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Abstract

The Aho, Hopcroft and Ullman (AHU) algorithm has been the state of the art since the 1970s for deter-
mining in linear time whether two unordered rooted trees are isomorphic or not. However, it has been
criticized (by Campbell and Radford) for the way it is written, which requires several (re)readings to be
understood, and does not facilitate its analysis. In this article, we propose a different, more intuitive for-
mulation of the algorithm, as well as three propositions of implementation, two using sorting algorithms
and one using prime multiplication. Although none of these three variants admits linear complexity, we
show that in practice two of them are competitive with the original algorithm, while being straightforward
to implement. Surprisingly, the algorithm that uses multiplications of prime numbers (which are also be
generated during the execution) is competitive with the fastest variants using sorts, despite having a worst
theoretical complexity. We also adapt our formulation of AHU to tackle to compression of trees in directed
acyclic graphs (DAGs). This algorithm is also available in three versions, two with sorting and one with
prime number multiplication. Our experiments are carried out on trees of size at most 106, consistent
with the actual datasets we are aware of, and done in Python with the library treex, dedicated to tree
algorithms.

Keywords: tree isomorphism, AHU algorithm, prime numbers multiplication, DAG compression

1 Introduction

1.1 Context

The Aho, Hopcroft and Ullman (AHU) algorithm, introduced in the 1970s [1, Example 3.2], establishes that
the tree isomorphism problem can be solved in linear time, whereas the more general graph isomorphism
problem is still an open problem today, where no proof of NP-completeness nor polynomial algorithm is
known [41]. However, the problem is considered to be solved in practice; powerful heuristics exist, such as
the quasi-polynomial algorithm from [10]; see also [36].

As far as we know, AHU remains the only state-of-the-art algorithm for determining, in practice, whether
two trees are isomorphic. Recently, Liu [34] proposed to represent a tree by a polynomial of two variables,
computable in linear time, and where two trees have the same polynomial if and only if they are isomorphic.
Unfortunately, the existence of an algorithm to determine the equality of two polynomials in polynomial
time is still an open question [40]. We should also mention [19], which proposes an alternating logarithmic
time algorithm for tree isomorphism – under NC complexity class framework, that is, problems efficiently
solvable on a parallel computer [11].
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However, one criticism – emerging from Campbell and Radford in [20] – directed at the AHU algorithm
is that it is presented in such a way that it is difficult to understand. We leave it to the reader to form
their own opinion by reproducing the original text of the algorithm in Section 1.3, after a brief introduction
of key background in Section 1.2. To the best of our knowledge, the remark from Campbell and Radford
seems to have remained a dead letter in the community, and no alternative, clearer version of the algorithm
seems ever to have been published – with the exception of Campbell and Radford themselves, which have
nevertheless remained fairly close to the original text.

In this article, we propose to revisit the AHU algorithm by giving several alternative versions, all of them
easier to understand and straightforward to implement. However, these variants have supra-linear com-
plexity (which is also the case for the Campbell and Radford version). In practice, on trees of reasonable
size (≤ 106), with a Python implementation using the treex library [9], we find that two of the three pro-
posed variants are faster than the original algorithm – one of them sorts lists of integers (like the original
algorithm), while the other replaces this step by calculating the product of a list of primes. We also propose
a direct adaptation of our variants to compute tree compression into directed acyclic graphs (DAGs) [25] –
this time achieving state of the art complexity.

Section 1.2 introduces the notations and definitions useful for the rest of the paper; the original AHU algo-
rithm is presented in Section 1.3, as well as the aim of the paper.

1.2 Tree isomorphisms

A rooted tree T is a connected directed graph without any undirected cycle such that (i) there exists a special
node called the root and (ii) any node but the root has exactly one parent. The parent of a node u is denoted
by P(u), whereas its children are denoted by C(u). The leaves L(T) of T are the nodes without any children.
Rooted trees are said to be unordered if the order among siblings is not significant; otherwise they are
said to be ordered. This paper focuses only on unordered rooted trees, referred to simply as trees in the
remainder of this article.

The degree of a node u is defined as deg(u) = # C(u) and the degree of a tree T as deg(T) = maxu∈T deg(u).
The depth D(u) of a node u is the length of the path between u and the root. The depth D(T) of T is the
maximal depth among all nodes. The level of a node u is defined as D(T) − D(u). The sets of nodes of
level d in a tree T is denoted by Td, and the mapping d 7→ Td can be constructed in linear time by a simple
traversal of T .

Definition 1. Two trees T1 and T2 are said to be isomorphic if there exists a bijective mapping φ : T1 → T2 so that
(i) the roots are mapped together and (ii) for any u, v ∈ T1, v ∈ C(u) ⇐⇒ φ(v) ∈ C(φ(u)).

Figure 1: Two isomorphic trees.

Such a mapping φ is called a tree isomorphism. An example of
isomorphic trees is provided in Figure 1. Whenever two trees
T1 and T2 are isomorphic, we note T1 ≃ T2. It is well known
that ≃ is an equivalence relation on the set of trees [46]. The
tree isomorphism problem consists in deciding whether two trees
are isomorphic or not.

For the broader graph isomorphism problem, it is not usual to
explicitly construct the isomorphism φ – let us mention nonetheless [23, Section 3.3] and [30, 7] – but rather
to compute a certificate of non-isomorphism. For instance, Weisfeiler-Lehman algorithms, also known as
colour refinement algorithms [29, 32], colour the nodes of each graph according to certain rules, and the
histograms of the colour distributions are then compared: if they diverge, the graphs are not isomorphic.
This test is not complete in the sense that there are non-isomorphic graphs with the same colour histogram
– even though the distinguishing power of these algorithms is constantly being improved [26]. While the
graph isomorphism problem is not solved in the general case, it is solved for trees by virtue of the AHU
algorithm, which is built on a colouring principle similar to that of Weisfeiler-Lehman.
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1.3 The Aho, Hopcroft and Ullman algorithm

We reproduce below the original text of the algorithm, as introduced in 1974 by Ahu, Hopcroft and Ullman
in [1, Example 3.2] – only minor changes have been made to fit the notations used in this paper.

1. First, assign to all leaves in T1 and T2 the integer 0.

2. Assume by induction that all nodes at level d − 1 of T1 and T2 have been assigned an integer. Let L1
(respectively L2) be the list of nodes in T1 (respectively T2) at level d − 1 sorted by non-decreasing
value of the assigned integers.

3. Assign to the nonleaves of T1 at level d a tuple of integers by scanning the list L1 from left to right and
performing the following actions:

• For each vertex on list L1 take the integer assigned to u to be the next component of the tuple
associated with P(u).

• On completion of this step, each nonleaf w of T1 at level d will have a tuple (i1, i2, . . . , ik) as-
sociated with it, where i1, . . . , ik are the integers, in non-decreasing order, associated with the
children of w.

• Let S1 be the sequence of tuples created for the vertices of T1 on level d.

4. Repeat Step 3 for T2 and let S2 be the sequence of tuples created for the vertices of T2 on level d.

5. Sort S1 and S2 lexicographically. Let S ′
1 and S ′

2, respectively, be the sorted sequence of tuples.

6. If S ′
1 and S ′

2 are not identical, then halt: the trees are not isomorphic. Otherwise, assign the integer 1
to those vertices of T1 on level d represented by the first distinct tuple on S ′

1, assign the integer 2 to
the vertices represented by the second distinct tuple, and so on. As these integers are assigned to the
vertices of T1 on level d, replace L1 by the list of the vertices so assigned. Append the leaves of T1 on
level d to the front of L1. Do the same for L2. L1 and L2 can now be used for the assignment of tuples
to nodes at level d+ 1 by returning to Step 3.

7. If the roots of T1 and T2 are assigned the same integer, T1 and T2 are isomorphic.

Note that, in Step 5, the authors resort to a variant of radix sort [1, Algorithm 3.2]. Actually, the tree
isomorphism problem and AHU algorithm are only introduced in the book as an application example of
this sorting algorithm. This algorithm can sort n lists of varying lengths l1, . . . , ln, containing integers
between 0 and m− 1, in complexity O

(∑n
i=1 li +m

)
. Expressed within our framework, the length of each

list is exactly the degree of the associated node, and m = #{c(u) : u ∈ Td} – where c(u) designates the
integer associated to node u.

Theorem 1 (Aho, Hopcroft & Ullman). AHU algorithm runs in O(n) where n = #T1 = #T2.

Proof. See the proofs in [1, Example 3.2] for the whole algorithm and especially [1, Algorithm 3.2] for sorting
lists S1 and S2 in Step 5. As stated above, Step 5 has complexity O

(∑
u∈Td deg(u) + #{c(u) : u ∈ Td}

)
.

Noticing that
∑

u∈Td deg(u) = #Td−1 and that #{c(u) : u ∈ Td} ≤ #Td, and summing over all levels indeed
yields a linear complexity for all those sorts. F

Remark 1. A point (very) briefly addressed by the authors of AHU algorithm specifies that the maximum integer m
used in Step 5 must be not “too large” [1, Section 3.2, p.77]. Indeed, the sorting algorithm works if the integers can
actually be considered as integers, and not as sequences of 0’s and 1’s, as pointed out by Radford and Campbell [20] –
in which they show that there are large trees for which the algorithms runs in O(n logn).

How large are we talking? For the integers to not fit on one word of memory, we must assume that m > 2k with a
k-bit machine. The smallest tree T with m = 2k has roughly k2k nodes (see Appendix A). With k = 64, this would
imply trees of size ≈ 1021. For most practical applications, this is unlikely to be a problem.
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Without any additional context for interpreting what the algorithm does, perhaps the reader will agree with
this comment, arguing that the formulation of the algorithm is

utterly opaque. Even on second or third reading. When an algorithm is written it should be clear, it
should persuade, and it should lend itself to analysis.

— Douglas M. Campbell and David Radford [20]

In Campbell and Radford view, the formulation of the algorithm is detrimental to understanding it, analyse
it, and implement it. It is true that the theoretical contribution of the AHU algorithm is indisputable, since
it establishes that the tree isomorphism problem is linear. On the other hand, and to support Campbell
and Radford’s point of view, AHU would benefit from a formulation that is simpler to understand and
implement. From a pedagogical point of view, it is likely that AHU is one of the first algorithms that people
might want to study or implement when they learn about tree graph theory. AHU algorithm is also used
by more advanced algorithms, such as the compression of trees into directed acyclic graphs (DAG) – see
Section 2.3; or routinely for the construction of marked tree isomorphisms in [30, 7].

Aim of the paper In [20], Campbell and Radford provide a very clear, step-by-step exposition of the intu-
itions that lead to the AHU algorithm, and they even provide an algorithm similar to AHU that associates
bitstrings to nodes instead of integers – with O(n logn) time complexity. In this paper, we introduce yet
another formulation for the AHU algorithm. This formulation assigns integers to the nodes, as does AHU
and unlike Campbell and Radford’s version. Several possible implementations of our approach are stud-
ied, both from a theoretical and a practical point of view. In addition to clarifying the intuition behind the
original algorithm, our variants are straightforward to implement – at the cost, however, of worse complex-
ity. With respect to Remark 1, when used with trees of reasonable size in line with common use cases, they
nonetheless perform better in practice. The outline of the paper is as follows:

• Section 2 introduces our intuition for the AHU algorithm, in three variants: two using list sorts, and
one using multiplication of lists of primes instead. We also present an adaptation of AHU for the
compression of trees into directed acyclic graphs (DAG), also in three variants.

• Section 3 tests these algorithms on simulated data of reasonable size, in competition with the original
algorithm whenever possible (i.e. excluding DAG compression).

Although the theoretical complexities of the algorithms presented here exceed the linear complexity of the
original algorithm, we show that in practice, with the exception of one of the sorting variants, the others are
competitive with the original. In particular, the variant using prime number multiplication is competitive
with the best variant using sorts, even though it also has to generate the primes on the fly in addition to
multiplying them.

Finally, in Appendix A, we study a very specific class of trees, which allows us to prove results – namely
Lemmas 1 and 2 – relating the size of trees to the number of distinct integers needed to assign classes level
by level in the AHU algorithm (whatever its variant). To the best of our knowledge, this matter has never
been addressed before.

2 Revisiting AHU algorithm

In this section, we present variants of the original AHU algorithm. First, Section 2.1 provides a new intuition
of the algorithm, in the form of a colouring process. We propose two variant implementations, each using
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a different sorting algorithm. In Section 2.2, we replace the sorting step by the multiplication of a list of
primes, leading to a new variant of AHU. Finally, in Section 2.3, we focus on the compression of trees into
directed acyclic graphs (DAGs), which can be achieved via a simple modification of our version of AHU –
declined in three implementations: two with sorting, one with prime multiplication, as before.

2.1 An intuition for AHU and two variants

As already stated, the interested reader can found in [20] a step-by-step explaination of the concepts at
works behind AHU algorithm. Here, we introduce another intuition for the AHU algorithm, presented as a
colouring process, thus making the connection with Weisfeiler-Lehman algorithms for graph isomorphism
already mentioned.

The core idea behind AHU algorithm is to provide each node in trees T1 and T2 a canonical representative
of its equivalence class for ≃, thus containing all the information about its descendants.

The nodes of both trees are simultaneously browsed in ascending levels. Suppose that each node u of level
d − 1 has been assigned a colour c(u), representing its equivalence class for the relation ≃. Each node u
of level d is associated with a multiset Cc(u) = {{c(v) : v ∈ C(u)}} – if u is a leaf, this multiset is denoted
∅. Each distinct multiset is given a colour, which is assigned to the corresponding nodes. An illustration is
provided in Figure 2. In the end, the trees are isomorphic if and only if their roots receive the same colour.
Moreover, after processing level d, if the multiset of colours assigned to the nodes of level d differs from
one tree to the other, we can immediately conclude that the trees are not isomorphic.

Level

3

2

1

0

Multiset

∅
∅

{{ }}

∅
{{ }}

{{ , }}

{{ , , , }}

Colour

⋆

Figure 2: Assigning colours to nodes in AHU algorithm.
⋆: We could have used colour because colours are as-
signed level by level and not globally. We have chosen to
use another colour for the sake of clarity. In this example,
the colours correspond exactly to the equivalence classes of
the nodes.

Consider the number of colours required by
any version of AHU algorithm; this number
is given by

max
d∈[[0,D(T)]]

#{c(u) : u ∈ Td}. (1)

We call it the width of T and denote it by W(T).

In practice, colours are represented by inte-
gers. To associate different integers with dis-
tinct multisets, we need to keep track of which
ones we have already encountered. In order
to check in constant time whether a multiset
has already been seen (which is the case in the
original algorithm: as the tuples are sorted in
Step 5, it is enough to compare a tuple with its
predecessor in the list S ′

i to find out whether
they are different or not), we need a perfect
hash function that works on multisets. Obviously, this is a very strong assumption. Hash functions for
multisets do exist – see for instance [21, 35] – but they involve advanced concepts, which would make im-
plementation difficult for non-specialists. For the sake of this article, let us assume that we do not have
access to such methods. Since we will be focusing on Python applications later on, we assume that the
Python dictionary structure can be seen as a perfect hash table; it can hash integers, strings or tuples.

To get around multisets, a simple solution is to see them as lists, which we sort before hashing them as
tuples. This approach, in particular, is used in Weisfeiler-Lehman algorithms, where the same problem
arises – see, for example, [32, Algorithm 3.1]. The pseudocode for AHU as presented in this section, using
prior sorting of multisets, is presented in Algorithm 1.
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Note that to compare the multisets of in-
tegers associated at current level d, on
line 14, it is not necessary to hash but
simply to sort the two lists and compare
them term by term. This can be accom-
plished via pigeonhole sort [14]. Remem-
ber that pigeonhole sorting a list of k inte-
gers within the range 0 to m − 1 is done in
O(k+m). Here, since colours are attributed
at each level, m ≤ #Td

i ; hence a complexity
of O(#Td

i ) for this step.

The overall complexity of Algorithm 1 de-
pends on the sorting algorithm used in
line 9 to sort Cc(u). It may be tempting to
reuse the pigeonhole sort, already used in
the algorithm, or to use a comparison sort-
ing algorithm, such as timsort, Python’s
native algorithm [4]. We assume that T1 =
T2 = T – this is the worst case, since, if
T1 ̸≃ T2, we do not visit all the levels.

Algorithm 1: TREEISOMORPHISM

Input: T1, T2
Output: ⊤ if and only if T1 ≃ T2

1 if D(T1) ̸= D(T2) then
2 return ⊥
3 else
4 for d from 0 to D(T1) do
5 k← 0
6 Let f : ∅ 7→ 0

7 for i ∈ {1, 2} and u ∈ Td
i do

8 Cc(u)← (c(v) : v ∈ C(u))
9 Sort Cc(u)

10 if f(Cc(u)) is not defined then
11 k← k+ 1
12 Define f(Cc(u)) = k

13 c(u)← f(Cc(u))

14 if {{c(u) : u ∈ Td
1 }} ̸= {{c(u) : u ∈ Td

2 }} then
15 return ⊥

16 return ⊤

Proposition 1. Algorithm 1 runs

(i) in O

(
#T2

log #T

)
using pigeonhole sort;

(ii) in O(#T log deg(T)) using timsort.

Proof. Fix a level d and a node u ∈ Td
i . Building Cc(u) requires O(deg(u)). Then, sorting Cc(u) depends on

the algorithm used.

(i) Pigeonhole sort is done in O(deg(u)+max(Cc(u))). Since the colours are attributed from 0 to W(T)−1
– recall W(T) from (1), we have max(Cc(u)) ≤ W(T) and therefore a complexity of O(deg(u)+W(T)).

(ii) The worst-case complexity of timsort is O(deg(u) log deg(u)) [4].

Notice that
∑

u∈Td
i

deg(u) = #Td−1
i . Recalling that line 14 is processed in O(#Td

i ) via pigeonhole sort,
the complexity of treating level d is O(#Td

i W(T)) for case (i), and O(#Td
i log deg(T)) for case (ii) – using

log deg(u) ≤ log deg(T). Summing over d leads to the result for (ii), and to O(#T W(T)) for (i).

The results holds in case (i) by virtue of the following lemma, whose proof can be found in Appendix A.F

Lemma 1. For any tree T , W(T) = O

(
#T

log #T

)
.

Neither version of Algorithm 1 is linear; we will see later in Section 3 how they behave in practice. In
the next section, we will consider another approach, which does not resort to sorting, but instead replaces
multiset hashing with prime number multiplication.
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Remark 2. It should be noted that Algorithm 1 can be straightforwardly adapted to handle ordered and/or labelled
trees (where each node carries a label). For ordered trees, it suffices to not sort Cc(u). For labelled trees, we have
to assume that labels can be hashed. We replace Cc(u) by the tuple (label(u), Cc(u)) and consider two tuples to be
equal if both the label and the multiset are identical. Note that another way of handling labels exists, requiring not the
equality of labels but rather the respect of label equivalence classes. This variant is known as marked tree isomorphism
[16] and proved to be as hard as graph isomorphism – for which no polynomial algorithm is known, even though in
practice very efficient algorithms exist; see [36, 10] for instance. Marked tree isomorphism is far beyond the scope of
this article; but we refer the interested reader to [7, 30].

The authors of the AHU algorithm have provided in [1] a way of adapting their method to labeled trees - but only with
labels that can be totally ordered. It suffices to add of label of node u as the first element of the tuple associated to it,
before the lexicographical sort of Step 5. While not provided in [1], their algorithm can also be modified to account for
ordered trees. In Step 3, the tuple associated to node u at level d is instead calculated as the tuple of integers associated
with its children, in order. The list Li is not longer necessary.

2.2 AHU with primes

In Algorithm 1, we need to associate a unique integer f(Cc(u)) to each distinct multiset Cc(u) of integers en-
countered. There is a particularly simple and fundamental example where integers are associated with mul-
tisets: prime factorization. Indeed, via the fundamental theorem of arithmetic, there is a bijection between
integers and multisets of primes. For example, 360 = 23 · 32 · 5 is associated to the multiset {{2, 2, 2, 3, 3, 5}}.
Note that this bijection is well known
[15], and has already been successfully ex-
ploited in the literature for prime decom-
position, but also usual operations such as
product, division, gcd and lcd of numbers
[45]. To the best of our knowledge, this
link has never been exploited to replace
multiset hashing, a fortiori in the context
of graph isomorphism algorithms – such
as Weisfeiler-Lehman, or AHU for trees.
Note, however, that this approach has been
used in the context of evaluating poker
hands [43], where prime multiplication has
been preferred to sorting cards by value in
order to get a unique identifier for each dis-
tinct possible hand.

Since the previous versions of AHU we
presented (both the original and our vari-
ants) sort lists of integers, the main chal-
lenge of this substitution concerns the po-
tential additional complexity of multiply-
ing lists of primes compared to sorting lists
of integers.

Algorithm 2: TREEISOMORPHISMWITHPRIMES

Input: T1, T2
Output: ⊤ if and only if T1 ≃ T2

1 if D(T1) ̸= D(T2) then
2 return ⊥
3 else
4 P ← [2, 3, 5, 7, 11, 13] and Nsieve ← 16
5 for d from 0 to D(T1) do
6 Let f : 1 7→ 2
7 p← 2

8 for i ∈ {1, 2} and u ∈ Td
i do

9 N(u)← ∏
v∈C(u)

c(v)

10 if f(N(u)) is not defined then
11 Nsieve, P, p← NEXTPRIME(Nsieve, P, p)
12 Define f(N(u)) = p

13 c(u)← f(N(u))

14 if {{c(u) : u ∈ Td
1 }} ̸= {{c(u) : u ∈ Td

2 }} then
15 return ⊥

16 return ⊤

Suppose that each node u at level d has received a prime number c(u), assuming that all nodes at that
level and of the same class of equivalence have received the same number. Then, to a node u at level d,
instead of associating the multiset Cc(u) = {{c(v) : v ∈ C(u)}}, we associate the number N(u) =

∏
v∈C(u) c(v).

The nodes of level d are then renumbered with prime numbers – where each distinct number N(u) gets a
distinct prime. The fundamental theorem of arithmetic ensures that two identical multisets Cc(·) receive the
same number N(·). The pseudocode for this new version of AHU is presented in Algorithm 2.
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The subroutine NEXTPRIME, introduced in Algorithm 3, returns the next prime not already used at the
current level; if there is no unassigned prime in the current prime list P, then new primes are generated
using a segmented version of the sieve of Eratosthenes.

Algorithm 3: NEXTPRIME

Input: Nsieve, the largest number for which the sieve of Eratosthenes has already been performed,
the list P of primes ≤ Nsieve in ascending order, with length(P) ≥ 6, and a prime p ∈ P

1 if p is the last of element of P then
2 Nsieve, P ← SIEVEOFERATOSTHENES(Nsieve, P)

/* At least one new prime has been added to P */

3 Let p ′ be the next prime after p in P
4 return Nsieve, P, p

′

Let us denote pn the n-th prime number. There are well known bounds on the value of pn [22, 39] – with
ln denoting the natural logarithm and n ≥ 6:

n(lnn+ ln lnn− 1) < pn < n(lnn+ ln lnn). (2)

Suppose we have the list of all primes P ≤ Nsieve, where Nsieve is the largest integer sieved so far. With
#P = n − 1, to generate pn, we simply resume the sieve up to the integer ⌈n(lnn + ln lnn)⌉, starting from
⌊n(lnn + ln lnn − 1)⌋ or Nsieve + 1, whichever is greater – to make sure there is no overlap between two
consecutive segments of the sieve. With this precaution in mind, the total complexity of the segmented
sieve is the same as if we had directly performed the sieve in one go [12]; i.e., O(N log logN) for a sieve
performed up to integer N. Therefore, to generate the first n prime numbers, according to (2), we have N =
n(lnn+ ln lnn) = O(n logn) and the final complexity of the sieve can be evaluated as O(n logn log logn).
See [37] for practical considerations on the implementation of the segmented sieve of Eratosthenes.

Remark 3. Note that other sieve algorithms exist, with better complexities – such as Atkin sieve [3] or the wheel sieve
[38]; the sieve of Eratosthenes has the merit of being the simplest to implement and sufficient for our needs. Also, a
better asymptotic complexity but with a worse constant can be counterproductive for producing small primes – which
is rather our case since we generate the primes in order.

We now analyse the complexity of Algorithm 2, assuming that T1 = T2 = T . Following the previous
discussion, we can consider separately the complexity for generating the primes numbers.

Proposition 2. Generating the primes required for Algorithm 2 can be done in O(#T log log T).

Proof. To generate the first n primes, the sieve must be carried out up to the integer n · (lnn + ln lnn),
for total complexity O(n logn log logn). As defined in (1), the number of primes needed by Algorithm 2 is
equal to W(T). We result immediately follows by virtue of the upcoming lemma, whose proof can be found
in Appendix A. F

Lemma 2. For any tree T , W(T) lnW(T) = O(#T).

Finally, we have the following result.

Theorem 2. Algorithm 2 runs in O
(
#T log #T ·M

(
deg(T) log #T

))
where M(n) varies from logn to n depending

on the multiplication algorithm used.

Proof. The proof can be found in Appendix B. F

This new variant is no more linear than the two versions introduced in Section 2.1. We shall see in Section 3
that, in practice, this version is competitive with its rivals.
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2.3 Computing classes globally for DAG compression

In AHU algorithm as it has been presented so far, the colours assigned to the nodes are assigned level by
level, and therefore make it possible to determine the equivalence class of the node relative to the level at
which it is located. It is legitimate to ask whether the colours can be associated globally, so that the colour
of a node is an exact reflection of its equivalence class in the tree – see Figure 2. In this way, two nodes
located at different levels but having the same colour induce isomorphic subtrees.

The need to assign equivalence classes globally notably arises when considering the (lossless) compression
of trees into directed acyclic graphs (DAG). Trees can have many redundancies in their structure, and the
aim of DAG compression is precisely to eliminate these redundancies. There are many applications of DAG
compression, some of which are: the representation of trees in computer graphics [44, 27], the simplification
of queries on XML documents [18, 24] or again the computation of convolution kernels [2, 8].

The set of vertices of the DAG compression R(T)
of a tree T corresponds to the set of equivalence
classes of the subtrees of T . For any vertices
a, b ∈ R(T), the multiplicity of the arc a → b
corresponds to the number of children of class
b of a subtree of class a. An example can be
found in Figure 3. A more precise definition and
an algorithm can be found in [25]. However, it
should be noted that a simple adaptation of Al-
gorithm 1 can also be used to construct the DAG
compression of a tree, namely Algorithm 4.

Figure 3: A tree T (left) and its DAG compression
R(T) (right). Nodes are colored according to their
equivalence class under ≃.

Remark 4. In light of Remark 2, the same
adjustments can be applied to Algorithm 4 to
take into account ordered and/or labelled trees.
In addition, for labelled trees, the vertex in
Q associated to the tuple (label(u), Cc(u)) is
labelled with label(u); f must be initialized
as an empty mapping, and Q as an empty
graph. For ordered trees, the order of children
of Cc(u) must be respected in Q.

As with Algorithm 1, the complexity of
Algorithm 4 depends on the sorting algo-
rithm used.

Proposition 3. Algorithm 4 computes R(T)

(i) in O
(
#T2

)
using pigeonhole sort;

(ii) in O(#T log deg(T)) using timsort.

Algorithm 4: DAGCOMPRESSION

Input: T
Output: R(T)

1 k← 0
2 Let f : ∅ 7→ 0
3 Let Q be a graph with a unique vertex 0
4 for d from 0 to D(T) do
5 for u ∈ Td do
6 Cc(u)← (c(v) : v ∈ C(u))
7 Sort Cc(u)
8 if f(Cc(u)) is not defined then
9 k← k+ 1

10 Define f(Cc(u)) = k
11 Create a vertex k in Q with children Cc(u)

12 c(u)← f(Cc(u))

13 return Q

Proof. We assume that creating a new vertex can be done in O(# Cc(u)) = O(deg(u). Then, note that since
we can determine whether f(Cc(u) is defined in O(1) at line 8, the complexity of constructing the DAG
is bounded by O

(∑
u∈T deg(u)

)
= O(#T) (the worst case would be when all nodes of T are of different

equivalence class), and can be counted independently from other steps in the algorithm.

With timsort, the sorting complexity remains O(deg(u) log deg(u)) and the global complexity is the same
as for Algorithm 1. However, for pigeonhole sort, things are diffrent. By computing the classes globally,
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the number of colours needed is not W(T) but exactly #R(T), that can be roughly bounded by #T ; therefore
sorting Cc(u) via pigeonhole has complexity O(deg(u) + #T) and leads to a global complexity of O(#T2). F

The state-of-the-art complexity for computing R(T) is O(#T log deg(T))1 [25, Section 2.2.1], so our approach
is consistent if we use timsort.

Algorithm 2 can also be adapted so that the DAG is constructed using multiplication of primes. As stated
above, the largest colour (thus prime) used in the algorithm is no longer W(T), but #R(T). Using the same
rough bound of #R(T) ≤ #T , the complexity of Algorithm 2 would be modified to

O
(
#T log #T ·

(
M

(
deg(T) log #T

)
+ log log #T

) )
,

the final complexity depending on the chosen multiplication algorithm and whether M(deg(T) log #T) out-
weighs or not log log #T – recalling that M(n) varies from logn to n.

Remark 5. Concerning the bound #R(T) ≤ #T , note that #R(T) = #T is achieved if and only if T is a chain; in
which case all nodes have at most one child, and only one prime is actually needed. We could refine the bound with
#R(T) ≤ #T − #L(T) + 1, since all leaves of T have the same equivalence class. In general, if we choose a tree T
uniformly at random among trees with n nodes, the expected value of R(T) is√

ln 4

π

n√
lnn

(
1+O

(
1

lnn

))
[17, Theorem 29].

The most compressible trees are called self-nested trees and achieve #R(T) = D(T) – on that matter, see [25, 5, 6].

Finally, note that AHU as stated in the original paper [1] cannot be extended to take into account this global
assignment of colours.

3 Numerical experiments

Table 1 summarizes the different algorithms seen so far and whether or not they can be adapted to compute
DAG compressions of trees. We implemented in Python those 7 different algorithms. All of them are
written to be fully compatible with the library treex [9], dedicated to tree algorithms.

Original AHU with AHU with AHU with primesAHU pigeonhole sort timsort
Tree

O(#T) O

(
#T2

log #T

)
O(#T log deg(T)) O(#T log #T ·M (deg(T) log #T)))Isomorphism

DAG
✗ O(#T2) O(#T log deg(T)) O

(
#T log #T ·

(
M

(
deg(T) log #T

)
+ log log #T

) )
Compression

Table 1: Complexities of the various algorithms studied in this paper.

Most of auxiliary functions used in those algorithms have been implemented as well, such as the variant
of radix sort used by AHU [1, Algorihm 3.2], pigeonhole sort or the prime variant of pigeonhole sort dis-
cussed in Appendix B. For the algorithm using primes, we have also implemented a variant that uses a
pregenerated list of primes, large enough so that no additional sieving step is needed during execution – in
this way we intend to study the impact of multiplication compared with sorting. The divide and conquer
recursive multiplication strategy discussed in Appendix B as well as the sieve of Eratosthenes have been

1Actually, in [25], the authors announce a complexity of O(#T deg(T) log deg(T)); but their proof does not exploit the fact that∑
u∈T deg(u) = #T − 1. Taking this into account, we can simplify their result and obtain exactly O(#T log deg(T)).
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also implemented. Note that our implementation of the segmented sieve of Eratosthenes ignores multiples
of 2 and 3, thus making the sieve 6 times faster. The noteworthy native Python functionalities we used
are (i) the dictionary structures for hash tables, (ii) the sort method for lists – that use timsort algorithm
[4] and (iii) the multiplication operator * – which use schoolbook multiplication for small integers, and
Karatsuba for large ones.

All experiments have been conducted on a HP Elite Notebook with 32 Go of RAM and Intel Core i7-1365U
processor.

3.1 Results for tree isomorphism

We generated 100 pairs of trees (T1, T2) of size n = 10i for each i ∈ [[1, 6]], and for each case T1 ≃ T2 or
T1 ̸≃ T2, following the procedure below:

• for T1 ≃ T2, we generate a random recursive tree [47] T1 of size n, and generate T2 as a copy of T1;

• for T1 ̸≃ T2, T1 and T2 are both random recursive trees of size n.

When processing a couple, we executed all five algorithms (original AHU, AHU with pigeonhole sort,
AHU with timsort, AHU with primes and AHU with pregenerated primes) on that same couple, so that the
results are comparable. The computation times we got are depicted in Figure 4.

As one might expect, in the case T1 ≃ T2, the behaviour of AHU with pigeonhole is supralinear. However,
this is not the case for the other variants, which are in fact faster than the original algorithm. This can be
explained by the fact that AHU has a large constant, scanning each list several times during its execution.
Furthermore, there doesn’t seem to be any significant difference between AHU with timsort, with primes
or with pregenerated primes (for the same tree, we found that timsort is actually slightly faster in most of
the cases). It’s not surprising that the two versions with prime numbers are similar: it has already been
established that the complexity of generating the prime numbers is negligible compared with the other
steps in the algorithm. However, the proximity between timsort on the one hand, and prime numbers on
the other, suggests that at this scale it is just as fast to sort lists as it is to multiply them.

Whenever T1 ̸≃ T2, all algorithms are roughly equally fast. This is likely due to the early stopping condi-
tions: the distribution of random recursive trees generates trees that are too dissimilar for several levels to
be visited during the execution.

Remark 6. One could argue that 106 is not very large, as an upper limit to our simulations. However, most of the
real tree databases we are aware of already do not have trees of this size. Among the 8 datasets studied in [8], the
largest trees have a few thousand nodes; among the 5 studied in [42], a few hundred. If gigantic tree databases were
to be built (for example, spanning trees from graphs with billions of nodes), it seems reasonable to imagine that they
would be processed, in any case, with algorithms implemented in C, C++ or Rust rather than in Python (at the very
least to be able to compute them efficiently, with the spanning trees example).

3.2 Results for DAG compression

Here, we generated 100 random recursive trees T of size n = 10i for each i ∈ [[1, 6]]. The results are
provided in Figure 5. One can see that the pigeonhole variant seems to confirm a quadratic behaviour,
while the timsort variant confirms its slight advantage over the versions with prime numbers. This time,
a difference can be seen between the version that uses pregenerated primes and the one that does not (as
might be expected given the theoretical complexity).
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(a) T1 ≃ T2
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(b) T1 ̸≃ T2
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Figure 4: Computation times (in log scale) for tree isomorphism using different algorithms, according to
the size of the trees, with 100 replicates for each size.



101 102 103 104 105 106

10−4

10−3

10−2

10−1

100

101

102

103

DAG compression
with pigeonhole sort

with timsort

with primes

with pregen. primes

Figure 5: Computation times (in log scale) for DAG compression using different algorithms, according to
the size of the trees, with 100 replicates for each size.

Concluding remarks

In this article, we have provided a new intuition for understanding the AHU algorithm, as well as several
algorithmic variants that are straightforward to implement, albeit at the cost of increased complexity. How-
ever, we have shown that on trees of reasonable size, with a Python implementation, some of these variants
were faster than the original algorithm. We have shown that a simple adaptation of our algorithms can also
be used to calculate the DAG compression of trees.

Perhaps counter-intuitively, we have shown that in this context we can multiply lists of primes almost as
quickly as we can sort lists of integers. However, if one had to pick just one variant, the one with timsort
would probably be the simplest to implement and the most effective in practice – bot for tree isomorphism
and DAG compression. The version using prime numbers could possibly become competitive with timsort
if the list multiplication and prime number generation operations were implemented in CPython (as is the
case for timsort), but this is beyond the scope of this article.

One may also wonder whether our variant using prime numbers could be applied to other algorithms
similar to AHU, such as (1-dimensional) Weisfeiler-Lehman algorithm for graph isomorphism. While this
issue is outside the scope of this paper, and remains to be investigated, let us nonetheless mention two
points that may prove challenging. First, the way Weisfeiler-Lehman operates can lead to processing as
many colours as there are nodes in the graph, and therefore having to generate as many prime numbers –
which relates to the DAG compression case studied in this paper, for which our variant performed slightly
worse than the others. Next, we would multiply lists whose size depends on the degree of the current
node; in a dense or complete graph, this means lists whose size is comparable to the number of nodes

13



in the graph. The complexity of performing these multiplications could prove far more expensive than
for trees. Since Weisfeiler-Lehman can be implemented in O((#V + #E) log #V) for a graph G = (V, E), it
remains to be investigated to which extent the additional complexities mentioned above exceeds that of
the original algorithm. See [32, Section 3.1] and references therein for a more precise description of the
Weisfeiler-Lehman algorithms.
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A Proof of Lemma 1 and Lemma 2

We conduct the proof of Lemma 1 and Lemma 2 by first introducing a special tree, which for a given width
has the smallest possible number of nodes, before observing how these two quantities are related.

A.1 A special tree

Let k ≥ 1 be a fixed integer. A tree T such that W(T) =
k can be obtained by placing k trees Ti, i ∈ [[1, k]], un-
der a common root, so that Ti ̸≃ Tj for i ̸= j. Note that
this construction by no means encompasses all types
of trees T with W(T) = k. On the other hand, by clev-
erly choosing the Ti’s, we can build a tree with the
minimum number of nodes among all trees verifying
W(T) = k.

First, T1 would be the tree with a unique node. Then,
T2 the only tree with two nodes. Then, T3 and T4
would be the two non-isomorphic trees with three
nodes; T5 to T8 the four non-isomorphic trees with
four nodes, and so on until we reach Tk. See Figure 6
for an example with k = 5. It should be clear that this
construction ensures that W(T) = k and #T is mini-
mal.

a1 a2 a3 k− b3

b2 b3

Figure 6: The smallest tree so that W(T) = 5. We
have b3 < 5 ≤ b4 and #T = 1 + 1 · a1 + 2 · a2 +
3 · a3 + 4 · (5− b3) = 14.

Following this construction, the total number of nodes in T , that we denote by tk, is therefore closely
related to the number of non-isomorphic trees and their cumulative sum. Let us denote an the number
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of non-isomorphic trees of size n, and bn the number of non-isomorphic trees of size at most n – so that
bn =

∑n
i=1 ai. Let n be the integer so that bn < k ≤ bn+1. All trees with size up to n − 1 are used in the

construction, as well as k− bn trees of size n+ 1 (no matter which ones).

Therefore,

tk = 1+

n∑
i=1

i · ai + (n+ 1)(k− bn).

Table 2 provides the first values for an, bn and tk.
Following the previous discussion, we have the fol-
lowing result.

Lemma 3. For any tree T , #T ≥ tW(T).

n 1 2 3 4 5 6 7 8

an 1 1 2 4 9 20 48 115
bn 1 2 4 8 17 37 85 200

tn 2 4 7 10 14 18 22 26

Table 2: First values of an, bn and tn. an is
sequence A000081 in OEIS, and bn sequence
A087803. See OEIS Foundation Inc. (2023),
The On-Line Encyclopedia of Integer Sequences,
Published electronically at https://oeis.
org.

A.2 Relationships between k and tk

We require some preliminary results. We begin with the following lemma.

Lemma 4. Let (un)n∈n be a sequence so that un ∼
+∞ c · dn · n−α, with c, α ≥ 0 and d > 1. Then

∑n
k=1 uk ∼

+∞
c · d

d−1
· dn · n−α.

Proof. Obviously the sequence
∑

dn · n−α diverges, and therefore we have
∑n

k=1 uk ∼
+∞ c

∑n
k=1 d

k · k−α.

Then,
c
∑n

k=1 d
k · k−α

c · d
d−1

· dn · n−α
=

d− 1

d

n∑
k=1

dk−n

(
k

n

)−α

=
j=n−k

d− 1

d

n∑
j=1

(
1−

j

n

)−α

d−j.

With bounds 1 ≤
(
1− j

n

)−α

≤
(
1− 1

n

)−α
, it is easy to see that the right-hand term goes to 1 as n→∞. F

From [33, Section 2.3.4.4], we have an ∼
+∞ c ·dn ·n−3/2 with c ≈ 0.439924 and d ≈ 2.955765. From Lemma 4,

we immediately derive bn ∼
+∞ c · d

d−1
· dn · n−3/2. Finally, noticing that i · ai ∼

+∞ c · di · i−1/2, we derive

from Lemma 4 that
∑n

i=1 i · ai ∼
+∞ c · d

d−1
· dn · n−1/2.

We now derive our main results.

Lemma 5. kn ∼
+∞ tk – with n as defined in Subsection A.1, i.e. so that bn < k ≤ bn+1.

Proof. We have

tk

kn
=

1+
∑n

i=1 i · ai + (n+ 1)(k− bn)

kn
=

1+ (n+ 1)k

nk
+

∑n
i=1 i · ai − (n+ 1)bn

nk
.

First, the left-hand term tends to 1 as k→∞. We now prove that the right-hand term tends to 0 as k→∞.
Since bn < k, we have ∣∣∣∣∑n

i=1 i · ai − (n+ 1)bn

nk

∣∣∣∣ < ∣∣∣∣∑n
i=1 i · ai − nbn

nbn

∣∣∣∣+ bn

nbn
.

Notice that
∑n

i=1 i · ai ∼ nbn. By definition of ∼ and o(·) notations, for any (positive) sequences un and vn,

un ∼ vn ⇐⇒ un − vn = o(vn) ⇐⇒ un − vn

vn
→ 0, hence the result. F
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Lemma 6. lnk ∼
+∞ ln tk ∼

+∞ n lnd with d ≈ 2.955765.

Proof. By definition, bn < k ≤ bn+1 and
n∑

i=1

i · ai < tk ≤ 1+

n+1∑
i=1

i · ai. Hence, k ∼ bn and tk ∼

n∑
i=1

i · ai.

Taking the logarithm of the asymptotic equivalents provided earlier on both equations yields the result. F

Combining the two previous lemmas, we derive the following two corollaries.

Corollary 1. k = O

(
tk

ln(tk)

)

From Lemma 3, and since x 7→ x

log x
is increasing (for x ≥ 3), we get that for any tree T , W(T) = O

(
#T

log #T

)
– hence Lemma 1 holds.

Corollary 2. k lnk = O(tk).

From Lemma 3, we get that for any tree T , W(T) lnW(T) = O(#T), which ends the proof of Lemma 2.

B Proof of Theorem 2

Following Proposition 2, the generation of primes is done in O(#T log log #T). This term vanishes in the
final complexity due to the upcoming term in #T log #T . Let us denote by pW(T) the largest prime needed
by the algorithm. Fix d ∈ [[0,D(T)]] and u ∈ Td.

Complexity of multiplication The complexity for multiplying two n-bits numbers varies from O(n2) for
usual schoolbook algorithm, to O(n logn) [28] – even if this result is primarily theoretical, by the authors’
own admission. Karatsuba algorithm, which is widely used, runs in O(nlog 3) [31]. This algorithm is actu-
ally used in Python when the numbers get large, and schoolbook otherwise. Let us denote the complexity
of multiplication as n ·M(n), with M(n) varying from logn to n depending on the algorithm used.

Multiplying two n-bits numbers together yields a 2n-bits number. To compute the product of m num-
bers of n bits, we adopt a divide and conquer approach and multiply two numbers which themselves
are the recursive product of m/2 numbers. This strategy leads to a complexity of O(mn · M(mn)) by
virtue of the Master Theorem [13]. Since computing N(u) implies multiplying deg(u) primes with at most
logpW(T) bits, this lead to a complexity of O

(
deg(u) logpW(T) ·M

(
deg(u) logpW(T)

))
. Using (2) we have

pW(T) < W(T) (lnW(T) + ln lnW(T)). With Lemma 2, we have pW(T) = O(#T); thus a final complexity of
O(deg(u) log #T ·M (deg(u) log #T)) for computing N(u).

Other points Testing whether or not f(N(u)) is defined in line 12 can be done in O(1) since N(u) is an
integer, as per our assumption of perfect hash tables working with integers, strings and tuples.

For comparing the multisets in line 16, we resort to pigeonhole sort as for Algorithm 1. Classic pigeonhole
would have complexity O(#Td + pn), where pn is the biggest prime in the list; but many holes will be
unnecessary (as c(u) is necessarily prime). Using a perfect hash table that associate to the i-th prime number
the integer i, one can use only n holes, one for each prime number, which reduces the complexity to O(#Td+
n). Since the primes are reallocated at each level, at level d we need as many primes as there are different
equivalence classes at that level – i.e. #{c(u) : u ∈ Td}. This number is ≤ #Td, therefore the complexity of
the sort collapses to O(#Td).
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Conclusion Processing level d thus requires

O

∑
u∈Td

[
deg(u) · log #T ·M (deg(u) · log #T)

]
+ #Td

 .

First, notice that
∑

u∈Td deg(u) = #Td−1. Bounding other occurrences of deg(u) by deg(T) and summing
over d leads to the claim.
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