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On the necessity of accounting for age structure in human malaria transmission
modelling

Quentin Richard”, Marc Choisy”<, Thierry Lefévre? and Ramses Djidjou-Demasse®

Abstract

Malaria is one of the most common mosquito-borne diseases widespread in tropical and subtropical regions, causing
thousands of deaths every year in the world. In a previous paper, we formulated an age-structured model containing
three structural variables: (i) the chronological age of human and mosquito populations, (ii) the time since they are
infected, and (iii) humans waning immunity (i.e. the progressive loss of protective antibodies after recovery). In the
present paper, we expand the analysis of this age-structured model and focus on the derivation of entomological and
epidemiological results commonly used in the literature, following the works of Smith and McKenzie. We generalize
their results to the age-structured case. In order to quantify the impact of neglecting structuring variables such as
chronological age, we assigned values from the literature to our model parameters. While some parameters values are
readily accessible from the literature, at least those about the human population, the parameters concerning mosquitoes
are less commonly documented and the values of a number of them (e.g. mosquito survival in the presence or in
absence of infection) can be discussed extensively. Our analysis, informed by parameter values from the literature,
demonstrates that overlooking those structural variables of human and mosquito populations may result in inaccurate
epidemiological predictions and suboptimal control strategies. We highlight the epidemiological implications of these
findings and emphasize the necessity of considering age structure in future malaria control programs.
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1. Introduction

Causing more than 600,000 deaths every year [1], malaria is one of the most lethal infectious diseases. Despite
the progress towards malaria burden reduction, leading to the decrease in cases and deaths over the last twenty years,
achieving elimination in more countries remains a challenge [2]. This is especially true given the slight but non-
negligible increase of deaths in 2020 during the Covid-19 pandemic [3]. Human malaria is caused by one of 5
plasmodial species: Plasmodium falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi (with P. falciparum being
the most pathogenic species infecting humans [4]) that are transmitted by the bites of female Anopheles mosquitoes,
most commonly from An. gambiae sensu stricto, An. coluzzii, An. arabiensis and species of the An. funestus
complex in Africa [5]. Introduced more than one century ago by Ross [6], the first mathematical model for malaria
transmission was refined later by MacDonald [7]. Models for vector-transmitted diseases are still a wide subject of
study in epidemiology, see e.g. [8, 9, 10] and some references therein. In 2021, the WHO African region accounted
for about 95% of cases and 96% of deaths globally; while 78.9% of all deaths in this region were among the youngest
population, i.e. less than 5 years old [1]. Furthermore, the human infectious reservoir is believed to be mostly
children between 5 and 15-year-old (see e.g. [11, 12]). Considering different age class for the host population then
seems a natural requirement (see e.g. [13, 14]). A refinement of these models are age-structured models, where the
chronological age is a continuous variable, since it allows to implement any age-distribution in the host survival instead
of simply exponential [15, 16] or also while considering within-host dynamics [17, 18]. In addition, the production of
gametocytes within a human host is strongly related to the time post-infection [19], hence a number of recent studies
tracking the time post-infection in their models e.g. [20, 21, 22, 23]. Finally, the importance of mosquito senescence
and the need to include it in models was put forward in [24, 25] but only considered recently [26]. In a previous work
[27], we studied an age-structured model of the transmission of malaria parasites between mosquitoes and humans,
where multiple structuring variables are taken into account: chronological and infection ages of both populations,
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as well as the time since recovery to describe potential humans waning immunity. In [27], well-posedness was first
handled, then formulas for the basic reproduction number and vectorial capacity were derived, as well as conditions
for backward and forward bifurcations.

In this paper, we extend the analysis of the age-structured model previously developed in [27]. While the earlier
work primarily addressed the well-posedness of the proposed model, the existence of steady states, and the precise
derivation of the basic reproduction number and vectorial capacity, our current focus is on deriving entomological and
epidemiological results (within the framework of a malaria transmission age-structured model) commonly employed
in the literature. This follows the approaches of Smith and McKenzie [28, 29, 30], particularly [29] where the authors
derived equations for various statistics within the ODE framework. Here we generalize these results to the age-
structured case and emphasize the importance of both chronological ages and infection ages on malaria transmission
and effective malaria control programs. In order to quantify the impact of neglecting structuring variables such as
chronological age, we assigned values from the literature to our model parameters. While some parameters values are
readily accessible from the literature, at least those about the human population, the parameters concerning mosquitoes
are less commonly documented and the values of a number of them (e.g. mosquito survival in the presence or in
absence of infection) can be discussed extensively.

2. Description of the model

2.1. Model overview

We remind here of the model introduced in [27] and the different notations that will be used all along the paper. Let
call S,(z, a) the density of humans of age a > 0, that are susceptible to the infection at time # > 0. These individuals
can become infected due to bites of infected mosquitoes with the rate 4,,(¢), called the force of infection of mosquitoes
to susceptible humans. The infected human population is additionally structured by the time since infection, called
infection age, with I;(t, a, T) the density at time ¢ of individuals of age a that have been infected for a duration 7 > 0.
A human host of age @ and infected for a duration 7 can either recover at the rate y,(a, 7), or die from the infection
at the rate v,(a, 7). Upon recovery, Ry(t,a,n) is the density at time 7 of human hosts of age a that recovered at time
t —n > 0. Recovered human hosts lose their immunity at the rate k,(17) and return to the susceptible compartment S j,.
Note here that in [27], this rate was age-dependent: kj(a, i7) but because of the absence of data for the age-dependence,
we prefered to drop this variable in this paper, see Section 3.3 for a discussion on this rate. Death due to natural causes
can occur at each step of the infection at the age-dependent rate p;(a). Finally, the human reproduction is assumed to
occur at the constant rate A, depicting a constant flux of newborns.

Similarly, we call S,,(t,a) the density of susceptible mosquitoes of age a at time ¢. These mosquitoes become
infected upon a blood meal from infected humans at rate 1;(z), called the force of infection of humans to mosquitoes.
Susceptible mosquitoes die with the age-dependent natural death rate u,,(a), while infected mosquitoes that have been
infected for a duration 7 die at rate v,,(a, 7). Note here that, in order to ensure the positivity of all the parameters, the
rate v,, is not an additional death rate due to infection as we assumed in [27] (in other words the mortality for infected
mosquitoes is given by v, is this paper while it was given by v,, + 1, in [27]). Indeed, recent experiments show that
among old mosquitoes, the survival of infected individuals is higher than that of uninfected counterparts (see [31])
thus leading to v,,(a, T) < un(a), at least for old age a and some infection age 7. Finally, as for the human population,
the flux of newborn mosquitoes is assumed constant at the rate A,,. The human-mosquitoes infection life cycle is
shown in Figure 1 and the infection process is described in the next section.

2.2. The infection process

The total number of human and mosquitoes at time ¢ is described as follows

Nyp(t) = f Su(t,a)da + f f I)(t,a,7)da dt + f f Ry(t,a,n)da dn,
0 o Jo o Jo

N, (1) = f S u(t,a)da + f f 1,(t,a,7)da dr.
0 o Jo
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Figure 1: The model flow diagram. Newborn humans appear with the flux A;, and are contaminated by infected mosquitoes at rate 1,,. They
recover from the disease at rate y;, and benefit from a temporary immunity that wanes at rate k;,. Newborn mosquitoes appear with the flux A,, and
are contaminated by infected humans at rate A;. The death rates are represented by the red lines and are either natural y or due to infections vg
(for k = h, m).

The force of infection from mosquitoes to human with age a is then given by:

An() =

Nh(f) Lm Loo gﬂm(S,T)Im(l, S,T)dS dr (1)

so that S (¢, a)4,,(¢) describes the number of newly infected humans with age a at time ¢. It consists of the probability

that a human with age a encountered by a mosquito is susceptible S}\h,ft(’t‘;) and the infection efficiency of the mosquito

population fooo fooo 0B, (s, T)L,(t, s, 7)ds dr. The latter efficiency takes into account: (i) 6 the number of humans bitten
by mosquitoes by unit of time and (ii) S8,,(s, T) the probability of parasite transmission from an infected mosquito
individual (with age a and which is infected since a time 7) to a human individual. Similarly, the force of infection
from a human individual to mosquitoes with age a is given by:

1 00 00
Ap(t) = W fo‘ fo 08, (s, DI (t, s, T)ds dr 2)

where §;,(s, T) is the probability of parasite transmission from an infected human with age s and infected since a time
T to any mosquitoes for each bite.

2.3. The mathematical model

Based on the above notations, the model considered in this paper reads as:

(@ 2ISuta) = [ knODRA(t @, m)dy — (@) n(t, @) = S n(t, @) A1)

(2+2+ )Ih(r a1) = —(ua)+vi(a, 1)+ yala, D) It a,7),

($+4+ on)Rh(’ an = —(ua)+k(Rt.a.m), 3)
((S’t +2)Sut.0) = (@S nlt,@) = St AL, ),

(£+2+ ) Lit,a, ) = —vpla, Dt a,1),



for each (t,a,7,n) € (0, o0)* and is associated to the following boundary conditions:

Sh(t7 0) = Ah, Sm(t’ 0) = Ama
In(t,a,0) = Su(t,a)d,(0), 1(t,0,7) =0,
Ri(t.a,0) = [ yia,ntamdr, Ryt,0,m) =0, @
Im(t» a, O) = Sm(t’ a)/lh(t7 Cl), Im(ta O’ T) =0
and initial conditions (at t = 0):
Sp0,a) = Spola), I,0,a,7) = Iyola,1), Ry(0,a,17) = Ryo(a,mn), )
Sm(o’ a) = Sm,O(a)a Im(o’ a, T) = Im,O(a’ T):

for each (a,n,7) € Ri. The notations of all variables and parameters are summarized in Table 1, as well as the bi-
ological meaning and the references used or discussed for the parameterization. Such age-structured model recover
the classical model with SIRS compartments for humans and SI compartments for mosquitoes. As we will see in
Section 4.5, assuming piecewise functions can reveal the exposed compartment, yielding a SEIRS model if among
humans or SEI model if among mosquitoes. Furthermore, Model (3)-(4) allows for the explicit consideration of the
asymptomatic stage, typically expressed during the infection process. This is of particular significance since asymp-
tomatic malaria infections are highly prevalent in endemic areas and only a small percentage of infections will exhibit
clinical symptoms (mostly young individuals). We show in Section 6.2 how Model (3)-(4) can explicitly highlight the
asymptotic stage before infection as for some classical model formulation of SAIR type. We mention here that since
antigenic variation is a major driver of malaria dynamics, some papers [17] or [9, Section 8.3] considered cases where
the epidemiological parameters differ between reinfected individuals and individuals infected for the first time.

Category Description Unit References
Notations
t Time Tu
a Chronological age Tu
T Time since infection Tu
n Time since recovery for human Tu
State variables
Su(t,a) and S ,,(t, a) Susceptible humans and mosquitoes h and m
I,(t,a,7) and I,,(t,a,7) Infected humans and mosquitoes hand m
N, (t) and N, (1) Total human and mosquito populations h and m
Initial conditions
Sho(a) Initial human susceptible population h [32, 33]
Smola) Initial mosquitoes population m Varying
Parameters
Ay Human recruitment rate h-Tu™! [32, 33]
A Mosquitoes recruitment rate m-Tu™! Varying
un(a) Human death rate Tu™! [34]
tm(a) Mosquitoes death rate Tu™! [25, 26, 31]
vi(a, 1) Human death rate induced by the infection Tu™! [35, 36, 37]
Vu(a, 1) Infected mosquitoes death rate Tu™! [31]
viu(a, 1) Recovery rate of human infections Tu™! [37, 38]
kn(n) Rate of loss of immunity Tu™! [35, 39]
Bu(a, 1) Parasite transmission probability from human to mosquitoes m-h™! [31, 40, 41, 42, 43, 44]
Bm(a,1) Parasite transmission probability from mosquitoes to human  No unit [31, 45]
0 Human feeding rate hm™'Tu!  [46, 47]

h=humans; m=mosquitoes; Tu=time unit

Table 1: Main notations, state variables and parameters of the model.



3. Derivation of the vectorial capacity and the basic reproduction number

From a public health point of view, the time course of the disease is strongly related to the basic reproduction num-
ber, denoted here by Ry. This allows quantifying the expected number of secondary human (respectively mosquito)
infections resulting from a single primary human (resp. mosquito) infection into an otherwise susceptible population.
In [27], it was shown that the R, for the model (3)-(4) takes the form

Ry = ,lch—w x Cm—h (6)

where C"~" quantifies the per bite transmission capability from humans to mosquitoes and C"~" quantifies the trans-
mission capability from mosquitoes to humans. Note that C"~" is also called the vectorial capacity [48]. More
precisely, we have:

Prob. to remain infected

. 00 e foa un(s)ds
ch-m = f i f Bi(a+1,7) X e b WErQmErad mEraE gz 4q
0 [Te by (s gg

Transmission prob. of infected human

Prop. human of age a

and

= [ tm(s)ds
cnoh = f ¢ 2 xC" " (a)da 7
f [ o b sy

Prop mosquito of age a

where C"~"(a) denotes the vectorial capacity of mosquitoes population infected at age a and is explicitly given by:

Surv. prob. of infected mosquito

00 /_/%
? x f Bula+1,7) % e~ by yntera£)de  gqp
0

Transmission prob. of infected mosquito

A fooo e b s qg
Ay fom e b mdsgy

Mosquito/human ratio

Cm—>h(

a) =

We refer to [27] for more details on the computation of the vectorial capacity. In the following, we will focus on
the description of each factor intervening in the decomposition of the transmission capabilities and how it can be
determined in practice by using existing data.

3.1. Human transmission capability
3.1.1. Demographic structure of the human population

The demography of the human population plays an important role in the transmission dynamics of malaria. As said
in the introduction, the human infectious reservoir is known to be age-dependant. Here we consider the population of
Bobo Dioulasso, the second biggest city in Burkina Faso where the spread of malaria is important.

The initial population S, corresponds to the population in Bobo Dioulasso in 2012 [33, Table A.4.6] with the
age-structure of the city [32, Table 4.6] (see Figure 2 (a)). The human recruitment rate is chosen as A;, = 30754/year
corresponding to a birth rate estimated to 3.78% [32, p.16] within Bobo, with a total population of 813 610 in 2012.
The natural human death rate yy, is estimated in [34, Table A.1] (see Figure 2 (b)).

In the case where the malaria mortality v;, is negligible compared to the natural mortality, we can estimate the
demographic age-structure reached by the population after some time, under the assumption that the mortality does

(s)ds

not vary with time. This is given by the function a — Aje” I s which mathematically corresponds to the disease-

free equilibrium, where the function 7;(a) = ¢~ b (945 g the probability for humans to survive from birth to age a,
in absence of malaria infections. We can then define the proportion of human of age a reached by the population as:

e b m(s)ds A
[T e hmoasgg [ m@de
5

Pp(a) =




which appears in the computation of the transmission capability and is represented in Figure 2 (c). We can observe a
few changes in the demography leading to a larger and older population, with a bigger life expectancy (numerically
around 64 years old for about 2 million inhabitants). This can easily be explained by the decreasing of both the
mortality and the birth rates over the years. According to the data, the mortality due to malaria infections could indeed
be neglected since malaria cause around 4000 deaths each year in Burkina Faso [36, Table 4.74] while the crude
mortality rate was estimated to 1.18% in 2006 [33] corresponding to more than 100 000 deaths each year in Burkina
Faso with a total population of 14 millions inhabitants in 2006 [32]. Consequently, the age-structure of the human
population given by the disease-free equilibrium should be a good approximation of the human distribution. In this
paper, we will however consider the real data (see [36]) and not neglect this rate vy,.

() (b) (c)

Human population Sp,o Human mortality rate u, Human proportions

| - 012 =
10° B Equilibrium ‘

':;a 5x 104 %01 §ocs
§ Pt L 5005 gn.m mmﬂﬂﬂﬂﬂ
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Figure 2: (a) The population age-structure of Bobo Dioulasso in 2012. (b) The age-dependent mortality rate in Burkina Faso. (c) The expected
age-structure of the population, in proportion, in absence of mortality due to malaria, compared to the proportion in 2012.

3.1.2. Probability to remain infected

The time lapse between the infection and the recovery or the death of individuals is a key parameter in the trans-
mission process. Indeed, only infectious individuals can contribute to the spread of malaria parasites. Considering
humans getting infected at age a, they will remain infected for T days with the probability given by

7 (a,7) = e~ b UnEramnEradryErad)e

revealing the human death rate induced by the infection v;, and the recovery rate y;. The mortality rate v, is based on
the malaria lethality at age a, denoted by v, (a). The latter is given in [36] by computing the number of deaths over the
total number of mild [36, Table 4.73] and severe [36, Table 4.74] malaria cases in the Hauts Bassins region (see Table
2).

Age (years old) [0,1] [1,5] [5,15] [15, +00)
Malaria lethality rate | 1.07 x 1073 | 7.02x 107* | 455x 107* [ 5.73 x 107>

Table 2: Age-dependent malaria lethality rate for humans [36]

The human incubation period is estimated to be approximately 10 days [35, 37] while death generally occurs
within 1 to 5 days after the incubation period, with a mean duration of symptoms until death of 2.8 days [49]. In
order to have 95% of the deaths occurring between 10 and 15 days post-infection, we make the assumption that the
distribution of the occurrence of the deaths due to malaria, denoted by ®,(7), follows the Gaussian law N (12.5, 1.276)
and is normalized to have a total mass equal to one: fooo O, (r)dr =1, i.e

b Pl )
4 - 00 o .
I exp (=555 ) ds

Finally, the mortality rate v,(a, T) of human of age a, with T days post-infection is chosen as

o,
vi(a,7) = T/h(a)W(;;CD(T)

6



(see Figure 3 (a)) where F, denotes the cumulative distribution function of @,. Under this assumption, the distribu-
tion of the deaths due to malaria according to the time since infection numerically satisfies the Gaussian law @, when
following a cohort of newly infected humans.

The time required to clear the parasite was estimated in [37, 38] and is age-dependant (see Table 3). In order
to compute the recovery rate y;,, we first make the assumption that the clearance for a human of age a follows the
Gaussian distribution @, (a, 1), according to the time since infection 7, centered in the middle of each range, while we
choose the variance so that 95% occurs within this range. We then consider the following recovery rate (see Figure 3

(b)):
D, (a-1,7)

vi(a,7) = m,

where Fg, denotes the cumulative distribution function of @,,. Note that @ — 7 corresponds to the age at which infected
humans were contaminated. Finally, the probability r; (a, 7) for an infected human of age a to remain infected for T
days is illustrated in Figure 4.

Age (years) [0,1] (1,5] (5,8] (8,18] [18,28] | (28,43] | (43, +00)
Recovery time (days) | [163,345] | [555,714] | [344,400] | [181,204] | [82,92] | [56,61] | [48,55]

Table 3: Age-dependent time for infected humans to recover [37, 38]

(a) (b)

Human death rate due to malaria v, Human recovery rate y,
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Figure 3: (a) The mortality rate v, computed such that distribution of deaths due to malaria, according to the time since infection, follows the
Gaussian law ®,. (b) The recovery rate y;, depends both on the age and on the time since infection of the infected human. It is computed so that
the distribution follows a Gaussian distribution such that 95 % of the recovery occurs within the ranges showed in Table 3.
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Figure 4: The probability to remain infected depending on the time post-infection and the chronological age at the time of the infection (both in
years).



3.1.3. Human transmission probability

Another crucial parameter in the human transmission is the probability for a mosquito to get infected while taking
a blood meal on a infected human. For each mosquito bite, we suppose that the probability that a human of age a
and infected for 7 days, transmit the infection to the biting mosquito is S,(a, 7). Such a probability is known to be
strongly linked to the gametocytes density [40, 41, 42, 44, 50, 43]. We denote by G(a, T) the gametocytes density of
an infected human of age a, after 7 days of infection. As in [41] (see also [40, 44]), we assume that the relationship
between gametocyte density G(a, T) and the probability of transmission from infected human g;(a, 7) is given by:

Bu(a,7) = a1 (G(a, 7)™

where a; = 0.071[0.023,0.175] and a; = 0.302[0.16,0.475]. Moreover, we assume that the gametocytes density

follows the function
Gola) X f(r-8) ifr>38,

Gla,7) = { 0 otherwise,

where the incubation period within an infected human is approximately 8 days (Figure 5(a)), and Gy(a) is the mean
number of gametocytes for a human of age @ and the function f defined by

fixr— &4+ (Yx — &) exp(—wx)

with some parameters &,y and w, gives the evolution of the gametocyte density. It was used in [42] to estimate the

function G, as
Go(a) = yaexp(-wa),

where & = 0 and ¥, w were respectively estimated to 22.7(17,32) and 0.0934(0.08,0.11).

Finally, the evolution of gametocyte density is fitted on data from 12 patients [43], that were normalized such that
the maximum of each gametocyte density is one, due to the variance between individuals.

Note that the function f defined above can be decomposed into the sum of a Gamma distribution with a multiplying
factor x — Yxexp(—wx) and an Ivlev function x — &(1 — exp(—wx)). While the former function captures the shape
of the gametocyte density within the first 40 days after infection given by the data, the latter function captures the limit
density as x goes to infinity, since it tends to &. This is not possible with common distribution law since the function
vanishes as x increases. This is particularly important as Plasmodium falciparum infections may persist for a long time
(see [S1]). We estimate &, and w respectively to 0.04(—0.27,0.24), 0.25(0.23,0.27) and 0.10(0.086, 0.124) for time
post-infection larger than 8 days, see Figure 5 (a). The evolution of the gametocyte density G can then be computed,
see Figure 5 (b). Finally, the probability 8;(a, ) of infection from humans with of age a and 7 days post-infection is
illustrated by Figure 6.

(a) (b)
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Figure 5: (a) The evolution of normalized gametocytemia within human population. (b) The evolution of gametocytemia per uL of blood within
human population according to the time post-infection and humans age.
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Figure 6: The probability that an infected human contaminates a mosquito depending on the time post-infection and the human age.

3.1.4. Age-dependence of the human transmission capability

With these notations and estimates, we see that the human transmission capability C"~" can be rewritten according
to the probability to remain infected 7(2, the human transmission probability S, and the proportion P, of human of
each age as follows:

ch—m = f Py(a) f Bua + T, T)ﬂ};(a,'r)d‘rda.
0 0

In order to see how this quantity depends on the chronological age, we plot the function

a+— Py(a) f‘” Bula + 1, T)n;l(a, T)dt
0

(Figure 7 (a)), as well as the proportion for each group of age (Figure 7 (b)). We see that more than half of the human
transmission capability comes from the younger population (less than 15 years old). Moreover, we can compare the
impact of the change of demographic structure of the human population, mentioned in Section 3.1.1. To this end, we

replace Pj(a) by % that was the proportion of humans for each age in 2012 (see Figure 2 (c)). We see that
lo nols)as

the capability of people under 30 years old decreases drastically, reducing the total capability by one-third; while the
changes in proportion for each group of age are less pronounced.

3.2. Mosquito transmission capability

3.2.1. Mosquito survival

As discussed in [25], data suggest that mosquitoes do senesce, which means that the assumption of constant mor-
tality rate for mosquitoes, widely used in the malaria modelling literature, is not realistic and may lead for example to
an underestimation of the effectiveness of insecticide-treated nets [52]. While different shapes of functions (Gompertz,
logistic) were compared in [25], the logistic function were thereafter considered in [26] in their age-structured model.
Here, we make use of the data collected in a recent work [31] over 295 mosquitoes of age between 4 and 46 (we note
here that we neglected the death of the 10 last mosquitoes which occurred after day 46 to have better estimates). The
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Figure 7: (a) The contribution of each group of age to the human transmission capability and (b) the proportion for each contribution.

mortality rate fi,,(a) of uninfected mosquitoes of age a for this experiment is such that (Figure 8 (a))

1 if a € [0, 4],
fim(a) = {cie2@? ifqe[4,45],
cretle ifa > 45,

with ¢; = 7.85 x 1073[0.0036, 0.0144] and ¢, = 8.65 x 1072[0.0693, 0.1076] where we considered constant mortality
rate below 4 days old and above 45 days old. In Figure 8 (b) we represented the survival probability after 4 days, that
is the function [4,45] 5 a +— exp(— [;' fin(c)do).

With such an experimental mortality rate fi,,, the mean life expectancy is about 27.4 days corresponding to labo-
ratory conditions. However, the mean life expectancy of wild mosquitoes is in practice hard to estimate. While some
modelling papers considered a mean life expectancy of 14 days [26] or even 30 days [20], the data actually show
a large variability between different genus [53] or even between species [53, 54]. Even within the species complex
Anopheles gambiae s.l., whose members are major vectors in Burkina Faso, lead to an important variability: between
3.6 and 15.4 days [35] or between 4.4 and 10.3 days [53]. Reasons for this variability include the effects of seasons
and temperature on mosquito survival [55], predation, exposure to insecticides, and methods of survival estimation
[54]. Hence, we will adjust the mortality rate f1,, by considering

M = Hwild + i

with a varying constant y,4, in order to keep the same shape and to have a mean life expectancy of wild susceptible
mosquitoes varying between 3 days to 27.4 days that is the experimental life expectancy. We indeed assume that the
survival of wildlife mosquitoes is lower than that of experimental mosquitoes for the reasons listed above (season,
temperature, insecticides, predation). We can then observe the survival probability ) (a) = exp (— foa um(a)da')
associated to the different mortality rates in Figure 9 (a). One component of the mosquito transmission capability is
the proportion of mosquitoes of age a at the disease-free equilibrium, that is:

()

Pm - T -
@ Iy m(s)ds

We can observe in Figure 9 (b) the age distribution of the mosquitoes where almost two-third are less than the life
expectancy for each value.

3.2.2. Survival probability of infected mosquitoes

For infected mosquitoes, while the infection does not seem to affect the survival of mosquitoes infected when they
are young (4 days old) or middle-aged (8 days old), it seems to have a significant effect on the old mosquitoes survival
[31]. Consequently, the experimental mortality rate ¥,,(a, 7) of an infected mosquito of age a and T days post-infection
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Figure 8: The mortality rate of experimental mosquitoes older than 4 days is fitted with a Gompertz function by using data from [31] over 295
mosquitoes (a). We then deduce their probability of survival (b).
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Figure 9: (a) The survival probability of uninfected mosquitoes according to the chronological age and for different values of uyiiq resulting on
different values of life expectancy. (b) The cumulative sum of the proportion j(‘)a P, (s)ds of mosquitoes for each chronological age according to the
life expectancy (in days).

is such that (Figure 10 (a))

fn(@) ifa>1, a-1<12,

ce®™ ifa>r, a-tv>12, <29
2 ifa>t, a-t212, T>29

0 otherwise

lN}m(a’ T) =
c1e

with ¢; = 4.86 x 1073[0.00056,0.0204] and ¢, ~ 1.45 x 1071[0.085,0.253]. In Figure 10 (b), we represented the
survival probability of infected mosquitoes after 12 days, that is the function [12,45] 3 a +— exp(— flaz V(&€ —
12)d¢€). As above, we adjust the mortality rate v,, by considering

Vim = Hwild + 17m

We then define the survival probability of mosquitoes infected at age a for T days post-infection by

nin(a,‘r) = exp (— fOT V(€ + a,f)df)

which is equivalent to the probability to remain infected since, once the mosquito salivary glands become invaded
by the parasite sporozoites, there is no possible recovery for mosquitoes and they likely remain infectious for life
[56]. For each time post-infection, we see that the probability decreases as the age at which mosquitoes got infected
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increases between 0 and 12 days, which would not occur with constant mortality rate, though this is less pronounced
when the life expectancy decreases. Note here that by life expectancy we refer to the one of susceptible mosquitoes
that will never be infected, which is not the one of mosquitoes older than 12 days when they get infected. Indeed,
the mosquitoes infected after 12 days, survive better than the one infected younger. This is due to a lower mortality
rate and is discussed in [31]. Nevertheless, the lack of data forced us to suppose that the mortality rate of mosquitoes
infected after 12 days only depends on the time post-infection and not on the chronological age, leading to the same
probability of remaining infected, though the probability for the mosquitoes to have survived old enough until being
infected may be rather low, depending on the life expectancy (Figure 11).
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Figure 10: The mortality rate of experimental infected mosquitoes older than 12 days is fitted with a Gompertz function by using data from [31]
over 87 mosquitoes (a). We then deduce their probability of survival (b).
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Figure 11: The probability for the mosquitoes to remain infected nﬁn is represented for (a) pwilg = 0 and (b) uwig = 0.07 for a life expectancy
respectively of 27.4 and 11.4 days. The age of infection is in days.

3.2.3. Mosquito to human transmission probability

The parasite transmission probability 8, from mosquitoes to humans can be computed by using data from [45, 31].
In [31], the authors follow a cohort of infected mosquitoes along their infection and get Cq-values, the number of
cycles of quantification from qPCR (Figure 12 (a)). The number of sporozoites Spz(7) according to the time since
infection 7 is computed by using the following log transformation

Spz(t) = 107 04033, ®)

This transformation takes into account the maximal number of cycles: 40 (see [31]) leading to a zero probability to
have sporozoites for a higher number of amplification cycles. The coefficient 3.3 comes from the negative slope of
the linear relationship between the number of cycles of quantitification C,; and the common logarithm of the density
of sporozoites [57] leading to

40 - 3.3log,((Spz(1)) = C4(7)
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whence the formula (8). We then fitted the density of sporozoites with a gamma distribution (Figure 12 (b)), that is:

ifr<8

0
Spz(r) = 7-8)F 1 exp(— T3 9
% otherwise

where C is the mean number of sporozoites, & the rate and k the shape of the gamma distribution. We find with
C =~ 16605[12873,21399], k ~ 10.44[6.18,17.04] and ¢ ~ 0.76[0.44, 1.42]. Moreover, in [31], the authors found
that the intensity of sporozoites depends on the age of the mosquito with mean C,-values at 14 days post-infection of
27.46 [27.11,27.81] for 12 day-old mosquitoes, 26.65 [26.33,26.97] for 8 day-old and 25.9 [25.63,26.17] for 4 day-
old. We then use the transformation (8) to rescale the gamma distribution (9) with the corresponding mean number of
sporozoites. Next, according to [45], the link between the number of sporozoites Spz and the probability of parasite
transmission from infected mosquitoes to humans ,, is such that 5, = klog,,(Spz) +¢, where x = 0.186[0.115,0.257]
and ¢ = 0.08[0,0.25] (Figure 13 (a)). Consequently, we assume that the probability §,, is given by the following
equation (see Figure 13 (b))

0 ifr<8ora-7t<0

Q9.4 ,—(7-8)/0.76 .
max(0,0.186 x log;o ({2t =) +0.08) if7>8,0<a-7<8

max(0,0.186 x log,, (S22E8 e T27") £ 0.08)  ifr>8, 8<a-T<12

max(0,0.186 x log,q (HBEICe ™) +0.08)  if7>8, a— 7212

Bmla,7) = (10

Note that the probability is taken as zero for time post-infection less than 8 days, due to the latent or incubation period
within mosquitoes, called the extrinsic incubation period (EIP).
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Figure 12: (a) Cq-values of infected mosquitoes along the infection and (b) number of sporozoites during the infection.

3.2.4. Human feeding rate and mosquito/human ratio

The human feeding rate, denoted by 6 is defined as the expected number of bites on humans per mosquito per day.
An estimation of this rate is complicated to find in the literature and varies for example between 0.13 [58] and 0.44
[47] for Anopheles gambiae s.1.. Other estimations can be found in [46] and the references therein. For this reason,
we will keep this rate variable.

Another important quantity appearing in the computation of the basic reproduction number is the ratio between
mosquitoes and humans. First, the mosquitoes recruitment rate A,, will be assumed variable. Moreover, while the
human mortality rate y,, is well-known in Burkina Faso (see Section 3.1.1) and can be assumed not to vary with time,
the human recruitment rate A, is supposed constant even if the population in Bobo Dioulasso will increase implying
a growth of the recruitment rate. Nevertheless, one may assume that this quantity will at some point settle down and
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Figure 13: (a) The probability of infection according to the number of sporozoites in log-scale and (b) the probability of infection 3,, according to

the time post-infection and the age of mosquitoes when infected.

give the same age-structure in the demography as shown in Figure 2 (c). The variability in the parameter A, can then
be taken into account through another parameter, denoted by Cy, such as

6> A,
Cyar = .
Ay

3.2.5. Age-dependence of the mosquito transmission capability
We note here that the variability in the human and mosquito transmissions S, 3, can also be taken into account,
up to a multiplying factor, through the constant C,,, leading to a mosquito transmission capability C"" that can be

rewritten as: -

i (a)da 0 00 )

C"M = Cyy fom— ( f P,(a) f Bula+7,7)7 (a, T)d‘rda).
Iy mi(@da )\Jo 0

Firstly, the mosquito capability transmission requires that the mosquitoes survive the parasite incubation period. For
that purpose, we represented on Figure 14 (a), for each possible age of infection a, the probability to survive until age
a and also survive the incubation period, i.e. 75,(a)X 7!, (a, 8) according to the life expectancy by varying the parameter
Uwild- As expected, the probability to survive the incubation period increases with the life expectancy (of susceptible
mosquitoes) depicting the importance of knowing how long mosquitoes will survive. Also, the older mosquitoes will
get infected, the lower is the probability to be someday infectious. Finally, as mentioned in Section 3.2.2, we observe
a slight increase of the probability to survive the incubation period around the age of infection of 12 days. Secondly,
decoupling the mosquito transmission capability over the age by drawing the function

av+— P,(a) foo,Bm(a + 7, T)ni,,(a, T)dt
0

leads to an important part coming from young mosquitoes, since mosquitoes getting infected old will probably never
survive the incubation period (see Figure 14 (b)).

3.3. On the immunity waning

The immunity waning regulates the re-entering flux into the susceptible compartment from the recovered one.
The basic reproduction number does not depend on the rate &, since it considers the spread of the disease from a
single primary individual into an otherwise susceptible population, whence without recovered individuals. However,
as shown in [27], the threshold leading to either a backward or a forward bifurcation depends on k;,. It results on the
importance of parameterizing the latter rate since malaria is endemic in countries such as Burkina Faso. This is hardly
understood in practice and different modelling exist in the literature. For example, in [35], recovered individuals are
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Figure 14: (a) The probability for mosquitoes to survive the incubation period, according to the life expectancy (in days) and age of infection (in
days). (b) The mosquito transmission capability according to the chronological age (in days) and the life expectancy with age-dependant mortality
rate.

considered as still infectious and are part of the force of infection. In this case, the rate k; depicts the loss of the
clinical immunity [39] that protects against sever symptoms, whence recovered individuals cannot die in their model.
As mentioned in [35], it is generally believed that immunity is short-lived and requires repeated reinfection to sustain
itself, whence kj, should be age-dependent. In the above papers, it is assumed that the period of immunity is either
3.5 years [39] or 5 years [35]. Another example is [26] where infected humans directly become susceptible instead
of being recovered. Last but not least there is a series of papers where the authors developed simple mathematical
models by considering the case of acquired immunity boosted by exposure [59, 60, 61].

4. Derivation of entomological parameters intervening in malaria transmission

The basic reproduction number and the vectorial capacity which were discussed in the latter section, encompass
different biological processes (such as mosquito lifespan, human feeding, stability index etc.) that were investigated
among others by Smith and McKenzie [28, 29, 30]. We derive here formulas for the age-structured model (3) while
details are given in Section 4.

4.1. Proportion of infected mosquitoes, EIP and sporozoite rate

The force of infection from mosquitoes to humans is defined by (1) and can be rewritten as:

N0 lntt.57)
/lm(t)— Nh(l)f f H,Bm m(t) ———dsdr

which reveals the mosquito/human ratio N,,(¢)/N;,(¢) and the proportion of mosquitoes at time ¢, that have chronolog-
ical age s and infection age 7, which is I,,(¢, s, T)/N,,(¢). Similarly, the force of infection from humans to mosquitoes
is defined by (2) and includes the proportion of humans at time #, that have chronological age s and infection age 7:
Ii(t, s, T)/Ny(t). We now assume that the solution of model (3) converges to an endemic equilibrium, i.e.

(S, Dt -5 )s Ry(t, ), St ), Ly, 0) — ( HONHODN HODRMON (-,'))- (H)

We then denote by Ij(a, 7) the ratio of humans of age a that are infected since 7 days:
Iia,7)

I 2 = 00 00 00 00 00 *
W) I Si@da+ [ [T Ia,)dadr + [ [7 R;(a,7)da dr

Note that fooo fom I, (s, 7)drds stands for the total proportion of infected humans. We define the probability for a
mosquito to survive and get infected (for the first time) at age a by

gm(a) = (f f ,Bh(sa T)Ih(S, T)deT B¢~ foa pm(Av)dse—ﬁa fom foooﬂh(s,‘r)lh(s,‘r)dsd‘r‘
0 0
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Summing over all chronological ages, we get the probability for a mosquito to ever become infected as fow gm(a)da,
ie.

1- f ﬂm(a)e— foa Um(s)ds—6a fom fow ﬁ;,(.V,T)I/,(x,‘r)dxd‘rda. (1 1)
0

Concerning the infectious mosquitoes, we first need to define the entomological (or extrinsic) incubation period
which is given by

EIP := inf {‘r >0: fmﬁm(a, T)da > 0} (12)
0

that corresponds to the smallest infection age 7 so that the probability of malaria transmission from mosquitoes
infected since a duration 7 is positive for some chronological ages. In the latter section, it was assumed that EIP = 8 as
we can observe from (10). For a mosquito infected at age a, it follows that the probability to survive the incubation
period reads as

e fDEIP Vm(a—T1,7)d7 (1 3)

while the probability for a mosquito to ever become infectious is
0 EIP
f gm(a — EIP)e™ b vn@T0drgy (14)
EIP

Another important entomological parameter is the sporozoite rate defined as the proportion of mosquitoes that are
infectious. This definition assumes that each population is at equilibrium, otherwise the proportion would be time-
depending. Computing the proportion of mosquitoes that are infected, we see that this is simply

Cr fom ffm G b " (um($)+0CR)ds— [ Vim(a—s.5)ds dadt

= o 15
e K Gansr+6C0)s gy 4 Cpo e Ge= b Un()+0CR)s= [ vin(a=s.9)ds g4 17 (1)
wherein the constant Cg is given by
Cg = (f f 681, (s, DL (s, T)deT).
0 Jo
Similarly, the sporozoite rate can be computed as follows:
Cr [ [ ge b tnt9+6CRs= [T vnla=s)ds g i
S = fElP j‘; (16)

fo o= Iy Wn(9+0CR)s g, Cx fooo fT‘X’ o= b Wn(1+0CRYs= [ vala=s.5)ds g 07

In [29], the authors wrote that the sporozoite rate (i.e., the proportion of mosquitoes that are infectious) is equivalent
to the probability that an individual mosquito ever become infectious. But these are two separate issues. One simple
counter-example is when the natural mortality is zero (i.e. i, = 0) and the mortality due to the infection is negligible
at the beginning of the infection (i.e. v,,(., s) = 0 Vs € [0, EIP]) but nonzero otherwise. Then, the probability for any
mosquito to become infectious is one (as long as Cg # 0), while the proportion of infected mosquitoes is obviously
below 1 due to the constant flux of newborn susceptible mosquitoes.

4.2. Mosquito survival and lifespan

We now focus on mosquito survival, defined previously by the function 7j,. Computing the survival probability
of a random mosquito is quite tricky for the general model formulation since it depends on the time of infection. It
then requires to know the proportion of mosquitoes that are infected at each age, which was computed in the previous
section. Here, m), is derived in absence of infection and thus concerns only mosquitoes that will not be infected. As
mentioned before, mosquitoes survival is usually supposed not to be affected by malaria infections, i.e. (, = v,

while our model distinguishes the two mortality rates, whence mosquitoes that will be infected at some point of their
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lifetime, shall have different survival functions. Using the probability to be infected at each age, we deduce that the
probability for a newborn mosquito to survive to age a is:

00 00 a S
,,(a) = 7r’s;1(a)e—9aj(; jo Br(s,DIp(s,7)dsdr + f gm(a _ S)e_fﬂ vm(a—‘r,‘r)d‘rds
0
while the average lifespan is given by

00 4
f a[u,,xa)nfn(a)e“’“fo b AlsMutsndsdr f Vi@, $)gm(a — s)e” b @m0 g 5| da, (17)
0 0

The median survival time, i.e. the half-life of the mosquito population is defined as the age a that satisfies
II,,(a) = 1/2. (18)

In absence of infection, the half-life of the mosquito population that will never be infected satisfies the following
equality:

(@) = e h O 2 172 = f tm($)ds = In(2).
0

4.3. Human feeding, stability index and human blood index

We now focus on mosquitoes bites, that are the starting point of any infection. It is then crucial to be able to
estimate the number of bites per mosquito per day, or equivalently, the number of times each human is bitten every
day. With that in mind, we define the human feeding rate as the expected number of bites on humans per mosquito
per day. It is here denoted by 6, but is usually decomposed as the product of the mosquito feeding rate f —where the
inverse stands for the interval between blood meals— and the proportion of bites that are taken on humans Q, hence
0 = fQ. For simplicity we supposed that this rate does not depend on the mosquito age, even if our framework would
allow any age dependence.

From Section 4.2 we know that a mosquito lives on average fooo I1,,(a)da days and bites 6§ humans every day. It
follows that a mosquito bites in average S humans over its lifetime, where S is called the stability index and is
defined by

S = efm I1,,(a)da. (19)
0

Since the life expectancy depends both on the age and the infection status, for a mosquito infected at age &, the average
number of bites that it will give after its infection is

p f o K vntm-grn g
¢

which is in general not equal to S’. The human blood index (HBI) is defined as the proportion of mosquitoes that
will ever fed on a human, which we will denote # in the following. This is given by

fo‘” o b n()+6)ds g,

7—{ = 1 - a a—T M
fo o= Iy Um()+6CR)ds ;g o Cr fo‘” fr‘” G~ o Wn(s)+6CRIs= i vm(a=s.s)ds dadt

(20)

Decomposing the human feeding rate as § = fQ, one may similarly define the proportion of fed mosquitoes, or the
proportion of mosquitoes that have ever fed (whether on human or not) as

e o (s g

7-{f =1- 00 a 00 00 a-T T '
fo e—fo (Hm(s)+0C<R)dsda +Cg fo L He_fo (ﬂm(s)+9C7<)ds—fU vm(a—s,s)dsdadT

2y

It is important to report that in the literature (see e.g. [62, 63]), the human blood index refers to the proportion of
mosquito blood-meals that are of human origin, which is here denoted by Q.
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4.4. Mosquito density per human, human biting rate, EIR and lifetime transmission potential

We focus here on infectious bites. Let us define the mosquito density per human as the ratio between the number
of mosquitoes and the number of humans, that reads as

A, ( J° e B bmom0c0ds g 1 cp [ [ gem b TUmr0C0s= [ v,,l<a—s,s>dsdadT)

Ay fooo e b rds gy fooo foa ( fos vi(s, DI (s, T)dT) e L m®d g

p= 22)

In absence of infection (leading to Cg = 0 and [} = 0), this ratio becomes

A [ K 4
A [ e g

which appears in the computation of the basic reproduction number (6) and the vectorial capacity (7). This ratio is
commonly denoted by m (see [6, 29]). However, in [29], m and p are confused, leading to non-negligible effects on
some parameters computed as the human biting rate and the entomological inoculation rate which we define below.
By definition, we know that each mosquito bites 6 times per day. Since the bites does not depend either on the
age or its status infection, it follows that the number of bites per human per day, also called the human biting rate, is
simply
HBR = p#. (23)

Since the proportion of infectious mosquitoes is S’, it follows that the number of infectious bites received per day by
one human, also called the entomological inoculation rate (EIR), is given by

EIR = p6S". (24)

It is important to note that if each human indeed receives in average p6S” infectious bites per day, each infectious
bite has not the same infective load: S" is just an indicator for the proportion of infectious mosquitoes without taking
into account the time post-infection nor the age, on which depends the transmission rate §,, (see Section 3.2.3).
Furthermore, we may deduce that each mosquito bites in average 6S” humans every day.

The lifetime transmission potential is then the expected number of new human infections that would be generated
by a newly emerged adult mosquito. This is expressed as:

(9 f ) gm(a) f wﬁm(s,s—a)efrjv”‘(‘f’f“)dfdsda))(l - f ) f ) Ih(a,T)dea) (25)
0 a 0 0

where the first part describes the number of infectious bites given by one mosquito over its lifetime, containing
the probability to be infected at age a (g,,(@)) and the number of infectious bites after infection: L Bm(s, s —

a)e‘fx vn(&E=adE ¢ where the exponential stands for the survival of the mosquito when infected; while the second
part is the proportion of susceptible humans.

4.5. Comparison to the classical model

In the previous literature (see e.g. [29]) those important entomological parameters were derived in absence of any
structural variables. Here we show that our formulas generalize the ones given in [29] in a particular case, a summary
will be given in Table 4. To this end, we first introduce the classical model, i.e. without age structure variables by
making the following assumption:

Assumption 1. Parameters V,,, Uy, Vi, Un, ki, Yn and B, are constant, while By, is constant piecewise function: for each

a >0,

if Tt <EIP
otherwise

0
Bula,7) = {
h

where EIP is a constant standing for the entomological incubation period. Moreover, the mosquito and human mor-
tality does not depend on the status of the infection: vy, = W, v, = 0.
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Under Assumption 1, the PDE model (3) can, after some integration, be rewritten as the following delayed differ-
ential system of equations:

SHO = Aut+KuRi(t) = upS (1) = OBl 3B
L@ = OBuln(DFED = (un +ya) In(0),

R, () = yuln(t) — (un + kn)Rp(2),

Su® = Au = S (D) = OBiS w75

(26)

E0) = 0BSu() 2L — 1 Epn(t) — OByS y(t — BIP) HEDS poinEIP.
L) = OBuSu(t— EIP) e P — 1 (0),

where S, I, R), stand for susceptible, infected and recovered human, while S ,,,, E,,, I, respectively denote susceptible,
exposed and infected mosquitoes. We can note that the exposed compartment is composed of the infected mosquitoes
whose incubation period is not finished. In the following, (26) will be referred as the classical model. The basic
reproduction number R, for the classical model takes the form

RO — ﬂCm—)h X Ch—>m (27)
where the per bite transmission capability from human to mosquito C"~" and the vectorial capacity C"" now write

Ch‘)m — ﬁh Cmah — 92Ainﬂmﬂh67”MEIP (28)
JUES7 Ant, ’

and we recover the classical formula of the vectorial capacity [7, 28]. By estimate (11), the probability for a mosquito
to ever become infected for the classical model writes

0Bl
M + 681
where I, is the proportion of infected humans (under the static hypothesis (H)). Moreover, by (13), the probability to

survive the incubation period for the classical model becomes e #»FIP, Finally, by (14), the probability for a mosquito
to ever become infectious, for the classical model, is given by

081, o HnEIP
Hm + 66,1,

0BrLn

By estimates (15) and (16) the proportion of mosquitoes that are infected for the classical model writes PTTTEn ot
Bule™

Similarly, the sporozoite rate for the classical model writes o +6ﬁ 1~ Note that in this case, the proportion of
mosquitoes that are infected and the sporozoite rate respectively coincide with the probability for each mosquito
to become infected and infectious. However, both quantities are expected to be very different in general. Next, based
on estimate (18), the median survival time for the classical model, i.e. the half-life of the mosquito population leads
toa = 2@ which does not depend on the infection status since i, = vy,.

The human feeding rate (denoted by 6) is the expected number of bites on humans per mosquito per day. It is
usually decomposed as the product (6 = fQ) of the mosquito feeding rate f and the proportion of bites that are
taken on humans Q. Note that, for the classical model, the stability index, defined by (19), writes S = /4% We then
observe that the life expectancy of a mosquito that has already lived a certain number of days (infected or not) is
exactly the same as a recently emerged mosquito (with the classical formulation), that is }%ﬂ days. As a consequence,
Smith and McKenzie [29] reinterpreted the stability index as the expected number of bites given by a mosquito after
it has become infectious. In the general case, this reinterpretation is incorrect. Indeed, the life expectancy depends
both on the age and the infection status (see Section 4.3). Moreover, with the classical formulation, the human blood
index, defined by (20), writes H = i Similarly, by (21), the proportion of fed mosquitoes, or the proportion of

mosquitoes that have ever fed (on human or not) for the classical model writes H; = L.

T+
Finally, based on estimates (22), (23), (24) and (25): other quantities (for the classwal model formulation) such
as mosquito density per human (p), human biting rate (HBR), entomological inoculation rate (EIR), and lifetime
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transmission potential are respectively given by p =
O*BiBrnlue*mEP(1-1,,

Hn (g +6Bn L)

Aftn
Appn(1=14)° Appn(1-1)°

) Note that in [29], the term (1 — I;,) in the lifetime transmission potential does not appear, thus

HBR — ONmitn

EIR = 6* AptnBIpe #mEP

T Antn (e +0B8 1) (1-1)

neglecting the human already infected. Indeed, new infections imply necessarily upon susceptible individuals.

Parameters Classical ODE model PDE model

Basic reproduction number (Ry) A/ % (6)

Vectorial capacity (V) W @)

Probability for a mosquito to become infected y:f{T’;ZIh (11)

Entomological incubation period (EIP) EIP® (12)

Probability of surviving incubation period e~ #mEIP (13)

Probability for a mosquito to become infectious %e’“mmp (14)

Proportion of infected mosquitoes m:fg;:h (15)

Sporozoite rate (S") #:f’T’;;’the‘”'"EIP (16)

Average mosquito lifespan uLm (17)

Median mosquito survival time ll"% (18)
Human feeding rate Q) 0

Stability index (S") - (19)

Human blood index () ﬁ (20)

Proportion of fed mosquitoes () 7 f# - 21

Density of mosquitoes per human (p) % (22)

Human biting rate (HBR) % = pb 23)

Entomological inoculation rate (EIR) % = pbS’ 24)

Lifetime transmission potential %w 25)

™ in the classical model, the EIP is given as a parameter
&) f stands for the the mosquito feeding rate and Q is the proportion of bites taken on humans, which are here both aggregated
into one parameter: 6

Table 4: Summary of the formulas.
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5. Discussion

Mathematical models have played an important role in understanding the epidemiology of infectious diseases and
particularly about malaria [7, 6]. Quantities such as the basic reproduction number, the vectorial capacity and some
important entomological parameters can readily be put into equations once a mathematical framework have been set
up. In the previous literature (see e.g. [28, 29, 30]), those quantities were derived in a classical case for a differential
system of equations (26) i.e. without any structural variable, thus neglecting possible age effects. As discussed in
Section 3, literature about model parameters clearly show that they depend on both chronological and infection ages
of human and mosquito populations. Consequently, this aspect holds significant importance in enhancing our compre-
hension of malaria transmission and facilitating effective malaria control programs from both human and mosquitoes
side. We note here that while the model (3) describes the variation of populations of humans and mosquitoes, it
also takes into account the variation of sporozoites during the infection when computing the parasite transmission
probability S, in Section 3.2.3, which makes it a multi-scale model in some sense.

From human side, the transmission capability or infectiousness among the human population exhibits significant
heterogeneity concerning the age structure (Figure 7). In general, the transmission capability from an infected human
to mosquitoes strongly decreases with the age of the infected individual, with individuals under 30 carrying the ma-
jority of the transmission burden (Figures 6 and 7). Despite the inadequacy of data for providing precise quantitative
results, such an analysis does enable us to affirm the age-dependence of the human infectious reservoir, primarily
among the younger population, especially those under 15 years old (see [11, 12]). Demography plays a crucial role,
particularly in countries like Burkina Faso, where a significant portion of the population is concentrated in the age
range of the major human reservoir (Figure 2).

On mosquitoes side, structuring in chronological age seems relevant due to the high dependence of the mortality
rate in age depicting a senescence within Anopheles populations. While the survival of mosquitoes in the field contains
high variability due to different external (seasons, temperature) and internal (genus, species) reasons as discussed in
Section 3.2.1, the lifespan seems however lower than a few weeks. Adding the fact that mosquitoes do not get
infectious right after infection but only after a variable duration called the EIP, we better understand the necessity to
follow both chronological ages and infection ages of the mosquito. Indeed, the remaining lifespan of any mosquito
depends on the the time already spent, contrary to the classical case. Consequently the sooner a mosquito get infected,
the higher its vectorial capacity is (see Figure 14 (b)). When the mortality is supposed constant, we can observe a
similar transmission capability when the life expectancy is lower than 15 days, but differences occur above this value
(see Figure 15 (a)). This is more visible when we compute the total capability that is, up to a multiplying constant,
the vectorial capacity:

f B P, (a) f N Bum(a+T, T)nfn(a, T)dtda
0 0

(see Figure 15 (b)). Here we see that for life expectancy higher than 15 days, the transmission capability is smaller
for each mosquito age resulting to a lower total capability. This can be explained by the different age-distribution
of mosquitoes at the disease-free equilibrium. In Figure 16 (a) we see that the distribution of mosquitoes death, for
susceptible mosquitoes, follows well the data with the age-dependent mortality rate while a constant mortality rate
overestimates the proportion of mosquitoes that will die young. Consequently, omitting mosquito chronological age
in the model may have non negligible epidemiological consequences and implications for malaria control programs.
The median mosquito survival time (for susceptibe mosquitoes) also differs with the assumption on the mortality rate,
while it is linear with coefficient In(2) in the constant case, the age-dependent case shows a nonlinear increase of the
median age (see Figure 16 (b)). As a consequence, the only knowledge of the mosquito lifespan, through the mortality
rate in the classical case, is not enough to quantify epidemiological parameters of malaria transmission.

6. Appendix

6.1. Derivation of formulas of Section 4
Here we give some details about the formulas derived in Section 4. Considering a newborn mosquito, the proba-
bility that it will still be alive and not yet infected at age a is
e—jouym(s)ds e—é‘a fooo j;)mﬁh(s,r)lh(s,r)dsdr

———
(@) (b)
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Figure 15: (a) The mosquito transmission capability according to the chronological age and the life expectancy with constant mortality rate. (b)
The mosquito transmission capability summed over the age.
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Figure 16: Comparison between age-dependent and constant mortality rate for (a) the distributions of mosquitoes death and (b) the median mosquito
survival time.

that is the product of the probability to survive the natural mortality (a) and the probability to not have been infected
earlier (b). For such surviving mosquito with age a and not yet infected, the probability that it will get infected at this

age is
Gf f Bi(s, DI(s, T)dsdr.
0o Jo

It then follows that the probability for a mosquito to survive then get infected (for the first time) at age a is g, (a) :=
( fooo fow Br(s, DIL(s, T)deT) e~ Jo Hn($)ds g=ba ;" ;" Bu(s.)(s.r)dsdr Summing over all chronological ages, the probability
for a mosquito to ever become infected is fow gm(a)da, i.e.

0 f f Bi(s, DIi(s, T)dsdt f e by rm()ds=6a [ [ pr(s, (s, 0dsdr g
o Jo 0

which is equivalent to (11). One may observe that I,,,(s, 7)/N,,, defined above as the proportion of infected mosquitoes
with chronological age s and infection age 7, can readily be computed as:

Vi (s—uu)du

gm(s —1)e” b

for each s > 7 and is zero otherwise.
The proportion of mosquitoes that get infectious at age a is simply the ones that survived then get infected at age
a — EIP and also survived the incubation period. This writes as
EIP
gm(a _ EIP)E_fO v,,,(a—‘r,‘r)d‘r.
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It then follows that the probability for a mosquito to ever become infectious is defined by (14).
To compute the proportions of mosquitoes that are infected, we see that this is simply

fooo J;oo I (a,7)dadt
S (a)da + = (7 (a,T)dadr
b s b L

which corresponds to the number of infected mosquitoes over the total number of mosquitoes. Using the method of
the characteristics, we readily see that this is equal to (15).
Let £ be the age at which a mosquito is infected. The probability that the mosquito survives until the infection is

78 (£) while the probability to survive from the infection to the age a is P T PN £. Tt follows that the
probability for a mosquito to survive until age a, knowing that it was infected at age &, is given by

3 _ . . _[ N . .
7Tm,f(a) — eifO llm(s)dxe j;m(s,s Hds _ ﬂ,zq(f)e ff Vn(s,s=§)ds _ ﬂ':n(g)”:ﬂ(faa _ f)

for each age a > €. Note that if a < £ then the mosquito dies before being infected and the probability to survive until
age a is simply 7,,(a). We can see that those two terms simply rewrite respectively as e ¢ and e™*“~¥) in the classical
case. It follows that for (26) we have 7, s(a) = m;,(a) for each £ > 0 and consequently the mosquito survival does not
depend on the age of infection. For newborn mosquito, the probability to survive until age a is I1,,(a) where the left
part stands for the survival probability in the susceptible population while the right part is the survival probability in
the infected population. One may compute more explicitly this probability in the constant case as:

Vin—Hm=6BnIn Vin—Hm=6BnIn

,(a) e*“(.“m+9ﬁhlh) (1 + 68Ln ) _ OBl if v,y — o — G,Bhlh #0,
a) =
" e a1 + ag1,) i, — i~ 6811 = 0.

Note that if the mortality of mosquitoes does not depend on the infection i.e. v,, = u,, as in the classical case, or
if the proportion of infected humans is zero (I, = 0), then the latter expression becomes exactly m,,(a). Following
a newborn mosquito that will never be infected, the probability to survive and die at age a is u,(a)r,,(a) while the
average lifespan, i.e. the expected waiting time to death or the mean life expectancy, is defined as

f a,ufn(a)ﬂm(a)dazf ﬂ;(a)dazf e b s gy
0 0 0

which is equal to 1/% in the classical case. On the other hand, the average lifespan of mosquitoes that will be infected
atage &, is

¢ 0 0 min{é,a} e _
f apm(a)m,,(a)da + f avm(a,a — Enpe(a)da = f ek s = ey (5545
0 & 0

which amounts to
L + e‘ﬂmf(i - L)
Mm Vm  Mm

in the constant case that is again #L whenever y1,, = v,,. We can observe that this quantity is larger than - if and

only if w,, > v, meaning that infected mosquitoes will live in average longer than susceptible mosquitoes if and only

if the mortality rate of the infected population is smaller than the one of the susceptible population. Considering the
probability to be infected at each age, we deduce that the average lifespan is given by (17) and is equal to

fm 26081 Vimln . _
G BT T Gt 0BT iV = pm = 0Bl = 0

m 68,1 .
{(;sz;ﬁhlhﬂ + gy W + 0BT+ Vi) i Vi = oy = 6By # 0,

in the constant case (or ;% under Assumption 1). For mosquitoes that are infected at age &, the median survival time
is defined by the age a such as

B fmin(f,a)

(s = [&  Va(s,s=Eds _ minea) _
e b e JIminea) =12 = Un($)ds + Viu(s, s —&)ds = In(2)
0 min{é,a}
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which amounts to
In@@) if ¢ > @
Hum P
1n(2)+§(vm—/1m) lfé‘: < M
= Hm

Vm

a=

in the constant case (and still l"”ﬁ in the classical case). This distinction can be explained as follows: if the mosquitoes

are infected relatively old (¢ > lnﬂﬁ) then only the mortality rate of susceptible mosquitoes is relevant for the computa-
tions since half of the mosquitoes will be already dead before being infected. On the other hand, if the mosquitoes are

infected relatively young (¢ < ]nﬂﬂ) then the computations take also into consideration the mortality rate of infected

mosquitoes. We can observe that if 1, > v,, then the median life time a is larger than lnﬂﬁ, meaning that the infected

mosquitoes survive better than the non infected ones. A contrario, if p, < v, then a < In(2)/u,, and susceptible
mosquitoes survive better than infected mosquitoes. Let us consider a susceptible mosquito aged of a days, then its
life expectancy in absence of infection is

8(0) = f 67 f:#m(W)dwds.
a

We can note that for a recently emerged mosquito (a = 0) we recover the average lifespan given earlier. For a mosquito
that is aged of a days and that get infected at age & (in the past if a > &, or in the future if a < &), its life expectancy is
defined by

0 £ o .
ity = [ &m0 ot
a

As a consequence, the number of bites given by a mosquito after it has become infectious, clearly depends on the age
at which the mosquito got infected.

In [29], the authors defined the human blood index as the proportion of mosquitoes that will ever fed on a human
and gave the following formula

B I m (@)1 - e)da
I wm(a)da

where they explained that 73,(a)(1 — ¢%) is the proportion of mosquitoes that have survived to age a and bitten a
human. However, since mosquito survival depends on the infection status, it follows that the latter proportion must
depend on when the mosquitoes have bitten a human and whether the bite was infectious or not. It then writes as the
ratio between the number of mosquitoes that never have bitten any human, with the total number of mosquitoes. This
corresponds to:

A [ e B
fooo S (a)da + fooo f:o I*(a,T)dadt
that is equivalent to (20). Similarly, the proportion of fed mosquitoes is defined by
A [ e B3

I Si@da+ [ [T I (a, 1)dadT

H=1-

He=1-
which is equivalent to (21). We can note that the probability for a newborn mosquito to ever bite a human reads as:

l_f pn(@)y (@)e*da = f o} (a)e “da.
0 0

Indeed, the latter expression can readily be explained as the probability x;,(a) for the mosquito to survive until age
a then to die y,,(a)e” I n(s)ds o age a without biting any human ¢~%. As a consequence, the left part is simply the
opposite of the proportion of mosquitoes that will never bite any human, because they will die before. Concerning
the right part, it can also be decomposed as the probability to survive until age a without never have bitten any human
7m(s)(@)e % and the proportion, among them, that bite a mosquito at the age a, that is . It is then simply summed
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over all ages. We can note in the classical case, we recover the same formula as for 9, but not in general. In the same
way, the probability for a newborn mosquito to ever fed is simply:

- f (a)”m(a)e /da = f fﬂfn(a)effada.
0 0

We clearly recover the latter formula when mosquitoes only bite humans (i.e. Q = 1). In the classical case, we see that
the latter proportion is simply the same as for ;. Finally, the ratio between the numbers of mosquitoes and humans
is
I Sp@da+ [ [T It (a,T)dadt
p = 00 . 00 00 * 00 00 5«
fo S (a)da + j(; fT I;(a,7)dadT + fo fﬂ R} (a,n)dadn

which leads, after some computations following [27, Section 7], to (22).

6.2. Derivation of a SAIR model
We show here how the model (3) can explicitly highlight the asymptotic stage before infection. Let A,(f,a) =

f()[ I(t,a,7)dt and iy(t,a) = f;o Iy(t, a, 7)dt, where ¢ is the average duration of asymptomatic stage of an infected
individuals. Then A,(t,a) and i,(t,a) represent the asymptomatic and symptomatic infections (or clinical cases)
respectively. Assume that the probability §;(s, T) of parasite transmission from an infected human with age s and
infected since a time 7 to any mosquitoes for each bite is such that 8,(s, 7) = ,B}l(s)lng(T) + ,Bﬁ(s)lpg(r). Hence, the
force of infection from humans to mosquitoes writes:

L o [
40 = = fo fo 0B (s. T)(t, 5 T)ds dr = s fo (BLOALE 5) + Br(9)in(t, ) ds

Moreover, from (3) we see that

(az + aaa) Snt,a) = fow kn(mRu(t, a, m)dn — pp(@)S 4(t, a) — S u(t, a) A, (1),
(2+2)Anta) = It.a,0)-Lt.a )~ fo‘ (un(@) + vi(a, T) + yala, 7)) Iy(t, a, 7)dr,
oﬁ + 5% )lh(t a) = Ltal)- f;o (up(a) + vi(a, 1) + yp(a, 1)) I(t, a, 7)dr,
(5+a+ g)m am = —(u(@) + k)Rt a ),
(2+2)Sut.a) = ~pn@Sn(t,a) = St @)Au(t, ),
(% + 5t 9‘r) Ly(t,a,7) = —vm(a, DI(t, a,7).

From (4), we deduce that

(2+2Z)Sut.a)
(5 + %) Antt.@)

d
5+ ﬁa)l;,(t a)

I knRu(t, @, m)dn — (@S 5(t.@) — S 4(t, )0,
S 11, @An(t) — (64(@) + (@) An(t, @) = [ (i@, ©) + yala, D) Ii(t, @, T)dr,
Si@ANt.@) — p(@in(t. @) — [ i@, D) + yala, ) It a, T,

4,9 , 08 (29)
(2+ L+ 2 Rutam) = —(ui(@) + kn()Ri(t, a, ),
(5+2)Snt.a) = —pn(@Sn(t,a) = Su(t, A1, a),
(£+2+ §) Ln(t,a,7) = —vu(a,Dlu(t,a,7),
It a,t Iyt a,0) . . . . .
where 0;(a) = nt,a 6) = nt a0 is the rate at which asymptomatic infections progress to symptomatic

j: I(t,a,7)dr An(t, a)
infections. Next, assume that

vi(a,7) = (@) lese(t) and  yp(a, 7) = Yi,1(a@) Le<e(T) + Yi2(a) s (7).
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This assumption implies that death resulting from an infection is negligible for asymptomatic infections. Additionally,
the recovery rate for asymptomatic infections is denoted as vy, ; while the recovery rate for symptomatic infections is
denoted as y;,». Therefore, the latter system ecomes

(% + %) Sh(t’ a) = fOOO kh(n)Rh(t’ a, ’l)dn - /’lh(a)S h(tv a) - Sh(t, a)/lm(t),
(% + %)Ah(“ a) = Sut,@)u(t) = On(@) + pn(a) + yu1(@)An(t, a),
(24 2)ita) = SH@A.a) ~ (@) + va@) +¥42(@)in(t, @),
(2+ 2+ 2)Rutam) = —Guala) + ku@)Ru(t, .,
(2+2)Sut@) = —Hn@Snlt,@) = St D1, a),
(% + % + (%)Im(t’ a,7) = —vm(a, Dt a,7),

with the following boundary conditions:

Sp(t,0) = Ay, Su,0) = Ay,
Apt,0) = 0, in(1,0) = 0,
Ry(t,a,0) = yn1(@An(t, a) + yp2(@)in(t, @), Ry(t,0,m) =0,
Im(t’ a’ O) = Sm(t’ a)/l/’l(tv a)7 Im(t7 07 T) = 0

Code availability.. The code (with R and the Julia Programming Language) used to simulate the model can be ac-
cessed through the Zenodo platform at https://doi.org/10.5281/zenodo.10589288.
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