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. Respectively, they allow to enumerate all irreducible and self reciprocal irreducible polynomials. In our context, the last remaining case concerned the alternating subgroup A3. We give here the corresponding enumeration formula restricted to F2 base field. We wish this will give an interesting basis for subsequent developments analogous to those of Meyn [3] and Cohen [4].

1 The action of S 3 on P 1 The group of permutations of 3 elements (say 1, 2, 3) is a 6 elements non commutative group. Its subgroups are well known :

• Three cyclic subgroups of order 2, containing respectively the transpositions (12), ( 23), (13) . These subgroups are conjugated.

• One cyclic subgroup of order 3 generated by the "cycle" c = (123). This subgroup is distinguished and called the alternating group A 3 .

The group is generated by any set of two transpositions. For example, let us take u = (12) and v = (23) then uv = c , vu = c 2 , and uvu = vuv = (13). These relations form a presentation of S 3 . This presentation is not unique. One finds very often in the literature:

U 2 = 1, V 3 = 1, U V U = V 2
(take u = U and uv = V ).

In the projective line over F 2 , the F 2 -rational points can be identified with the set of 3 elements: [START_REF] Gauss | Disquisitiones generales de congruentiis[END_REF][START_REF] Gauss | Disquisitiones generales de congruentiis[END_REF], (1, 0)} We call these elements respectively 0, 1, ∞.

P 1 (F 2 ) = {(0, 1),
The automorphism group of the projective line is the group P GL 2 (F 2 ). Its F 2 -rational elements subset is P GL 2 (F 2 ) = GL 2 (F 2 ) : the group of invertible matrices with coefficients in F 2 . GL 2 (F 2 ) acts as usual on the F 2 -vector space if the denominators are = 0. When denominators are 0, we use the ∞ point in the usual way. This article is founded on the isomorphism:

GL 2 (F 2 ) S 3 .
We can explicit easily such a map explicited by a map. We list the elements of GL 2 (F 2 ):

1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0
The corresponding homographies are:

x → x, x + 1, x x + 1 , 1 x , 1 x + 1 , x + 1 x
and the corresponding permutations of the three points of the projective line are:

Id, (0 1), (1 ∞), (0 ∞), (0 1 ∞), (0 ∞ 1)

S 3 action on irreducible polynomials of F [X]

To define a left action of S 3 on the set

I = {P ∈ F 2 [X], P irreducible} \ {X, X + 1}
( 0 or 1 are not zeros of P ), it is sufficient to define it for the two transpositions P (01) = P (X + 1)

P (0∞) = X deg P P ( 1 X ).
For ease of notation these previous operations will be written:

P + (X) = P (X + 1) P * (X) = X deg P P ( 1 X )
The polynomial P * is called the reciprocal of P .

Other elements actions are defined by composition. For example the cycle (01∞) = (0∞) • (01) gives, using left action P σ•τ = (P τ ) σ :

P (01∞) = (P + ) *
In the same way we write: P (0∞1) = P (01)(0∞) = (P * ) + P (1∞) = P (01)(0∞)(01) = P (0∞)(01)(0∞) = ((P + ) * ) + = ((P * ) + ) * .

We shall omit the parentheses in the sequel, like in ((P + ) * ) + = P + * + . We leave to the reader the easy task of verifying the coherence of the following zoology:

Definition 1. A polynomial P ∈ I is called
• alternate when it satisfies one of the equivalent conditions P * + = P ⇔ P * = P + • self-reciprocal when P * = P

• periodic when P + = P • median when it satisfies one of the equivalent conditions

P + * + = P ⇔ P + is self-reciprocal ⇔ P * is periodic.
The polynomial X 2 + X + 1 is the intersection of any two of these classes.

3 Hexagons Definition 2. The hexagon of P ∈ I is the orbit of P : Hex(P ) = {P σ |σ ∈ S 3 } = {P, P * , P + , P * + , P + * , P * + * = P + * + }.

An hexagon is included in I and have 1, 2, 3 or 6 distinct elements. In each hexagon, all polynomials have the same degree. Consequently we can define for each degree n ≥ 2 the function hex(n) (resp. h 1 , h 2 , h 3 , h 6 ) on integers ≥ 2 as the number of all hexagons (resp 1, 2, 3, 6-elements hexagons) and we have

hex = h 1 + h 2 + h 3 + h 6
Our goal is to describe these orbits.

We suppose that P ∈ I. The n roots of P in the algebraic closure F 2 are distinct and conjugated by Frobenius. We can write them g, g 2 , . . . , g 2 n-1 .

Any one of them generates the field F 2 n .

1 element hexagon

An hexagon has only one element if and only if P = P * = P + . This implies that, if g is a root of P , g -1 and g + 1 are roots too. We have

g + 1 = g 2 k and g -1 = g 2 l for two integers k, l < n then g = g 2 2k = g 2 2l 2k = 2l mod n and k = l. Consequently g + 1 = g -1
and P = X 2 + X + 1.

The only hexagon with 1 irreducible element is Hex(X 2 + X + 1).

The function value h 1 (n) is 0 for n > 2 and h 1 (2) = 1.

2 elements hexagons

The orbit of P has two elements if it is invariant under the subgroup A 3 with 3 elements, more explicitly when P * + = P and P = P * .

Then the orbits of the alternate polynomials other than X 2 + X + 1 are exactly the 2-elements orbits of our action of S 3 on F 2 [X] . If P is alternate, its orbit is Hex(P ) = {P, P * = P + } For example, the degree < 12 alternate polynomials are

X 2 + X + 1 (which is also self-reciprocal), X 3 + X + 1, X 3 + X 2 + 1, X 9 + X + 1, X 9 + X 8 + 1.
Theorem 1. The alternate polynomials are exactly the irreducible factors of the polynomials

B k (X) = X 2 k +1 + X + 1 for k ∈ N. If P is alternate, then deg P ≡ 0 mod 3 or P = X 2 + X + 1. If deg P = 3m, then P |B m or P |B 2m .
Proof. Let g be a root of any irreducible polynomial P , then 1 + 1/g is a root of P * + . Let P be an irreducible factor of a B k , then deg P ≥ 2 because 0 and 1 are not roots of B k . Any root g of P is a root of B k so

g 2 k = 1 + 1 g .
This implies that the set of all roots of P is invariant under the map

T : g → 1 + 1 g
(defined on F 2 n \ {0, 1}), then P * = P + and P is alternate. Reciprocally, if P is alternate and g any of its roots, then

g 2 k = 1 + 1 g for some integer 0 ≤ k < n = deg P . Consequently P |B k .
The transformation T has order 3 and permutes the roots of P because P is alternate. If deg P > 3, no any root of P can be fixed by this transformation because in this case we would have

g = 1 + 1 g
and g would be a root of the irreducible X 2 + X + 1, which is a contradiction. Consequently the number of roots of P is multiple of 3,

deg P = n ≡ 0 mod 3 Because T 3 = I we have g 2 3k = g
This implies that g is an element of the field F 2 3k so, if deg P = n

F 2 n ⊂ F 2 3k .
Then 3k = 0 mod n and the bound on k above gives k = n/3 or k = 2n/3.

The preceding theorem leads to Definition 3. Let P be an irreducible alternate polynomial of degree 3m. If P |B m we say that the type of P is 1. If P |B 2m we say that its type is 2.

We don't need to define the type of P = B 0 .

Proposition 1. P and P * have distinct types.

Proof. Let P be an irreducible alternate polynomial of type 1. The reciprocal P * is also irreducible alternate of the same degree. Suppose deg P = 3m, then P |B m and let g be a root of P . We have

g 2 m = 1 + 1 g
Then h = g -1 is a root of P * and

h -2 m = 1 + h h 2 m = 1 1 + h h 2 2m = 1 1 + h 2 m = 1 1 + h 2 m = 1 + 1 h B 2m (h) = 0 so P * |B 2m .
The demonstration for a type 2 polynomial follows the same lines.

For example

P = B 1 = X 3 + X + 1 is alternate. Then P * = X 3 + X 2 + 1 is a factor of B 2 = (X 2 + X + 1)(X 3 + X 2 + 1).
The proposition 1 implies the following:

Corollary 1. Among all the alternate polynomials of degree 3m, half of them divides B m , while the other half divides B 2m .

Proposition 2. B k has no multiple roots.

Proof. We have B k (X) = X 2 k +1 + X + 1 and its derivative B k (X) = X 2 k + 1 = (X + 1) 2 k . Since B k (1) = 0 then B k (X) and B k (X) have no common root so B k has no multiple roots.

Proposition 3. (X 2 + X + 1)|B k if and only if k is even.

Proof. Let α be a root of X 2 + X + 1 then α 3 = 1. We have

2 k + 1 = (-1) k + 1. If k is even B k (α) = α 2 + α + 1 = 0, and if k is odd B k (α) = α.
Theorem 2. Let P be an irreducible polynomial of degree 3m then P |B k if and only if the three conditions are fulfilled :

• P is alternate • m|k • k m mod 3 is equal to the type of P .
Proof. We prove first that the conditions are necessary. We know from theorem 1 that P is alternate. Using the same arguments as above, all the roots of B k are in F 2 3k , and the smallest field containing the roots of P is F 2 3m . If P |B k this implies F 2 3m ⊂ F 2 3k and m|k.

Let us write k = ml for some integer l, and let g be a root of P then, if P is of type 1:

g 2 m = 1 + 1 g = g 2 k = g 2 ml .
Because all the 3m roots of P are distinct and from properties of Frobenius operator we have m = ml mod 3m then l = 1 mod 3.

If P is of type 2, then:

g 2 2m = 1 + 1 g = g 2 k = g 2 ml
and l = 2 mod 3 for the same reasons.

We prove now that the properties are sufficient. Let P ∈ I be an alternate polynomial of degree 3m. Suppose that the type of P is t and k = lm with l = t mod 3, then for any root g of P :

g 2 k = g 2 lm = g 2 tm = 1 + 1 g .
The last equality is a consequence of the definition of the type. Then g is always a root of B k and P |B k .

We give two simple examples : For k = 2 : B 2 = X 5 + X + 1 = (X 2 + X + 1)(X 3 + X 2 + 1). The alternate irreducible factor X 3 + X 2 + 1 corresponds, to m = 1 and its type is 2. We verify easily that its type is 2 because, if g is a root of this factor, then

g 2 2 = 1 + 1 g .
For k = 3 : B 3 = X 9 + X + 1 . From our theorem 2, only m = 3 can give irreducible factors (of type 1) of B 3 and such irreducible factor will have degree 3 • 3 = 9. So B 3 is alternate, irreducible and of type 1.

We can now settle our main result, which is a simple consequence of theorem 2: Theorem 3. Let h 2 (3m), with m ≥ 1, be the half number of alternate irreducible polynomials of degree 3m, then for any k ≥ 1:

2 k -(-1) k = d|k k d ≡0 mod 3 3d h 2 (3d) (1) 
Proof. Let EB k be the set of all the polynomials of degree ≥ 3 dividing B k , then from Proposition 2:

EB k = d|k k d ≡1 mod 3 E 1 (3d) ∪ d|k k d ≡2 mod 3 E 2 (3d),
with E 1 (3d) (resp. E 2 (3d)) the set of all irreducible alternate polynomials of degree 3d and type 1 (resp. type 2) dividing B k . Then, taking the degrees, we have:

Q∈EB k deg Q = d|k k d ≡1 mod 3 3d Card(E 1 (3d)) + d|k k d ≡2 mod 3 3d Card(E 2 (3d))
Corollary 1 implies:

Q∈EB k deg Q = d|k k d ≡1 mod 3 3d h 2 (3d) + d|k k d ≡2 mod 3 3d h 2 (3d) = d|k k d ≡0 mod 3 3d h 2 (3d)
Moreover, from Proposition 3 we know that:

Q∈EB k deg Q = 2 k -1 if k is even 2 k + 1 if k is odd = 2 k -(-1) k ,
which concludes our proof.

As we saw previously, an hexagon with two elements in the set of irreducible polynomials of degree 3m in F 2 [X] is made of two alternate polynomials, so the number of these hexagons is equal to h 2 (3m).

Using Möbius inversion with characters (see Appendix) on (1) we can give a formula for computing h 2 (3m): Theorem 4. The number h 2 (n) of hexagons with two elements of given degree n ≥ 2 is 0 if n ≡ 0 mod 3, else with n = 3m:

h 2 (3m) = 1 3m d|m, d ≡0 mod 3 µ(d)(2 m/d -(-1) m/d ). (2) 
Proof. To obtain h 2 from the preceding theorem, we use elementary results about Dirichlet's characters and convolution. Short explanations are given in the Appendix. Let us define the arithmetic functions:

f (m) = 2 m -(-1) m g(m) = 3m h 2 (3m)
for any m ≥ 1. Let χ 3 be the principal Dirichlet's character modulo 3, then the formula (1) can be written as

f (m) = d|m, d =0 mod 3 g( m d ) = d|m χ 3 (d)g( m d )
or, using Dirichlet's convolution, we obtain

f = χ 3 * g. Consequently µχ 3 * f = g.
This last equality gives [START_REF] Carlitz | Some theorems on irreducible reciprocal polynomials over a finite field[END_REF].

The first values of h 2 are 3m 3 6 9 12 15 18 21 24 27 30 h 2 (3m) 1 0 1 1 2 3 6 10 19 33 Eventually, we give a bound for h 2 (3m) :

Corollary 2. For integer m ≥ 1: |3mh 2 (3m) -2 m | ≤ 2 m/2 +1 + m/2 -1 Proof. From the formula (1) we have 3mh 2 (3m) = 2 m -(-1) m + d|m, d≥2 d ≡0 mod 3 µ(d)(2 m/d -(-1) m/d ) |3mh 2 (3m) -2 m | ≤ 1 + 1≤i≤ m/2 (2 i + 1) ≤ 1 + 2(2 m/2 -1) + m/2 = 2 m/2 +1 + m/2 -1

3 elements hexagons

The results of this section are well-known because, as we shall see below, this case is connected to the self reciprocal irreducible (sri) polynomials. We refer to [START_REF] Cohen | The explicit construction of irreducible polynomials over finite fields[END_REF], [START_REF] Meyn | On the construction of irreducible self-reciprocal polynomials over finite fields[END_REF] or [START_REF] Meyn | Self-reciprocal polynomials over finite fields[END_REF] for more details and proofs.

Each of the polynomials in a 3-elements orbit Hex(P ) is invariant by one of the 3 subgroups of order 2 in S 3 . In other words each 3-elements orbit is the orbit of a sri polynomial of I) (we recall that X + 1 is discarded from I).

Conversely, if P ∈ I is a sri polynomial, then:

Hex(P ) = {P, P + , P + * }, P + is invariant by (1 ∞) action and P + * is invariant by (0 1) action (it is a periodic polynomial).

The degree of a sri polynomial P is even, because the inverse of the roots of P are also roots.

We emphasize on the fact that over F 2 the sri-polynomials set plays exactly the same role as periodic or median polynomials. Nevertheless sri polynomials draw much more attention, and a lot of work were devoted to them, because they are easy to recognize by visual inspection of their coefficients.

Theorem 5 (Meyn). i) Each sri-polynomial of degree 2n (n ≥ 1) over F 2 is a factor of the polynomial

H n (X) = X 2 n +1 + 1. (3) 
ii) Each irreducible factor of degree ≥ 2 of H n is a sri-polynomial of degree 2d, where d divides n such that n/d is odd.

Corollary 3. The median (resp. periodic) irreducible polynomials in I are the irreducible factors of

X 2 k + X 2 k -1 + 1 (resp. X 2 k + X + 1) k ≥ 1
Proof. We get the polynomial X 2 k + X 2 k -1 + 1 (resp. X 2 k + X + 1) applying the transformation + (resp. + * ) on X 2 k +1 + 1.

Theorem 6 (Carlitz, [START_REF] Carlitz | Some theorems on irreducible reciprocal polynomials over a finite field[END_REF]). The number of degree 2m

(m ≥ 1) sri polynomials in F 2 [X] is S(2m) = 1 2m d|m, d odd µ(d)2 m d
where µ is the Möbius function.

We refer to [START_REF] Meyn | Self-reciprocal polynomials over finite fields[END_REF] for a demonstration of Carlitz formula in the same spirit as our paper.

Following our definitions, The value S(1) = 1 could be added : it corresponds to the polynomial X + 1 (which is not in our set I). The sequence S(n) (n ≥ 1) is registered as the sequence A48 in [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF].

6 elements hexagons

A famous formula of Gauss [START_REF] Gauss | Disquisitiones generales de congruentiis[END_REF] gives the number I(n) of irreducible polynomials of degree n in F 2 [X] :

I(n) = 1 n d|n µ(d)2 n d (4) 
From ( 4) and the enumerations formulas we obtain :

Theorem 7. For n ≥ 2 h 6 (n) = 1 6 [I(n) -h 1 (n) -2h 2 (n) -3h 3 (n)]

Conclusion

We gather the different results of previous sections in a short The sequence hex is A11957 [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. It appears very unexpectedly in a 1981 work of T. J. McLarnan about packing atoms in chemistry [START_REF] Mclarnan | [END_REF], [START_REF] Sloane | Integer Sequences Related to Chemistry[END_REF].

The new sequences h 2 and h 6 are now registered as A165920 and A165921 [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF].

Appendix

For the article to be self contained we give a quick explanation of (more or less) known results on Möbius inversion with Dirichlet's characters.

An arithmetic function is a map f : N -{0} → Z.

For two given arithmetic functions f, g : N -{0} → Z one defines their (Dirichlet's) convolution as

(f * g)(n) = d|n f (d)g( n d )
for any integer n ≥ 1. The convolution is associative, commutative, distributive on the sum, and the arithmetical function

δ(n) = 1 if n = 1 0 else
is the neutral element of the convolution.

F 2 × F 2

 22 with ad -bc = 1. Using the projective coordinates we get the classical homographic action:(x : 1) → ( ax + b cx + d :1) and ∞ → (

h 3 (

 3 n) = S(n) for n even > 2 and h 3 (n) = 0 for all other values of n. The case n = 2 corresponds to the polynomial X 2 + X + 1 which gives a 1 element orbit.The first values of h 3 and S

  table, starting from n = 2 because we excluded the polynomials of degree 1 from our enumerations

	n h 1 h 2 h 3	h 6	hex I(n)
	2	1	0	0	0	1	1
	3	0	1	0	0	1	2
	4	0	0	1	0	1	3
	5	0	0	0	1	1	6
	6	0	0	1	1	2	9
	7	0	0	0	3	3	18
	8	0	0	2	4	6	30
	9	0	1	0	9	10	56
	10 0	0	3	15	18	99
	11 0	0	0	31	31	186
	12 0	1	5	53	59	335
	13 0	0	0	105	105	630
	14 0	0	9	189	198	1161
	15 0	2	0	363	365	2182
	16 0	0 16 672	688	4080
	17 0	0	0 1285 1285 7710
	18 0	3 28 2407 2438 14532
	19 0	0	0 4599 4599 27594
	20 0	0 51 8704 8755 52377

The Möbius function identity

In other words µ is the inverse of the constant function 1. The Mobius inversion formula is an immediate consequence of it :

All arithmetic functions are not invertible for convolution product.

Let us consider the principal Dirichlet's character modulo n :

Proposition 4. For any prime number p, and arithmetical functions f, g :

The demonstration is straightforward. In particular, taking f = 1 and g = µ, we obtain Corollary 4.

χ p * (µχ p ) = δχ p = δ

The inverse of χ p for convolution is µχ p .