Note that, when ϵ 2 = 0 and ϵ 3 ̸ = 0, or inversely, ∇ η φ never vanishes (outside the axis {ξ = 0} ∪ {η = 0} ∪ {ξ = η}) and thus such a factorisation is always allowed.

On the other hand, to control the nonlinearities when ϵ 2 = ϵ 3 = 0 or when ϵ 1 = 0, we also show that the same type of factorisation appears in the constraint equations (3). Since these equations do not involve any time derivative, we won't have to apply any Duhamel formula for them and thus will not have any time integration : therefore, u 0 will actually satisfy stronger bounds than u ± , thus allowing to bound the interaction terms in which it is involved. However, since the constraint equations involve derivatives, we actually only get to control Λu 0 as a quadratic non-linearity, which adds a singularity.

Section 4 is devoted to the proof of the main theorem by proving an appropriate a priori estimate. Namely, we will bound as follows :

∥u ± ∥ H N ≲ t ε , ∥u ± ∥ H 6 ≲ 1, ∥u ± ∥ W 1,∞ ≲ t -1 , ∥xf ± ∥ H 5 ≲ 1, ∥|x| 2 Λf ± ∥ H 5 ≲ t γ ∥u 0 ∥ H N ≲ t -1+ε+a , ∥u 0 ∥ H 6 ≲ t -2+a , ∥u 0 ∥ W 1,∞-≲ t -2+a , ∥xΛu 0 ∥ H 4 ≲ t -1+a
where N is an integer large enough, ε, γ, a are small enough parameters, ∞denotes a large enough real number. Here and in the whole article, we use the notation A ≲ B when there exists an universal constant C > 0 (that may depend on the parameters of the problem, like N, ε, γ, ... assumed to be xed once and for all, or on the reference constant state, but not on the added perturbation or the time t) such that A ≤ CB.

In subsection 4.1, we prove or recall useful lemmas and inequalities that we will use repeatedly in the proof, as well as some identities specic to the wave equation and to our system.

In subsection 4.2, we prove an energy estimate by the classical tools on hyperbolic systems. We do not need the resonance analysis in this section. In subsection 4.3, we prove all the estimates on u 0 , relying on the constraint equations. In subsection 4.4, we prove the H 6 -estimate on u ± in a very similar manner to the corresponding bound from [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF], up to control of terms involving u 0 . In subsection 4.5, we prove the estimate on the Sobolev norm of xf ± . Once again, we follow a similar approach to the one from [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF].

In subsection 4.6, we prove a bound involving the Besov spaces Ḃ0 ∞,1 and Ḃ1

∞,1 . These norms control in particular the W 1,∞ norm and are needed due to the lack of L 2 × L ∞ estimate for the bilinear interactions we consider. The analysis of the ± -± interactions is similar to the one in [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF] (up to dealing with Besov spaces instead of L ∞ ) with the introduction of an angular repartition that separates between dierent domains depending on the space-and time-resonant sets. However, the analysis of the ± -0 interactions involves a ner analysis by expanding u 0 again as a bilinear term, using the constraint equations, and the introduction of a new angular repartition.

In subsection 4.7, we prove the bound on |x| 2 f ± in Sobolev spaces. Since our nonlinearities have one derivative, we need to combine both the quasi-linear hyperbolic structure of the equation to avoid losing derivatives and the space-time analysis. Again, the new ± -0 interactions require new arguments in a similar fashion to what was done for the Besov norms.

3 Structure of the equations Notation We denote by Λ = |∇| the linear operator of Fourier symbol |ξ|.

Born-Infeld system

The Born-Infeld system, introduced by Max Born and Leopold Infeld in 1934 ( [START_REF] Born | Foundations of the new eld theory[END_REF]), comes from the Lagrangian :

L = -1 -E 2 + B 2 -(E • B) 2
(expressed in renormalized units) under the dierential constraints :

∇ • B = 0, ∂ t B + ∇ ∧ E = 0
which express the fact that the Faraday tensor associated to (B, E) is a closed form. This leads to the equations :

               ∂ t B + ∇ ∧ E = 0 ∂ t D -∇ ∧ H = 0 ∇ • B = 0 ∇ • D = 0 E = B∧V +D h , H = -D∧V +B h h = 1 + B 2 + D 2 + |D ∧ B| 2 , V = D ∧ B
In 2004, Brenier introduced the following augmented version of the Born-Infeld system ( [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF]) :

       ∂ t τ + v • ∇τ -τ ∇ • v = 0 ∂ t v + v • ∇v -b • ∇b -d • ∇d -τ ∇τ = 0 ∂ t b + v • ∇b -b • ∇v + τ ∇ ∧ d = 0 ∂ t d + v • ∇d -d • ∇v -τ ∇ ∧ b = 0
by setting :

τ = h -1 , v = τ V, b = τ B, d = τ D
This system is symmetric and therefore well-posed, regardless of the values taken by τ, v, b, d. We recover the initial Born-Infeld system by introducing the following constraints :

τ > 0, τ 2 + v 2 + b 2 + d 2 = 1, τ v = d ∧ b
and we call Born-Infeld manifold the set of initial data satisfying these. An important property of the Born-Infeld manifold is that it is preserved by smooth solutions of the augmented Born-Infeld system.

Besides, if τ > 0, the divergence constraints rewrite :

∇ • b τ = ∇ • d τ = 0
and are also preserved by the equation in the case of smooth solutions.

Galilean invariance If (t, x) → (τ, v, b, d)(t, x) is a solution of the augmented system, then

(t, x) → (τ, v -v 0 , b, d)(t, x + v 0 t)
is also a solution, where v 0 is a constant vector. However, the Born-Infeld manifold is not preserved by this galilean invariance.

3.1.1 The Born-Infeld system around a constant solution If (τ 0 , v 0 , b 0 , d 0 ) is a constant (satisfying or not the constraints of the Born-Infeld manifold), then the unique smooth solution is global and dened by being constant in space and time.

If we rewrite the system around such a solution, replacing (τ, v, b, d) by (τ 0 + τ, v 0 + v, b 0 + b, d 0 + d), we obtain the following equations :

       ∂ t τ + v 0 • ∇τ -τ 0 ∇ • v = -v • ∇τ + τ ∇ • v ∂ t v + v 0 • ∇v -b 0 • ∇b -d 0 • ∇d -τ 0 ∇τ = -v • ∇v + b • ∇b + d • ∇d + τ ∇τ ∂ t b + v 0 • ∇b -b 0 • ∇v + τ 0 ∇ ∧ d = -v • ∇b + b • ∇v -τ ∇ ∧ d ∂ t d + v 0 • ∇d -d 0 • ∇v -τ 0 ∇ ∧ b = -v • ∇d + d • ∇v + τ ∇ ∧ b
that we can write under the form :

∂ t U + A 0 (D)U = N (ΛU, U ) (5) 
where U = (τ, v, b, d), A 0 is a dierential operator of order 1, linear and with constant coecients depending on the constant U 0 = (τ 0 , b 0 , d 0 , v 0 ), while N is a bilinear operator with constant coecients (but potentially involving Riesz transforms).

The dierential constraints can be written :

∇ • b 0 + b τ 0 + τ = 0 =⇒ τ 0 ∇ • b -b 0 • ∇τ = -τ ∇ • b + b • ∇τ
and likewise :

τ 0 ∇ • d -d 0 • ∇τ = -τ ∇ • b + b • ∇τ
Finally, the constraints of the Born-Infeld manifold imply :

τ 0 ∇ ∧ v -b 0 • ∇d + d 0 • ∇b = -τ ∇ ∧ v + b • ∇d -d • ∇b
We can therefore rewrite all these constraints under the form :

L 0 (D)U = N ′ (ΛU, U ) (6) 
where L 0 is a dierential operator of order 1, linear and with constant coecients depending on the constant U 0 , while N ′ is a bilinear operator with constant coecients.

Simplication using the galilean invariance We saw that the augmented Born-Infeld equation enjoyed a galilean invariance, that does not preserve the Born-Infeld manifold a priori. However, this invariance preserves (6), since no temporal derivatives appear in it and v is present only through its derivatives. Therefore, we can study the simplied problem in which v 0 = 0, and we suppose that this condition is satised in the following.

Proposition 2 For any ξ, the matrix A 0 (ξ) is symmetric, with eigenvalues 0, |ξ| 0 , -|ξ| 0 , where | • | 0 is the euclidean norm associated to the scalar product :

g 0 (ξ, η) = τ 0 ξ • η + (b 0 • ξ)(b 0 • η) + (d 0 • ξ)(d 0 • η)
(It is a scalar product because τ 0 > 0.) If ξ ̸ = 0, let (e 1 , e 2 , e 3 ) be an orthonormal direct basis such that e 1 is positively collinear to ξ, and set :

α = τ 0 |ξ| |ξ| 0 , β = b • ξ |ξ| 0 , δ = d • ξ |ξ| 0
then the eigenspaces of A 0 (ξ) are, respectively :

E(0) = Vect         -β 0 αe 1 0     ,     -δ 0 0 αe 1     ,     0 αe 2 δe 3 -βe 3     ,     0 αe 3 -δe 2 βe 2         E(|ξ| 0 ) = Vect         α e 1 βe 1 δe 1     ,     0 δe 2 -βαe 3 βδe 2 -αe 3 (1 -β 2 )e 2     ,     0 βαe 2 + δe 3 αe 2 + βδe 3 (1 -β 2 )e 3         E(-|ξ| 0 ) = Vect         -α e 1 -βe 1 -δe 1     ,     0 -δe 2 -βαe 3 βδe 2 + αe 3 (1 -β 2 )e 2     ,     0 βαe 2 -δe 3 -αe 2 + βδe 3 (1 -β 2 )e 3        
Remark 3 In the case ξ = 0, α, β, δ are not well dened and A 0 = 0 only has one eigenvalue. However, we can consider any limit since the previous spaces are orthogonal to each other and generate R 10 as long as α 2 + β 2 + δ 2 = 1, α > 0. Note furthermore that, when considering for instance L 2 norms, removing the point ξ = 0 is harmless.

Proof

We can check by a computation that, for each of the basis vector given in the proposition, A 0 (ξ)X = λX with λ ∈ {-|ξ| 0 , 0, |ξ| 0 } accordingly. Furthermore, these basis vectors are independant in each eigenspace, so they generate R 10 . Orthogonality follows from the symmetry of A 0 (ξ). □

We denote by r(ξ) the operator associated with the cross product :

r(D)f = ∇ ∧ f
Corollary 4 The following operators are the projection operators on the eigenspaces of A 0 (ξ) :

P 0 (ξ) =       1 -α 2 0 -αβ ξ T |ξ| -αδ ξ T |ξ| 0 α 2 I 3 -ξ⊗ξ |ξ| 2 -αδ r(ξ) |ξ| αβ r(ξ) |ξ| -αβ ξ |ξ| αδ r(ξ) |ξ| δ 2 I 3 + α 2 ξ⊗ξ |ξ| 2 -βδI 3 -αδ ξ |ξ| -αβ r(ξ) |ξ| -βδI 3 β 2 + α 2 ξ⊗ξ |ξ| 2       P + (ξ) = 1 2       α 2 α ξ T |ξ| αβ ξ T |ξ| αδ ξ T |ξ| α ξ |ξ| (1 -α 2 )I 3 + α 2 ξ⊗ξ |ξ| 2 βI 3 + αδ r(ξ) |ξ| δI 3 -αβ r(ξ) |ξ| αβ ξ |ξ| βI 3 -αδ r(ξ) |ξ| (1 -δ 2 )I 3 -α 2 ξ⊗ξ |ξ| 2 βδI 3 -α r(ξ) |ξ| αδ ξ |ξ| δI 3 + αβ r(ξ) |ξ| βδI 3 + α r(ξ) |ξ| (1 -β 2 )I 3 -α 2 ξ⊗ξ |ξ| 2       P -(ξ) = 1 2       α 2 -α ξ T |ξ| αβ ξ T |ξ| αδ ξ T |ξ| -α ξ |ξ| (1 -α 2 )I 3 + α 2 ξ⊗ξ |ξ| 2 -βI 3 + αδ r(ξ) |ξ| -δI 3 -αβ r(ξ) |ξ| αβ ξ |ξ| -βI 3 -αδ r(ξ) |ξ| (1 -δ 2 )I 3 -α 2 ξ⊗ξ |ξ| 2 βδI 3 + α r(ξ) |ξ| αδ ξ |ξ| -δI 3 + αβ r(ξ) |ξ| βδI 3 -α r(ξ) |ξ| (1 -β 2 )I 3 -α 2 ξ⊗ξ |ξ| 2      
expressed in the canonical basis of R 10 .

Proof

Since we know a basis of eigenvectors for each eigenspace, if to a xed eigenvalue λ we associate M the matrix with these eigenvectors as columns, we can apply the following formula to compute the projection matrix :

P = M (M T M ) -1 M T
This allows to compute the formulas of the corollary. To obtain the expression in the canonical basis, we can choose arbitrarily the basis e 1 , e 2 , e 3 , for instance :

e 1 = 1 |ξ| (ξ 1 , ξ 2 , ξ 3 ) e 2 = 1 ξ 2 1 + ξ 2 2 (ξ 2 , -ξ 1 , 0) e 3 = 1 |ξ| ξ 2 1 + ξ 2 2 (ξ 1 ξ 3 , ξ 2 ξ 3 , -ξ 2 1 -ξ 2 2 )
as long as none of the coordinates of ξ vanish, and then extend by continuity. □

Proposition 5 The operator L 0 associated to the constraints (6) satises :

Q(ξ)L 0 (ξ) = |ξ|P 0 (ξ)
for a certain invertible operator Q(ξ) which is homogeneous of degree 0 in ξ.

Proof

We know that :

L 0 (ξ) =   b 0 • ξ 0 -τ 0 ξ T 0 d 0 • ξ 0 0 -τ 0 ξ T 0 τ 0 r(ξ) d 0 • ξI 3 -b 0 • ξI 3   in the canonical basis.
The eigenvectors of 0 are (-β, 0, αe 1 , 0) , (-δ, 0, 0, αe 1 ) , (0, αe 2 , δe 3 , -βe 3 ) , (0, αe 3 , -δe 2 , βe 2 )

that is they correspond to the following components of a given solution, in Fourier space :

τ 0 ξ • b -(b 0 • ξ)τ , τ 0 ξ • d -(d 0 • ξ)τ , τ 0 |ξ|v 2 + (d 0 • ξ) b3 -(b 0 • ξ) d3 , τ 0 |ξ|v 3 -(d 0 • ξ) b2 + (b 0 • ξ) d2
Going back to the physical space, we may combine these components into :

τ 0 ∇ • b -b 0 • ∇τ, τ 0 ∇ • d -d 0 • ∇τ, τ 0 ∇ ∧ v -b 0 • ∇d + d 0 • ∇b
Therefore, L 0 (ξ)U corresponds exactly to the coordinates of the projection of U on E(0), expressed in the basis above. (More precisely, L 0 (ξ) has an image of dimension 5, but there is a redundancy due to the fact that the Fourier transform of ∇ ∧ v lives the space of dimension 2 orthogonal to ξ.) In particular, there exists a matrix Q(ξ), homogeneous of degree 0 in ξ, such that Q(ξ)L 0 (ξ) = |ξ|P 0 (ξ), and Q is invertible. □ Denition 6 We dene :

N ϵ1,ϵ2ϵ3 (•, •) = P ϵ1 (D) N (P ϵ2 (D) • , P ϵ3 (D) • ) for any choice of ϵ 1 , ϵ 2 , ϵ 3 ∈ {+, 0, -}.
Let us set

φ ϵ1,ϵ2ϵ3 (ξ, η) = ϵ 1 |ξ| 0 -ϵ 2 |ξ -η| 0 -ϵ 3 |η| 0
Finally, we dene the space-resonant sets as

S ϵ1,ϵ2ϵ3 = {(ξ, η) ∈ R 6 , ∇ η φ ϵ1,ϵ2ϵ3 (ξ, η) = 0}
and the time-resonant sets as

T ϵ1,ϵ2ϵ3 = {(ξ, η) ∈ R 6 , φ ϵ1,ϵ2ϵ3 (ξ, η) = 0}
and the space-time-resonant sets as

R ϵ1,ϵ2ϵ3 = S ϵ1,ϵ2ϵ3 ∩ T ϵ1,ϵ2ϵ3
Let us set

u + = P + U, u -= P -U, u 0 = P 0 U and f (t) = e tA0(D) U (t), f ϵ = e tA0(D) u ϵ = P ϵ f = e tϵΛ0 u ϵ
Then the constraints can be written :

u 0 = Λ -1 Q -1 (D)N ′ (ΛU, U )
Remark 7 (Intuition) The choice of f ensures that

∂ t f = e tA0(D) N (Λe -tA0(D) f, e -tA0(D) f )
without linear part, so we can break the non-linearity down and consider uniquely terms of the form e itϵ1Λ0 N ϵ1,ϵ2ϵ3 (e -itϵ2Λ0 Λf ϵ2 , e -itϵ3Λ0 f ϵ3 )

A Duhamel formula and a Fourier transform will make appear terms of the form :

t 1 e isφ(ξ,η) b(ξ, η) f (s, ξ -η)|ξ -η| f (s, η) dηds
where we omit the superscripts ε. Then, away from the space-resonant set, ∇ η φ ̸ = 0 and we can perform an integration by parts in η to win a factor s -1 . Away from the time-resonant set, φ ̸ = 0 so we can perfom an integration by parts in time and obtain a term of the form ∂ s f , so quadratic in f and simpler to control.

But we need, however, to control the nonlinearity close to the space-time-resonant set.

Denition 8 We say that a symbol µ s : (ξ, η) ∈ R 6 → µ s (ξ, η) ∈ R is a symbol of order s ∈ R if µ s is homogeneous of degree s, smooth outside of {ξ = 0} ∪ {η = 0} ∪ {ξ = η} and such that, if we write (ξ 1 , ξ 2 , ξ 3 ) the three variables (ξ, η, ξ -η) (in any order), we have that

µ s (ξ, η) = A |ξ 1 |, ξ1 |ξ1| , ξ 2 for a smooth A, as long as |ξ 1 | ≪ |ξ 2 |, |ξ 3 | ∼ 1. (Note that ξ 3 is determined by ξ 1 and ξ 2 .)
We say that a nonlinearity satises the non-resonant condition of type ϵ 1 , ϵ 2 ϵ 3 (with ϵ i ∈ {-, 0, +}) if it can be written under the form :

N (u, v)(ξ) = b(ξ, η) u(ξ -η) v(η) dη
where b(ξ, η) is a symbol of order 0 such that there exists a symbol of order 0 denoted by µ 0 such that b(ξ, η) = µ 0 (ξ, η)∇ η φ ϵ1,ϵ2ϵ3 (ξ, η) (Note that this condition does not depend on ϵ 1 .)

Lemma 9 Let F : S 2 → F (S 2 ) ⊂ R 3 \ {0} be a C ∞ -dieomorphism. There exists C ∞ functions m, m ′ (vector-resp. matrix-valued) such that for all X, Y ∈ S 2 , |F (X)| -|F (Y )| = m(X, Y ) • (X -Y ), X -Y = m ′ (X, Y )(F (X) -F (Y ))

Proof

We rst prove the result locally. Set G(X) = |F (X)|, which is a smooth function.

If X ̸ = Y , there exists a neighborhood on which |X -Y | remains bounded from below by a strictly positive constant and we may set m(X, Y ) 

= (|F (X)| -|F (Y )|) X-Y |X-Y | on this neighborhood. If X = Y , we use a local chart of S 2 to get back to open sets of R 2 , F : U → V a dieomorphism, G : U → R a smooth
G(X) -G(Y ) = (X -Y ) • 1 0 ∇G(Y + t(X -Y )) dt and 1 0 ∇G(Y + t(X -Y ))
dt is well-dened and smooth, at least locally. We then use a partition of unity of S 2 × S 2 to obtain m on every piece. For the second statement, we procede the same : if X ̸ = Y , F (X) -F (Y ) has at least one component that remains uniformly separated from 0 locally and we may easily nd m ′ ; if X = Y , we can use a local chart and use the same argument as before, noting that F -1 satises the same properties. A partition of unity then allows to construct m ′ on the whole S 2 × S 2 . □

From the previous lemma, we deduce :

Lemma 10 There exists symbols µ 0 , µ ′ 0 of order 0 such that

|η| |η| 0 - |ξ -η| |ξ -η| 0 = µ 0 (ξ, η) • η |η| 0 - ξ -η |ξ -η| 0 and η |η| - ξ -η |ξ -η| = µ ′ 0 (ξ, η) η |η| 0 - ξ -η |ξ -η| 0 Proof Let us rst prove the second part. Set F : X ∈ S 2 → X |X|0 ∈ R 3 \ {0}, which is a C ∞ -dieomorphism. By lemma 9, we have m ′ ∈ C ∞ such that, for every η, ξ : η |η| - ξ -η |ξ -η| = m ′ η |η| , ξ -η |ξ -η| η |η| 0 - ξ -η |ξ -η| 0 Set µ ′ 0 (ξ, η) = m ′ η |η| , ξ-η |ξ-η|
to get the desired result.

The rst part of lemma 9 then gives m ∈ C ∞ such that :

|η| |η| 0 - |ξ -η| |ξ -η| 0 = m η |η| , ξ -η |ξ -η| • η |η| - ξ -η |ξ -η| = m η |η| , ξ -η |ξ -η| •m ′ η |η| , ξ -η |ξ -η| η |η| 0 - ξ -η |ξ -η| 0 Set µ 0 (ξ, η) = m η |η| , ξ-η |ξ-η| • m ′ η |η| , ξ-η |ξ-η|
, which is a symbol of order 0, to deduce the rst part. □

Proposition 11 The Born-Infeld system can be written under the form

∀ϵ 1 ∈ {-, 0, +}, ∂ t u ϵ1 = ϵ2,ϵ3 N ϵ1,ϵ2ϵ3 (Λu ϵ2 , u ϵ3 )
under the constraint

u 0 = Λ -1 ϵ2,ϵ3 N ′ ,ϵ2ϵ3 (Λu ϵ2 , u ϵ3 )
Then N ϵ1,ϵ2ϵ3 and N ′ ,ϵ2ϵ3 satisfy the condition of non-resonance of type ϵ 1 , ϵ 2 ϵ 3 as long as ϵ i ∈ {-, +}.

Proof

We already computed the projection operators. Each given tensor entry can be expressed as formal poly-

nomials in the variables ξ |ξ| , ξ-η |ξ-η| , η
|η| , and α, β, δ obtained from ξ, ξ -η and η (see Proposition 2 for the denition of α, β, δ). Therefore, these nonlinearities can be represented as 10 × 10 × 10 tensors whose entries are polynomials in these variables. We can then compute formally the N ϵ1,ϵ2ϵ3 where ϵ 1 ∈ { ′ , -, 0, +}, ϵ 2 , ϵ 3 ∈ {-, 0, +}.

Then, if we x ϵ 1 , ϵ 2 , ϵ 3 such that the proposition applies, let us notice that

∇ η φ ϵ1,ϵ2ϵ3 (ξ, η) = g 0 ϵ 2 η |η| 0 + ϵ 3 ξ -η |ξ -η| 0
for some invertible matrix g 0 (depending only on the constant state).

Motivated by lemma 10, we now try to factorize the non-linearity by ξ-η

|ξ-η|0 ± η |η|0 and ξ-η |ξ-η| ± η |η| (the sign ± depending on ϵ 2 , ϵ 3 ).
Consider the algorithm consisting in replacing ξ-η |ξ-η| by ± η |η| (the sign depending on ϵ 2 , ϵ 3 ) and likewise for α(ξ -η), β(ξ -η), δ(ξ -η). We then obtain other polynomial expressions, depending only on the variables of ξ, η. Running this algorithm on a computer, we nd that each tensor entry is eventually the zero polynomial (using as well the relation α 2 + β 2 + δ 2 = 1 and the fact that ξ |ξ| and η |η| are of norm 1).

Note now that, mathematically, the algorithm presented above can be seen as a factorization of each tensor entry by polynomials

η |η| ± ξ -η |ξ -η| , α(η) -α(ξ -η), β(η) ± β(ξ -η), δ(η) ± δ(ξ -η)
where the sign ± depends only on the type of interaction considered. Indeed, when considering by simplicity a polynomial with two variables P (X, Y ), we can always write Y = X +(Y -X) and thus factorize P (X, Y ) = (Y -X)Q(X, Y -X) + R(X) and we just computed R ≡ 0. But each of these polynomials can be expressed as µ 0 • ∇ η φ for a given symbol µ 0 of order 0. Indeed,

∇ η φ = g 0 ξ -η |ξ -η| 0 ± η |η| 0 for | • | 0 the (Euclidean) norm
associated with the constant state around which we linearize, and g 0 some invertible matrix depending only on this constant state (see lemma 25 for the precise expression of g 0 , which we do not need here). Now,

β(η) = b 0 • η |η| 0 , δ(η) = d 0 • η |η| 0 so that β(η) ± β(ξ -η) and δ(η) ± δ(ξ -η) are simply linear combinations of coecients of ∇ η φ. On the other hand, α(η) -α(ξ -η) = τ 0 |η| |η| 0 - |ξ -η| |ξ -η| 0
so that we may apply the rst part of lemma 10 (up to a change of variable when the sign is + instead of -). Likewise, the second part of lemma 10 allows to factorize η |η| ± ξ-η |ξ-η| by ∇ η φ. Since the remainder has been computed to vanish, we deduce that each entry can be factorized by ∇ η φ, up to symbols of order 0. □ Proposition 12 (Quasi-linear structure) The equation ( 5) is a symmetric quasilinear hyperbolic system.

More precisely, we may write equivalently :

A 0 (D)U + N (ΛU, U ) = 3 i=1 (M 0i + M 1i (U ))∂ i U
where M 0i , M 1i (U ) are symmetric matrices for any i = 1, 2, 3 and any U , and M 1i (U ) is linear in U .

Proof

This is immediate from the system written explicitly (2). □

Chaplygin gas

The Chaplygin gas is a gas model for which the pression is determined by

p = - A ρ
where ρ is the density and A a constant. Up to a change of units, we x A = 1. The equations can therefore be written

∂ t ρ + ∇ • (ρv) = 0 ∂ t v + v • ∇v = 1 ρ ∇ 1 ρ If we set τ = 1 ρ , we get ∂ t τ + v • ∇τ -τ ∇ • v = 0 ∂ t v + v • v = τ ∇τ
and we recognize exactly the augmented Born-Infeld system where we set b ≡ d ≡ 0, which is an initial condition preserved by (5). Then, studying the Chaplygin gas around any constant solution comes back to studying the augmented Born-Infeld system around (τ 0 , v 0 , 0, 0), enforcing b ≡ d ≡ 0.

In the constraints (6), the divergence equations on b, d are automatically satised. The nal constraint is

τ 0 ∇ ∧ v + τ ∇ ∧ v = 0
Therefore, if we assume we are in the case of potential velocities, ∇ ∧ v ≡ 0 and this constraint is satised as well. Furthermore, ∇ ∧ v ≡ 0 is also preserved by the equation :

∂ t ∇ ∧ v = -∇ ∧ (v • ∇v + τ ∇τ ) = -v • ∇(∇ ∧ v) -(∇ • v)∇ ∧ v + (∇ ∧ v) • ∇v
So the same structure properties can be applied directly to the Chaplygin gas with potential velocities.

General case

We now consider the general augmented Born-Infeld system (5) under the constraint equations (6).

Proposition 13 The smooth solutions of (5) preserve (6).

Proof Case of the divergence constraints We dierentiate :

∂ t (τ ∇ • b -b • ∇τ ) = -(v • ∇τ )(∇ • b) + τ (∇ • v)(∇ • b) + τ ∇ • (-v • ∇b + b • ∇v -τ ∇ ∧ d) + v • ∇b • ∇τ -b • ∇v • ∇τ + τ ∇ ∧ d • ∇τ + b • ∇ (v • ∇τ -τ ∇ • v) = -v • ∇ (τ ∇ • b -b • ∇τ ) + (∇ • v)(τ ∇ • b -b • ∇τ )
In particular, if this quantity vanishes at the initial time, it remains zero for any time as long as the solution is smooth. Likewise, we can obtain a similar equation for the divergence of d.

Case of the rotationnal constraint We compute

∂ t (τ ∇ ∧ v -b • ∇d + d • ∇b) = -(v • ∇τ )∇ ∧ v + τ (∇ • v)∇ ∧ v + τ ∇ ∧ (-v • ∇v + b • ∇b + d • ∇d) + v • ∇b • ∇d -b • ∇v • ∇d + τ ∇ ∧ d • ∇d -b • ∇ (-v • ∇d + d • ∇v + τ ∇ ∧ b) -v • ∇d • ∇b + d • ∇v • ∇b + τ ∇ ∧ b • ∇b + d • ∇ (-v • ∇b + b • ∇v -τ ∇ ∧ d) = -v • ∇ (τ ∇ ∧ v -b • ∇d + d • ∇b) + (τ ∇ ∧ v -b • ∇d + d • ∇b) • ∇v + (∇ ∧ b) (τ ∇ • b -b • ∇τ ) + (∇ ∧ d) (τ ∇ • d -d • ∇τ )
In particular, if the divergence constraints are satised, if this quantity vanishes at the initial time, then it remains zero for any time when the solutions are smooth.

□

Denition 14 Given a constant state U 0 and an initial perturbation u : R 3 → R 10 , we say that u = (τ, v, b, d) is an admissible initial data if τ + τ 0 > 0 on all R 3 , and u satises the constraint equations (6).

Main result

From now on, we consider the equation ( 5) + (6), so the augmented Born-Infeld system around a constant solution, assuming the initial data satises the constraint equations.

Theorem 15 Let U 0 be a constant state with τ 0 > 0. There exists an integer N and constants δ, C > 0 depending continuously on U 0 , such that for any admissible initial data satisfying

∥u 0 ∥ H N ≤ δ, ∥⟨x⟩ 2 u 0 ∥ H 6 ≤ δ
that we write ∥u 0 ∥ X0 ≤ δ, then the solution is global and

∥u(t)∥ W 1,∞ ≲ C∥u 0 ∥ X0 ⟨t⟩ -1

A priori estimate

We now consider the system introduced in the previous section, with the constraints preserved by the evolution, and the decomposition u + +u -+u 0 . The system is symmetric, so hyperbolic, and we have the existence and unicity of local in time smooth solutions. We denote by u the solution and f = e tA0(D) U , with the same decomposition on the eigenspaces in Fourier.

Furthermore, without any loss of generality, we assume that the initial time is t = 1 in place of t = 0, and we try to extend the solution for any time t ≥ 1.

If T > 0 is an existence time, we can introduce the norm ∥u∥ X,T = sup

1≤t≤T ∥u ± ∥ H 6 , t -ε ∥u ± ∥ H N , t∥u ± ∥ Ḃ1 ∞,1 , t∥u ± ∥ Ḃ0 ∞,1 , ∥xf ± ∥ H 5 , t -b ∥xf ± ∥ H 6 , sup 0≤k≤5 t -γ k ∥Λ k |x| 2 Λf ∥ L 2 , t∥u 0 ∥ H 7 , t 1-ε ∥u 0 ∥ H N , t 2-a ∥u 0 ∥ W 1,∞-, t 1-a ∥Λxu 0 ∥ H 4 , t 1-a-γ5/2 ∥Λxu 0 ∥ H 6
where ε > 0 is a small enough parameter, N an integer large enough, 0 < γ 0 < γ 1 < ... < γ 5 a sequence of real numbers small enough, a > 0 small enough, ∞a real number big enough, b > 0 small enough, and such that γ4+ε 2 ≤ b < γ5+ε 2 . We will also impose γ k = kγ5+(5-k)γ0
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. Furthermore, we will ask that 5γ 0 < γ 5 . For all the "small enough" and "big enough" parameters, we will show that we can choose them small enough resp.

big enough so that the a priori estimates holds. However, none of them will depend on the (τ 0 , v 0 , b 0 , d 0 ) constant state. Recall that Ḃs p,q for p, q ∈ [1, ∞], s ∈ R is the homogeneous Besov space, with norm :

∥v∥ Ḃs p,q :=   j∈Z 2 sj ∥φ j (D)v∥ q L p   1/q where φ j (ξ) = φ(2 -j ξ) is an appropriate Littlewood-Paley localisation. In particular, if v ∈ L 2 , then ∥v∥ W 1,∞ ≲ ∥v∥ Ḃ1 ∞,1 + ∥v∥ Ḃ0 ∞,1
. Recall also that Ḃ0 2,2 and L 2 are the same spaces. See [START_REF] Bahouri | Fourier analysis and nonlinear partial dierential equations[END_REF] for more details on the construction of Besov spaces.

The a priori estimate we will prove will be :

Proposition 16 (A priori estimate)

∥u∥ X,T ≤ C∥u 0 ∥ X + C∥u∥ 3/2 X,T 1 + ∥u∥ 3 X,T
where C is independant of the size of the data, but may depend on (τ 0 , v 0 , b 0 , d 0 ).

Therefore, if we apply the smallness hypothesis on u 0 and that we choose T > 0 maximal such that ∥u∥ X,T ≤ 2Cδ, with 0 < δ < 1, we have that ∥u∥ X,T ≤ Cδ(1 + 2 3/2 C 3/2 δ 1/2 + 2 9/2 C 9/2 δ 7/2 ) In particular, if δ is chosen small enough, ∥u∥ X,T < 2Cδ

But if T < ∞, we could extend the solution and this would contradict the maximality of T . Therefore, there exists a global solution that remains close to the constant solution in X-norm.

In the following, we only write ∥ • ∥ X and omit the dependance in T . We will write γ = γ 5 that controls all the other γ k .

Notation Recall that we use the notation Λ = |∇|, ie the linear operator of Fourier symbol |ξ|. The Hörmander-Mikhlin theorem implies that it is equivalent to Λ 0 of symbol |ξ| 0 (and their quotient is a symbol of order 0 with our denitions), in the sense that, for any 1 < p < ∞, ∥Λv∥ L p ≲ ∥Λ 0 v∥ L p ≲ ∥Λv∥ L p for all v. Furthermore, we will write U = u + + u -+ u 0 , and sometimes simply u in place of u + or u -(but not u 0 ). µ 0 will name a generic symbol of order 0 and will be authorized to vary at each line.

General inequalities

In this section, we prove useful lemmas for the a priori estimates and general inequalities.

Functional inequalities

Lemma 17 (Hardy's inequality) We have the following L 2 Hardy inequalities :

∥g∥ L 2 ≲ ∥∇(|x|g)∥ L 2 and ∥g∥ L 2 ≲ ∥xΛg∥ L 2

Proof

The second inequality comes from the rst by applying Parseval's inequality :

∥g∥ L 2 = ∥ g∥ L 2 ≲ ∥∇(|ξ| g)∥ L 2 = ∥xΛg∥ L 2
For the rst inequality, we use a polar decomposition and set h(x) = |x|g(x). Assuming g is a C ∞ function with compact support, we compute :

|g(x)| 2 dx = ∞ 0 S 2 |h(ry)| 2 r 2 r 2 dσ(y)dr = - ∞ 0 S 2 ∞ r 2 ∂h ∂r (sy)h(sy) dsdσ(y)dr = - ∞ 0 S 2 2r ∂h ∂r (ry)h(ry) dσ(y)dr = - R 3 2 ∂h ∂r (x) h(x) |x| dx ≤ 2∥∂ r h∥ L 2 ∥g∥ L 2 ≲ ∥g∥ L 2 ∥∇(|x|g)∥ L 2
by Hölder's inequality. So we get :

∥g∥ L 2 ≲ ∥∇(|x|g)∥ L 2
We conclude by a density argument.

□

Lemma 18 (Moser estimate) Let g, h be two functions and α ∈ N 3 with |α| = k ∈ N. Then :

∥D α (gh) -gD α h∥ L 2 ≲ ∥g∥ H k ∥h∥ L ∞ + ∥∇g∥ L ∞ ∥h∥ H k-1
See for instance [START_REF] Taylor | Partial dierential equations. III: Nonlinear equations[END_REF], Proposition 3.7. The next lemma shows which norms are controlled by ∥u∥ X .

Lemma 19 For any integer k < N and any 2 < q < ∞-, there exists δ = δ(N, ε, k, ∞-, a, q) such that

∥u ± ∥ W k,q ≲ t -1+2/q+δ ∥u∥ X , ∥u 0 ∥ W k,q ≲ t -2+2/q+δ ∥u∥ X with δ going to 0, when k, q are xed, if N → ∞, ε → 0, a → 0.
The demonstration can be found in [START_REF] Germain | Global solutions for the gravity water waves equation in dimension 3[END_REF], lemma 5.1, with a slight variation for u 0 (since we do not control ∥u 0 ∥ L ∞ but only the L ∞-norm).

Lemma 20 We have that

∥Λxg∥ L 2 ≲ ∥g∥ 1/2 H 2 ∥⟨x⟩ 2 g∥ 1/2 L 2
In particular,

∥xf ± ∥ Ḣ7 ≲ t γ/2+ε/2 ∥u∥ X Proof We write that ∥Λxg∥ L 2 ≲ ∥|x|∇g∥ L 2 + ∥g∥ L 2 Then ∥|x|∇g∥ 2 L 2 = |x| 2 ∇g • ∇g dx = -2gx • ∇g dx -|x| 2 g∇ • ∇g dx ≲ ∥xg∥ L 2 ∥∇g∥ L 2 + ∥|x| 2 g∥ L 2 ∥Λ 2 g∥ L 2
So summing each contribution we have that

∥Λxg∥ L 2 ≲ ∥⟨x⟩ 2 g∥ 1/2 L 2 ∥g∥ 1/2 H 2
By setting g = Λ 6 f ± , we get

∥xf ± ∥ Ḣ7 ≲ ∥Λxg∥ L 2 + ∥f ∥ H 6 ≲ ∥⟨x⟩ 2 g∥ 1/2 L 2 ∥g∥ 1/2 H 2 + ∥u∥ X ≲ t γ/2+ε/2 ∥u∥ X as desired.

□

Lemma 21 (Dispersion inequality for the wave equation) Let 2 ≤ p ≤ ∞ and p ′ be its conjugate exponent. We have :

∥e itΛ g∥ L p ≲ t -1+2/p ∥Λ 2-4/p g∥ L p ′
The previous theorem can be found in [START_REF] Shatah | Geometric wave equations[END_REF]. The following two lemmas come from [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF] (appendix).

Lemma 22 (Inequality L 1 -L 2 ) We have that

∥g∥ L 1 ≲ ∥|x|g∥ 1/2 L 2 ∥|x| 2 g∥ 1/2 L 2
Lemma 23 (Fractional integration) For any α > 0 and any 1 < p, q < ∞ such that α = 3 p -3 q , we have

∥g∥ L q ≲ ∥Λ α g∥ L p If furthermore p ≤ 2 ≤ q, ∥e itΛ g∥ L q ≲ ∥Λ α g∥ L p
Finally, let us recall the following lemma (see [START_REF] Bahouri | Fourier analysis and nonlinear partial dierential equations[END_REF], Proposition 2.22) :

Lemma 24 (Interpolation of Besov spaces) Let κ > 0. There exists θ = θ(κ) ∈ (0, 1) such that, for any g :

∥g∥ Ḃ0 2,1 ≲ ∥Λ -κ g∥ θ L 2 ∥Λ 1/2 g∥ 1-θ L 2
4.1.2 Identities for the wave symbol Lemma 25 Let us consider

φ(ξ, η) = φ ϵ1,ϵ2ϵ3 (ξ, η) = ϵ 1 |ξ| 0 -ϵ 2 |ξ -η| 0 -ϵ 3 |η| 0 with ϵ i ∈ {-1, 1}, i = 1, 2, 3.
Denote by g 0 the matrix associated to the norm | • | 0 , that is :

|ξ| 2 0 = ξ • g 0 ξ, g 0 = τ 2 0 I 3 + b 0 ⊗ b 0 + d 0 ⊗ d 0
Then :

ϵ 1 |ξ| 0 ∇ ξ φ(ξ, η) = -ϵ 3 |η| 0 ∇ η φ(ξ, η) -ϵ 2 g 0 ξ -η |ξ -η| 0 φ(ξ, η)

Proof

We compute :

ϵ 1 |ξ| 0 ∇ ξ φ(ξ, η) = g 0 ξ -ϵ 1 ϵ 2 |ξ| 0 |ξ -η| 0 g 0 (ξ -η) = -ϵ 2 g 0 (ξ -η) |ξ -η| 0 (ϵ 1 |ξ| 0 -ϵ 2 |ξ -η| 0 -ϵ 3 |η| 0 ) -g 0 (ξ -η) + g 0 ξ -ϵ 2 ϵ 3 |η| 0 |ξ -η| 0 g 0 (ξ -η) = -ϵ 2 g 0 (ξ -η) |ξ -η| 0 φ(ξ, η) -ϵ 3 |η| 0 ∇ η φ(ξ, η)
Hence the result.

□

Lemma 26 Let g 0 be the matrix associated to the norm | • | 0 as in the previous lemma, and | • | 0 ′ the norm associated to g -1 0 . The following identities hold :

φ +,++ (ξ, η) = - |ξ -η| 0 |η| 0 |ξ| 0 + |η| 0 + |ξ -η| 0 |∇ η φ +,++ (ξ, η)| 2 0 ′ 2φ +,+-(ξ, η) = (|ξ| 0 + |η| 0 + |ξ -η| 0 )|ξ -η| 0 |η| 0 |ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η) |∇ η φ +,+-(ξ, η)| 2 0 ′ 2φ +,-+ (ξ, η) = (|ξ| 0 + |η| 0 + |ξ -η| 0 )|ξ -η| 0 |η| 0 |ξ| 0 |η| 0 + ξ • g 0 η |∇ η φ +,-+ (ξ, η)| 2 0 ′ 2φ -,+-(ξ, η) = - (|ξ| 0 + |η| 0 + |ξ -η| 0 )|ξ -η| 0 |η| 0 |ξ| 0 |η| 0 + ξ • g 0 η |∇ η φ -,+-(ξ, η)| 2 0 ′ 2φ -,-+ (ξ, η) = - (|ξ| 0 + |η| 0 + |ξ -η| 0 )|η| 0 |ξ -η| 0 |ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η) |∇ η φ -,-+ (ξ, η)| 2 0 ′ φ -,--(ξ, η) = |ξ -η| 0 |η| 0 |ξ| 0 + |η| 0 + |ξ -η| 0 |∇ η φ -,--(ξ, η)| 2 0 ′
at any point where the denominator does not vanish.

Proof Case + + + : We develop :

|ξ -η| 0 |η| 0 |∇ η φ +,++ (ξ, η)| 2 0 ′ = |ξ -η| 0 |η| 0 g 0 η |η| 0 - g 0 (ξ -η) |ξ -η| 0 • g -1 0 g 0 η |η| 0 - g 0 (ξ -η) |ξ -η| 0 = 2 (|η| 0 |ξ -η| 0 -η • g 0 (ξ -η))
On the other hand,

φ +,++ (ξ, η) (|ξ| 0 + |η| 0 + |ξ -η| 0 ) = |ξ| 2 0 -|η| 2 0 -|ξ -η| 2 0 -2|η| 0 |ξ -η| 0 = 2η • g 0 (ξ -η) -2|η| 0 |ξ -η| 0
by writing ξ = (ξ -η) + η and developing the square.

Case ---: In this case, we note that

|∇ η φ -,--(ξ, η)| = |∇ η φ +,++ (ξ, η)|, φ -,--(ξ, η) = -φ +,++ (ξ, η)
so the corresponding identity follows from the previous one. More generally, one identity is equivalent to the corresponding identity with all opposite signs.

Case + + -: Let us develop :

|η| 0 |ξ -η| 0 |∇ η φ +,+-(ξ, η)| 2 0 ′ = 2 (|η| 0 |ξ -η| 0 + η • g 0 (ξ -η))
On the other hand,

φ +,+-(ξ, η) (|ξ| 0 + |ξ -η| 0 -|η| 0 ) = |ξ| 2 0 -|ξ -η| 2 0 -|η| 2 0 + 2|ξ -η| 0 |η| 0 = 2 (|ξ -η| 0 |η| 0 + η • g 0 (ξ -η))
Finally, we have that

(|ξ| 0 + |ξ -η| 0 -|η| 0 ) (|ξ| 0 + |ξ -η| 0 + |η| 0 ) = |ξ| 2 0 +|ξ-η| 2 0 +2|ξ| 0 |ξ-η| 0 -|η| 2 0 = 2 (|ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η))
Therefore, by summing up everything, we nd :

2φ +,+-(ξ, η) (|ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η)) = (|ξ| 0 + |η| 0 + |ξ -η| 0 ) |ξ -η| 0 |η| 0 |∇ η φ +,+-(ξ, η)| 2 0 ′
which is the desired identity.

The --+ case is analogous.

Case + -+ : This case is similar to the + +case by exchanging the role of η and ξ -η :

|η| 0 |ξ -η| 0 |∇ η φ +,-+ (ξ, η)| 2 0 ′ = 2 (|η| 0 |ξ -η| 0 + η • g 0 (ξ -η)) while φ +,-+ (ξ, η) (|ξ| 0 -|ξ -η| 0 + |η| 0 ) = 2 (|ξ -η| 0 |η| 0 + η • g 0 (ξ -η))
and

(|ξ| 0 -|ξ -η| 0 + |η| 0 ) (|ξ| 0 + |ξ -η| 0 + |η| 0 ) = |ξ| 2 0 -|ξ -η| 2 0 + 2|ξ| 0 |η| 0 + |η| 2 0 = 2 (|ξ| 0 |η| 0 + ξ • g 0 η)
Hence :

2φ +,-+ (ξ, η) (|ξ| 0 |η| 0 + ξ • g 0 η) = (|ξ| 0 + |ξ -η| 0 + |η| 0 ) |ξ -η| 0 |η| 0 |∇ η φ +,-+ (ξ, η)| 2
The -+case is analogous. □

Lemma 27 The following identities hold :

|ξ| 0 ∇ ξ φ +,+0 (ξ, η) = (|ξ| 0 -|ξ -η| 0 ) ∇ η φ +,+0 (ξ, η) + g 0 η |ξ| 0 ∇ ξ φ -,-0 (ξ, η) = (|ξ| 0 -|ξ -η| 0 ) ∇ η φ -,-0 (ξ, η) -g 0 η

Proof

We compute :

|ξ| 0 ∇ ξ φ +,+0 = g 0 ξ - |ξ| 0 |ξ -η| 0 g 0 (ξ -η) = -|ξ -η| 0 ∇ η φ +,+0 (ξ, η) + g 0 η + |ξ| 0 ∇ η φ +,+0 (ξ, η)
The other identity is symmetric.

□

Inequalities with a symbol

Let µ be a symbol. We denote by T µ the operator dened by :

T µ (g, h)(ξ) = µ(ξ, η) g(ξ -η) h(η) dη
Lemma 28 (Symbols) Let 1 < p, q, r < ∞ be such that 1 p + 1 q = 1 r , and µ 0 a symbol of order 0. Then

∥T µ0 (g, h)∥ L r ≲ ∥g∥ L p ∥h∥ L q
If M > 3, we also have

∥T µ0 (g, h)∥ L 2 ≲ ∥g∥ L 2 ∥h∥ W 1,M
Again, see the appendix of [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF].

With respect to [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF], we however need a renement of this lemma involving Besov spaces :

Lemma 29 Let µ 0 be a symbol of order 0. For any f ∈ L 2 , g ∈ Ḃ0

∞,1 , we have :

∥T µ0 (f, g)∥ L 2 ≲ ∥f ∥ L 2 ∥g∥ Ḃ0 ∞,1

Proof

We follow the proof of lemma 28 in [START_REF] Pusateri | Space-time resonances and the null condition for rst-order systems of wave equations[END_REF], adapting only at few steps where estimates fail on L ∞ but not on Ḃ0

∞,1 .

Away from the coordinate axes {ξ = 0} ∪ {η = 0} ∪ {ξ -η = 0}, the Coiman-Meyer theorem [CM78] applies to give a control by ∥f ∥ L 2 ∥g∥ L ∞ , and the Ḃ0 ∞,1 -norm is stronger than the L ∞ -norm on the intersection of these spaces.

Consider now the case |η| ≪ |ξ -η|, |ξ| ∼ 1. Notice that the case |ξ -η| ≪ |η|, |ξ| ∼ 1 is symmetric and the case |ξ| ≪ |η|, |ξ -η| can be reduced to the previous ones by duality. This allows to consider only : j T µ0 (P <j-100 f, P j g)

where P <k denotes the Littlewood-Paley projection on low frequencies of order 2 k and P k = P <k+1 -P <k . The denition of the class of symbols considered here ensures that, close to the axis {η = 0}, we can write µ 0 (ξ, η) = A |η|, η |η| , ξ for some smooth A. By homogeneity, we write µ 0 (ξ, η)

= A |η| |ξ| , η |η| , ξ |ξ| and expand in |η| |ξ| : µ 0 (ξ, η) = L k=0 |η| k |ξ| k m k η |η| , ξ |ξ + remainder
where the m k are smooth. If L is large enough, the singularity of the remainder at η = 0 becomes weak enough to allow the use of the Coiman-Meyer theorem and we may focus on the nite sum in k.

We then expand each m k in spherical harmonics :

µ 0 (ξ, η) = L k=0 l,l ′ a k,l,l ′ |η| k |ξ| k Z l η |η| Z l ′ ξ |ξ|
The spherical harmonics Z l are bounded on L 2 , and on Ḃ0

∞,1 by Bernstein's lemma. Furthermore, the bounds grow polynomially in l, l ′ while the a k,l,l ′ decay faster than any polynomial by smoothness of m k . Therefore, up to adding a constant eventually, we may disregard the summation in l, l ′ in what follows. Since the summation in k is nite, we also only consider the case of only one xed k. But then :

j Λ -k P <j-100 Λ k f (P j g) L 2 ≲   j 2 -2jk P <j-100 Λ k f 2 (P j g) 2   1/2 L 2
by the Littlewood-Paley square function estimate. Let us now distinguish two cases, depending on whether we prefer having f in L 2 and g in Ḃ0

∞,1 or the other way around. In the rst case, we write by Hölder's inequality :

  j 2 -2jk P <j-100 Λ k f 2 (P j g) 2   1/2 L 2 ≲ sup j 2 -jk P <j-100 Λ k f L 2   j (P j g) 2   1/2 L ∞
By the Littlewood-Paley maximal function estimate,

sup j 2 -jk P <j-100 Λ k f L 2 ≲ ∥f ∥ L 2
On the other hand,

  j (P j g) 2   1/2 L ∞ ≤   j ∥P j g∥ 2 L ∞   1/2 = ∥g∥ Ḃ0 ∞,2 ≲ ∥g∥ Ḃ0 ∞,1
In the second case, we apply again Hölder's inequality :

  j 2 -2jk P <j-100 Λ k f 2 (P j g) 2   1/2 L 2 ≲ sup j 2 -jk P <j-100 Λ k f L ∞   j (P j g) 2   1/2 L 2
and by the Littlewood-Paley square function estimate :

  j (P j g) 2   1/2 L 2 ≲ ∥g∥ L 2
While for f we estimate by :

sup j 2 -jk P <j-100 Λ k f L ∞ ≤ sup j 2 -jk l<j ∥P l Λ k f ∥ L ∞ ≤ sup j l<j 2 -(j-l)k ∥P l f ∥ L ∞ ≤ ∥f ∥ Ḃ0 ∞,1
Putting everything together, we get the desired bound.

□

The next lemma is a computation that will be useful several times.

Lemma 30 Let f, g be two smooth enough functions and µ 0 a symbol of order 0. Then there exists symbols of order 0, all denoted by µ ′ 0 even though they might dier in each term, such that :

∇ ξ R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη = R d e itφ(ξ,η) µ ′ 0 (ξ, η) f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|η| -1 |ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η g(t, η) dη + |ξ| -1 R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη
where φ denotes any of the φ ϵ1,ϵ2ϵ3 , ϵ 1 , ϵ 2 , ϵ 3 ∈ {+, -, 0}.

Proof

We rst develop the expression by applying ∇ ξ :

∇ ξ R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη = R d e itφ(ξ,η) it∇ ξ φ(ξ, η)µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) ∇ ξ µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ 0 (ξ, η)∇ ξ ∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)∇ ξ |ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η|∇ ξ f (t, ξ -η) g(t, η) dη
Note now that, for any symbol µ 0 of order 0, there exists µ

(1) 0 and µ

(2) 0 of order 0 such that :

∇ ξ µ 0 = µ (1) 0 |ξ| + µ
(2) 0

|ξ -η|

This applies to both µ 0 and ∇ η φ, which is also a symbol of order 0. Even though the symbols µ

(1) 0 , µ

(2) 0 may dier and depend on µ 0 , we only keep track of them being symbols of order 0 and denote them all by µ ′ 0 in what follows. Up to a change of sign, which reduces to changing the symbol, we may also replace ∇ ξ f (t, ξ -η) by ∇ η f (t, ξ -η). Concerning |ξ -η|, we can compute as well that ∇ ξ |ξ -η| is a symbol of order 0. Finally, on the rst term above, we may apply an integration by parts in frequency to get :

∇ ξ R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη = R d e itφ(ξ,η) ∇ η µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)∇ η |ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η) f (t, ξ -η) g(t, η) dη + |ξ| -1 R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η) dη Again, ∇ η |ξ -η| is a symbol of order 0 and ∇ η µ ′ 0 = µ ′′ 0 |η| + µ ′′′ 0
|ξ-η| and we reduce the expression to :

∇ ξ R d e itφ(ξ,η) µ 0 (ξ, η)∇ η φ(ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη = R d e itφ(ξ,η) µ ′ 0 (ξ, η)|η| -1 |ξ -η| f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η) f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η) dη + R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η g(t, η) dη + |ξ| -1 R d e itφ(ξ,η) µ ′ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη
This is the desired form.

□

Lemma 31 Let N be a nonlinearity satisfying the nonresonance conditions, and set

h = e ±itΛ N (Λu, v)
Then

∥h∥ H 6 ≲ t -2+τ +γ/2 ∥u∥ X ∥v∥ X , ∥h∥ H 5 ≲ t -2+τ +b ∥u∥ X ∥v∥ X , ∥h∥ H 4 ≲ t -2+τ ∥u∥ X ∥v∥ X ∥xh∥ H 6 ≲ t -1+τ +γ/2 ∥u∥ X ∥v∥ X , ∥xh∥ H 5 ≲ t -1+τ +b ∥u∥ X ∥v∥ X , ∥xh∥ H 4 ≲ t -1+τ ∥u∥ X ∥v∥ X
for τ > 0 that can be made arbitrarily small by choosing adequately N big enough, ε small enough.

If we set instead

h = Λ -1 N (Λu, v)
Then

∥h∥ H 7 ≲ t -4/3+τ +b ∥u∥ X ∥v∥ X

Proof

Any nonlinearity N can be written as a sum of interactions :

N = ϵ2,ϵ3∈{-,0,+} N ϵ2ϵ3
where

N ϵ2ϵ3 (•, •) = N (P ϵ2 (D)•, P ϵ3 (D)•)
that is, N ϵ2ϵ3 only deals with the interaction between the ϵ 2 part and the ϵ 3 part. In the following, we call "± -± interaction" any such term with ϵ 2 , ϵ 3 ∈ {-, +}, "0 -± interaction" any such term with ϵ 2 = 0, ϵ 3 ∈ {-, +}, and likewise "± -0 interaction", "0 -0 interaction".

Norm H 6 We decompose the nonlinearity and start by controlling the ± -± interactions, that is terms of the form

F -1 e itφ ±,±± (ξ,η) ∇ η φ ±,±± (ξ, η)µ 0 (ξ, η)|ξ -η| f ± (t, ξ -η) f ± (t, η)dη
where we used the notation f = e tA(D) u, g = e tA(D) v. In the following, we omit the superscripts on φ and on u, v, f, g. µ 0 is, as before, a symbol of order 0.

We can apply an integration by parts :

e itφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η)dη = t -1 e itφ(ξ,η) ∇ η 1 i µ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η) dη
Now, we distribute the derivative, using the fact that

∇ η µ 0 (ξ, η) = µ ′ 0 (ξ,η) |ξ-η| + µ ′′ 0 (ξ,η) |η|
for some symbols µ ′ 0 , µ ′′ 0 of order 0, and ∇ η |ξ -η| = µ ′′′ 0 (ξ, η) for some symbol µ ′′′ 0 of order 0. Since the precise expression of these symbols bears no importance whatsoever, we will (here and in the following) denote them all with the same notation µ 0 (but keeping in mind that they might actually dier). Therefore, we get :

= t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) g(t, η)dη + t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η)dη + t -1 e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) g(t, η)dη + t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η g(t, η)dη
where the symbol µ 0 may change from term to term, and where we used the fact that

∇ η µ 0 = µ ′ 0 |η| + µ ′′ 0 |ξ-η| .
We denote these terms by (1.1), (1.2), (1.3), (1.4) and we estimate them by using in particular the lemmas 28 and 19 :

∥(1.1)∥ H 6 = t -1 ∥T µ0 (Λu, Λ -1 v)∥ H 6 ≲ t -1 ∥u∥ W 2,∞-∥v∥ H 5 + t -1 ∥u∥ W 8,∞-∥Λ -1 v∥ L 2 ≲ t -2+δ ∥u∥ X ∥v∥ X + t -2+δ ∥u∥ X ∥v∥ X ∥(1.2)∥ H 6 = t -1 ∥T µ0 (e ±itΛ Λxf, v)∥ H 6 ≲ t -1 ∥xf ∥ H 7 ∥v∥ W 7,∞-≲ t -2+δ+ε+ γ 2 ∥u∥ X ∥v∥ X ∥(1.3)∥ H 6 = t -1 ∥T µ0 (u, v)∥ H 6 ≲ t -1 ∥u∥ H 6 ∥v∥ W 8,∞-≲ t -2+δ ∥u∥ X ∥v∥ X ∥(1.4)∥ H 6 = t -1 ∥T µ0 (Λu, e ±itΛ xg)∥ H 6 ≲ t -1 ∥u∥ W 8,∞-∥xg∥ H 6 ≲ t -2+δ+b ∥u∥ X ∥v∥ X
For the second inequality, we used the fact that ∥xf ∥ H 6 ≲ t b ∥u∥ X and the lemma 20. Finally, since b ≤ γ+ε 2 , we get the desired result.

If we add a Λ -1 in front, the only additional terms to control are ∥Λ -1 (1.i)∥ L 2 , with i = 1, 2, 3, 4. We then apply the lemma 23 to recover a L 6/5 , then we apply again the lemmas 28 and 19 :

∥(1.1)∥ L 6/5 ≲ t -1 ∥u∥ W 1,3 ∥Λ -1 v∥ L 2 ≲ t -4/3+δ ∥u∥ X ∥v∥ X ∥(1.2)∥ L 6/5 ≲ t -1 ∥u∥ W 1,3 ∥xg∥ L 2 ≲ t -4/3+δ ∥u∥ X ∥v∥ X ∥(1.3)∥ L 6/5 ≲ t -1 ∥u∥ L 2 ∥v∥ W 1,3 ≲ t -4/3+δ ∥u∥ X ∥v∥ X ∥(1.4)∥ L 6/5 ≲ t -1 ∥xf ∥ H 1 ∥v∥ L 3 ≲ t -4/3+δ ∥u∥ X ∥v∥ X
Let us now consider the case of a 0 -±, ± -0 or 0 -0 interaction. This time, we can directly estimate :

∥T µ0 (Λu, v)∥ H 6 ≲ ∥u∥ H 7 ∥v∥ W 7,∞-
but since at least one of u or v is of type 0, the ∥ • ∥ X norm gives a stronger decrease :

∥T µ0 (Λu, v)∥ H 6 ≲ t -2+δ ∥u∥ X ∥v∥ X
In presence of a Λ -1 , we recover as above a L 6/5 norm and obtain the same gain :

∥T µ0 (Λu, v)∥ L 6/5 ≲ t -4/3+δ ∥u∥ X ∥v∥ X
Norm H 5 The H 5 norm can be estimated the same way as the H 6 norm, by noticing that the term involving a t γ/2 isn't present here ; however, in (1.3), ∥xf ∥ H 7 becomes ∥xf ∥ H 6 and one exponent t b remains.

Norm H 4 The H 4 norm can be estimated just like the H 6 and H 5 norms by noticing that we dropped the derivatives enough to avoid the presence of γ or b.

Norm with weight x

We start by considering the ± -± interactions. In Fourier space, we write, using lemma 30 :

∇ ξ e itφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η)dη = e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η g(t, η)dη + e itφ(ξ,η) |ξ| -1 ∇ η φµ 0 (ξ, η)|ξ -η| f (t, ξ -η) g(t, η)dη
Recall that we allowed again µ 0 to denote a general symbol of order 0 (that may be dierent at each line and even in each term). We denote these terms by (2.1), (2.2), (2.3), (2.4), (2.5). Notice that (2.1) = t(1.3), (2.2) = t(1.1), (2.3) = t(1.2), (2.4) = t(1.4), so that these terms have already been estimated above. It only remains to estimate (2.5), but it is identical to the term we estimated in H 6 norm without weight x and with a Λ -1 in front, and therefore we can procede the same way.

For the 0 -± interactions, we can procede the same way by noticing that, in this case, ∇ η φ = ±g 0 η |η|0 (with the notation of lemma 25) and therefore never vanishes, which allows to write :

µ 0 (ξ, η) = ∇ η φµ ′ 0 (ξ, η)
for some other symbol of order 0 µ ′ 0 , and then apply again lemma 30 :

∇ ξ e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η) g(t, η) dη = e itφ(ξ,η) µ 0 (ξ, η) u 0 (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η)∇ η g(t, η)dη

+ e itφ(ξ,η) |ξ| -1 µ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 u 0 (t, ξ -η) g(t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η u 0 (t, ξ -η) g(t, η)dη
All these terms can be estimated the same way as before, by noticing that Λu 0 behaves at least as well as f ± . For the ± -0 integrations, we can also apply lemma 30 for the same reason :

∇ ξ e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η) v 0 (t, η)dη = e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η v 0 (t, η)dη + e itφ(ξ,η) |ξ| -1 µ 0 (ξ, η)|ξ -η| f (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) v 0 (t, η)dη
This time, we may however have more singular terms to control, like Λ -1 v 0 ou xv 0 . But we can estimate these terms in L 6 , apply the lemma 23 and recover terms with a strong decay.

For the 0 -0 interactions, we cannot apply lemma 30 but it is not needed :

∇ ξ e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η) v 0 (t, η)dη = e itφ(ξ,η) tµ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) |ξ| -1 µ 0 (ξ, η)|ξ -η| u 0 (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) µ 0 (ξ, η) u 0 (t, ξ -η) v 0 (t, η)dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η u 0 (t, ξ -η) v 0 (t, η)dη
All these terms are simpler to estimate than before, except the rst one for which we write :

t∥T µ0 (Λu 0 , v 0 )∥ H k ≲ t∥u 0 ∥ W k+2,∞-∥v 0 ∥ H k ≲ t -2+2a+δ ∥u∥ 2 X as desired.
We conclude that, with a weight x, we have the same estimate with a factor t -1+τ instead of t -2+τ . □

Corollary 32 Consider now the system (5) + (6). Then :

∥∂ t f ± ∥ H 6 ≲ t -2+τ +γ/2 ∥u∥ 2 X , ∥∂ t f ± ∥ H 5 ≲ t -2+τ +b ∥u∥ 2 X , ∥∂ t f ± ∥ H 4 ≲ t -2+τ ∥u∥ 2 X ∥∂ t xf ± ∥ H 6 ≲ t -1+τ +γ/2 ∥u∥ 2 X , ∥∂ t xf ± ∥ H 5 ≲ t -1+τ +b ∥u∥ 2 X , ∥∂ t xf ± ∥ H 4 ≲ t -1+τ ∥u∥ 2 X
where τ > 0 depends only on ε, N .

Energy estimate

The goal of this section is to prove the following estimate :

Proposition 33 (Energy estimate) For any ϵ ∈ {-, 0, +}, we have :

∥u ϵ (t)∥ 2 H N ≲ ∥U (t = 1)∥ 2 H N + t 2ε ∥u∥ 3 X
For this, let us write the equation satised by U :

∂ t U + A 0 (D)U = N (ΛU, U )
By proposition 12, we may write this as :

∂ t U = 3 i=1 (M 0i + M 1i (U ))∂ i U
for some symmetric matrices M 0i and some linear, symmetric-matrices-valued applications M 1i . Therefore, for |α| ≤ N :

∂ t ∂ α U = 3 i=1 (M 0i + M 1i (U ))∂ i ∂ α U + 3 i=1 (∂ α (M 1i (U )∂ i U ) -M 1i (U )∂ i ∂ α U )
Hence :

∂ t ∥∂ α U ∥ 2 L 2 = ∂ α U • 3 i=1 (M 0i + M 1i (U ))∂ i ∂ α U dx + ∂ α U • 3 i=1 (∂ α (M 1i (U )∂ i U ) -M 1i (U )∂ i ∂ α U ) dx
By symmetry of the matrices, the rst term can be rewritten as :

∂ α U • 3 i=1 (M 0i + M 1i (U ))∂ i ∂ α U dx = - 1 2 ∂ α U • 3 i=1 ∂ i M 1i (U )∂ α U dx
Finally, applying the Moser estimate of lemma 18 and Hölder inequalities :

∂ t ∥∂ α U ∥ 2 L 2 ≲ ∥U ∥ 2 H N ∥∇U ∥ L ∞
We then notice that, since U = u + + u -+ u 0 , we have that

∥U ∥ W 1,∞ ≤ ∥u + ∥ W 1,∞ + ∥u -∥ W 1,∞ + ∥u 0 ∥ W 1,∞ ≲ t -1 ∥u∥ X + ∥u 0 ∥ H 6 ≲ t -1 ∥u∥ X
Therefore, we showed :

∂ t ∥U ∥ 2 H N ≲ ∥U ∥ 2 H N ∥U ∥ W 1,∞ ≲ t 2ε-1 ∥u∥ 3 X This implies : ∥U ∥ 2 H N ≲ ∥U (t = 1)∥ 2 H N + t 2ε ∥u∥ 3 X
We deduce the same inequality for u ± instead of U by applying the projection operators and the identity of Parseval : since these projection operators are pointwise orthogonal, we have that

| u ± (ξ)| ≤ | U (ξ)| and thus ∥u ± ∥ H N ≤ ∥U ∥ H N .
Conclusion ε, N can be chosen idependently of any other parameter.

4.3

Estimates for u 0

In this section, we establish all the estimates concerning u 0 by making use of the constraint equation ( 6) and its structure, summarized in the following proposition. In the remaining sections, we will only consider u + and u -.

Proposition 34 (Estimates on u 0 ) u 0 satises the following bounds :

∥u 0 ∥ H 7 ≲ t -1 ∥u∥ 2 X , ∥u 0 ∥ H N ≲ t ε-1 ∥u∥ 2 X , ∥u 0 ∥ W 1,∞-≲ t -2+a ∥u∥ 2 X , ∥Λxu 0 ∥ H 4 ≲ t -1+a ∥u∥ 2 X , ∥Λxu 0 ∥ H 6 ≲ t -1+a+γ/2 ∥u∥ 2 X H 7 estimate It is a consequence of lemma 31 : ∥u 0 ∥ H 7 ≲ t -4/3+γ/2+τ ∥u∥ 2 X ≲ t -1 ∥u∥ 2 X provided γ, τ are small enough in front of 1.
H N estimate By using the fact that the nonlinearity is a product :

∥Λ N u 0 ∥ L 2 ≲ ∥Λ N -1 (U ∇U )∥ L 2 ≲ ∥U ∥ W 1,∞ ∥U ∥ H N ≲ t ε-1 ∥u∥ 2 X
This controls the norm ḢN , but since we already controlled the L 2 norm above, we deduce by interpolation

that ∥u 0 ∥ H N ≲ t ε-1 ∥u∥ 2 X . L ∞-estimate Likewise, ∥Λu 0 ∥ L ∞-≲ ∥U ∇U ∥ L ∞-≲ t -2+ ∥u∥ 2 X and ∥u 0 ∥ L ∞-= ∥Λ -1 N (ΛU, U )∥ L ∞-≲ ∥N (ΛU, U )∥ L 3-
Let us now use the structure of the nonlinearity. For the ± -± interactions, we apply the same integrations by parts as in the proof of lemma 31 (but this time we will need to control this in L 3 ) :

Λu 0 (t, ξ) = e itφ(ξ,η) ∇ η φ(ξ, η)b(ξ, η)|ξ -η| f (t, ξ -η) f (t, η) dη = t -1 e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) f (t, η) dη + t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) f (t, η) dη + t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) f (t, η) dη + t -1 e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η f (t, η) dη
that we denote by (1), (2), (3), (4). Then :

∥(1)∥ L 3-≲ t -1 ∥u∥ 2 L 6-≲ t -7/3+ ∥u∥ 2 X ∥(2)∥ L 3-≲ t -1 ∥Λu∥ L 12-∥Λ -1 e ±itΛ f ∥ L 4 ≲ t -7/3+ ∥u∥ X ∥f ∥ L 4/3 ≲ t -7/3+ ∥u∥ X ∥⟨x⟩f ∥ L 2 ≲ t -7/3+b+ ∥u∥ 2 X ∥(3)∥ L 3-≲ t -1 ∥Λe ±itΛ xf ∥ L 3 ∥u∥ W 1,∞-≲ t -7/3+ ∥Λ⟨x⟩ 2 f ∥ H 1 ∥u∥ 2 X ≲ t -7/3+γ+ ∥u∥ 2 X ∥(4)∥ L 3-≲ t -1 ∥u∥ W 1,12-∥e ±itΛ xf ∥ L 4 ≲ t -7/3+ ∥u∥ X ∥Λxf ∥ L 4/3 ≲ t -7/3+γ+ ∥u∥ 2 X
In particular, if γ > 0 is small enough, we indeed have a t -2+ decay above, with -2+ arbitrarily close of -2 (in a way depending only on ∞-). For the 0 -± or ± -0 interactions, we can also apply an integration by parts and the estimate on (1) is identical ; for the 0 -± interaction, the estimates of (2), (4) are identical while

∥(3)∥ L 3-≲ t -1 ∥Λxu 0 ∥ L 3 ∥u∥ L ∞-≲ t -2+ ∥Λxu 0 ∥ L 2 ∥u∥ X ≲ t -3+ ∥u∥ 2 X
Finally, for a ± -0 interaction, the estimate on (3) is identical and

∥(2)∥ L 3-≲ t -1 ∥u∥ W 1,6-∥Λ -1 u 0 ∥ L 6 ≲ t -5/3+δ+ ∥u∥ X ∥u 0 ∥ L 2 ≲ t -8/3+δ+ ∥u∥ 2 X ∥(4)∥ L 3-≲ t -1 ∥u∥ W 1,6-∥xu 0 ∥ L 6 ≲ t -5/3+δ+ ∥u∥ X ∥Λxu 0 ∥ L 2 ≲ s -8/3+δ+ ∥u∥ 2 X
It only remains the 0 -0 interaction, for which we do not need to integrate by parts :

∥T µ0 (Λu 0 , u 0 )∥ L 3-≲ ∥u 0 ∥ W 1,∞-∥u 0 ∥ W 1,3-≲ t -7/3+ ∥u∥ 2 X
Therefore, summing every contribution we get :

∥u 0 ∥ W 1,∞-≲ t -2+a ∥u∥ 2 X
with a > 0 that we can choose arbitrarily small, depending only on ∞-.

Estimate with weight x In contrast with others, we only estimate ∥Λxu 0 ∥ H 6 and not ∥xu 0 ∥ L 2 , because the presence of a Λ -1 is too singular otherwise. Notice that

∥Λxu 0 ∥ H 6 ≲ ∥xΛu 0 ∥ H 6 + ∥u 0 ∥ H 6
The estimate on ∥u 0 ∥ H 6 is a consequence of lemma 31. Furthermore, since Λu 0 = N (U, ∇U ), we can also apply lemma 31 and deduce that

∥Λxu 0 ∥ H 6 ≲ t -1+τ +γ/2 ∥u∥ 2 X and ∥Λxu 0 ∥ H 4 ≲ t -1+τ ∥u∥ 2 X
Therefore, here, we obtain the condition a ≥ τ = τ (ε, N ).

Conclusion

We showed the desired inequalities for all the norms involving u 0 . The exponent a has only to satisfy a ≥ τ (ε, N ), and we need to choose ∞close enough of +∞ (once ε, N are xed).

4.4

Estimate of the H 6 norm

In this section, we want to control ∥u∥ H 6 , where u = u + or u = u -. One has that ∥u∥ H 6 = ∥f ∥ H 6 (with the same convention of omitting the ± superscript).

Let us write

f (t) = f (1) + t 1 ∂ s f (s) ds
But by lemma 31,

∥∂ s f (s)∥ H 6 ≲ s -2+γ/2+τ ∥u∥ 2 X In particular, if τ = τ (ε, N ), γ are small enough, ∥f (t)∥ H 6 ≲ ∥f (1)∥ H 6 + t 1 s -2+γ/2+τ ∥u∥ 2 X ds ≲ ∥f (1)∥ H 6 + ∥u∥ 2 X as desired.

4.5

Estimate of the L 2 norm with weight x

The goal of this section is to prove the following estimate :

Proposition 35 (First weighted estimate) For ϵ = + ou ϵ = -, we have

∥xf ϵ (t)∥ H 5 ≤ ∥xf ϵ (t = 1)∥ H 5 + C∥u∥ 2 X (1 + ∥u∥ X ) , ∥xf ϵ (t)∥ H 6 ≤ ∥xf ϵ (t = 1)∥ H 6 + Ct b ∥u∥ 2 X (1 + ∥u∥ X )
General idea We saw in lemma 31 that ∂ t xf was estimated in H 6 with a t -1+τ +γ/2 decay. If we integrate this relation, we obtain a t τ +γ/2 growth.

In order to get a better estimate, we will use the fact that we have here an integral in time. More precisely, the weight x acts as a derivative in Fourier, and if this derivative hits the exponential e itφ , we can use lemma 25 to transform ∇ ξ φ into ∇ η φ and φ. On the rst term, we may apply an integration by parts in frequency to win an additional decay 1/t ; on the second one, we can integrate by parts in time and win an additional decay 1/t through the use of lemma 31.

In the rst subsections, we will only consider ± -± interactions.

In order to use lemma 25, we need the (articial) presence of a factor |ξ| 0 . Therefore, in order to control the L 2 norm without derivative, we will need to apply a Λ -1 in front ; however, in order to estimate the Ḣ6 norm, it will be enough to estimate the H 5 norm of the computed terms.

± -± interactions

Simplication of the terms Let us write in Fourier :

|ξ| 0 ∇ ξ t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) s|ξ| 0 ∇ ξ φ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) |ξ| 0 ∇ ξ ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ| 0 f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ| 0 |ξ -η|∇ ξ f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) sφ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds - t 1 e isφ(ξ,η) sϵ 1 ϵ 2 |η| 0 ∇ η φ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + (same remaining terms)
by lemma 25. On these terms, we can apply an integration by parts in frequency or in time, to obtain :

|ξ| 0 ∇ ξ t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) s∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η|∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∂ s f (s, η) dηds + e itφ(ξ,η) t∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (t, ξ -η) f (t, η) dη + e iφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η) f (1, ξ -η) f (1, η)η dη + t 1 e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η (|ξ| 0 ∇ ξ + ϵ 1 ϵ 2 |η| 0 ∇ η ) φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ||ξ -η|∇ ξ f (s, ξ -η) f (s, η) dηds
where we used the fact that |η| 0 = |η|µ 0 , and likewise for ξ. We can start simplifying the expression by noticing that some of the terms are symmetric if we exchange the role of ξ -η and η : in particular, lines 5 and 9, or 6 and 7. Furthermore, if we write |ξ| = (|ξ -η| + |η|)µ 0 , we can express line 10 as a combination of lines 5 and 9. Finally, by lemma 25, we have that

∇ η (|ξ| 0 ∇ ξ + ϵ 1 ϵ 2 |η| 0 ∇ η ) φ(ξ, η) = µ 0 ∇ η φ + µ ′ 0 |ξ -η| -1 φ
It thus only remains to study

|ξ| 0 ∇ ξ t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) s∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η|∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∂ s f (s, η) dηds + e itφ(ξ,η) t∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (t, ξ -η) f (t, η) dη + e iφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η) f (1, ξ -η) f (1, η)η dη + t 1 e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) φ(ξ, η)µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ||ξ -η|∇ ξ f (s, ξ -η) f (s, η) dηds
On each of these terms, we apply an integration by parts and get :

|ξ| 0 ∇ ξ t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) µ 0 (ξ, η)∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 ∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∂ s ∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∂ s f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η)∂ s f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∂ s f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∂ s ∇ η f (s, η) dηds + e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η f (t, η) dη + e iφ(ξ,η) µ 0 (ξ, η) f (1, ξ -η) f (1, η)η dη + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η||ξ -η| -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η) f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ 2 η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 |η| -1 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ ξ f (s, ξ -η)∇ η f (s, η) dηds
where we simplied again by taking symmetries and redundancies into account.

Let us separate these contributions into :

|ξ| 0 ∇ ξ t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) µ 0 (ξ, η)∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 ∂ s f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∂ s ∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∂ s f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η)∂ s f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∂ s f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∂ s ∇ η f (s, η) dηds                      (1) + e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η f (t, η) dη + e iφ(ξ,η) µ 0 (ξ, η) f (1, ξ -η) f (1, η)η dη              (2) + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η||ξ -η| -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η) f (s, ξ -η)∇ η f (s, η) dηds      (3) + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ 2 η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 |η| -1 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ ξ f (s, ξ -η)∇ η f (s, η) dηds              (4)
This repartition corresponds to :

(1) contains the terms with a time derivative.

(2) contains the terms without time integration.

(3) contains the terms with only one frequency derivative or only one Λ -1 .

(4) contains the terms with two frequency derivatives or one frequency derivative and one Λ -1 . Note that one term remains above, between (2) and (3), but it is easier to estimate. The term at initial time is estimated by the hypothesis of our main theorem.

Estimate of (1) Denote by (1.1), (1.2), ..., (1.7) the dierent terms. We apply lemma 31 : 

∥Λ -1 (1.2)∥ L 2 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s f, Λ -1 u)∥ L 6/5 ds ≲ t 1 ∥e ±isΛ ∂ s f ∥ W 1,3 ∥Λ -1 u∥ L 2 ds ≲ t 1 ∥∂ s f ∥ H 2 ∥xf ∥ L 2 ds ≲ s -2+τ ∥u∥ 3 X ds ≲ ∥u∥ 3 X ∥Λ -1 (1.3)∥ L 2 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s xf, u)∥ L 6/5 ds ≲ t 1 ∥∂ s xf ∥ L 2 ∥u∥ L 3 ds ≲ t 1 s -4/3+τ ∥u∥ 3 X ds ≲ ∥u∥ 3 X ∥Λ -1 (1.4)∥ L 2 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s f, e ±isΛ xf )∥ L 6/5 ds ≲ t 1 ∥e ±isΛ ∂ s f ∥ W 1,3 ∥xf ∥ L 2 ds ≲ t 1 ∥∂ s f ∥ H 2 ∥xf ∥ L 2 ds ≲ t 1 s -2+τ ∥u∥ 3 X ≲ ∥u∥ 3 X ∥(1.2)∥ H 5 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s f, Λ -1 u)∥ H 5 ds ≲ t 1 ∥∂ s f ∥ H 6 ∥Λ -1 u∥ W 6,∞-ds ≲ t 1 s -2+τ +γ/2 ∥u∥ 2 X ∥u∥ W 6,3-ds ≲ t 1 s -2-1/3+τ +γ/2+δ ∥u∥ 3 X ds ≲ ∥u∥ 3 X ∥(1.3)∥ H 5 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s xf, u)∥ H 5 ds ≲ t 1 ∥∂ s xf ∥ H 6 ∥u∥ W 6,∞-ds ≲ t 1 s -1+τ +γ/2-2/3+δ ∥u∥ 3 X ds ≲ ∥u∥ 3 X ∥(1.4)∥ H 5 ≲ t 1 ∥T µ0 (Λe ±isΛ ∂ s f, e ±isΛ xf )∥ H 5 ds ≲ t 1 ∥∂ s f ∥ H 6 ∥e ±isΛ xf ∥ W 1,6 + ∥e ±isΛ ∂ s f ∥ W 1,6 ∥xf ∥ H 5 ds ≲ t 1 ∥∂ s f ∥ H 6 ∥xf ∥ H 5 ds ≲ t 1 s -2+τ +γ/2 ∥u∥ 3 X ds ≲ ∥u∥ 3 X (1.
e itφ(ξ,η) µ 0 (ξ, η) f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) f (t, η) dη + e itφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η f (t, η) dη + e iφ(ξ,η) µ 0 (ξ, η) f (1, ξ -η) f (1, η)η dη
that we will denote by (2.1), (2.2), (2.3), (2.4), (2.5).

∥Λ -1 (2.3)∥ L 2 ≲ ∥T µ0 (Λe ±isΛ xf, u)∥ L 6/5 ≲ ∥xf ∥ H 1 ∥u∥ L 3 ≲ ∥u∥ 2 X ∥(2.3)∥ H 5 ≲ ∥xf ∥ H 6 ∥u∥ W 6,∞-≲ ∥u∥ 2 X
(2.1) and (2.5) are easier to estimate ; (2.2), (2.4) can be estimated in a similar way as (2.3) (by using Hardy's inequality for (2.2)).

Estimate of (3) Let us recall that (3) corresponds to :

t 1 e isφ(ξ,η) s -1 |η||ξ -η| -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)∇ η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η) f (s, ξ -η)∇ η f (s, η) dηds
that we will denote by (3.1), (3.2), (3.3).

∥Λ -1 (3.2)∥ L 2 ≲ t 1 s -1 ∥T µ0 (e ±isΛ xf, Λu)∥ L 6/5 ds ≲ t 1 s -1 ∥xf ∥ L 2 ∥u∥ W 1,3 ds ≲ t 1 s -4/3 ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(3.2)∥ H 5 ≲ t 1 s -1 ∥T µ0 (e ±isΛ xf, Λu)∥ H 5 ds ≲ t 1 s -1 ∥xf ∥ H 5 ∥u∥ W 7,∞-ds ≲ t 1 s -2+δ ∥u∥ 2 X ds ≲ ∥u∥ 2 X
Again, (3.3) and (3.1) are similar to (3.2).

Estimate of (4) Recall that (4) corresponds to :

t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ 2 η f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 |η|µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 |η| -1 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 ∇ ξ f (s, ξ -η)∇ η f (s, η) dηds
Denote them by (4.1), (4.2), (4.3), (4.4), (4.5).

∥Λ -1 (4.1)∥ L 2 ≲ t 1 s -1 ∥T µ0 (Λe ±isΛ x 2 f, Λu)∥ L 6/5 ds ≲ t 1 s -1 ∥Λ|x| 2 f ∥ L 2 ∥u∥ W 1,3 ds ≲ t 1 s -4/3+γ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥Λ -1 (4.3)∥ L 2 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ xf, Λ -1 u)∥ L 6/5 ds ≲ t 1 s -1 ∥Λ 2 e ±isΛ xf ∥ L 3 ∥Λ -1 u∥ L 2 ds ≲ t 1 s -4/3 ∥Λ 8/3 xf ∥ L 3/2 ∥xf ∥ L 2 ds ≲ t 1 s -4/3 ∥⟨x⟩Λxf ∥ H 2 ∥xf ∥ L 2 ds ≲ t 1 s -4/3+γ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥Λ -1 (4.4)∥ L 2 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ x 2 f, u)∥ L 6/5 ds ≲ t 1 s -1 ∥Λ|x| 2 f ∥ H 1 ∥u∥ L 3 ds ≲ t 1 s -4/3+γ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥Λ -1 (4.5)∥ L 2 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ xf, e ±isΛ xf )∥ L 6/5 ds ≲ t 1 s -1 ∥e ±isΛ xf ∥ 2 W 2,12/5 ds ≲ t 1 s -4/3 ∥Λxf ∥ 2 W 2,12/7 ds ≲ t 1 s -4/3 ∥⟨x⟩Λxf ∥ 2 H 2 ds ≲ t 1 s -4/3+2γ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.1)∥ H 5 ≲ t 1 s -1 ∥T µ0 (Λe ±isΛ x 2 f, Λu)∥ H 5 ds ≲ t 1 s -1 ∥Λ|x| 2 f ∥ H 5 ∥u∥ W 7,∞-ds ≲ t 1 s -2+γ+δ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.3)∥ H 5 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ xf, Λ -1 u)∥ H 5 ds ≲ t 1 s -1 ∥xf ∥ H 7 ∥Λ -1 u∥ W 6,∞-ds ≲ t 1 s -1+b+γ/2+ε/2 ∥u∥ X ∥u∥ W 6,3-ds ≲ t 1 s -4/3+b+γ/2+ε/2 ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.4)∥ H 4 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ x 2 f, u)∥ H 4 ds ≲ t 1 s -1 ∥Λ|x| 2 f ∥ H 5 ∥u∥ W 5,∞-ds ≲ t 1 s -2+γ+δ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.5)∥ H 5 ≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ xf, e ±isΛ xf )∥ H 5 ds ≲ t 1 s -1 ∥xf ∥ H 7 ∥e ±isΛ xf ∥ W 2,4 ds ≲ t 1 s -3/2+γ/2+ε/2 ∥u∥ X ∥Λxf ∥ W 2,4/3 ds ≲ t 1 s -3/2+γ/2+ε/2 ∥⟨x⟩Λxf ∥ H 2 ∥u∥ X ds ≲ t 1 s -3/2+3γ/2+ε/2 ∥u∥ 2 X ds ≲ ∥u∥ 2 X
where we used the dispersion inequality of lemma 21 and Hardy's inequality of lemma 17, as well as lemma 20. Then, (4.2) is similar to (4.5).

The term (4.4) is a little particular, because it is responsible for the slight growth when we apply all the derivatives. Indeed, when we distribute |ξ| 5 , we have to estimate :

t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 7 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 2 |η| 5 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds
The second term is easy to estimate :

≲ t 1 s -1 ∥T µ0 (Λ 2 e ±isΛ x 2 f, Λ 5 u)∥ L 2 ds ≲ t 1 s -1 ∥Λ|x| 2 f ∥ L 2 ∥u∥ W 6,∞-ds ≲ t 1 s -2+γ+δ ∥u∥ 2 X ds ≲ ∥u∥ 2 X
However, the rst one contains a factor Λ 7 |x| 2 f , that we cannot control a priori. Thus, we apply an integration by parts in frequency, noting that

∇ 2 ξ f (s, ξ -η) = -∇ η ∇ ξ f (s, ξ -η) : t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 7 ∇ 2 ξ f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 6 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 7 |η| -1 ∇ ξ f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) s -1 µ 0 (ξ, η)|ξ -η| 7 ∇ ξ f (s, ξ -η)∇ ξ f (s, η) dηds
Denote these terms by (4.4.1), (4.4.2), (4.4.3), (4.4.4). (4.4.2) is similar to (3.3), (4.4.3) to (4.3), (4.4.4) to (4.5) and can be treated the same way. The most sensitive term is the one where the frequency derivative hit the exponential and we lost the s -1 factor, ie (4.4.1). We then write :

∥(4.4.1)∥ L 2 ≲ t 1 ∥T µ0 (Λ 7 e ±isΛ xf, u)∥ L 2 ds ≲ t 1 ∥Λ 7 xf ∥ L 2 ∥u∥ Ḃ0 ∞,1 ds ≲ t 1 s -1+γ/2+ε/2 ∥u∥ 2 X ds ≲ t γ/2+ε/2 ∥u∥ 2 X Therefore, it is enough to have b ≥ γ+ε 2 to conclude.
Remark 36 (Amelioration of the growth exponent) By applying lemma 20, we have :

∥xf ∥ Ḣ6 ≲ ∥u∥ 1/2 H 7 ∥⟨x⟩ 2 Λf ∥ 1/2 H 4 ≲ t ε/2+γ4/2 ∥u∥ X Therefore, we may actually choose b = ε+γ4 2 < ε+γ5 2 
(γ 5 = γ being the maximal growth exponent).

4.5.2 ± -0 and 0 -± interactions

In both of these cases, we know that ∇ η φ never vanishes and we can always apply integrations by parts.

Therefore, the terms we need to estimate are :

∇ ξ t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) |ξ| -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dηds
where one of the f is of type ±, and the other of type 0. We apply an integration by parts on the term containing the s factor, so that we get :

∇ ξ t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dηds + t 1 e isφ(ξ,η) |ξ| -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η) f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dηds
Denote these terms by (1), (2), (3), (4), (5).

± -0 interactions In this case, we will estimate (1), (2), (3) ; the other are simpler.

∥(1)∥

H 6 ≲ t 1 ∥T µ0 (Λu, Λ -1 u 0 )∥ H 6 ds ≲ t 1 ∥u∥ W 7,3 ∥Λ -1 u 0 ∥ W 6,6 ds ≲ t 1 s -1/3+δ ∥u∥ X ∥u 0 ∥ H 6 ds ≲ t 1 s -4/3+δ ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(2)∥ H 6 ≲ t 1 ∥T µ0 (Λu, xu 0 )∥ H 6 ds ≲ t 1 ∥u∥ W 7,3 ∥xu 0 ∥ W 6,6 ds ≲ t 1 s -1/3+δ ∥u∥ X ∥Λxu 0 ∥ H 5 ds ≲ t 1 s -4/3+δ+a+b ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(3)∥ L 2 ≲ t 1 ∥T µ0 (Λu, u 0 )∥ L 6/5 ds ≲ t 1 ∥u∥ H 1 ∥u 0 ∥ L 3 ds ≲ t 1 s -4/3+a ∥u∥ 2 X ds ≲ ∥u∥ 2 X (∥Λ(3)∥ H 5 is also simpler.)
0 -± interactions In this case, the estimate of (3) is similar to the one we just did above. The presence of the Λ in front of the term of type 0 allows a nice control of every term except (5) that has more derivatives. For (5), we recover :

ξ 6 t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 ∇ ξ u 0 (s, ξ -η) f (s, η) dηds + ξ 5 t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η|∇ ξ u 0 (s, ξ -η) f (s, η) dηds
The second term is simpler. For the rst one, we have one derivative too much, so we apply an integration by parts in frequency :

t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 ∇ ξ u 0 (s, ξ -η) f (s, η) dηds = t 1 e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| 7 u 0 (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 6 u 0 (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 |η| -1 u 0 (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 u 0 (s, ξ -η)∇ η f (s, η) dηds
All these terms have already been estimated in (1), (2) or (3), except the rst one that has a s factor. For this one, we thus estimate directly :

≲ t 1 s∥T µ0 (Λ 7 u 0 , u)∥ L 2 ds ≲ t 1 s∥u 0 ∥ W 8,∞-∥u∥ L 2 ds ≲ t 1 s -1+a+δ ∥u∥ 2 X ds ≲ t a+δ ∥u∥ 2
X Therefore, we also need b to satisfy b ≥ a + δ. However, since a only depends on ε, N , and δ as well, we may choose ε small enough and N big enough so that this second condition be weaker than b ≥ γ4+ε 2 .

0 -0 interactions

This time, the nonlinearity has no particular structure, but both u 0 factors have a strong decay. We write :

∇ ξ t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dηds = t 1
e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dηds

+ t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ| -1 |ξ -η| u 0 (s, ξ -η) u 0 (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dηds
Let us denote these terms by (1), (2), (3), (4).

∥(1)∥ H 6 ≲ t 1 s∥T µ0 (Λu 0 , u 0 )∥ H 6 ds ≲ t 1 s∥u 0 ∥ H 7 ∥u 0 ∥ W 7,∞-ds ≲ t 1 s -2+2a+δ+ε ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(3)∥ L 2 ≲ t 1 ∥T µ0 (Λu 0 , u 0 )∥ L 6/5 ds ≲ t 1 ∥u 0 ∥ H 1 ∥u 0 ∥ L 3 ds ≲ t 1 s -7/3+2a ∥u∥ 2 X ds ≲ ∥u∥ 2 X
(2) is simpler, as well as (4) in H 5 ; however, if we apply 6 derivatives on (4), one bothersome term appears that we need to control :

ξ 6 (4) = t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 ∇ ξ u 0 (s, ξ -η) u 0 (s, η) dηds + ξ 5 t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dηds
The second term is simpler to estimate. As for the rst, we apply an integration by parts in frequency :

t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 ∇ ξ u 0 (s, ξ -η) u 0 (s, η) dηds = t 1
e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| 7 u 0 (s, ξ -η) u 0 (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 6 u 0 (s, ξ -η) u 0 (s, η) dηds

+ t 1
e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 |η| -1 u 0 (s, ξ -η) u 0 (s, η) dηds + t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 7 u 0 (s, ξ -η)∇ η u 0 (s, η) dηds Denote these terms by (4.1), (4.2), (4.3), (4.4).

∥(4.1)∥ L 2 ≲ t 1 s∥T µ0 (Λ 7 u 0 , u 0 )∥ L 2 ds ≲ t 1 s∥u 0 ∥ H 7 ∥u 0 ∥ W 1,∞-ds ≲ t 1 s -2+ε+2a ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.3)∥ L 2 ≲ t 1 ∥T µ0 (Λ 7 u 0 , Λ -1 u 0 )∥ L 2 ds ≲ t 1 ∥u 0 ∥ W 7,3 ∥Λ -1 u 0 ∥ L 6 ds ≲ t 1 ∥u 0 ∥ W 7,3 ∥u 0 ∥ L 2 ds ≲ t 1 s -7/3+δ+2a ∥u∥ 2 X ds ≲ ∥u∥ 2 X ∥(4.4)∥ L 2 ≲ t 1 ∥T µ0 (Λ 7 u 0 , xu 0 )∥ L 2 ds ≲ t 1 ∥u 0 ∥ W 7,3 ∥xu 0 ∥ L 6 ds ≲ t 1 ∥u 0 ∥ W 7,3 ∥Λxu 0 ∥ L 2 ds ≲ t 1 s -7/3+δ+2a ∥u∥ 2 X ds ≲ ∥u∥ 2 X (4.
2) is simpler.

Conclusion

We showed that

∥xf ± (t)∥ H 5 ≤ ∥xf ± (1)∥ H 5 + C∥u∥ 2 X and ∥xf ± (t)∥ H 6 ≤ ∥xf ± (1)∥ H 6 + Ct b ∥u∥ 2 X
We need to satisfy :

a + δ ≤ γ 4 + ε 2 ≤ b
In particular, we can choose b such that b < γ 2 if ε > 0 is small enough with respect to γ 5 -γ 4 .

4.6

Estimate of the Ḃ1 ∞,1 and Ḃ0

∞,1 norm General idea The dispersive inequality gives the intuition of a t -1 decay for the L ∞ norm of f ± , and thus of the Besov Ḃ0 ∞,1 norm, or likewise for the Ḃ1 ∞,1 norm. In order to control the L 1 we obtain by the dispersive inequality, we apply lemma 22 that controls the L 1 norm by L 2 norms with weight x or x 2 , so exactly quantities controlled by the ∥u∥ X norm.

However, once we applied lemma 22, we cannot apply any integration by parts in time (since the time integral is outside the L 2 norm). We therefore separate the (ξ, η) space into two parts, one away from S the time-resonant set (so that we can apply integrations by parts in time for free before applying lemma 22), and one in the neighborhood of S where we can use the identities of lemma 25 to link φ to ∇ η φ in order to replace integrations by parts in time by integrations by parts in frequency.

The result we prove is the following : Proposition 37 For ϵ = + or ϵ = -, m = 0 or m = 1, we have

t∥u ϵ ∥ Ḃm ∞,1 ≲ ∥⟨x⟩ 2 f (t = 1)∥ H 4 + ∥u∥ 2 X 1 + ∥u∥ 3 X Let us write : u ± (t) = e ±itΛ f ± (1) + e ±itΛ t 1 ∂ s f ± (s) ds
We x m = 0 or m = 1 in the following.

Decay of the initial term The initial time term decays at a rate t -1 by lemma 21 :

∥e ±itΛ f ± (1)∥ Ḃm ∞,1 ≲ t -1 ∥Λ 2 f ± (1)∥ Ḃm 1,1 ≲ t -1 j∈Z ∥|x| 2 φ j (D)Λ 2 f ± (1)∥ 1/2 H 1 ∥|x|φ j (D)f ± (1)∥ 1/2 H 1 ≲ t -1 ∥|x| 2 φ j (D)Λ 2 f ± (1)∥ H 1 1/2 l 1 ∥|x|φ j (D)Λ 2 f ± (1)∥ H 1 1/2 l 1
Now, we have that

∥|x| 2 φ j (D)Λ 2 f ± (1)∥ H 1 ≲ ∥φ j (D)|x| 2 Λ 2 f ± (1)∥ H 1 + ∥ φ j (D)f ± (1)∥ H 1
where φ = ∇ 2 φ, and φ j (ξ) = φ(2 j ξ) as usual. Since φ remains localized, we recover (up to an universal constant) Besov spaces for each term. The same kind of computation applies to the term with weight |x|.

Therefore, by also applying lemma 24 :

∥e ±itΛ f ± (1)∥ Ḃm ∞,1 ≲ t -1 ∥⟨x⟩ 2 f ± (1)∥ H 4 ≲ t -1 ε (7)
by hypothesis on the initial data.

± -± interactions

We start by introducing an angular repartition, depending on the type of interaction considered.

Angular repartition The time-resonant set is

T +,--= T -,++ = {ξ = η = 0} T +,-+ = T -,+-= {η = λξ, λ ≥ 1} ∪ {ξ = 0} T +,++ = T -,--= {η = λξ, 0 ≤ λ ≤ 1} ∪ {ξ = 0} T +,+-= T -,-+ = {η = λξ, λ ≤ 0} ∪ {ξ = 0}
Let us choose the following cuto functions :

χ +,--(ξ, η) = χ -,++ (ξ, η) = 1 χ +,-+ (ξ, η) = χ -,+-(ξ, η) = χ ξ |ξ| 0 • g 0 ξ -η |ξ -η| 0 χ +,++ (ξ, η) = χ -,--(ξ, η) = 0 χ +,+-(ξ, η) = χ -,-+ (ξ, η) = χ - ξ |ξ| 0 • g 0 ξ -η |ξ -η| 0
where χ is a smooth function, taking values in [0, 1], and such that

χ(x) = 0 if x ≤ -1 4 1 if x ≥ 1 4
and g 0 is the matrix associated to the | • | 0 norm (cf lemmas 25 and 26).

From now on, we denote simply by χ the angular repartition, and set

χ + = χ, χ -= 1 -χ
In particular, χ + and χ -are symbols of order 0 (but are not polynomials). This choice ensures that, on the support of χ + , φ doesn't vanish (except possibly on the axes). Indeed : in the + -or -+ + cases, the time-resonant set is reduced to a single point ;

in the + -+ or -+cases, on the support of χ + , ξ • g 0 (ξ -η) ≥ -1 4 |ξ| 0 |ξ -η| 0 and since | • | 0 is an euclidean norm, this implies that we stay away (angularly) of {ξ -η = λξ, λ ≤ 0}, that is of {η = λξ, λ ≥ 1} ; in the + + + or --cases, the support of χ + is empty ; in the + +or --+ cases, on the support of χ + , ξ • g 0 (ξ -η) ≤ 1 4 |ξ| 0 |ξ -η| 0 so it implies that we stay away (angularly) of {ξ -η = λξ, λ ≥ 1}, that is of {η = λξ, λ ≤ 0}.

On the other hand, on the support of χ -, we can apply the identities of lemma 26 because their denominators do not vanish (outside possibly the axes). Indeed : in the + -or -+ + cases, the support of χ -is empty ; in the + -+ or -+cases, on the support of χ -, we have that ξ • g 0 (ξ -η) ≤ 

|ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η) ≥ 3 4 |ξ| 0 |ξ -η| 0
(NB : This comes from the fact that we chose the angular repartition by taking into account that we always have T ⊂ S, so that we can separate a into an area containing T c ∩ S and away from T (the support of χ + ) and an area containing T and away from T c ∩ S (the support of χ -). In this second area, ∇ η φ doesn't vanish outside of the vanishing set of φ, which allows the use of the identities of lemma 26 without making any singularity appear.)

We now consider an interaction ± -± that we separate into two terms :

t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ + (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds + t 1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dηds 34
Estimate away from the time-resonant space We need to estimate in Ḃ1

∞,1 the following contributions :

te ±itΛ t 1 F -1 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ + (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη
Since the support of χ + stays away from the time-resonant set, we can integrate by parts in time.

= te ±itΛ F -1 e itφ(ξ,η) ∇ η φ(ξ, η) φ(ξ, η) µ 0 (ξ, η)χ + (ξ, η)|ξ -η| f (t, ξ -η) f (t, η) dη Lemma 38 We have that

+ te ±itΛ F -1 e iφ(ξ,η) ∇ η φ(ξ, η) φ(ξ, η) µ 0 (ξ, η)χ + (ξ, η)|ξ -η| f (1, ξ -η) f (1, η) dη + te ±itΛ F -1 t 1 e iφ(ξ,η) ∇ η φ(ξ, η) φ(ξ, η) µ 0 (ξ, η)χ + (ξ, η)|ξ -η|∂ s f (s, ξ -η) f (s, η) dη = tT ψ (Λu, u) -te ±itΛ T ψ (Λu(1), u (1) 
ψ(ξ, η) = µ 0 |ξ| + µ 0 |ξ -η|
for some symbols µ 0 of order 0 (possibly distinct).

We also have

ψ(ξ, η) = µ 0 |η| + µ 0 |ξ -η| Proof Case + --(or -+ +) : |φ(ξ, η)| = |ξ| 0 + |η| 0 + |ξ -η| 0 . Thus, ψ(ξ, η) = |ξ -η| φ(ξ, η) 1 |ξ -η| µ 0 (ξ, η)
and |ξ-η| φ(ξ,η) is a symbol of order 0. This proves both identities.

Case + -+ (or -+ -) : On the support of χ + , ξ • g 0 (ξ -η) ≥ -1 4 |ξ| 0 |ξ -η| 0 . Yet :

ϵ 1 φ(ξ, η) (|ξ| 0 + |ξ -η| 0 + |η| 0 ) = |ξ| 2 0 +|ξ-η| 2 0 +2|ξ| 0 |ξ-η| 0 -|η| 2 0 = 2 (ξ • g 0 (ξ -η) + |ξ| 0 |ξ -η| 0 ) ≥ 3 2 |ξ| 0 |ξ-η| 0 Thus, χ + (ξ, η) φ(ξ, η) = µ 0 (|ξ| 0 + |ξ -η| 0 + |η| 0 ) |ξ| 0 |ξ -η| 0 = µ 0 |ξ -η| 0 + µ 0 |ξ| 0 + µ 0 |η| 0 |ξ| 0 |ξ -η| 0
But the last term is similar to the previous ones by writing that |η| 0 = Case + + + (or ---) : ψ ≡ 0. Case + + -(or --+) : Again, we write :

ϵ 1 φ(ξ, η) (|ξ| 0 -|ξ -η| 0 -|η| 0 ) = |ξ| 2 0 +|ξ-η| 2 0 -|η| 2 0 -2|ξ| 0 |ξ-η| 0 = -2 (|ξ| 0 |ξ -η| 0 -ξ • g 0 (ξ -η)) ≥ 3 2 |ξ| 0 |η| 0
because on the support of χ + we have ξ • g 0 (ξ -η) ≤ 1 4 |ξ| 0 |ξ -η| 0 . We conclude as in the + -+ case. For the second identity, ϵ 2 = -ϵ 3 so we can procede as in the + -+ case.

□

The estimate of (2), at initial time, is similar to the computation already done (7).

To estimate (1), the nal time term, we apply again lemma 38 to write :

(1) = tT µ0 (u, u) + tT µ0 (Λu, Λ -1 u)

Therefore :

∥(1)∥ Ḃm ∞,1 ≲ t∥T µ0 (u, u)∥ Ḃm ∞,1 + t∥T µ0 (Λ -1 u, Λu)∥ Ḃm ∞,1 ≲ t∥T µ0 (u, u)∥ W 2,∞-+ t∥T µ0 (Λ -1 u, Λu)∥ W 2,∞- ≲ t∥u∥ W 2,∞-∥u∥ L ∞-+ t∥Λ -1 u∥ W 2,∞-∥u∥ W 3,∞-≲ ∥u∥ 2 X + t∥u∥ W 2,3-∥u∥ W 3,∞-≲ ∥u∥ 2 X
For (3) and (4), we have terms of the form :

te ±itΛ t 1 e ∓isΛ T ψ (g, h) ds where g = Λe ±isΛ ∂ s f, h = u or g = Λu, h = e ±isΛ ∂ s f .
We apply the dispersive inequality and lemma 22 to get :

te ±itΛ t 1 e ∓isΛ T ψ (g, h) ds Ḃm ∞,1 ≲ Λ 2 t 1 e ∓isΛ T ψ (g, h) ds Ḃm 1,1 ≲ t 1 j ∥|x|φ j (D)e ±isΛ Λ 2 T ψ (g, h)∥ 1/2 H 1 ∥|x| 2 φ j (D)e ±isΛ Λ 2 T ψ (g, h)∥ 1/2 H 1 ds
As in the computation (7), we may exchange |x| (or |x| 2 ) with the symbol φ j , up to constant terms and the introduction of terms without weight :

≲ t 1 ∥|x|e ±isΛ Λ 2 T ψ (g, h)∥ Ḃm 2,1 + ∥e ±isΛ ΛT ψ (g, h)∥ Ḃm 2,1 1/2 ∥|x| 2 e ±isΛ Λ 2 T ψ (g, h)∥ Ḃm 2,1 + ∥e ±isΛ T ψ (g, h)∥ Ḃm 2,1 1/2 ds
We now apply lemma 24 to recover Sobolev spaces :

≲ t 1 ∥Λ -κ |x|e ±isΛ Λ 2 T ψ (g, h)∥ θ H 1 ∥|x|e ±isΛ Λ 2 T ψ (g, h)∥ 1-θ H 3/2 + ∥T ψ (g, h)∥ H 5/2 1/2 ∥Λ -κ |x| 2 e ±isΛ Λ 2 T ψ (g, h)∥ θ H 1 ∥|x| 2 e ±isΛ Λ 2 T ψ (g, h)∥ 1-θ H 3/2 + ∥Λ -κ T ψ (g, h)∥ H 2 1/2 ds ≲ t 1 ∥Λ -κ |x|e ±isΛ Λ 2 T ψ (g, h)∥ H 2 + ∥Λ -κ T ψ (g, h)∥ H 3 1/2 ∥Λ -κ |x| 2 e ±isΛ Λ 2 T ψ (g, h)∥ H 2 + ∥Λ -κ T ψ (g, h)∥ H 3 1/2 ds
for a small enough parameter κ (in particular κ < 1/2 here above), and θ = θ(κ) ∈ (0, 1).

We will show that the term with weight |x| decays at a rate s -2+ where 2+ is close of -2, and the term with weight |x| 2 at a rate s -1+ where -1+ is close of -1, while the terms without any weight decay at a rate s -2+ , so that we have a total decay of s -3/2+ which is integrable if the parameters are chosen small enough.

By symmetry, we only treat (3) (( 4 For (3.a), we start by separating the terms by using lemma 38 and distributing the derivatives :

(3.a) = |ξ| -κ ∇ ξ |ξ| 2 e isφ µ 0 χ + ∇ η φ φ |ξ -η|∂ s f (s, ξ -η) f (s, η) dη = e isφ µ 0 |η| -1 |ξ -η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |η| 2-κ |ξ -η| -1 ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 1-κ e isφ µ 0 |ξ -η|∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 2-κ e isφ µ 0 ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 2-κ e isφ s∇ ξ φµ 0 χ + ∇ η φ φ |ξ -η|∂ s f (s, ξ -η) f (s, η) dη
Then, by the identity of lemma 25, we can replace |ξ|∇ ξ φ by φ and |η|∇ η φ (up to symbols of order 0), thus

(3.a) = e isφ µ 0 |η| -1 |ξ -η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |η| 2-κ |ξ -η| -1 ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 1-κ e isφ µ 0 |ξ -η|∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 2-κ e isφ µ 0 ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| 1-κ e isφ sµ 0 χ + ∇ η φ|ξ -η|∂ s f (s, ξ -η) f (s, η) dη + |ξ| 1-κ e isφ s|η|∇ η φµ 0 ψ|ξ -η|∂ s f (s, ξ -η) f (s, η) dη
On the last two terms carrying a factor s, we apply an integration by parts in frequency to get 

(3.a) = e isφ µ 0 |ξ -η| -1 |η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |η| -1 |ξ -η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 2-κ ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |η| 2-κ ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 2-κ ∂ s f (s, ξ -η)∇ η f (s, η) dη + e isφ |η| 2-κ µ 0 ∂ s f (s, ξ -η)∇ η f (s, η) dη
∥(3.a.1)∥ H 2 = ∥T µ0 (Λ -1 e ±isΛ ∂ s f, Λ 2-κ u)∥ H 2 ≲ ∥Λ -1 e ±isΛ ∂ s f ∥ W 2,6 ∥Λ 2-κ u∥ W 2,3 ≲ ∥∂ s f ∥ H 2 ∥u∥ W 4,3 ≲ s -7/3+τ +δ ∥u∥ 3 X ∥(3.a.2)∥ H 2 = ∥T µ0 (Λ 2-κ e ±isΛ x∂ s f, u)∥ H 2 ≲ ∥x∂ s f ∥ H 4 ∥u∥ W 3,∞-≲ s -2+τ +δ ∥u∥ 3 X ∥(3.a.3)∥ H 2 = ∥T µ0 (Λ 2-κ e ±isΛ ∂ s f, e ±isΛ xf )∥ H 2 ≲ ∥∂ s f ∥ H 4 ∥e ±isΛ xf ∥ W 3,6 ≲ ∥∂ s f ∥ H 4 ∥xf ∥ H 4 ≲ s -2+τ
(3.b) = ∇ ξ e isφ µ 0 |ξ -η| -1 |η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + ∇ ξ e isφ µ 0 |ξ -η| 2-κ |η| -1 ∂ s f (s, ξ -η) f (s, η) dη + ∇ ξ e isφ µ 0 |ξ -η| 2-κ ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + ∇ ξ e isφ |η| 2-κ µ 0 ∇ η ∂ s f (s, ξ -η) f (s, η) dη + ∇ ξ e isφ µ 0 |ξ -η| 2-κ ∂ s f (s, ξ -η)∇ η f (s, η) dη + ∇ ξ e isφ |η| 2-κ µ 0 ∂ s f (s, ξ -η)∇ η f (s, η) dη
If the derivative hits the exponential, only a factor s appears (up to a symbol of order 0) and we can apply the same estimates as in (3.a) with a decay s -1+τ instead of s -2+τ , as desired, where τ = τ (ε, N ). It then only remains :

|ξ| -1 e isφ µ 0 |ξ -η| -1 |η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| -1 e isφ µ 0 |ξ -η| 2-κ |η| -1 ∂ s f (s, ξ -η) f (s, η) dη +|ξ| -1 e isφ µ 0 |ξ -η| 2-κ ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + |ξ| -1 e isφ |η| 2-κ µ 0 ∇ η ∂ s f (s, ξ -η) f (s, η) dη +|ξ| -1 e isφ µ 0 |ξ -η| 2-κ ∂ s f (s, ξ -η)∇ η f (s, η) dη + |ξ| -1 e isφ |η| 2-κ µ 0 ∂ s f (s, ξ -η)∇ η f (s, η) dη      (3.b.1) + e isφ µ 0 |ξ -η| -2 |η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 1-κ |η| -1 ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 1-κ ∇ ξ ∂ s f (s, ξ -η) f (s, η) dη + e isφ |η| 2-κ |ξ -η| -1 µ 0 ∇ η ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 1-κ ∂ s f (s, ξ -η)∇ η f (s, η) dη + e isφ |η| 2-κ |ξ -η| -1 µ 0 ∂ s f (s, ξ -η)∇ η f (s, η) dη      (3.b.2) + e isφ µ 0 |ξ -η| -1 |η| 2-κ ∂ s ∇ ξ f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 2-κ |η| -1 ∂ s ∇ ξ f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 2-κ ∇ 2 ξ ∂ s f (s, ξ -η) f (s, η) dη + e isφ |η| 2-κ µ 0 ∇ 2 η ∂ s f (s, ξ -η) f (s, η) dη + e isφ µ 0 |ξ -η| 2-κ ∂ s ∇ ξ f (s, ξ -η)∇ η f (s, η) dη + e isφ |η| 2-κ µ 0 ∂ s ∇ ξ f (s, ξ -η)∇ η f (s, η) dη      (3.b.3) (3.b.1
) corresponds to the case when the derivative hits the symbol and a |ξ| -1 appears. We can then apply the same estimates as for (3.a), but in L 6/5 (using lemma 23), which gives a decay of order s -4/3 . (3.b.2) corresponds to the case when the derivative hits the symbol and a |ξ -η| -1 appears. All the terms are simple to control (in particular when there already is a |ξ -η| to absorb the singularity), except the following two :

e isφ µ 0 |ξ -η| -2 |η| 2-κ ∂ s f (s, ξ -η) f (s, η) dη + e isφ |η| 2-κ |ξ -η| -1 µ 0 ∇ η ∂ s f (s, ξ -η) f (s, η) dη But : ∥T µ0 (Λ -2 e ±isΛ ∂ s f, Λ 2-κ u)∥ H 2 ≲ ∥Λ -2 e ±isΛ ∂ s f ∥ W 2,6 ∥u∥ W 4,3 ≲ ∥Λ -1 ∂ s f ∥ H 2 ∥u∥ W 4,3 ≲ ∥∂ s xf ∥ H 2 ∥u∥ W 4,3 ≲ s -4/3+τ +δ ∥u∥ 3 X ∥T µ0 (Λ -1 e ±isΛ x∂ s f, Λ 2-κ u)∥ H 2 ≲ ∥Λ -1 e ±isΛ x∂ s f ∥ W 2,6 ∥u∥ W 4,3 ≲ ∥∂ s xf ∥ H 2 ∥u∥ W 4,3 ≲ s -4/3+τ +δ ∥u∥ 3 X Finally, in (3.b.
3), the rst line is similar to terms from (3.a) or (3.b.2). For the terms of the last line, we write that

∥T µ0 (Λ 2-κ e ±isΛ x∂ s f, e ±isΛ xf )∥ H 2 ≲ ∥x∂ s f ∥ H 4 ∥e ±isΛ xf ∥ W 3,4 ≲ s -3/2+τ ∥u∥ 2 X ∥Λ 2 xf ∥ W 3,4/3 ≲ s -3/2+τ +γ ∥u∥ 3
X and symmetrically for the other term. Finally, for the terms of the second line, we notice that ∇ ξ f (s, ξ -η) = -∇ η f (s, ξ -η) which allows one integration by parts in frequency on each of the terms. We then obtain terms that were already treated.

Concerning (3.c), we have :

(3.c) = |ξ| -κ e isφ µ 0 ∇ η φ φ |ξ -η|∂ s f (s, ξ -η) f (s, η) dη = |ξ| -1-κ e isφ µ 0 |ξ -η|∂ s f (s, ξ -η) f (s, η) dη + |ξ| -κ e isφ µ 0 ∂ s f (s, ξ -η) f (s, η) dη
Therefore, by lemma 23, denoting q 0 = q 0 (κ) such that 1 q0 = 1 2 + κ 3 and q 1 = q 1 (κ) such that 1 q1 = 1 2 + 1+κ 3 :

∥(3.c)∥ H 3 ≲ ∥T µ0 (Λe ±isΛ ∂ s f, u)∥ W q 1 ,3 +∥T µ0 (e ±isΛ ∂ s f, u)∥ W q 0 ,3 ≲ ∥∂ s f ∥ H 4 (∥u∥ W 3/κ,3 + ∥u∥ W 3/(1+κ),3 ) ≲ s -2+τ ∥u∥ 3 X for small κ.
Estimate close to the time-resonant set On the time-resonant set, we need to estimate the following term in Ḃm ∞,1 :

te ±itΛ t 1 e ∓isΛ T ∇ηφµ0χ-(Λu, u) ds
Again, we can apply the dispersive inequality to get

t 1 ∥Λ -κ xe ∓isΛ Λ 2 T ∇ηφµ0χ-(Λu, u)∥ H 2 + ∥Λ -κ T ∇ηφµ0χ-(Λu, u)∥ H 2 1/2 ∥Λ -κ |x| 2 e ∓isΛ Λ 2 T ∇ηφµ0χ-(Λu, u)∥ H 2 + ∥Λ -κ T ∇ηφµ0χ-(Λu, u)∥ H 2 1/2 ds
The idea is the following : the most troublesome term will be the one where the x weight, that acts as a derivative in frequency, will hit the exponential and a factor s appears, but with ∇ ξ φ. Consequently, using lemma 25, we can replace it by ∇ η φ and φ ; furthermore, by lemma 26, we can replace φ by ∇ η φ. Finally, we have enough ∇ η φ to apply integrations by parts and obtain a decay close to s -2 on the term with weight x, and close to s -1 on the term with weight |x| 2 , as before.

Weight x Let us begin with the term with weight x. We write it in Fourier, forgetting for the time being the Λ -κ in front :

∇ ξ |ξ| 2 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη = |ξ| e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) |ξ| 0 ∇ ξ ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) s|ξ| 0 ∇ ξ φ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη
Let us apply lemma 25 on the last line and apply integrations by parts :

|ξ| e isφ(ξ,η) s|ξ| 0 ∇ ξ φ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη = -|ξ| e isφ(ξ,η) sϵ 1 ϵ 3 |η| 0 ∇ η φ(ξ, η)∇ η φµ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) sφ(ξ, η)∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη = |ξ| e isφ(ξ,η) ϵ 1 ϵ 3 ∇ η (|η| 0 ∇ η φ(ξ, η)) µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) |η|∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η) f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + |ξ| e isφ(ξ,η) φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη
We can regroup the rst line here above with the corresponding term in the total expression to obtain :

|ξ| e isφ(ξ,η) ∇ η (|ξ| 0 ∇ ξ + ϵ 1 ϵ 3 |η| 0 ∇ η ) φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη
and we apply again lemma 25 to simplify :

∇ η (|ξ| 0 ∇ ξ + ϵ 1 ϵ 3 |η| 0 ∇ η ) φ(ξ, η) = µ 0 ∇ η φ + φ µ 0 |ξ -η|
On the other hand, for all terms containing φχ -, we can apply lemma 26 to obtain instead a factor ∇ η φ. More precisely, let us exhaust the dierent cases. In the + + + or --cases, we have that

|ξ|φ(ξ, η) = µ 0 (ξ, η)|ξ -η||η|∇ η φ(ξ, η) because |ξ|
|η|+|ξ-η| is a symbol of order 0. In the + +or -+ + cases, lemma 26 and the fact that we are on the support of χ -, where ξ

• g 0 (ξ -η) ≥ -1 4 |ξ| 0 |ξ -η| 0 and thus |ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η) ≥ 3 4 |ξ| 0 |ξ -η| 0 , means that |ξ|φ(ξ, η)χ -(ξ, η) = µ 0 (ξ, η)χ -(ξ, η) (|ξ| 0 + |η| 0 + |ξ -η| 0 )|ξ||ξ -η| 0 |η| 0 |ξ| 0 |ξ -η| 0 + ξ • g 0 (ξ -η) ∇ η φ(ξ, η) = |η| (|ξ|µ 0 + |ξ -η|µ 0 + |η|µ 0 ) ∇ η φ(ξ, η)
Finally, in the + -+ or -+cases, we have in a symmetric way :

|ξ|φ(ξ, η)χ -(ξ, η) = χ -(ξ, η)|ξ -η| (|ξ|µ 0 + |ξ -η|µ 0 + |η|µ 0 ) ∇ η φ(ξ, η)
but we can notice that, on the support of χ -, ξ • g 0 (ξ -η) ≤ 1 4 |ξ| 0 |ξ -η| 0 , and therefore

|η| 2 0 = |ξ| 2 0 + |ξ -η| 2 0 -2ξ • g 0 (ξ -η) ≥ |ξ| 2 0 + |ξ -η| 2 0 - 1 2 |ξ| 0 |ξ -η| 0 ≥ 3 4 |ξ| 2 0 + |ξ -η| 2 0 so that |η| 0 ≥ √ 3 2 max (|ξ| 0 , |ξ -η| 0 ). In particular, we can write that |ξ|φ(ξ, η)χ -(ξ, η) = |η| (|ξ|µ 0 + |ξ -η|µ 0 + |η|µ 0 ) ∇ η φ(ξ, η)
we notice that ∇ η φ hasn't been dierenciated (because its derivatives have no |ξ| -1 singularity) so we only have to apply the same estimates as above in L 6/5 instead of L 2 , which gives a decay of order s -4/3 . The remaining terms are :

e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 2 ∇ ξ f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 3 ∇ 2 ξ f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) µ 0 (ξ, η)|η| 2 ∇ ξ f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| 2 ∇ 2 ξ f (s, ξ -η) f (s, η) dη
Denote these terms by (1), (2), (3), (4), (5). Denote again q 0 such that

1 q0 = 1 2 + κ 3 . ∥Λ -κ (2)∥ H 2 ≲ ∥T µ0 (Λ 2 e ±isΛ xf, u)∥ W 2,q 0 ≲ ∥xf ∥ H 4 ∥u∥ W 2,3/κ ≲ s -1+δ+2κ/3 ∥u∥ 2 X ∥Λ -κ (3)∥ H 2 ≲ ∥T µ0 (Λ 3 e ±isΛ x 2 f, u)∥ W 2,q 0 ≲ ∥Λx 2 f ∥ H 4 ∥u∥ W 2,3/κ ≲ s -1+δ+γ+2κ/3 ∥u∥ 2 X
(1) is simpler, (4) is similar to (2) and (5) to (3).

Finally, let us treat the term without any weight. We write it as :

|ξ| -κ e isφ µ 0 ∇ η φ|ξ -η| f (s, ξ -η) f (s, η) dη
It is then a slight variation of lemma 31 to prove a decay s -2+ : we apply lemma 23 and have then to control everything in L q0 -norm instead of L 2 , which leads to a small loss. This concludes the estimates on the ± -± interactions.

4.6.2 ± -0 and 0 -± interactions

In these cases, we separate three situations :

either the Λ in the nonlinearity is on u 0 , in which case it is easy to control even with a weight x ; either the Λ in the nonlinearity is on u, in which case u 0 is subtler to control when weights x appear.

In this second case : either φ(ξ, η) = ±(|ξ| 0 -|ξ -η| 0 ), which means we are in the + + 0 or --0 case, and we can use the identity of lemma 27 to express |ξ| 0 ∇ ξ φ as a µ 0 |η| (and thus obtaining Λu 0 , less singular), by noticing that |ξ| 0 -|ξ -η| 0 |η| 0 is a symbol of order 0.

either φ(ξ, η) = ±(|ξ| 0 + |ξ -η| 0 ) and this allows to integrate by parts in time. One sensitive term to estimate will be ∂ s u 0 , but for this one we may separate again u 0 into a quadratic expression.

One last angular repartition is needed to control this case.

In all this subsection, ∇ η φ is of the form ±g 0 ξ-η |ξ-η|0 or ±g 0 η |η|0 so we can always integrate by parts for free.

Case 0 -± In this case, there is one derivative on u 0 in the nonlinearity which removes its singularity. Let us apply the dispersive inequality followed by the inequality from lemma 22 to obtain :

te ±itΛ t 1 e ∓isΛ T µ0 (Λu 0 , u) ds Ḃ1 ∞,1 ≲ t 1 ∥Λ -κ |x|e ±isΛ T µ0|ξ| 2 (Λu 0 , u)∥ H 2 + ∥Λ -κ T µ0 (Λu 0 , u)∥ H 3 1/2 ∥Λ -κ |x| 2 e ±isΛ T µ0|ξ| 2 (Λu 0 , u)∥ H 2 + ∥Λ -κ T µ0 (Λu 0 , u)∥ H 3 1/2 ds
For the term with weight x, let us write :

∇ ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη = |ξ| e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη
We can apply an integration by parts on the last term, and estimate just as in the case 0 -± just above.

Case + -0 or -+ 0 This case is more complicated. The idea is to notice that, up to a sign, φ(ξ, η) = |ξ| 0 + |ξ -η| 0 , so that we can always apply an integration by parts in time. If the derivative hits the ±type term, lemma 31 oers the desired decay. However, if the time derivative hits u 0 , we need to control ∂ s u 0 , which has not a better decay. Indeed, when developping ∂ t u 0 = ∂ t Λ -1 N ′ (ΛU, U ), we get terms of the form Λ -1 T µ0 (e ±isΛ Λ∂ s f, u) or Λ -1 T µ0 (Λu, e ±isΛ ∂ s f ), but also Λ -1 T µ0φ ′ (Λu, u) where φ ′ is one of the wave interactions in N ′ . Again, we will exhaust the cases, knowing that φ ′ (ξ, η) = ±|ξ -η| 0 ± |η| 0 . If the signs here are opposite, then φ ′ (ξ, η) = |ξ|µ 0 , and the last term above from ∂ s u 0 is of the form T µ0 (Λu, u) and thus we removed the singularity. It can be controlled by lemma 31 and this treats the cases + -+-, + --+, -+ +-, -+ -+.

If the signs are the same, that is the cases + -++, + ---, -+ ++ or -+ --, we know that

{∇ ρ φ ′ (η, ρ) = 0} = {ρ = λη, 0 ≤ λ ≤ 1}
and so we will apply an angular repartition given by

χ(ρ, η) = χ ρ |ρ| 0 • g 0 ρ -η |ρ -η| 0
On the support of χ, we are away from the space-resonant set, so we can apply integrations by parts in ρ to gain more decay on u 0 , without risking giving it a weight x (which would have happened if we integrated by parts in η). On the support of 1 -χ, we have that ρ

• g 0 (ρ -η) ≤ 1 4 |ρ| 0 |ρ -η| 0 , so |η| 2 0 = |ρ| 2 0 + |ρ -η| 2 0 -2ρ • g 0 (ρ -η) ≥ |ρ| 2 0 + |ρ -η| 2 0 - 1 2 |ρ| 0 |ρ -η| 0 ≥ 3 4 max |ρ| 2 0 , |ρ -η| 2 0
so that |η| -1 in front of the singularity of u 0 can be replaced by |ρ -η| -1 and this absorbs the singularity. The + -±0, + -0±, + -00 cases and their symmetries are essentially simpler.

Let us write the nonlinearity as :

e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdηds
Case + -+-and analogous In this case, φ ′ (η, ρ) = ± (|η -ρ| 0 -|ρ| 0 ) while φ(ξ, η) = ± (|ξ| 0 + |ξ -η| 0 ).

Let us apply an integration by parts in time by articially creating a φ(ξ, η) :

e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdηds = e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) 1 φ(ξ, η) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdηds + e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) 1 φ(ξ, η) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (s, ξ -η)∂ s f (s, η -ρ) f (s, ρ) dρdηds + e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) 1 φ(ξ, η) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (s, ξ -η) f (s, η -ρ)∂ s f (s, ρ) dρdηds + e ±itΛ t 1 e isφ(ξ,η) e isφ ′ (η,ρ) φ ′ (η, ρ) φ(ξ, η) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdηds + e ±itΛ e itφ(ξ,η) e itφ ′ (η,ρ) 1 φ(ξ, η) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (t, ξ -η) f (t, η -ρ) f (t, ρ) dρdη + e ±itΛ e iφ(ξ,η) e iφ ′ (η,ρ) 1 φ µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 |ρ -η| f (1, ξ -η) f (1, η -ρ) f (1, ρ) dρdη
Notice that |ξ-η| φ is a symbol of order 0, and φ ′ (η,ρ) |η| as well. The estimate on the initial time term is a consequence of the hypothesis. For the nal time term, it can be written as :

∥T µ0 (u, Λ -1 T µ ′ 0 (Λu, u))∥ Ḃm ∞,1 ≲ ∥T µ0 (u, Λ -1 T µ ′ 0 (Λu, u))∥ W 2,∞-≲ ∥u∥ W 2,∞-∥Λu∥ W 2,3 ∥u∥ W 2,∞-≲ t -7/3+3δ ∥u∥ 3 X
For the other terms, we apply the dispersive inequality and lemmas 22, 24 to get back to H 2 norms with a weight x or x 2 , or a H 3 norm without any weight. Let us write the above terms (1), (2), (3), (4), (i.a) the corresponding term with weight x, (i.b) with weight x 2 , (i.c) without any weight : now we need to control

Λ -κ (i.a) in H 2 , Λ -κ (i.b) in H 2 , Λ -κ (i.c
) in H 3 , for some small parameter κ to be xed.

For (1.a) :

(1.a) = ∇ ξ |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = |ξ| e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η| -1 |η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) sµ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη
Denote these terms by (1.a.1), (1.a.2), (1.a.3), (1.a.4), q 0 such that 1 q0 = 1 2 + κ 3 and let us estimate :

∥Λ -κ (1.a.2)∥ H 2 ≲ ∥T µ0|ξ| 2 (Λ -1 e ±isΛ ∂ s f, Λ -1 T µ0 (Λu, u))∥ W 2,q 0 ≲ ∥Λ -1 ∂ s f ∥ H 4 ∥Λ -1 T µ0 (Λu, u)∥ W 4,3/κ ≲ ∥x∂ s f ∥ H 4 ∥u∥ W 5,3 ∥u∥ W 4,3/κ ≲ s -7/3+τ +2δ+2κ/3 ∥u∥ 4 X ∥Λ -κ (1.a.3)∥ H 2 ≲ ∥T µ0|ξ| 2 (e ±isΛ x∂ s f, Λ -1 T µ0 (Λu, u))∥ W 2,q 0 ≲ ∥x∂ s f ∥ H 4 ∥u∥ W 5,3 ∥u∥ W 4,3/κ ≲ s -7/3+τ +2δ+2κ/3 ∥u∥ 4 X ∥Λ -κ (1.a.4)∥ H 2 ≲ s∥T µ0|ξ| 2 (e ±isΛ ∂ s f, Λ -1 T µ0 (Λu, u))∥ W 2,q 0 ≲ s∥∂ s f ∥ H 4 ∥u∥ W 5,3 ∥u∥ W 4,3/κ
≲ s -7/3+τ +2δ+2κ/3 ∥u∥ 4 X by applying lemma 31. The term (1.a.1) is simpler.

If we consider the weight x 2 , we keep the same decomposition as above and add a ∇ ξ . If this derivative hits the exponential, we can apply the same estimates as for (1.a) by only losing a factor s. If the derivative adds a factor |ξ| -1 , the estimate is simpler than above. It only remains :

|ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η| -2 |η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η| -1 |η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ 2 ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη
On the last term, we apply an integration by parts in η :

|ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ 2 ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) sµ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η||ξ -η| -1 ∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -2 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 ∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η)∇ η f (s, η -ρ) f (s, ρ) dρdη
The rst two lines are analogous to already present terms ; the 4th is simpler. Let us estimate : 

|ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η| -2 |η| -1 |ρ -η|∂ s f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η| -1 |η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -2 |ρ -η|∂ s ∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)|η| -1 |ρ -η|∂ s ∇ ξ f (s, ξ -η)∇ η f (s, η -ρ) f (s, ρ) dρdη
∥Λ -κ (1.b.1)∥ H 2 ≲ ∥T µ0|ξ| 2-κ (Λ -2 e ±isΛ ∂ s f, Λ -1 T µ0 (Λu, u))∥ H 2 ≲ ∥Λ -2 e ±isΛ ∂ s f ∥ W 4,6 ∥Λ -1 T µ0 (Λu, u)∥ H 4 ≲ ∥Λ -1 ∂ s f ∥ H 4 ∥xT µ0 (Λu, u)∥ H 4 ≲ ∥x∂ s f ∥ H 4 ∥u∥ 2 X s -1+τ ≲ s -2+2τ ∥u∥ 4 X ∥Λ -κ (1.b.3)∥ H 2 ≲ ∥T µ0|ξ| 2-κ (e ±isΛ x∂ s f, Λ -2 T µ0 (Λu, u))∥ H 2 ≲ ∥x∂ s f ∥ H 4 ∥Λ -2 T µ0 (Λu, u)∥ W 4,6 ≲ ∥x∂ s f ∥ H 4 ∥xT µ0 (Λu, u)∥ H 4 ≲ s -2+2τ ∥u∥ 4 X ∥Λ -κ (1.b.4)∥ H 2 ≲ ∥T µ0|ξ| 2-κ (e ±isΛ x∂ s f, Λ -1 T µ0 (Λe ±isΛ xf, u))∥ H 2 ≲ ∥x∂ s f ∥ H 4 ∥∥xf ∥ H 5 ∥u∥ W 5,∞- ≲ s -2+τ +δ ∥u∥ 4
X because T µ0 (Λu, u) satises the non-resonance condition, so that we can apply lemma 31. (1.b.2) can be treated as (1.b.1), controlling the rst factor in L 6 and then applying a fractional integration inequality to win a derivative, and changing the Λ -1 of the other factor into a x by Hardy's inequality, in order to recover a term controlled by lemma 31.

The terms (2), (3) are very similar to (1). Finally, (4) can be seen as a term similar to

t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| f (s, ξ -η) u 0 (s, η) dη
and thus can be treated as in the case 0 -±.

The terms (i.c) without weight are simpler to estimate.

Case + -++ and analogous This time, we consider the interactions in u 0 where signs are identical.

Therefore, we have φ ′ (η, ρ) = ± (|η -ρ| 0 + |ρ| 0 ) so that

{∇ ρ φ ′ (η, ρ) = 0} = η -ρ |η -ρ| 0 = ρ |ρ| 0 = {ρ = λ(η -ρ), λ ≥ 0}
Let us choose the following angular repartition :

χ(η, ρ) = χ ρ |ρ| 0 • g 0 ρ -η |η -ρ| 0
where χ is the same smooth function already used to treat the ± -± interactions earlier.

On the support of χ, ρ |ρ|0 • g 0 η-ρ |η-ρ|0 ≤ 1 4 , so in particular ∇ ρ φ ′ does not vanish :

|∇ ρ φ ′ (η, ρ)| 2 0 ′ χ(η, ρ) = 2χ(η, ρ) 1 + ρ |ρ| 0 • g 0 ρ -η |ρ -η| 0 ≥ 3 2 χ(η, ρ)
On the support of 1 -χ, as we already saw, |η| 0 ≥ c|ρ -η| 0 , so that |ρ-η| |η| (1 -χ(η, ρ)) is a symbol of order 0. Let us write 1 = (1 -χ) + χ and thus separating the interactions into two contributions. For the part containing χ, we apply the dispersive inequality and we have to estimate

e ±isΛ Λ 2 T µ0 (Λu, Λ -1 T µ ′ 0 χ (Λu, u))
with a weight x or x 2 , both in H 2 , or without any weight in H 3 .

For the weight x, let us compute in Fourier :

∇ ξ |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = |ξ| e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ|∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) sµ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη
We apply an integration by parts in ρ on the last term, by using the fact that χ always authorize it. We get :

∇ ξ |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = |ξ| e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ|∇ ξ f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ)∇ ρ f (s, ρ) dρdη
Now we apply to every term an integration by parts in ρ, allowed by the presence of χ (otherwise, the structure of the nonlinearity would only allow one). We get :

∇ ξ |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = |ξ| e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η)∇ ρ µ ′ 0 (η, ρ)χ(η, ρ)|η -ρ| f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)|η| -1 f (s, ξ -η)∇ ρ µ ′ 0 (η, ρ)χ(η, ρ)|η -ρ| f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)|ξ -η||η| -1 ∇ ξ f (s, ξ -η)∇ ρ µ ′ 0 (η, ρ)χ(η, ρ)|η -ρ| f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| -1 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -2 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η) f (s, η -ρ)∇ ρ f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ 2 ρ f (s, η -ρ) f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ ρ f (s, η -ρ)∇ ρ f (s, ρ) dρdη + |ξ| 2 e isφ(ξ,η) e isφ ′ (η,ρ) s -1 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ)∇ 2 ρ f (s, ρ) dρdη
The rst three lines are simple to estimate. In the lines 6, 8 and 11, we distribute the derivative |η -ρ| = |η|µ 0 + |ρ|µ 0 to avoid having too many singularities. When we have a |ρ| appearing that way, we recover terms already present above (by symmetry). Therefore, we nally have objects of the form T µ0|ξ| 2 (Λu, Λ -1 A) or T µ0|ξ| 2 (Λu, B), that we can estimate by

∥s -1 Λ -κ T µ0|ξ| 2 (Λu, Λ -1 A)∥ H 2 ≲ s -1 ∥u∥ W 5,3 ∥Λ -1 A∥ W 4,6 ≲ s -4/3+δ ∥u∥ X ∥A∥ H 4 ∥s -1 Λ -κ T µ0|ξ| 2 (Λu, B)∥ H 2 ≲ s -1 ∥u∥ W 5,∞-∥B∥ H 4 ≲ s -2+δ ∥u∥ X ∥B∥ H 4
Then, for A, we have the following possible expressions :

∥T µ0 (e ±isΛ xf, u)∥ H 4 ≲ ∥xf ∥ H 4 ∥u∥ W 5,∞-≲ s -1+δ ∥u∥ 2 X ∥T µ0 (e ±isΛ Λxf, e ±isΛ xf )∥ H 4 ≲ ∥e ±isΛ xf ∥ 2 W 5,4 ≲ s -1 ∥Λxf ∥ W 5,4/3 ≲ ∥⟨x⟩Λxf ∥ H 5 ≲ s -1+2γ ∥u∥ 2 X ∥T µ0 (Λe ±isΛ x 2 f, u)∥ H 4 ≲ ∥Λx 2 f ∥ H 4 ∥u∥ W 5,∞-≲ s -1+δ+γ ∥u∥ 2 X
or simpler or analogous forms ; and for B :

∥T µ0 (Λu, Λ -2 u)∥ H 4 ≲ ∥u∥ W 5,3 ∥Λ -2 u∥ W 4,6 ≲ s -1/3+δ ∥u∥ X ∥xf ∥ H 4 ≲ s -1/3+δ ∥u∥ 2 X ∥T µ0 (Λu, e ±isΛ x 2 f )∥ H 4 ≲ ∥u∥ W 5,3 ∥e ±isΛ x 2 f ∥ W 4,6 ≲ ∥u∥ W 5,3 ∥Λx 2 f ∥ H 4 ≲ s -1/3+δ+γ ∥u∥ 2 X
and the others possibilities are simpler or analogous. Summing up, we obtain a decay of order s -7/3 . For the weight x 2 , we simply add a derivative in ξ and estimate as before. More precisely, if the derivative hits the exponential, we only lose a factor s and can procede exactly as above ; if the derivative adds a |ξ| -1 or a |ξ -η| -1 , we can also keep the same estimates ; if the derivative adds a ∇ ξ on f (s, ξ -η), either we estimate as above, either we get a |ξ -η|∇ 2 ξ f (s, ξ -η) that we also estimate in L 3 , then going back to L 2 by Sobolev's inequality, which means losing only s 1/3+γ with respect to the estimate with weight x. In either case, we have a decay of order s -4/3 , up to small parameters.

The term without any weight is simpler.

For the part with (1 -χ), we obtain a term of the form t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η) T µ0 (u, u)(η) dηds It can be estimated the same way as (4) from case + -+-.

Case + -±0 and analogous In this case, we have an object of the form :

t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) A(η

) dηds

where A = T µ0 (Λu, u 0 ) or T µ0 (Λu 0 , u). We can apply again an integration by parts in ρ : A = T µ0 (u, u 0 ), T µ0 (Λe ±isΛ xf, u 0 ), T µ0 (Λu, Λ -1 u 0 ), T µ0 (Λu, xu 0 ), T µ0 (Λ -1 u, Λu 0 ), T µ0 (e ±isΛ xu, Λu 0 ), T µ0 (u, Λxu 0 ) Let us write |η -ρ| = µ 0 |η| + µ ′ 0 |ρ| whenever we have Λ -1 u 0 or xu 0 and bring us back to :

A = T µ0 (u, u 0 ), T µ0 (Λe ±isΛ xf, u 0 ), ΛT µ0 (u, Λ -1 u 0 ), ΛT µ0 (u, xu 0 ), T µ0 (Λ -1 u, Λu 0 ), T µ0 (e ±isΛ xu, Λu 0 ), T µ0 (u, Λxu 0 )

Then, if we apply the dispersive inequality and recover weights x, we have objects of the form :

Λ 2 T µ0 (Λu, Λ -1 A), s -1 ΛT µ0 (Λu, Λ -1 A), s -1 Λ 2 T µ0 (u, Λ -1 A), s -1 Λ 2 T µ0 (Λe ±isΛ xf, Λ -1 A)
to be estimated in H 2 , plus a simpler term without any weight. If A has a Λ in front, we can estimate in L ∞--L 2 , which means gaining a decay s -2/3+γ+ at least on the L ∞-part (because of the possible weight x) and on the A we gain s -4/3+a+δ ; if A has no Λ, we estimate in L 3 -L 6 and the L 6 absorbs the Λ -1 : the L 3 part confers a decay s -1/3+δ while the A part gives a decay s -2+a+δ . Summing up, we are above s -2 . Then, for the weight x 2 , we dierentiate once again in ξ. If the derivative hits the exponential, we lose s ; a |ξ| -1 or |ξ -η| -1 allows the same estimates as before ; a ∇ ξ on the f (s, ξ -η) can make appear a |ξ -η|∇ 2 ξ f (s, ξ -η) that we can estimate in L 2 by Sobolev's inequality, losing at most s 2/3+γ , which remains admissible.

Case + -00 and analogous This time, we have :

t 1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) T µ0 (Λu 0 , u 0 )(η) dη
We apply again the dispersive inequality and obtain terms with weight x or x 2 , on which we lose at most s or s 2 respectively. We estimate f (s, ξ -η) in L 3 to win s -1/3 , which leaves T µ0 (Λu 0 , u 0 ) in L 2 , in which we win s -3+2a , and this is largely enough.

0 -0 interactions

Let us apply again the dispersive inequality. We need to estimate :

∥Λ -κ |x|T µ0|ξ| 2 (Λu 0 , u 0 )∥ H 2 , ∥Λ -κ |x| 2 T µ0|ξ| 2 (Λu 0 , u 0 )∥ H 2 , ∥Λ -κ T µ0 (Λu 0 , u 0 )∥ H 3
so that their mean decay be integrable in time.

For the term with weight x :

∇ ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη
= |ξ| e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη Denote these terms by (1), (2), (3), (4). We can estimate everything by making use of the strong decay of u 0 :

∥Λ -κ (3)∥ H 2 ≲ ∥Λxu 0 ∥ H 4 ∥u 0 ∥ W 4,3/κ ≲ s 3+2a+δ+2κ/3 ∥u∥ 2 X ∥Λ -κ (4)∥ H 2 ≲ s∥u 0 ∥ H 5 ∥u 0 ∥ W 4,3/κ ≲ s -2+2a+δ+2κ/3 ∥u∥ 2 X
The terms (1) and (2) are simpler.

For the term with weight x 2 :

∇ 2 ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη = ∇ ξ |ξ| e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ∇ ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + ∇ ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ∇ ξ |ξ| 2 e isφ(ξ,η) sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη
If the second derivative hits the exponential, we estimate just like above with weight x, only losing a factor s. The remaining terms are :

∇ 2 ξ |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη = e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη

+ |ξ| e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| -1 u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η|∇ 2 ξ u 0 (s, ξ -η) u 0 (s, η) dη

Then, we conclude as for the H N estimate, obtaining :

≲ t 1 ∥Λ|x| 2 f ∥ 2 H k ∥u∥ W 1,∞ ds ≲ Λ∥u∥ 3 X t 2γ k
where k = 0 or k = 5. Then, in the 4th term we restricted our attention to, the only sub-term to estimate has the form :

ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∆ ξ f (s, ξ -η) f (s, η) dη
Note that the whole 4th term remains in case of a 0 -± or 0 -0 interaction. In the following, we x k = 0 or k = 5.

± -± interactions

In this case, the structure of the nonlinearity allows to factor the symbol by ∇ η φ once, and to use lemma 25 to replace ∇ ξ φ by ∇ η φ and φ. Starting from the decomposition above, we get :

ξ α e isφ s 2 ∇ ξ φ∇ ξ φ∇ η φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ s∇ η φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + ξ α e isφ s∇ η φµ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ ∇ η φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∆ ξ f (s, ξ -η) f (s, η) dη + ξ α e isφ s∇ ξ φ∇ η φµ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dη + ξ α e isφ s∇ ξ φµ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ f (s, ξ -η) f (s, η) dη
On the terms with s∇ η φ, we apply an integration by parts in frequency :

= ξ α e isφ s∇ ξ φµ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α e isφ s∇ ξ φ∇ ξ φµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη

+ ξ α e isφ s∇ ξ φ∇ ξ φµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α e isφ s∇ ξ φ∇ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α e isφ s∇ ξ φ∇ η φµ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 f (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∆ ξ f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη
where we grouped all terms containing a factor s, then all terms without any s factor, then all terms with a s -1 factor. In all the rst ones, we have a ∇ ξ φ, so we can apply lemma 25 and an integration by parts in frequency whenever it is possible to obtain :

= ξ α |ξ| e isφ sφµ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφ∇ ξ φµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφ∇ ξ φµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφ∇ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| e isφ sφ∇ η φµ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ |η|∇ ξ φµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 f (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∇ 2 ξ f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η) f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη
Again, on the only middle term remaining, we apply lemma 25 and an integration by parts in frequency to obtain :

= ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ |η|φµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)∇ η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)|ξ -η|∇ 2 η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ 2 η f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∇ 2 ξ f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη
Let us denote by (1) all the terms with φ, and (2) all the others. Concerning ± -± interactions, we showed :

∂ s ξ α ∇ 2 ξ f (s, ξ) = (1) + (2) + FN (ΛD α e ±isΛ |x| 2 f, u)
and the contribution of the last term has already been estimated.

We will show that ∥

(2)∥ L 2 ≲ s -1+γ k ∥u∥ 2 X , so that t 1 ξ α ∇ 2 ξ f (s, ξ) (2) dξds ≲ t 1 ∥Λ|x| 2 f ∥ H k ∥(2)∥ L 2 ds ≲ t 1 s -1+2γ k ∥u∥ 3 X ds ≲ t 2γ k ∥u∥ 3 X
On the other hand, for (1), the presence of φ encourages to apply an integration by parts in time. If the derivative hits one of the terms from (1), we can apply lemma 31 and obtain a suciant decay to compensate the factor s. However, if the derivative hits the term across, it produces a ∂ s ξ α ∇ 2 ξ f (s, ξ). In this case, we develop again using the decomposition above and note that (a) the term N (ΛD α e ±isΛ |x| 2 f, u) can be avoided (there is a Λ -1 in front of (1) that we can freely transfer) ; (b) when we develop and get (2), what remains of (1) can be estimated by s γ k and we have the correct total decay ; (c) when we develop and get (1), we can reapply an integration by parts using a symmetry argument.

Estimate of (2) The terms of (2) are :

(2)

= ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)∇ η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)|ξ -η|∇ 2 η f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 |η| 2 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ 2 η f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ s -1 µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη                      (2.1) + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∇ 2 ξ f (s, ξ -η) f (s, η) dη            (2.2)
In (2.1), we have a factor s -1 but possible a singularity |ξ| -1 in the case k = 0. Let us denote the terms by (2.1.1) to (2.1.6). In (2.2), we have no factor s -1 but also no singularity. Denote the terms by (2.2.1) to (2.2.4). In the case k = 0 :

∥(2.1.1)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ xf, Λ 2 e ±isΛ xf )∥ L 6/5 ≲ s -1 ∥e ±isΛ xf ∥ L 3 ∥xf ∥ H 2 ≲ s -1 ∥xf ∥ 2 H 2 ≲ s -1+γ0 ∥u∥ 2 X ∥(2.1.2)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ Λx 2 f, Λ 2 e ±isΛ xf )∥ L 6/5 ≲ s -1 ∥Λx 2 f ∥ L 2 ∥Λ 2 e ±isΛ xf ∥ L 3 ≲ s -4/3+γ0 ∥u∥ X ∥Λ 8/3 xf ∥ L 3/2 ≲ s -4/3+2γ ∥u∥ 2 X ≲ s -1+γ0 ∥u∥ 2 X ∥(2.1.3)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ Λxf, e ±isΛ Λ 2 x 2 f )∥ L 6/5 ≲ s -1 ∥Λe ±isΛ xf ∥ L 3 ∥Λx 2 f ∥ H 1 ≲ s -4/3+γ1 ∥Λ 5/3 xf ∥ L 3/2 ∥u∥ X ≲ s -4/3+2γ ∥u∥ 2 X ≲ s -1+γ0 ∥u∥ 2 X
The other terms are simpler or similar. In the case k = 5 : 

∥(2.1.1)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ xf, Λ 2 e ±isΛ xf )∥ H 4 ≲ s -1 ∥e ±isΛ xf ∥ W 3,6 ∥xf ∥ H 6 ≲ s -1+b ∥xf ∥ H 4 ∥u∥ X ≲ s -1+γ ∥u∥ 2 X ∥(2.1.2)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ Λx 2 f, Λ 2 e ±isΛ xf )∥ H 4 ≲ s -1 ∥Λx 2 f ∥ H 4 ∥Λ 2 e ±isΛ xf ∥ W 1,6 + s -1 ∥Λe ±isΛ x 2 f ∥ W 1,6 ∥xf ∥ H 6 ≲ s -1 ∥Λx 2 f ∥ H 4 ∥xf ∥ H 4 + s -1 ∥Λx 2 f ∥ H 2 ∥xf ∥ H 6 ≲ s -1+γ4 + s -1+γ2+b ≲ s -1+γ ∥u∥ 2 X ∥(2.1.3)∥ L 2 ≲ s -1 ∥T µ0 (e ±isΛ Λxf, e ±isΛ Λ 2 x 2 f )∥ H 4 ≲ s -1 ∥Λe ±isΛ xf ∥ W 1,6 ∥Λx 2 f ∥ H 5 + s -1 ∥xf ∥ H 5 ∥e ±isΛ Λx 2 f ∥ W 2,6 ≲ s -1 ∥xf ∥ H 3 ∥Λx 2 f ∥ H 5 + s -1 ∥xf ∥ H 5 ∥Λx 2 f ∥ H 3 ≲ s -1+γ ∥u∥ 2 X where we used that γ 2 + b = γ 2 + γ4+ε 2 = 4 5 γ + 7 10 γ 0 + ε 2 ≤ γ if 5γ 0 < γ
∥(2.2.1)∥ L 2 = ∥T µ0 (Λu, Λ -1 u)∥ H k ≲ ∥u∥ W k+2,∞-∥xf ∥ H k ≲ s -1+δ ∥u∥ 2 X ≲ s -1+γ k ∥u∥ 2 X ∥(2.2.4) k=0 ∥ L 2 = ∥T µ0 (e ±isΛ Λx 2 f, Λu)∥ L 2 ≲ ∥Λx 2 f ∥ L 2 ∥u∥ Ḃ1 ∞,1 ≲ s -1+γ0 ∥u∥ 2 X ∥(2.2.4) k=5 ∥ L 2 ≲ ∥Λx 2 f ∥ H 5 ∥u∥ Ḃ1 ∞,1 + ∥Λx 2 f ∥ H 4 ∥u∥ W 7,∞-≲ s -1+γ + s -1+δ+γ4 ∥u∥ 2 X ≲ s -1+γ ∥u∥ 2 X
where we used lemma 29, and then that when δ is small enough, γ 4 + δ ≤ γ. The other terms are simpler or similar.

Estimate of (1) (1) consists in :

(

1) = ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sφµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη + ξ α |ξ| 2 e isφ |η|φµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dη
Let us apply an integration by parts in time : We denote the terms from (1.2.1) by (1.2.1.1) to (1.2.1.7).

t 1 ξ α ∆ 2 ξ f (s, ξ) (1) dξds = t 1 ξ α ∆ 2 ξ ∂ s f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ ∂ s f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ ∂ s f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ ∂ s f (s, ξ) ξ α |ξ| 2 e isφ |η|µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dηdξds            (1.1) + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η||η| -1 ∂ s f (s, ξ -η) f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∇ η ∂ s f (s, ξ -η) f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∂ s f (s, ξ -η)∇ η f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| 2 e isφ |η|µ 0 (ξ, η)|ξ -η|∇ η ∂ s f (s, ξ -η)∇ η f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η)∂ s f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∂ s f (s, η) dηdξds + t 1 ξ α ∆ 2 ξ f (s, ξ) ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η ∂ s f (s, η) dηdξds                          (1.2.1) + ξ α ∆ 2 ξ f (t, ξ) ξ α |ξ| e itφ tµ 0 (ξ, η)|ξ -η||η| -1 f (t, ξ -η) f (t, η) dηdξ + ξ α ∆ 2 ξ f (t, ξ) ξ α |ξ| e itφ tµ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η) f (t, η) dηdξ + ξ α ∆ 2 ξ f (t, ξ) ξ α |ξ| e itφ tµ 0 (ξ, η)|ξ -η| f (t, ξ -η)∇ η f (t, η) dηdξ + ξ α ∆ 2 ξ f (t, ξ) ξ α |ξ| 2 e itφ |η|µ 0 (ξ, η)|ξ -η|∇ η f (t, ξ -η)∇ η f (t, η) dηdξ            (1.2.2) + ξ α ∆ 2 ξ f (1, ξ) ξ α |ξ| e iφ µ 0 (ξ, η)|ξ -η||η| -1 f (1, ξ -η) f (1, η) dηdξ + ξ α ∆ 2 ξ f (1, ξ) ξ α |ξ| e iφ µ 0 (ξ, η)|ξ -η|∇ η f (1, ξ -η) f (1, η) dηdξ + ξ α ∆ 2 ξ f (1, ξ) ξ α |ξ| e iφ µ 0 (ξ, η)|ξ -η| f (1, ξ -η)∇ η f (1, η) dηdξ + ξ α ∆ 2 ξ f (1, ξ) ξ α |ξ| 2 e iφ |η|µ 0 (ξ, η)|ξ -η|∇ η f (1, ξ -η)∇ η f (1, η) dηdξ            (1.2.3) (1.1) contains again D α |x| 2 ∂ t f . ( 1 
(

1.2.1.2) ≲ t 1 s∥Λ|x| 2 f ∥ H k ∥T µ0 (e ±isΛ Λx∂ s f, u)∥ H k ds ≲ t 1 s 1+γ k ∥u∥ X ∥x∂ s f ∥ H k+1 ∥u∥ W k+1,∞-ds ≲ t 1 s -1+ 3γ k 2 +δ+τ ∥u∥ 4 X ds ≲ t 2γ k ∥u∥ 4 X (1.2.1.3) ≲ t 1 s∥Λ|x| 2 f ∥ H k ∥T µ0 (e ±isΛ Λ∂ s f, e ±isΛ xf )∥ H k ds ≲ t 1 s 1+γ k ∥u∥ X ∥∂ s f ∥ H k+1 ∥e ±isΛ xf ∥ W 1,6 + ∥e ±isΛ ∂ s f ∥ W 1,6 ∥xf ∥ H k ds ≲ t 1 s 1+γ k ∥u∥ X (∥∂ s f ∥ H k+1 ∥xf ∥ H 2 + ∥∂ s f ∥ H 2 ∥xf ∥ H k ) ds ≲ s -1+τ + 3γ k 2 ∥u∥ 4 X ds ≲ t 2γ k ∥u∥ 4 X (1.2.1.4) k=0 ≲ t 1 ∥Λ|x| 2 f ∥ L 2 ∥T µ0 (e ±isΛ Λ∂ s xf, e ±isΛ Λxf )∥ L 6/5 ds ≲ t 1 s γ0 ∥u∥ X ∥∂ s xf ∥ H 1 ∥xf ∥ H 2 ds ≲ t 1 s -1+τ +γ0 ∥u∥ 4 X ds ≲ t 2γ0 ∥u∥ 4 X (1.2.1.4) k=5 ≲ t 1 ∥Λ|x| 2 f ∥ H 5 ∥T µ0 (e ±isΛ Λ∂ s xf, e ±isΛ Λxf )∥ H 4 ds ≲ t 1 s γ5 ∥u∥ X ∥∂ s xf ∥ H 5 ∥xf ∥ H 7 ds ≲ t 1 s -1+τ + 3γ 5 2 + γ 4 2 ∥u∥ 4 X ds ≲ t 2γ5 ∥u∥ 4 X
where we used that, by lemma 31,

∥x∂ s f ∥ H k+1 ≲ s -1+τ + γ k 2 ∥u∥ 2 X , ∥∂ s f ∥ H k+1 ≲ s -1+τ + γ k 2 ∥u∥ 2 X , ∥xf ∥ H k ≲ s γ k 2 ∥u∥ X
and that all the other parameters (τ, δ, ε, 1/N ) can be chosen small with respect to the γ k and to γ 5 -γ 4 .

The other terms are simpler or similar.

For (1.2.2), let us denote its terms by (1.2.2.1) to (1.2.2.4).

(

1.2.2.2) ≲ t∥Λ|x| 2 f ∥ H k ∥T µ0 (Λe ±isΛ xf, u)∥ H k ≲ t 1+γ k ∥u∥ X ∥xf ∥ H k+1 ∥u∥ W k+1,∞-≲ t 3γ k 2 +δ ∥u∥ 3 X ≲ t 2γ k ∥u∥ 3 X (1.2.2.4) k=0 ≲ ∥Λ|x| 2 f ∥ L 2 ∥T µ0 (Λe ±isΛ xf, Λe ±isΛ xf )∥ L 6/5 ≲ t γ0 ∥u∥ X ∥xf ∥ 2 H 2 ≲ t 2γ0 ∥u∥ 3 X (1.2.2.4) k=5 ≲ ∥Λ|x| 2 f ∥ H 5 ∥T µ0 (Λe ±isΛ xf, Λe ±isΛ xf )∥ H 4 ≲ t γ5 ∥u∥ X ∥xf ∥ H 5 ∥xf ∥ H 3 ≲ t 2γ5 ∥u∥ 3 X
The other terms are simpler or similar. Finally, for (1.2.3), the estimates are made as for (1.2.2) (and we even have no growth since we are at initial time).

Finally, let us treat (1.1). It can be written as

t 1 D α |x| 2 ∂ t f (1 ′ ) dxds
where (1 ′ ) corresponds in Fourier to (1) divided by φ(ξ, η). We rewrite :

D α |x| 2 ∂ t f ∼ (1) + (2) + D α N (Λe ±isΛ |x| 2 f, u)
plus some terms with 0 -±, ± -0 or 0 -0 interactions, which will be treated in the corresponding sections.

Let us start by treating the last term. By integration by parts, we recover :

t 1 Λ -1 D α N (Λe ±isΛ |x| 2 f, u)Λ(1 ′ ) dxds
But Λ -1 D α N (Λe ±isΛ |x| 2 f ) only contains terms already treated in (2). Therefore, all we have to control is :

t 1 (1) (1 ′ ) dxds + t 1 (2) (1 ′ ) dxds + t 1
(2) Λ(1 ′ ) dxds

On the other hand, we already know that ∥(2)∥ L 2 ≲ s 1+γ k ∥u∥ 2 X . Therefore, it is enough to prove that ∥(1 ′ )∥ H 1 ≲ s γ k to treat the two terms on the right. The rst one will be treated by a symmetry argument.

We write (1 ′ ) as :

(1 ′ ) = ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η||η| -1 f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η)∇ η f (s, η) dη

+ ξ α
|ξ| 2 e isφ |η|µ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)∇ η f (s, η) dη Denote these terms by (1 ′ .1), (1 ′ .2), (1 ′ .3), (1 ′ .4).

∥(1 ′ .2)∥ H 1 ≲ s∥xf ∥ H k+2 ∥u∥ W k+2,∞-≲ s δ+ε/2+γ k /2 ∥u∥ 2 X ≲ s γ k ∥u∥ 2 X ∥(1 ′ .4) k=0 ∥ H 1 ≲ ∥T µ0 (Λe ±isΛ xf, Λe ±isΛ xf )∥ W 1,6/5 ≲ ∥xf ∥ 2 H 3 ≲ ∥u∥ 2 X ∥(1 ′ .4) k=5 ∥ H 1 ≲ ∥xf ∥ H 6 ∥e ±isΛ xf ∥ W 2,6 ≲ ∥xf ∥ H 6 ∥xf ∥ H 3 ≲ s b ∥u∥ 2 X ≲ s γ ∥u∥ 2 X
The other terms are simpler or analogous. We even have ∥(1 ′ )∥ H 1 ≲ s 3γ k /4 ∥u∥ 2 X by chosing the parameters suitably.

Finally, to treat t 1

(1) (1 ′ ) dxds we notice that the structure of (1) encourages once again to apply an integration by parts in time. More precisely, we have terms of the form (in Fourier) :

i,j t 1 s 2 e isφ(ξ,η) φ(ξ, η)µ (i) 0 (ξ, η) g i (ξ -η) h i (η)e isφ(ξ,η ′ ) µ (j) 0 (ξ, η ′ ) g j (ξ -η ′ ) h j (η ′ ) dη ′ dηdξds But then, by regrouping (i, j) and (j, i), by symmetry between η and η ′ we obtain : i,j t 1 s 2 e isφ(ξ,η) e isφ(ξ,η ′ ) φ(ξ, η) + φ(ξ, η ′ ) 2 µ (i) 0 (ξ, η)µ

(i ′ )
0 (ξ, η ′ ) g i (ξ-η) h i (η) g j (ξ-η ′ ) h j (η ′ ) dη ′ dηdξds on which we can apply an integration by parts in time and recover objects controlled by lemma 31. To make the reasoning absolutely rigorous, we actually sum on all the interactions (because the symbols and the g, h depends on the ϵ 2 , ϵ 3 , which can be distinct on each side). Once the derivative is present on g or h, we estimate as we estimated (1 ′ ) above, by noticing that the presence of the time derivative allows a gain of a s -1+τ decay in the case k = 0, s -1+τ +γ/2 in the case k = 5. Since we already estimated (1 ′ ) with a decay s 3γ k /4 , we obtain a total decay s -1+3γ k /2+τ , so that once we integrated in time we have t 1

(1) (1 ′ ) dxds ≲ t 2γ k ∥u∥ 4 X 4.7.3 ± -0 interactions For these interactions, we rewrite :

= -ξ α e isφ s 2 ∇ ξ φ • ∇ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη -ξ α e isφ is∆ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη -ξ α e isφ ∆ ξ µ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη -ξ α e isφ µ 0 (ξ, η)|ξ -η|∆ ξ f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ is∇ ξ φµ 0 (ξ, η) f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ is∇ ξ φµ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ is∇ ξ φ∇ ξ µ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ ∇ ξ µ 0 (ξ, η) f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ ∇ ξ µ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) u 0 (s, η) dη -2ξ α e isφ µ 0 (ξ, η)∇ ξ f (s, ξ -η) u 0 (s, η) dη 55 Recall that, concerning the 4th term, we already treated the case when all the derivatives hit the rst factor (through the symmetric structure). Therefore, it only remains :

= ξ α e isφ s 2 ∇ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η) f (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) u 0 (s, η) dη

+ ξ α
|ξ| 2 e isφ µ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) f (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 f (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η||η|∆ ξ f (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ f (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ f (s, ξ -η) u 0 (s, η) dη

For all these terms except the rst one, we can estimate directly with a decay s -1+a+δ+ γ k 2 by estimating u 0 in L ∞-, thus winning s -2 (and possibly absorbing a factor s) and the other in L 2 . More precisely, if we denote the terms above by (1) to (10), we have that :

∥(3)∥ L 2 ≲ s∥u∥ H 6 ∥u 0 ∥ W 7,∞-≲ s -1+a+δ ∥u∥ 2 X ∥(4)∥ L 2 ≲ s∥xf ∥ H k+2 ∥u 0 ∥ W k+2,∞-≲ s -1+a+δ+ γ k 2 ∥u∥ 2 X ∥(5) k=0 ∥ L 2 ≲ ∥T µ0 (Λu, u 0 )∥ L 6/5 ≲ ∥u∥ H 1 ∥u 0 ∥ L 3 ≲ s -4/3+a ∥u∥ 2 X ∥(8)∥ L 2 ≲ ∥Λ|x| 2 f ∥ H k ∥u 0 ∥ W k+2,∞-≲ s -2+a+δ+γ k ∥u∥ 2 X ≲ s -1 ∥u∥ 2 X
The terms (2), ( 6), ( 7), ( 9), (10) are simpler or similar. It only remains (1), that is ξ α e isφ s 2 ∇ ξ φµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη

As for the L ∞ estimate, let us distinguish several cases. If the interaction is + + 0 or --0, then by lemma 27 |ξ|∇ ξ φ = |η|µ 0 and we absorb the singularity in u 0 . We can then apply an integration by parts in frequency (since ∇ η φ does not vanish) to absorb a factor s, and nally get a total decay better than s -1+γ k . The reasoning is very similar to the one made for the L ∞ norm.

In the case + -0 or -+ 0, φ(ξ, η) = |ξ| 0 + |ξ -η| 0 so we can freely integrate by parts in time. As for the L ∞ norm, we separate u 0 as a quadratic term. In the + -+case or analogous ones, we can integrate by parts in time, knowing that if it hits D α |x| 2 f we can procede by symmetry, that if it hits u 0 it creates either terms controlled by lemma 31 or a φ ′ (η, ρ) = |η|µ 0 , so that it absorbs the singularity in u 0 .

In the + -++ case or analogous ones, we can apply an angular repartition as in for the L ∞ estimate.

Case + + 0 or --0 In this case, we have :

(1) = ξ α |ξ| e isφ s 2 µ 0 (ξ, η)|ξ -η| f (s, ξ -η)|η| u 0 (s, η) dη

Let us integrate by parts in η :

(1) = ξ α |ξ| e isφ sµ 0 (ξ, η) f (s, ξ -η)|η| u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η|∇ η f (s, ξ -η)|η| u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| f (s, ξ -η)|η|∇ η u 0 (s, η) dη

The rst three terms have already been estimated above. For the last one :

s∥T µ0 (Λu, Λxu 0 )∥ H k ≲ s∥u∥ W k+2,∞-∥Λxu 0 ∥ H k ≲ s -1+δ+a+ γ k 2 ∥u∥ 2 X
In the rst area, we write :

ξ α e isφ(ξ,η) e isφ ′ (η,ρ) s 2 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| -1 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -2 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η) f (s, η -ρ)∇ ρ f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ 2 ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ ρ f (s, η -ρ)∇ ρ f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ)∇ 2 ρ f (s, ρ) dρdη

In lines 3, 5 and 8, we distribute |η -ρ| = µ 0 |η| + µ 0 |ρ| to recover :

ξ α e isφ(ξ,η) e isφ ′ (η,ρ) s 2 µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη = ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| -1 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||ρ| -2 f (s, ξ -η) f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ||ρ| -1 f (s, ξ -η)∇ ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||ρ| -1 f (s, ξ -η) f (s, η -ρ)∇ ρ f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ 2 ρ f (s, η -ρ) f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η||η| -1 |η -ρ| f (s, ξ -η)∇ ρ f (s, η -ρ)∇ ρ f (s, ρ) dρdη + ξ α e isφ(ξ,η) e isφ ′ (η,ρ) µ 0 (ξ, η)µ ′ 0 (η, ρ)χ(η, ρ)|ξ -η| f (s, ξ -η) f (s, η -ρ)∇ 2 ρ f (s, ρ) dρdη

Now we can control everything. The terms above have the form D α T µ0 (Λu, Λ -1 A) or D α T µ0 (Λu, B) and we can estimate them by :

∥T µ0 (Λu, Λ -1 A)∥ H k+1 ≲ ∥u∥ W k+2,3 ∥Λ -1 A∥ L 6 + ∥u∥ W k+2,∞-∥A∥ H k ≲ s -1/3+δ ∥u∥ X ∥A∥ L 2 + s -1+δ ∥u∥ X ∥A∥ H k ∥T µ0 (Λu, B)∥ H k+1 ≲ s -1+δ ∥u∥ X ∥B∥ H k+1
Then, for A, we have the following possibilities :

T µ0 (Λ -1 u, u), T µ0 (e ±isΛ xf, u), T µ0 (e ±isΛ xf, Λ -1 u), T µ0 (Λe ±isΛ x 2 f, u), T µ0 (Λe ±isΛ xf, e ±isΛ xf )

and for B : T µ0 (u, Λ -2 u), T µ0 (u, Λ -1 e ±isΛ xf ), T µ0 (u, e ±isΛ x 2 f ) 4.7.4 0 -± interactions

We rewrite the corresponding part of ξ α ∆ ξ f (s, ξ) as :

= ξ α e isφ s 2 µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ sµ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dη

+ ξ α
|ξ| 2 e isφ µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η|∆ ξ u 0 (s, ξ -η) f (s, η) dη

On the 1st and last term, we integrate by parts in frequency (note that ∇ η φ does not vanish) and get :

= ξ α e isφ sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η)∇ η f (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η||η| -1 u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ sµ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| 2 e isφ µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η||η| -1 ∇ ξ u 0 (s, ξ -η) f (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η)∇ η f (s, η) dη Denote these terms by (1) to (12).

∥(1)∥ L 2 = s∥T µ0 (Λu 0 , e ±isΛ xf )∥ H k+1 ≲ s∥u 0 ∥ W k+3,∞-∥xf ∥ H k+1 ≲ s -1+a+δ+ γ k 2 ∥u∥ 2 X ≲ s -1+γ k ∥u∥ 2 X ∥(5)∥ L 2 = s∥T µ0 (Λxu 0 , u)∥ H k+1 ≲ s∥Λxu 0 ∥ H k+1 ∥u∥ W k+2,∞-≲ s -1+a+δ+ γ k 2 ∥u∥ 2 X ≲ s -1+γ k ∥u∥ 2 X ∥(6) k=0 ∥ L 2 ≲ ∥T µ0 (Λu 0 , u)∥ L 6/5 ≲ ∥u 0 ∥ H 1 ∥u∥ L 3 ≲ s -4/3+a ∥u∥ 2 X ∥(10)∥ L 2 = ∥T µ0 (xu 0 , u)∥ H k+1 ≲ ∥xu 0 ∥ W k+1,6 ∥u∥ W k+1,3 ≲ ∥Λxu 0 ∥ H k+1 ∥u∥ W k+1,3 ≲ s -4/3+a+δ+ γ k 2 ∥u∥ 2 X ∥(12)∥ L 2 = ∥T µ0 (Λxu 0 , e ±isΛ xf )∥ H k+1 ≲ ∥Λxu 0 ∥ H k+1 ∥xf ∥ H 2 + ∥Λxu 0 ∥ H 2 ∥xf ∥ H k+1 ≲ s -1+a+ γ k 2 ∥u∥ 2

X

The other are simpler or similar.

0 -0 interactions

We rewrite the corresponding part of ξ α ∆ ξ f (s, ξ) as :

= ξ α e isφ s 2 µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη

+ ξ α
|ξ| 2 e isφ µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η|∆ ξ u 0 (s, ξ -η) u 0 (s, η) dη

1 4 |ξ| 0 |ξ -η| 0 so ξ |ξ|0 • g 0 η

 0 |η|0 ≥ -1 4 |ξ| 0 |η| 0 while the denominator of the identity of lemma 26 is |ξ| 0 |η| 0 + ξ • g 0 η ≥ 3 4 |ξ| 0 |η| 0 in the + + + or --cases, the denominator of the identity of lemma 26 is |ξ| 0 + |ξ -η| 0 + |η| 0 which does not vanish outside the axes ; in the + +or --+ cases, on the support of χ -, we have that ξ • g 0 (ξ -η) ≥ -1 4 |ξ| 0 |ξ -η| 0 and the denominator of the identity of lemma 26 is

) + te ±itΛ t 1 e 1 e

 11 ∓isΛ T ψ (Λe ±isΛ ∂ s f, u) ds + te ±itΛ t ∓isΛ T ψ (Λu, e ±isΛ ∂ s f ) ds where ψ = ∇ηφ φ µ 0 (ξ, η)χ + . Let us denote these terms by (1), (2), (3), (4).

  |η|0 |ξ|0+|ξ-η|0 (|ξ| 0 +|ξ-η| 0 ) and |η|0 |ξ|0+|ξ-η|0is a symbol of order 0. We then obtain the rst identity. For the second one, we write that ϵ 2 ξ-η |ξ-η|0 -ϵ 3 η |η|0 vanishes at ξ = 0 (because ϵ 2 = -ϵ 3 ), so that ∇ η φ as well and which gives the second identity.

  ) is very analogous). Denote by (3.a) the term with weight |x|, (3.b) with weight |x| 2 , and (3.c) the term without any weight.

  where we distributed the derivatives. The right-hand side terms are essentially symmetric to the left-hand side ones. Let us denote these lines by (3.a.1), (3.a.2) and (3.a.3). Then, by lemma 31,

∥u∥ 2 X

 2 In order to treat (3.b), let us notice that (3.b) = |x|(3.a) + Λ -1 (3.a) (up to symbols of order 0). Since we want to estimate these in normes based on L 2 , by lemma 17, we only need to consider |x|(3.a) and we can reuse the previous decomposition

  Denote these terms by (1.b.1), (1.b.2), (1.b.3), (1.b.4).

  .2.1) contains the terms where the time derivative produces a term controlled by lemma 31. (1.2.2) contains nal time terms, (1.2.3) initial time terms.We will rst show that (1.2) is controlled by t 2γ k ∥u∥ 4

	X .

The + -and -+ + cases are empty (χ -≡ 0). In any case, we can therefore write that |ξ|φ(ξ, η)χ -(ξ, η) = |η| (|ξ -η|µ 0 + |η|µ 0 ) ∇ η φ(ξ, η) by distributing the |ξ| into |ξ -η| and |η|. Summing up, we get ∇ ξ |ξ| 2 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη = e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| 2 f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η| 3 ∇ ξ f (s, ξ -η) f (s, η) dη + e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)|ξ -η||η| 2 ∇ ξ f (s, ξ -η) f (s, η) dη by taking symmetries, redundancy and distributions of derivatives into account. We can then apply a last integration by parts in frequency : ∇ ξ |ξ| 2 e isφ(ξ,η) ∇ η φ(ξ, η)µ 0 (ξ, η)χ -(ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη = s -1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| f (s, ξ -η) f (s, η) dη + s -1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 2 |η| -1 f (s, ξ -η) f (s, η) dη + s -1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 2 ∇ η f (s, ξ -η) f (s, η) dη + s -1 e isφ(ξ,η) µ 0 (ξ, η)|η| 2 ∇ η f (s, ξ -η) f (s, η) dη + s -1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 3 |η| -1 ∇ ξ f (s, ξ -η) f (s, η) dη + s -1 e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| 3 ∇ ξ f (s, ξ -η)∇ η f (s, η) dη

Let us denote these terms by (1), (2), (3), (4), (5), (6), (7), (8). We need to control Λ -κ (i), i = 1, ..., 8, so we will apply lemma 23 each time : denote by q 0 = q 0 (κ) such that 1 q0 = 1 2 + κ 3 . Denote also by q 1 = q 1 (κ) such that 1

(1) is simpler, (2) is similar to (3) by Hardy's inequality, (4) is similar to (3), ( 8) is similar to (7).

Weight |x| 2 For the term with weight |x| 2 , we apply another derivative ∇ ξ to the above terms. More precisely, we can apply it before the last integration by parts :

Again, if the additionnal derivative hits the exponential, we only have a factor s appearing and we can apply the exact same estimates to obtain a s -1+2γ+δ decay. If the derivative hits the symbol and a |ξ| -1 appears, On the last term, we can apply an integration by part to get :

= |ξ| e isφ(ξ,η) µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) f (s, η) dη + |ξ| 2 e isφ(ξ,η) µ 0 (ξ, η) u 0 (s, ξ -η) f (s, η) dη

The rst two terms are easy to estimate. Then, for the following, we estimate by :

The second-to-last is similar to the last by Hardy's inequality.

For the term with a weight |x| 2 , we dierentiate the terms above. If the derivative hits the exponential, a factor s appears and we can apply the same estimates as before to reach a decay s -1 . It then only remains :

Most of the terms are simple to estimate, except :

To treat the term ∇ 2 ξ u 0 (s, ξ -η), we apply an integration by parts in frequency to recover terms we already have. The remaining terms are estimated by :

The missing terms are similar to these ones. The term Λ -κ T µ0 (Λu 0 , u) to be estimated in H 3 is also simpler.

Case + + 0 or --0 In this case, we apply lemma 27 under the form :

We can then apply as before the dispersive inequality. For the term with weight x, we have for instance :

For this last term, we apply an integration by parts to recover only already present terms. For the secondto-last term :

All the other terms are simpler or analogous.

4.7

Estimate of the L 2 norm with weight x 2

Here, we may see appear terms with a weight x 2 and one derivative too much with respect to what we control with the norm ∥u∥ X (because the nonlinearity is of order 1). Therefore, we will use an approach similar to the one already used in the energy estimate H N and show that :

By Parseval's identity, this is the same as estimating :

Since we chose γ k = kγ5+(5-k)γ0

5

, the estimates for k = 1, 2, 3, 4 are a consequence for those for k = 0, k = 5 by interpolation.

Quasi-linear structure

Let us x α ∈ N 3 , with |α| = 6 or |α| = 1. We write :

Let us only treat the 4th term for now, by writing that ξ α = ((ξ -η) + η) α , developping and isolating the term (ξ -η) α . This is :

The projection operators are orthogonal and symmetric, so we can transfer P ϵ1 to the other term outside B, sum on ϵ 1 = +,and ϵ 2 = +, -, use the symmetric structure given in proposition 12 and recover a product of the form : t 1 (e isA(D) D α g)(e isA(D) D α g)Λu ϵ3 dxds, where g = P + |x| 2 f + + P -|x| 2 f - Case + -+-or analogous In this case, φ(ξ, η) = ± (|ξ| 0 + |ξ -η| 0 ) does not vanish so we can integrate by parts in time. We then have : Finally, the other lines can be treated by lemma 31 that ensures an additional decay on the terms that bear a time derivative. The initial time or nal time terms are also well controlled thanks to the absence of a time integration.

Case + -++ or analogous In this case, we reuse the angular partition already used in the treatment of the L ∞ norm, between one area where ∇ ρ φ ′ (η, ρ) does not vanish and one area where |η-ρ| |ρ| acts like a symbol of order 0.

Let us estimate :

Summing up, we get :

In the second area, we get :

Let us integrate by parts in ρ, using the structure of the nonlinearity. We obtain :

Let us write these objects as :

Now we estimate :

Case + -+0 and analogous We have :

Let us integrate by parts in ρ (this time ∇ ρ φ ′ (η, ρ) does not vanish) and distribute some derivatives to get :

= ξ α e isφ(ξ,η) e isφ ′ (η,ρ) sµ 0 (ξ, η)µ ′ 0 (η, ρ)|ξ -η||η| -1 f (s, ξ -η) f (s, η -ρ) u 0 (s, ρ) dρdη

We estimate by :

Summing up, we control everytging with a decay of s -1+γ k .

Case + -0+ et analogous We have :

Let us integrate by parts in ρ :

Lines 1 and 3 have already been estimated in + -+0. For the other ones :

Case + -00 and analogous We have :

We estimate it directly :

We integrate by parts on the last term to get :

= ξ α e isφ s 2 µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ sµ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ sµ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη

|ξ| 2 e isφ µ 0 (ξ, η)|ξ -η| u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η) u 0 (s, ξ -η) u 0 (s, η) dη + ξ α |ξ| e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η| -1 u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η||η| -1 ∇ ξ u 0 (s, ξ -η) u 0 (s, η) dη + ξ α e isφ µ 0 (ξ, η)|ξ -η|∇ ξ u 0 (s, ξ -η)∇ η u 0 (s, η) dη Denote these terms by (1) to (11). Then :

The remaining terms are simpler or similar.