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Abstract: Malaria is one of the most common mosquito-borne diseases widespread in tropical and sub-
tropical regions, causing thousands of deaths every year in the world. In a previous paper, we formulated
an age-structured model containing three structural variables: (i) the chronological age of human and
mosquito populations, (ii) the time since they are infected, and (iii) humans waning immunity (i.e. the
progressive loss of protective antibodies after recovery). In the present paper, we expand the analysis
of this age-structured model and focus on the derivation of entomological and epidemiological results
commonly used in the literature, following the works of Smith and McKenzie. We generalize their results
to the age-structured case. In order to quantify the impact of neglecting structuring variables such as
chronological age, we assigned values from the literature to our model parameters. While some param-
eters values are readily accessible from the literature, at least those about the human population, the
parameters concerning mosquitoes are less commonly documented and the values of a number of them
(e.g. mosquito survival in the presence or in absence of infection) can be discussed extensively.

1 Introduction

Causing more than 600,000 deaths every year [62], malaria is one of the most lethal infectious diseases.
Despite the progress towards malaria burden reduction, leading to the decrease in cases and deaths over
the last twenty years, achieving elimination in more countries remains a challenge [54]. This is especially
true given the slight but non-negligible increase of deaths in 2020 during the Covid-19 pandemic [61].
Human malaria is caused by one of 5 plasmodial species: Plasmodium falciparum, P. vivax, P. malariae,
P. ovale and P. knowlesi (with P. falciparum being the most pathogenic species infecting humans [36])
that are transmitted by the bites of female Anopheles mosquitoes, most commonly from An. gambiae
sensu stricto, An. coluzzii, An. arabiensis and species of the An. funestus complex in Africa [47].
Introduced more than one century ago by Ross [46], the first mathematical model for malaria transmission
was refined later by MacDonald [39]. Models for vector-transmitted diseases are still a wide subject of
study in epidemiology, see e.g. [13, 31, 38] and some references therein. In 2021, the WHO African region
accounted for about 95% of cases and 96% of deaths globally; while 78.9% of all deaths in this region
were among the youngest population, i.e. less than 5 years old [62]. Furthermore, the human infectious
reservoir is believed to be mostly children between 5 and 15-year-old [19, 25]. Considering different age
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class for the host population then seems a natural requirement (see e.g. [11, 26]). A refinement of these
models are age-structured models, where the chronological age is a continuous variable, since it allows to
implement any age-distribution in the host survival instead of simply exponential [57, 58] or also while
considering within-host dynamics [1, 55]. In addition, the production of gametocytes within a human
host is strongly related to the time post-infection [23], hence a number of recent studies tracking the
time post-infection in their models e.g. [14, 22, 59, 60]. Finally, the importance of mosquito senescence
and the need to include it in models was put forward in [10, 52] but only considered recently [45]. In a
previous work [44], we studied an age-structured model of the transmission of malaria parasites between
mosquitoes and humans, where multiple structuring variables are taken into account: chronological and
infection ages of both populations, as well as the time since recovery to describe potential humans waning
immunity. In [44], well-posedness was first handled, then formulas for the basic reproduction number and
vectorial capacity were derived, as well as conditions for backward and forward bifurcations.

In this paper, we extend the analysis of the age-structured model previously developed in [44]. While
the earlier work primarily addressed the well-posedness of the proposed model, the existence of steady
states, and the precise derivation of the basic reproduction number and vectorial capacity, our current
focus is on deriving entomological and epidemiological results (within the framework of a malaria transmis-
sion age-structured model) commonly employed in the literature. This follows the approaches of Smith
and McKenzie [48, 49, 50], particularly [49] where the authors derived equations for various statistics
within the ODE framework. Here we generalize these results to the age-structured case and emphasize
the importance of both chronological ages and infection ages on malaria transmission and effective malaria
control programs. In order to quantify the impact of neglecting structuring variables such as chronological
age, we assigned values from the literature to our model parameters. While some parameters values are
readily accessible from the literature, at least those about the human population, the parameters con-
cerning mosquitoes are less commonly documented and the values of a number of them (e.g. mosquito
survival in the presence or in absence of infection) can be discussed extensively.

2 Description of the model

2.1 Model overview

We remind here of the model introduced in [44] and the different notations that will be used all along
the paper. Let call Sh(t, a) the density of humans of age a ≥ 0, that are susceptible to the infection
at time t ≥ 0. These individuals can become infected due to bites of infected mosquitoes with the rate
λm(t, a), called the force of infection of mosquitoes to susceptible humans of age a. The infected human
population is additionally structured by the time since infection, called infection age, with Ih(t, a, τ) the
density at time t of individuals of age a that have been infected for a duration τ ≥ 0. A human host
of age a and infected for a duration τ can either recover at the rate γh(a, τ), or die from the infection
at the rate νh(a, τ). Upon recovery, Rh(t, a, η) is the density at time t of human hosts of age a that
recovered at time t− η ≥ 0. Recovered human hosts lose their immunity at the rate kh(η) and return to
the susceptible compartment Sh. Death due to natural causes can occur at each step of the infection at
the age-dependent rate µh(a). Finally, the human reproduction is assumed to occur at the constant rate
Λh depicting a constant flux of newborns.

Similarly, we call Sm(t, a) the density of susceptible mosquitoes of age a at time t. These mosquitoes
become infected upon a blood meal from infected humans at rate λh(t, a), called the force of infection of
humans to mosquitoes with age a. Susceptible mosquitoes die with the age-dependent natural death rate
µm(a), while infected mosquitoes that have been infected for a duration τ die at rate νm(a, τ). Note here
that, in order to ensure the positivity of all the parameters, the rate νm is not an additional death rate
due to infection as we assumed in [44]. Indeed, recent experiments show that among old mosquitoes, the
survival of infected individuals is higher than that of uninfected counterparts (see [51]) thus leading to
νm(a, τ) < µm(a), at least for old age a and some infection age τ . Finally, as for the human population,
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the flux of newborn mosquitoes is assumed constant at the rate Λm. The human-mosquitoes infection life
cycle is shown in Figure 1 and the infection process is described in the next section.

Ih(t,a,0) Ih(t,a,τ)

Rh(t,a,η) Rh(t,a,0)

Sm(t,0) Im(t,a,0) Im(t,a,τ)

Sh(t,a)Sh(t,0)Λh

Λm

μh(a)

μm(a)

Sm(t,a)
νm(a,τ)

μh(a)+νh(a,τ)

kh(a,η)

λm(t,a)

λh(t,a)
...

...

...

...

{{ γh (a,τ)μh(a)

...

Figure 1: The model flow diagram. Newborn humans appear with the flux Λh and are contaminated by
infected mosquitoes at rate λm. They recover from the disease at rate γh and benefit from a temporary
immunity that wanes at rate kh. Newborn mosquitoes appear with the flux Λm and are contaminated by
infected humans at rate λh. The death rates are represented by the red lines and are either natural µk or
due to infections νk (for k = h,m).

2.2 The infection process

The total number of human and mosquitoes at time t is described as follows

Nh(t) =

∫ ∞

0
Sh(t, a)da+

∫ ∞

0

∫ ∞

0
Ih(t, a, τ)da dτ +

∫ ∞

0

∫ ∞

0
Rh(t, a, η)da dη,

Nm(t) =

∫ ∞

0
Sm(t, a)da+

∫ ∞

0

∫ ∞

0
Im(t, a, τ)da dτ.

The force of infection from mosquitoes to human with age a is then given by:

λm(t, a) =
1

Nh(t)

∫ ∞

0

∫ ∞

0
θβm(s, τ)Im(t, s, τ)ds dτ (1)

so that Sh(t, a)λm(t, a) describes the number of newly infected humans with age a at time t. It consists

of the probability that a human with age a encountered by a mosquito is susceptible Sh(t,a)
Nh(t)

and the

infection efficiency of the mosquito population
∫∞
0

∫∞
0 θβm(s, τ)Im(t, s, τ)ds dτ . The latter efficiency

takes into account: (i) θ the number of humans bitten by mosquitoes by unit of time and (ii) βm(s, τ)
the probability of parasite transmission from an infected mosquito individual (with age a and which is
infected since a time τ) to a human individual. Similarly, the force of infection from a human individual
to mosquitoes with age a is given by:

λh(t, a) =
1

Nh(t)

∫ ∞

0

∫ ∞

0
θβh(s, τ)Ih(t, s, τ)ds dτ (2)

where βh(s, τ) is the probability of parasite transmission from an infected human with age s and infected
since a time τ to any mosquitoes for each bite.
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2.3 The mathematical model

Based on the above notations, the model considered in this paper reads as:

(
∂
∂t +

∂
∂a

)
Sh(t, a) =

∫∞
0 kh(η)Rh(t, a, η)dη − µh(a)Sh(t, a)− Sh(t, a)λm(t, a)(

∂
∂t +

∂
∂a + ∂

∂τ

)
Ih(t, a, τ) = − (µh(a) + νh(a, τ) + γh(a, τ)) Ih(t, a, τ),(

∂
∂t +

∂
∂a + ∂

∂η

)
Rh(t, a, η) = −(µh(a) + kh(η))Rh(t, a, η),(

∂
∂t +

∂
∂a

)
Sm(t, a) = −µm(a)Sm(t, a)− Sm(t, a)λh(t, a),(

∂
∂t +

∂
∂a + ∂

∂τ

)
Im(t, a, τ) = −νm(a, τ)Im(t, a, τ),

(3)

for each (t, a, τ, η) ∈ (0,∞)4 and is associated to the following boundary conditions:
Sh(t, 0) = Λh, Sm(t, 0) = Λm,

Ih(t, a, 0) = Sh(t, a)λm(t, a), Ih(t, 0, τ) = 0,

Rh(t, a, 0) =
∫∞
0 γh(a, τ)Ih(t, a, τ)dτ, Rh(t, 0, η) = 0,

Im(t, a, 0) = Sm(t, a)λh(t, a), Im(t, 0, τ) = 0

(4)

and initial conditions (at t = 0):{
Sh(0, a) = Sh,0(a), Ih(0, a, τ) = Ih,0(a, τ), Rh(0, a, η) = Rh,0(a, η),
Sm(0, a) = Sm,0(a), Im(0, a, τ) = Im,0(a, τ),

(5)

for each (a, η, τ) ∈ R3
+. The notations of all variables and parameters are summarized in Table 1, as

well as the biological meaning and the references used or discussed for the parameterization. Such age-
structured model recover the classical model with SIRS compartments for humans and SI compartments
for mosquitoes. As we will see in Section 4.5, assuming piecewise functions can reveal the exposed
compartment, yielding a SEIRS model if among humans or SEI model if among mosquitoes. Furthermore,
Model (3)-(4) allows for the explicit consideration of the asymptomatic stage, typically expressed during
the infection process. This is of particular significance since asymptomatic malaria infections are highly
prevalent in endemic areas and only a small percentage of infections will exhibit clinical symptoms (mostly
young individuals). We show in Section 6.2 how Model (3)-(4) can explicitly highlight the asymptotic
stage before infection as for some classical model formulation of SAIR type. We mention here that since
antigenic variation is a major driver of malaria dynamics, some papers [1] or [31, Section 8.3] considered
cases where the epidemiological parameters differ between reinfected individuals and individuals infected
for the first time.

3 Derivation of the vectorial capacity and the basic reproduction num-
ber

From a public health point of view, the time course of the disease is strongly related to the basic repro-
duction number, denoted here by R0. This allows quantifying the expected number of secondary human
(respectively mosquito) infections resulting from a single primary human (resp. mosquito) infection into
an otherwise susceptible population. In [44], it was shown that the R0 for the model (3)-(4) takes the
form

R0 =
√
Rh→m

0 ×Rm→h
0 (6)

where Rh→m
0 quantifies the per bite transmission capability from humans to mosquitoes and Rm→h

0

quantifies the transmission capability from mosquitoes to humans. Note that Rm→h
0 is also called the
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Category Description Unit References

Notations
t Time Tu
a Chronological age Tu
τ Time since infection Tu
η Time since recovery for human Tu

State variables
Sh(t, a), Sm(t, a) Susceptible humans and mosquitoes No unit

Ih(t, a, τ), Im(t, a, τ) Infected humans and mosquitoes No unit
Nh(t), Nm(t) Total human and mosquito populations No unit

Initial conditions
Sh,0(a) Initial human susceptible population No unit [32, 34]
Sm,0(a) Initial mosquitoes population No unit Varying

Parameters
Λh Human recruitment rate Tu−1 [32, 34]
Λm Mosquitoes recruitment rate Tu−1 Varying
µh(a) Human death rate Tu−1 [33]
µm(a) Mosquitoes death rate Tu−1 [51, 45, 52]
νh(a, τ) Human death rate induced by the infection Tu−1 [16, 21, 41]
νm(a, τ) Infected mosquitoes death rate Tu−1 [51]
γh(a, τ) Recovery rate of human infections Tu−1 [9, 41]
kh(η) Rate of loss of immunity Tu−1 [16, 35]
βh(a, τ) Parasite transmission probability from human to mosquitoes No unit [8, 12, 18, 24, 51]
βm(a, τ) Parasite transmission probability from mosquitoes to human No unit [17, 51]

θ Human feeding rate Tu−1 [15, 42]

Tu=time unit; h=humans; m=mosquitoes

Table 1: Main notations, state variables and parameters of the model.
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vectorial capacity [27]. More precisely, we have [44]:

Rh→m
0 =

∫ ∞

0

e−
∫ a
0 µh(s)ds∫∞

0 e−
∫ ξ
0 µh(s)dsdξ︸ ︷︷ ︸

Prop. human of age a

∫ ∞

0
βh(a+ τ, τ)×

Prob. to remain infected︷ ︸︸ ︷
e−

∫ τ
0 (µh(ξ+a)+νh(ξ+a,ξ)+γh(ξ+a,ξ))dξ︸ ︷︷ ︸

Transmission prob. of infected human

dτ da

and

Rm→h
0 =

∫ ∞

0

e−
∫ a
0 µm(s)ds∫∞

0 e−
∫ a
0 µm(s)dsda︸ ︷︷ ︸

Prop. mosquito of age a

×Rm→h
0 (a)da (7)

where Rm→h
0 (a) denotes the vectorial capacity of mosquitoes population infected at age a and is explicitly

given by

Rm→h
0 (a) =

Λm

∫∞
0 e−

∫ a
0 µm(s)dsda

Λh

∫∞
0 e−

∫ a
0 µh(s)dsda︸ ︷︷ ︸

Mosquito/human ratio

×θ2 ×
∫ ∞

0
βm(a+ τ, τ)×

Surv. prob. of infected mosquito︷ ︸︸ ︷
e−

∫ τ
0 νm(ξ+a,ξ)dξ︸ ︷︷ ︸

Transmission prob. of infected mosquito

dτ.

In the following, we will focus on the description of each factor intervening in the decomposition of the
transmission capabilities and how it can be determined in practice by using existing data.

3.1 Human transmission capability

3.1.1 Demographic structure of the human population

The demography of the human population plays an important role in the transmission dynamics of
malaria. As said in the introduction, the human infectious reservoir is known to be age-dependant. Here
we consider the population of Bobo Dioulasso, the second biggest city in Burkina Faso where the spread
of malaria is important.

The initial population Sh,0 corresponds to the population in Bobo Dioulasso in 2012 [34, Table A.4.6]
with the age-structure of the city [32, Table 4.6] (see Figure 2 (a)). The human recruitment rate is chosen
as Λh = 30754/year corresponding to a birth rate estimated to 3.78% [32, p.16] within Bobo, with a total
population of 813 610 in 2012. The natural human death rate µh is estimated in [33, Table A.1] (see
Figure 2 (b)).

Considering that malaria mortality νh is negligible compared to the natural mortality, we can esti-
mate the demographic age-structure reached by the population after some time, under the assumption
that the mortality does not vary with time. This is given by the function a 7−→ Λhe

−
∫ a
0 µh(s)ds which

mathematically corresponds to the disease-free equilibrium, where the function πsh(a) = e−
∫ a
0 µh(s)ds is

the probability for humans to survive from birth to age a, in absence of malaria infections. We can then
define the proportion of human of age a reached by the population as:

Ph(a) =
e−

∫ a
0 µh(s)ds∫∞

0 e−
∫ ξ
0 µh(s)dsdξ

=
πsh(a)∫∞

0 πsh(ξ)dξ

which appears in the computation of the transmission capability and is represented in Figure 2 (c). We
can observe a few changes in the demography leading to a larger and older population, with a bigger
life expectancy (numerically around 64 years old for about 2 million inhabitants). This can easily be
explained by the decreasing of both the mortality and the birth rates over the years.

In practice, the mortality due to malaria infections can indeed be neglected since malaria cause around
4000 deaths each year in Burkina Faso [21, Table 4.74] while the crude mortality rate was estimated to
1.18% in 2006 [34] corresponding to more than 100 000 deaths each year in Burkina Faso with a total
population of 14 millions inhabitants in 2006 [32].
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(a) (b) (c)

Figure 2: (a) The population age-structure of Bobo Dioulasso in 2012. (b) The age-dependent mortality
rate in Burkina Faso. (c) The expected age-structure of the population, in proportion, in absence of
mortality due to malaria, compared to the proportion in 2012.

3.1.2 Probability to remain infected

The time lapse between the infection and the recovery or the death of individuals is a key parameter
in the transmission process. Indeed, only infectious individuals can contribute to the spread of malaria
parasites. Considering humans getting infected at age a, they will remain infected for τ days with the
probability given by

πih(a, τ) = e−
∫ τ
0 (µh(ξ+a)+νh(ξ+a,ξ)+γh(ξ+a,ξ))dξ

revealing the human death rate induced by the infection νh and the recovery rate γh. The mortality rate
νh is based on the malaria lethality at age a, denoted by νh(a). The latter is given in [21] by computing
the number of deaths over the total number of mild [21, Table 4.73] and severe [21, Table 4.74] malaria
cases in the Hauts Bassins region (see Table 2).

Age (years old) [0,1] [1,5] [5,15] [15,+∞)

Malaria lethality rate 1.07× 10−3 7.02× 10−4 4.55× 10−4 5.73× 10−5

Table 2: Age-dependent malaria lethality rate for humans

The human incubation period is estimated to be approximately 10 days [16, 41] while death generally
occurs within 1 to 5 days after the incubation period, with a mean duration of symptoms until death
of 2.8 days [28]. In order to have 95% of the deaths occurring between 10 and 15 days post-infection,
we make the assumption that the distribution of the occurrence of the deaths due to malaria, denoted
by Φν(τ), follows the Gaussian law N (12.5, 1.276) and is normalized to have a total mass equal to one:∫∞
0 Φν(τ)dτ = 1, i.e.

Φν(τ) =
exp

(
− (τ−12.5)2

2×1.2762

)
∫∞
0 exp

(
− (s−12.5)2

2×1.2762

)
ds
.

Finally, the mortality rate νh(a, τ) of human of age a, with τ days post-infection is chosen as

νh(a, τ) = νh(a)
Φν(τ)

1− νh(a)FΦν (τ)

(see Figure 3 (a)) where FΦν denotes the cumulative distribution function of Φν . Under this assumption,
the distribution of the deaths due to malaria according to the time since infection numerically satisfies
the Gaussian law Φν when following a cohort of newly infected humans.

The time required to clear the parasite was estimated in [9, 41] and is age-dependant (see Table 3).
In order to compute the recovery rate γh, we first make the assumption that the clearance for a human
of age a follows the Gaussian distribution Φγ(a, τ), according to the time since infection τ , centered in
the middle of each range, while we choose the variance so that 95% occurs within this range. We then
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consider the following recovery rate (see Figure 3 (b)):

γh(a, τ) =
Φγ(a− τ, τ)

1− FΦγ (a− τ, τ)
,

where FΦγ denotes the cumulative distribution function of Φγ . Note that a− τ corresponds to the age at
which infected humans were contaminated. Finally, the probability πih(a, τ) for an infected human of age
a to remain infected for τ days is illustrated in Figure 4.

Age (years) [0,1] (1,5] (5,8] (8,18] [18,28] (28,43] (43,+∞)

Recovery time (days) [163,345] [555,714] [344,400] [181,204] [82,92] [56,61] [48,55]

Table 3: Age-dependent time for infected humans to recover

(a) (b)

Figure 3: (a) The mortality rate νh computed such that distribution of deaths due to malaria, according
to the time since infection, follows the Gaussian law Φν . (b) The recovery rate γh depends both on the
age and on the time since infection of the infected human. It is computed so that the distribution follows
a Gaussian distribution such that 95 % of the recovery occurs within the ranges showed in Table 3.

Figure 4: The probability to remain infected depending on the time post-infection and the chronological
age at the time of the infection (both in years).

3.1.3 Human transmission probability

Another crucial parameter in the human transmission is the probability for a mosquito to get infected
while taking a blood meal on a infected human. For each mosquito bite, we suppose that the probability

8



that a human of age a and infected for τ days, transmit the infection to the biting mosquito is βh(a, τ).
Such a probability is known to be strongly linked to the gametocytes density [3, 8, 12, 18, 20, 24]. We
denote by G(a, τ) the gametocytes density of an infected human of age a, after τ days of infection. As
in [12] (see also [3, 8]), we assume that the relationship between gametocyte density G(a, τ) and the
probability of transmission from infected human βh(a, τ) is given by:

βh(a, τ) = α1 (G(a, τ))
α2

where α1 = 0.071[0.023, 0.175] and α2 = 0.302[0.16, 0.475]. Moreover, we assume that the gametocytes
density follows the function

G(a, τ) =

{
G0(a)× f(τ − 8) if τ > 8,
0 otherwise,

where the incubation period within an infected human is approximately 8 days (Figure 5(a)), and G0(a)
is the mean number of gametocytes for a human of age a and the function f defined by

f : x 7−→ ξ + (ψx− ξ) exp(−ωx)
with some parameters ξ, ψ and ω, gives the evolution of the gametocyte density. It was used in [18] to
estimate the function G0 as

G0(a) = ψa exp(−ωa),
where ξ = 0 and ψ, ω were respectively estimated to 22.7[17, 32] and 0.0934[0.08, 0.11].

Finally, the evolution of gametocyte density is fitted on data from 12 patients [24], that were normalized
such that the maximum of each gametocyte density is one, due to the variance between individuals.

Note that the function f defined above can be decomposed into the sum of a Gamma distribution
with a multiplying factor x 7−→ ψx exp(−ωx) and an Ivlev function x 7−→ ξ(1 − exp(−ωx)). While the
former function captures the shape of the gametocyte density within the first 40 days after infection given
by the data, the latter function captures the limit density as x goes to infinity, since it tends to ξ. This is
not possible with common distribution law since the function vanishes as x increases. This is particularly
important as Plamodium falciparum infections may persist for a long time (see [7]). We estimate ξ, ψ and
ω respectively to 0.04[−0.27, 0.24], 0.25[0.23, 0.27] and 0.10[0.086, 0.124] for time post-infection larger than
8 days, see Figure 5 (a). The evolution of the gametocyte density G can then be computed, see Figure 5
(b). Finally, the probability βh(a, τ) of infection from humans with of age a and τ days post-infection is
illustrated by Figure 6.

3.1.4 Age-dependence of the human transmission capability

With these notations and estimates, we see that the human transmission capability Rh→m
0 can be rewrit-

ten according to the probability to remain infected πih, the human transmission probability βh and the
proportion Ph of human of each age as follows:

Rh→m
0 =

∫ ∞

0
Ph(a)

∫ ∞

0
βh(a+ τ, τ)πih(a, τ)dτda.

In order to see how this quantity depends on the chronological age, we plot the function

a 7−→ Ph(a)

∫ ∞

0
βh(a+ τ, τ)πih(a, τ)dτ

(Figure 7 (a)), as well as the proportion for each group of age (Figure 7 (b)). We see that more than
half of the human transmission capability comes from the younger population (less than 15 years old).
Moreover, we can compare the impact of the change of demographic structure of the human population,

mentioned in Section 3.1.1. To this end, we replace Ph(a) by
Sh,0(a)∫∞

0 Sh,0(s)ds
that was the proportion of

humans for each age in 2012 (see Figure 2 (c)). We see that the capability of people under 30 years old
decreases drastically, reducing the total capability by one-third; while the changes in proportion for each
group of age are less pronounced.
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(a) (b)

Figure 5: (a) The evolution of normalized gametocytemia within human population. (b) The evolution
of gametocytemia per µL of blood within human population according to the time post-infection and
humans age.

Figure 6: The probability that an infected human contaminates a mosquito depending on the time post-
infection and the human age.

3.2 Mosquito transmission capability

3.2.1 Mosquito survival

As discussed in [52], data suggest that mosquitoes do senesce, which means that the assumption of
constant mortality rate for mosquitoes, widely used in the malaria modelling literature, is not realistic
and may lead for example to an underestimation of the effectiveness of insecticide-treated nets [30].
While different shapes of functions (Gompertz, logistic) were compared in [52], the logistic function were
thereafter considered in [45] in their age-structured model. Here, we make use of the data collected in a
recent work [51] over 295 mosquitoes of age between 4 and 46 (we note here that we neglected the death
of the 10 last mosquitoes which occurred after day 46 to have better estimates). The mortality rate µ̃m(a)

10



(a) (b)

Figure 7: (a) The contribution of each group of age to the human transmission capability and (b) the
proportion for each contribution.

of uninfected mosquitoes of age a for this experiment is such that (Figure 8 (a))

µ̃m(a) =


c1 if a ∈ [0, 4],

c1e
c2(a−4) if a ∈ [4, 45],

c1e
41c2 if a ≥ 45,

with c1 ≈ 7.85× 10−3[0.0036, 0.0144] and c2 ≈ 8.65× 10−2[0.0693, 0.1076] where we considered constant
mortality rate below 4 days old and above 45 days old. In Figure 8 (b) we represented the survival
probability after 4 days, that is the function [4, 45] ∋ a 7−→ exp(−

∫ a
4 µ̃m(σ)dσ).

With such an experimental mortality rate µ̃m, the mean life expectancy is about 27.4 days correspond-
ing to laboratory conditions. However, the mean life expectancy of wild mosquitoes is in practice hard
to estimate. While some modelling papers considered a mean life expectancy of 14 days [45] or even 30
days [14], the data actually show a large variability between different genus [37] or even between species
[37, 40]. Even within the species complex Anopheles gambiae s.l., whose members are major vectors in
Burkina Faso, lead to an important variability: between 3.6 and 15.4 days [16] or between 4.4 and 10.3
days [37]. Reasons for this variability include the effects of seasons and temperature on mosquito survival
[2], predation, exposure to insecticides, and methods of survival estimation [40]. Hence, we will adjust
the mortality rate µ̃m by considering

µm = µwild + µ̃m

with a varying constant µwild, in order to keep the same shape and to have a mean life expectancy of
wild susceptible mosquitoes varying between 3 days to 27.4 days that is the experimental life expectancy.
We indeed assume that the survival of wildlife mosquitoes is lower than that of experimental mosquitoes
for the reasons listed above (season, temperature, insecticides, predation). We can then observe the
survival probability πsm(a) = exp

(
−
∫ a
0 µm(σ)dσ

)
associated to the different mortality rates in Figure 9

(a). One component of the mosquito transmission capability is the proportion of mosquitoes of age a at
the disease-free equilibrium, that is:

Pm(a) =
πsm(a)∫∞

0 πsm(s)ds
.

We can observe in Figure 9 (b) the age distribution of the mosquitoes where almost two-third are less
than the life expectancy for each value.

3.2.2 Survival probability of infected mosquitoes

For infected mosquitoes, while the infection does not seem to affect the survival of mosquitoes infected
when they are young (4 days old) or middle-aged (8 days old), it seems to have a significant effect on

11



(a) (b)

Figure 8: The mortality rate of experimental mosquitoes older than 4 days is fitted with a Gompertz
function by using data from [51] over 295 mosquitoes (a). We then deduce their probability of survival
(b).

(a) (b)

Figure 9: (a) The survival probability of uninfected mosquitoes according to the chronological age and
for different values of µwild resulting on different values of life expectancy. (b) The cumulative sum of
the proportion

∫ a
0 Pm(s)ds of mosquitoes for each chronological age according to the life expectancy (in

days).

the old mosquitoes survival [51]. Consequently, the experimental mortality rate ν̃m(a, τ) of an infected
mosquito of age a and τ days post-infection is such that (Figure 10 (a))

ν̃m(a, τ) =


µ̃m(a) if a ≥ τ, a− τ < 12,

c1e
c2τ if a ≥ τ, a− τ ≥ 12, τ ≤ 29

c1e
29c2 if a ≥ τ, a− τ ≥ 12, τ > 29

0 otherwise

with c1 ≈ 4.86 × 10−3[0.00056, 0.0204] and c2 ≈ 1.45 × 10−1[0.085, 0.253]. In Figure 10 (b), we repre-
sented the survival probability of infected mosquitoes after 12 days, that is the function [12, 45] ∋ a 7−→
exp(−

∫ a
12 νm(ξ, ξ − 12)dξ). As above, we adjust the mortality rate ν̃m by considering

νm = µwild + ν̃m.

We then define the survival probability of mosquitoes infected at age a for τ days post-infection by

πim(a, τ) = exp

(
−
∫ τ

0
νm(ξ + a, ξ)dξ

)
12



which is equivalent to the probability to remain infected since, once the mosquito salivary glands become
invaded by the parasite sporozoites, there is no possible recovery for mosquitoes and they likely remain
infectious for life [29]. For each time post-infection, we see that the probability decreases as the age at
which mosquitoes got infected increases between 0 and 12 days, which would not occur with constant
mortality rate, though this is less pronounced when the life expectancy decreases. Note here that by life
expectancy we refer to the one of susceptible mosquitoes that will never be infected, which is not the one
of mosquitoes older than 12 days when they get infected. Indeed, the mosquitoes infected after 12 days,
survive better than the one infected younger. This is due to a lower mortality rate and is discussed in
[51]. Nevertheless, the lack of data forced us to suppose that the mortality rate of mosquitoes infected
after 12 days only depends on the time post-infection and not on the chronological age, leading to the
same probability of remaining infected, though the probability for the mosquitoes to have survived old
enough until being infected may be rather low, depending on the life expectancy (Figure 11).

(a) (b)

Figure 10: The mortality rate of experimental infected mosquitoes older than 12 days is fitted with a
Gompertz function by using data from [51] over 87 mosquitoes (a). We then deduce their probability of
survival (b).

(a) (b)

Figure 11: The probability for the mosquitoes to remain infected πim is represented for (a) µwild = 0 and
(b) µwild = 0.07 for a life expectancy respectively of 27.4 and 11.4 days. The age of infection is in days.

3.2.3 Mosquito to human transmission probability

The parasite transmission probability βm from mosquitoes to humans can be computed by using data
from [17, 51]. In [51], the authors follow a cohort of infected mosquitoes along their infection and get
Cq-values, the number of cycles of quantification from qPCR (Figure 12 (a)). The number of sporozoites
Spz(τ) according to the time since infection τ is computed by using the following log transformation

Spz(τ) = 10−(Cq(τ)−40)/3.3. (8)
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This transformation takes into account the maximal number of cycles: 40 (see [51]) leading to a zero
probability to have sporozoites for a higher number of amplification cycles. The coefficient 3.3 comes
from the negative slope of the linear relationship between the number of cycles of quantitification Cq and
the common logarithm of the density of sporozoites [53] leading to

40− 3.3 log10(Spz(τ)) = Cq(τ)

whence the formula (8). We then fitted the density of sporozoites with a gamma distribution (Figure 12
(b)), that is:

Spz(τ) =

0 if τ ≤ 8

C
(τ−8)k−1 exp

(
− (τ−8)

ξ

)
Γ(k)ξk

otherwise
(9)

where C is the mean number of sporozoites, ξ the rate and k the shape of the gamma distribution. We
find with C ≈ 16605[12873, 21399], k ≈ 10.44[6.18, 17.04] and ξ ≈ 0.76[0.44, 1.42]. Moreover, in [51], the
authors found that the intensity of sporozoites depends on the age of the mosquito with mean Cq-values at
14 days post-infection of 27.46 [27.11,27.81] for 12 day-old mosquitoes, 26.65 [26.33,26.97] for 8 day-old and
25.9 [25.63,26.17] for 4 day-old. We then use the transformation (8) to rescale the gamma distribution (9)
with the corresponding mean number of sporozoites. Next, according to [17], the link between the number
of sporozoites Spz and the probability of parasite transmission from infected mosquitoes to humans βm
is such that βm = κ log10(Spz) + ζ, where κ ≈ 0.186[0.115, 0.257] and ζ ≈ 0.08[0, 0.25] (Figure 13 (a)).
Consequently, we assume that the probability βm is given by the following equation (see Figure 13 (b))

βm(a, τ) =



0 if τ ≤ 8 or a− τ < 0

max(0, 0.186× log10

(
111119(τ−8)9.44e−(τ−8)/0.76

Γ(10.44)×0.7610.44

)
+ 0.08) if τ > 8, 0 ≤ a− τ < 8

max(0, 0.186× log10

(
65842(τ−8)9.44e−(τ−8)/0.76

Γ(10.44)×0.7610.44

)
+ 0.08) if τ > 8, 8 ≤ a− τ < 12

max(0, 0.186× log10

(
37413(τ−8)9.44e−(τ−8)/0.76

Γ(10.44)×0.7610.44

)
+ 0.08) if τ > 8, a− τ ≥ 12

(10)

Note that the probability is taken as zero for time post-infection less than 8 days, due to the latent or
incubation period within mosquitoes, called the extrinsic incubation period (EIP).

(a) (b)

Figure 12: (a) Cq-values of infected mosquitoes along the infection and (b) number of sporozoites during
the infection.

3.2.4 Human feeding rate and mosquito/human ratio

The human feeding rate, denoted by θ is defined as the expected number of bites on humans per mosquito
per day. An estimation of this rate is complicated to find in the literature and varies for example between

14



(a) (b)

Figure 13: (a) The probability of infection according to the number of sporozoites in log-scale and (b) the
probability of infection βm according to the time post-infection and the age of mosquitoes when infected.

0.13 [63] and 0.44 [42] for Anopheles gambiae s.l.. Other estimations can be found in [15] and the references
therein. For this reason, we will keep this rate variable.

Another important quantity appearing in the computation of the basic reproduction number is the
ratio between mosquitoes and humans. First, the mosquitoes recruitment rate Λm will be assumed
variable. Moreover, while the human mortality rate µm is well-known in Burkina Faso (see Section 3.1.1)
and can be assumed not to vary with time, the human recruitment rate Λh is supposed constant even if
the population in Bobo Dioulasso will increase implying a growth of the recruitment rate. Nevertheless,
one may assume that this quantity will at some point settle down and give the same age-structure in the
demography as shown in Figure 2 (c). The variability in the parameter Λh can then be taken into account
through another parameter, denoted by Cvar such as

Cvar =
θ2Λm

Λh
.

3.2.5 Age-dependence of the mosquito transmission capability

We note here that the variability in the human and mosquito transmissions βh, βm can also be taken
into account, up to a multiplying factor, through the constant Cvar leading to a mosquito transmission
capability Rm→h

0 that can be rewritten as:

Rm→h
0 = Cvar

(∫∞
0 πsm(a)da∫∞
0 πsh(a)da

)(∫ ∞

0
Pm(a)

∫ ∞

0
βm(a+ τ, τ)πim(a, τ)dτda

)
.

Firstly, the mosquito capability transmission requires that the mosquitoes survive the parasite incubation
period. For that purpose, we represented on Figure 14 (a), for each possible age of infection a, the
probability to survive until age a and also survive the incubation period, i.e. πsm(a)×πim(a, 8) according to
the life expectancy by varying the parameter µwild. As expected, the probability to survive the incubation
period increases with the life expectancy (of susceptible mosquitoes) depicting the importance of knowing
how long mosquitoes will survive. Also, the older mosquitoes will get infected, the lower is the probability
to be someday infectious. Finally, as mentioned in Section 3.2.2, we observe a slight increase of the
probability to survive the incubation period around the age of infection of 12 days. Secondly, decoupling
the mosquito transmission capability over the age by drawing the function

a 7−→ Pm(a)

∫ ∞

0
βm(a+ τ, τ)πim(a, τ)dτ
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leads to an important part coming from young mosquitoes, since mosquitoes getting infected old will
probably never survive the incubation period (see Figure 14 (b)).

(a) (b)

Figure 14: (a) The probability for mosquitoes to survive the incubation period, according to the life
expectancy (in days) and age of infection (in days). (b) The mosquito transmission capability according
to the chronological age (in days) and the life expectancy with age-dependant mortality rate.

3.3 On the immunity waning

The immunity waning regulates the re-entering flux into the susceptible compartment from the recovered
one. The basic reproduction number does not depend on the rate kh since it considers the spread of
the disease from a single primary individual into an otherwise susceptible population, whence without
recovered individuals. However, as shown in [44], the threshold leading to either a backward or a forward
bifurcation depends on kh. It results on the importance of parameterizing the latter rate since malaria is
endemic in countries such as Burkina Faso. This is hardly understood in practice and different modelling
exist in the literature. For example, in [16], recovered individuals are considered as still infectious and
are part of the force of infection. In this case, the rate kh depicts the loss of the clinical immunity
[35] that protects against sever symptoms, whence recovered individuals cannot die in their model. As
mentioned in [16], it is generally believed that immunity is short-lived and requires repeated reinfection to
sustain itself, whence kh should be age-dependent. In the above papers, it is assumed that the period of
immunity is either 3.5 years [35] or 5 years [16]. Another example is [45] where infected humans directly
become susceptible instead of being recovered. Last but not least there is a series of papers where the
authors developed simple mathematical models by considering the case of acquired immunity boosted by
exposure [4, 5, 6].

4 Derivation of entomological parameters intervening in malaria trans-
mission

The basic reproduction number and the vectorial capacity which were discussed in the latter section,
encompass different biological processes (such as mosquito lifespan, human feeding, stability index etc.)
that were investigated among others by Smith and McKenzie [48, 49, 50]. We derive here formulas for
the age-structured model (3) while details are given in Section 4.

4.1 Proportion of infected mosquitoes, EIP and sporozoite rate

The force of infection from mosquitoes to humans is defined by (1) and can be rewritten as:

λm→h(t, a) = Sh(t, a)
Nm(t)

Nh(t)

∫ ∞

0

∫ ∞

0
θβm(s, τ)

Im(t, s, τ)

Nm(t)
ds dτ
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which reveals the mosquito/human ratio Nh(t)/Nm(t) and the proportion of mosquitoes at time t, that
have chronological age s and infection age τ , which is Im(t, s, τ)/Nm(t). Similarly, the force of infection
from humans to mosquitoes is defined by (2) and includes the proportion of humans at time t, that have
chronological age s and infection age τ : Ih(t, s, τ)/Nh(t). We now assume that the solution of model (3)
converges to an endemic equilibrium, i.e.

(Sh(t, ·), Ih(t, ·, ·), Rh(t, ·, ·), Sm(t, ·), Im(t, ·, ·) −→
t→+∞

(S∗
h(·), I∗h(·, ·), R∗

h(·, ·), S∗
m(·), I∗m(·, ·)) . (H)

We then denote by Ih(a, τ) the ratio of humans of age a that are infected since τ days:

Ih(a, τ) =
I∗h(a, τ)∫∞

0 S∗
h(a)da+

∫∞
0

∫∞
0 I∗h(a, τ)da dτ +

∫∞
0

∫∞
0 R∗

h(a, τ)da dτ
.

Note that
∫∞
0

∫∞
0 Ih(s, τ)dτds stands for the total proportion of infected humans. We define the proba-

bility for a mosquito to survive and get infected (for the first time) at age a by

gm(a) :=

(∫ ∞

0

∫ ∞

0
βh(s, τ)Ih(s, τ)dsdτ

)
θe−

∫ a
0 µm(s)dse−θa

∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτ .

Summing over all chronological ages, we get the probability for a mosquito to ever become infected
as

∫∞
0 gm(a)da, i.e.

1−
∫ ∞

0
µm(a)e−

∫ a
0 µm(s)ds−θa

∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτda. (11)

Concerning the infectious mosquitoes, we first need to define the entomological (or extrinsic) incu-
bation period which is given by

EIP := inf

{
τ ≥ 0 :

∫ ∞

0
βm(a, τ)da > 0

}
(12)

that corresponds to the smallest infection age τ so that the probability of malaria transmission from
mosquitoes infected since a duration τ is positive for some chronological ages. In the latter section, it was
assumed that EIP = 8 as we can observe from (10). For a mosquito infected at age a, it follows that the
probability to survive the incubation period reads as

e−
∫ EIP
0 νm(a−τ,τ)dτ (13)

while the probability for a mosquito to ever become infectious is∫ ∞

EIP
gm(a− EIP)e−

∫ EIP
0 νm(a−τ,τ)dτda. (14)

Another important entomological parameter is the sporozoite rate defined as the proportion of mosquitoes
that are infectious. This definition assumes that each population is at equilibrium, otherwise the propor-
tion would be time-depending. Computing the proportion of mosquitoes that are infected, we see
that this is simply

CR
∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ∫∞

0 e−
∫ a
0 (µm(s)+θCR)dsda+ CR

∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ

(15)

wherein the constant CR is given by

CR :=

(∫ ∞

0

∫ ∞

0
θβh(s, τ)Ih(s, τ)dsdτ

)
.
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Similarly, the sporozoite rate can be computed as follows:

Sr =
CR

∫∞
EIP

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ∫∞

0 e−
∫ a
0 (µm(s)+θCR)dsda+ CR

∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ

. (16)

In [49], the authors wrote that the sporozoite rate (i.e., the proportion of mosquitoes that are infectious)
is equivalent to the probability that an individual mosquito ever become infectious. But these are two
separate issues. One simple counter-example is when the natural mortality is zero (i.e. µm ≡ 0) and the
mortality due to the infection is negligible at the beginning of the infection (i.e. νm(., s) ≡ 0 ∀s ∈ [0,EIP])
but nonzero otherwise. Then, the probability for any mosquito to become infectious is one (as long as
CR ̸= 0), while the proportion of infected mosquitoes is obviously below 1 due to the constant flux of
newborn susceptible mosquitoes.

4.2 Mosquito survival and lifespan

We now focus on mosquito survival, defined previously by the function πsm. Computing the survival
probability of a random mosquito is quite tricky for the general model formulation since it depends on
the time of infection. It then requires to know the proportion of mosquitoes that are infected at each age,
which was computed in the previous section. Here, πsm is derived in absence of infection and thus concerns
only mosquitoes that will not be infected. As mentioned before, mosquitoes survival is usually supposed
not to be affected by malaria infections, i.e. µm = νm while our model distinguishes the two mortality
rates, whence mosquitoes that will be infected at some point of their lifetime, shall have different survival
functions. Using the probability to be infected at each age, we deduce that the probability for a newborn
mosquito to survive to age a is:

Πm(a) = πsm(a)e−θa
∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτ +

∫ a

0
gm(a− s)e−

∫ s
0 νm(a−τ,τ)dτds

while the average lifespan is given by∫ ∞

0
a

[
µm(a)πsm(a)e−θa

∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτ +

∫ a

0
νm(a, s)gm(a− s)e−

∫ s
0 νm(a−τ,τ)dτds

]
da. (17)

The median survival time, i.e. the half-life of the mosquito population is defined as the age a that
satisfies

Πm(a) = 1/2. (18)

In absence of infection, the half-life of the mosquito population that will never be infected satisfies the
following equality:

πsm(a) = e−
∫ a
0 µm(s)ds = 1/2 ⇐⇒

∫ a

0
µm(s)ds = ln(2).

4.3 Human feeding, stability index and human blood index

We now focus on mosquitoes bites, that are the starting point of any infection. It is then crucial to be able
to estimate the number of bites per mosquito per day, or equivalently, the number of times each human
is bitten every day. With that in mind, we define the human feeding rate as the expected number of
bites on humans per mosquito per day. It is here denoted by θ, but is usually decomposed as the product
of the mosquito feeding rate f –where the inverse stands for the interval between blood meals– and the
proportion of bites that are taken on humans Q, hence θ = fQ. For simplicity we supposed that this rate
does not depend on the mosquito age, even if our framework would allow any age dependence.

18



From Section 4.2 we know that a mosquito lives on average
∫∞
0 Πm(a)da days and bites θ humans

every day. It follows that a mosquito bites in average Si humans over its lifetime, where Si is called the
stability index and is defined by

Si = θ

∫ ∞

0
Πm(a)da. (19)

Since the life expectancy depends both on the age and the infection status, for a mosquito infected at age
ξ, the average number of bites that it will give after its infection is

θ

∫ ∞

ξ
e−

∫ s
ξ νm(w,w−ξ)dwds,

which is in general not equal to Si. The human blood index (HBI) is defined as the proportion of
mosquitoes that will ever fed on a human, which we will denote H in the following. This is given by

H = 1−
∫∞
0 e−

∫ a
0 (µm(s)+θ)dsda∫∞

0 e−
∫ a
0 (µm(s)+θCR)dsda+ CR

∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ

. (20)

Decomposing the human feeding rate as θ = fQ, one may similarly define the proportion of fed
mosquitoes, or the proportion of mosquitoes that have ever fed (whether on human or not) as

Hf = 1−
∫∞
0 e−

∫ a
0 (µm(s)+f)dsda∫∞

0 e−
∫ a
0 (µm(s)+θCR)dsda+ CR

∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ

. (21)

It is important to report that in the literature (see e.g. [43, 56]), the human blood index refers to the
proportion of mosquito blood-meals that are of human origin, which is here denoted by Q.

4.4 Human biting rate, EIR and lifetime transmission potential

We focus here on infectious bites. Let us define the mosquito density per human as the ratio between
the number of mosquitoes and the number of humans, that reads as

ρ =
Λm

(∫∞
0 e−

∫ a
0 (µm(s)+θCR)dsda+ CR

∫∞
0

∫∞
τ θe−

∫ a−τ
0 (µm(s)+θCR)ds−

∫ τ
0 νm(a−s,s)dsdadτ

)
Λh

∫∞
0 e−

∫ a
0 µh(s)dsda−

∫∞
0

∫ a
0

(∫ s
0 νh(s, τ)I

∗
h(s, τ)dτ

)
e−

∫ a
s µh(ξ)dξdsda

. (22)

By definition, we know that each mosquito bites θ times per day. Since the bites does not depend either
on the age or its status infection, it follows that the number of bites per human per day, also called the
human biting rate, is simply

HBR = ρθ. (23)

Since the proportion of infectious mosquitoes is Sr, it follows that the number of infectious bites received
per day by one human, also called the entomological inoculation rate (EIR), is given by

EIR = ρθSr. (24)

It is important to note that if each human indeed receives in average ρθSr infectious bites per day, each
infectious bite has not the same infective load: Sr is just an indicator for the proportion of infectious
mosquitoes without taking into account the time post-infection nor the age, on which depends the trans-
mission rate βm (see Section 3.2.3). Furthermore, we may deduce that each mosquito bites in average
θSr humans every day.

The lifetime transmission potential is then the expected number of new human infections that
would be generated by a newly emerged adult mosquito. This is expressed as:(

θ

∫ ∞

0
gm(a)

∫ ∞

a
βm(s, s− a)e−

∫ s
a νm(ξ,ξ−a)dξdsda)

)(
1−

∫ ∞

0

∫ ∞

0
Ih(a, τ)dτda

)
(25)
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where the first part describes the number of infectious bites given by one mosquito over its lifetime,
containing the probability to be infected at age a (gm(a)) and the number of infectious bites after infection:∫∞
a βm(s, s − a)e−

∫ a
s νm(ξ,ξ−a)dξds where the exponential stands for the survival of the mosquito when

infected; while the second part is the proportion of susceptible humans.

4.5 Comparison to the classical model

In the previous literature (see e.g. [49]) those important entomological parameters were derived in absence
of any structural variables. Here we show that our formulas generalize the ones given in [49] in a particular
case, a summary will be given in Table 4. To this end, we first introduce the classical model, i.e. without
age structure variables by making the following assumption:

Assumption 4.1 Parameters νm, µm, νh, µh, kh, γh and βm are constant, while βh is constant piecewise
function: for each a ≥ 0,

βh(a, τ) =

{
0 if τ ≤ EIP

βh otherwise

where EIP is a constant standing for the entomological incubation period. Moreover, the mosquito and
human mortality does not depend on the status of the infection: νm = µm, νh = 0.

Under Assumption 4.1, the PDE model (3) can, after some integration, be rewritten as the following
delayed differential system of equations:

S′
h(t) = Λh + khRh(t)− µhSh(t)− θβmIm(t) Sh(t)

Nh(t)

I ′h(t) = θβmIm(t) Sh(t)
Nh(t)

− (µh + γh) Ih(t),

R′
h(t) = γhIh(t)− (µh + kh)Rh(t),

S′
m(t) = Λm − µmSm(t)− θβhSm(t) Ih(t)

Nh(t)
,

E′
m(t) = θβhSm(t) Ih(t)

Nh(t)
− µmEm(t)− θβhSm(t− EIP) Ih(t−EIP)

Nh(t−EIP)e
−µmEIP,

I ′m(t) = θβhSm(t− EIP) Ih(t−EIP)
Nh(t−EIP)e

−µmEIP − µmIm(t),

(26)

where Sh, Ih, Rh stand for susceptible, infected and recovered human, while Sm, Em, Im respectively
denote susceptible, exposed and infected mosquitoes. We can note that the exposed compartment is
composed of the infected mosquitoes whose incubation period is not finished. In the following, (26) will
be referred as the classical model. The basic reproduction number R0 for the classical model takes the
form

R0 =
√
Rm→h

0 ×Rh→m
0 (27)

where the per bite transmission capability from human to mosquito Rh→m
0 and the vectorial capacity

Rm→h
0 now write

Rh→m
0 =

βh
µh + γh

, Rm→h
0 =

θ2Λmβmµhe
−µmEIP

Λhµ2m
, (28)

and we recover the classical formula of the vectorial capacity [39, 48]. By estimate (11), the probability
for a mosquito to ever become infected for the classical model writes

θβhIh
µm + θβhIh

,

where Ih is the proportion of infected humans (under the static hypothesis (H)). Moreover, by (13), the
probability to survive the incubation period for the classical model becomes e−µmEIP. Finally, by (14),
the probability for a mosquito to ever become infectious, for the classical model, is given by

θβhIh
µm + θβhIh

e−µmEIP.
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By estimates (15) and (16) the proportion of mosquitoes that are infected, for the classical model

writes θβhIh
µm+θβhIh

. Similarly, the sporozoite rate for the classical model writes θβhIhe
−µmEIP

µm+θβhIh
. Note that in

this case, the proportion of mosquitoes that are infected and the sporozoite rate respectively coincide
with the probability for each mosquito to become infected and infectious. However, both quantities are
expected to be very different in general. Next, based on estimate (18), the median survival time for the

classical model, i.e. the half-life of the mosquito population leads to a = ln(2)
µm

which does not depend on
the infection status since µm = νm.

The human feeding rate (denoted by θ) is the expected number of bites on humans per mosquito per
day. It is usually decomposed as the product (θ = fQ) of the mosquito feeding rate f and the proportion
of bites that are taken on humans Q. Note that, for the classical model, the stability index, defined by
(19), writes Si = θ

µm
. We then observe that the life expectancy of a mosquito that has already lived a

certain number of days (infected or not) is exactly the same as a recently emerged mosquito (with the
classical formulation), that is 1

µm
days. As a consequence, Smith and McKenzie [49] reinterpreted the

stability index as the expected number of bites given by a mosquito after it has become infectious. In the
general case, this reinterpretation is incorrect. Indeed, the life expectancy depends both on the age and
the infection status (see Section 4.3). Moreover, with the classical formulation, the human blood index,
defined by (20), writes H = θ

µm+θ . Similarly, by (21), the proportion of fed mosquitoes, or the proportion

of mosquitoes that have ever fed (on human or not) for the classical model writes Hf = f
f+µm

.
Finally, based on estimates (22), (23), (24) and (25): other quantities (for the classical model for-

mulation) such as mosquito density per human (ρ), human biting rate (HBR), entomological inocula-
tion rate (EIR), and lifetime transmission potential are respectively given by ρ = Λmµh

Λhµm
, HBR = θΛmµh

Λhµm
,

EIR = θ2ΛmµhβhIhe
−µmEIP

Λhµm(µm+θβhIh)
and θ2βhβmIhe

−µmEIP(1−Ih)
µm(µm+θβhIh)

. Note that in [49], the second term in the last estimate
does not appear, thus neglecting the human already infected. Indeed, new infections imply necessarily
upon susceptible individuals.
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Parameters Classical ODE model PDE model

Basic reproduction number (R0)
√

θ2Λmβmβhe−µmEIP

Λhµ2
m(µh+γh)

(6)

Vectorial capacity (Vc)
θ2Λmµhβme−µmEIP

Λhµ2
m

(7)

Probability for a mosquito to become infected θβhIh
µm+θβhIh

(11)

Entomological incubation period (EIP) EIP(∗) (12)

Probability of surviving incubation period e−µmEIP (13)

Probability for a mosquito to become infectious θβhIh
µm+θβhIh

e−µmEIP (14)

Proportion of infected mosquitoes θβhIh
µm+θβhIh

(15)

Sporozoite rate (Sr) θβhIh
µm+θβhIh

e−µmEIP (16)

Average mosquito lifespan 1
µm

(17)

Median mosquito survival time ln(2)
µm

(18)

Human feeding rate fQ(∗∗) θ

Stability index (Si) θ
µm

(19)

Human blood index (H) θ
θ+µm

(20)

Proportion of fed mosquitoes (Hf )
f

f+µm
(21)

Density of mosquitoes per human (ρ) Λmµh

Λhµm
(22)

Human biting rate (HBR) θΛmµh

Λhµm
(23)

Entomological inoculation rate (EIR) Λmµhθ
2βhIhe

−µmEIP

Λhµm(µm+θβhIh)
(24)

Lifetime transmission potential θ2βhβmIhe
−µmEIP(1−Ih)

µm(µm+θβhIh)
. (25)

(∗) in the classical model, the EIP is given as a parameter
(∗∗) f stands for the the mosquito feeding rate and Q is the proportion of bites taken on humans, which are here

both aggregated into one parameter: θ

Table 4: Summary of the formulas.
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5 Discussion

Mathematical models have played an important role in understanding the epidemiology of infectious
diseases and particularly about malaria [39, 46]. Quantities such as the basic reproduction number, the
vectorial capacity and some important entomological parameters can readily be put into equations once
a mathematical framework have been set up. In the previous literature (see e.g. [48, 49, 50]), those
quantities were derived in a classical case for a differential system of equations (26) i.e. without any
structural variable, thus neglecting possible age effects. As discussed in Section 3, literature about model
parameters clearly show that they depend on both chronological and infection ages of human and mosquito
populations. Consequently, this aspect holds significant importance in enhancing our comprehension of
malaria transmission and facilitating effective malaria control programs from both human and mosquitoes
side.

From human side, the transmission capability or infectiousness among the human population exhibits
significant heterogeneity concerning the age structure (Figure 7). In general, the transmission capability
from an infected human to mosquitoes strongly decreases with the age of the infected individual, with
individuals under 30 carrying the majority of the transmission burden (Figures 7 and 6). Despite the
inadequacy of data for providing precise quantitative results, such an analysis does enable us to affirm
the age-dependence of the human infectious reservoir, primarily among the younger population, especially
those under 15 years old (see [19, 25]). Demography plays a crucial role, particularly in countries like
Burkina Faso, where a significant portion of the population is concentrated in the age range of the major
human reservoir (Figure 2).

On mosquitoes side, structuring in chronological age seems relevant due to the high dependence of
the mortality rate in age depicting a senescence within Anopheles populations. While the survival of
mosquitoes in the field contains high variability due to different external (seasons, temperature) and
internal (genus, species) reasons as discussed in Section 3.2.1, the lifespan seems however lower than a
few weeks. Adding the fact that mosquitoes do not get infectious right after infection but only after a
variable duration called the EIP, we better understand the necessity to follow both chronological ages and
infection ages of the mosquito. Indeed, the remaining lifespan of any mosquito depends on the the time
already spent, contrary to the classical case. Consequently the sooner a mosquito get infected, the higher
its vectorial capacity is (see Figure 14 (b)). When the mortality is supposed constant, we can observe
a similar transmission capability when the life expectancy is lower than 15 days, but differences occur
above this value (see Figure 15 (a)). This is more visible when we compute the total capability that is,
up to a multiplying constant, the vectorial capacity:∫ ∞

0
Pm(a)

∫ ∞

0
βm(a+ τ, τ)πim(a, τ)dτda

(see Figure 15 (b)). Here we see that for life expectancy higher than 15 days, the transmission capability is
smaller for each mosquito age resulting to a lower total capability. This can be explained by the different
age-distribution of mosquitoes at the disease-free equilibrium. In Figure 16 (a) we see that the distribution
of mosquitoes death, for susceptible mosquitoes, follows well the data with the age-dependent mortality
rate while a constant mortality rate overestimates the proportion of mosquitoes that will die young.
Consequently, omitting mosquito chronological age in the model may have non negligible epidemiological
consequences and implications for malaria control programs. The median mosquito survival time (for
susceptibe mosquitoes) also differs with the assumption on the mortality rate, while it is linear with
coefficient ln(2) in the constant case, the age-dependent case shows a nonlinear increase of the median age
(see Figure 16 (b)). As a consequence, the only knowledge of the mosquito lifespan, through the mortality
rate in the classical case, is not enough to quantify epidemiological parameters of malaria transmission.
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(a) (b)

Figure 15: (a) The mosquito transmission capability according to the chronological age and the life
expectancy with constant mortality rate. (b) The mosquito transmission capability summed over the age.

(a) (b)

Figure 16: Comparison between age-dependent and constant mortality rate for (a) the distributions of
mosquitoes death and (b) the median mosquito survival time.

6 Appendix

6.1 Derivation of formulas of Section 4

Here we give some details about the formulas derived in Section 4. Considering a newborn mosquito, the
probability that it will still be alive and not yet infected at age a is

e−
∫ a
0 µm(s)ds︸ ︷︷ ︸
(a)

e−θa
∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτ︸ ︷︷ ︸

(b)

that is the product of the probability to survive the natural mortality (a) and the probability to not have
been infected earlier (b). For such surviving mosquito with age a and not yet infected, the probability
that it will get infected at this age is

θ

∫ ∞

0

∫ ∞

0
βh(s, τ)Ih(s, τ)dsdτ.

It then follows that the probability for a mosquito to survive then get infected (for the first time) at
age a is gm(a) :=

(∫∞
0

∫∞
0 βh(s, τ)Ih(s, τ)dsdτ

)
θe−

∫ a
0 µm(s)dse−θa

∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτ . Summing over all

chronological ages, the probability for a mosquito to ever become infected is
∫∞
0 gm(a)da, i.e.

θ

∫ ∞

0

∫ ∞

0
βh(s, τ)Ih(s, τ)dsdτ

∫ ∞

0
e−

∫ a
0 µm(s)ds−θa

∫∞
0

∫∞
0 βh(s,τ)Ih(s,τ)dsdτda
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which is equivalent to (11). One may observe that Im(s, τ)/Nm, defined above as the proportion of
infected mosquitoes with chronological age s and infection age τ , can readily be computed as:

gm(s− τ)e−
∫ τ
0 νm(s−u,u)du

for each s ≥ τ and is zero otherwise.
The proportion of mosquitoes that get infectious at age a is simply the ones that survived then get

infected at age a− EIP and also survived the incubation period. This writes as

gm(a− EIP)e−
∫ EIP
0 νm(a−τ,τ)dτ .

It then follows that the probability for a mosquito to ever become infectious is defined by (14).
To compute the proportions of mosquitoes that are infected, we see that this is simply∫∞

0

∫∞
τ I∗m(a, τ)dadτ∫∞

0 S∗
m(a)da+

∫∞
0

∫∞
τ I∗m(a, τ)dadτ

which corresponds to the number of infected mosquitoes over the total number of mosquitoes. Using the
method of the characteristics, we readily see that this is equal to (15).

Let ξ be the age at which a mosquito is infected. The probability that the mosquito survives until the

infection is πsm(ξ) while the probability to survive from the infection to the age a is e−
∫ a
ξ νm(s,s−ξ)ds, with

a ≥ ξ. It follows that the probability for a mosquito to survive until age a, knowing that it was infected
at age ξ, is given by

πm,ξ(a) = e−
∫ ξ
0 µm(s)dse−

∫ a
ξ νm(s,s−ξ)ds = πsm(ξ)e−

∫ a
ξ νm(s,s−ξ)ds = πsm(ξ)πim(ξ, a− ξ)

for each age a ≥ ξ. Note that if a < ξ then the mosquito dies before being infected and the probability
to survive until age a is simply πm(a). We can see that those two terms simply rewrite respectively as
e−µmξ and e−νm(a−ξ) in the classical case. It follows that for (26) we have πm,ξ(a) = πsm(a) for each ξ ≥ 0
and consequently the mosquito survival does not depend on the age of infection. For newborn mosquito,
the probability to survive until age a is Πm(a) where the left part stands for the survival probability in
the susceptible population while the right part is the survival probability in the infected population. One
may compute more explicitly this probability in the constant case as:

Πm(a) =

{
e−a(µm+θβhIh)

(
1 + θβhIh

νm−µm−θβhIh

)
− θβhIhe

−νma

νm−µm−θβhIh
if νm − µm − θβhIh ̸= 0,

e−(µm+θβhIh)a (1 + aθβhIh) if νm − µm − θβhIh = 0.

Note that if the mortality of mosquitoes does not depend on the infection i.e. νm ≡ µm as in the classical
case, or if the proportion of infected humans is zero (Ih ≡ 0), then the latter expression becomes exactly
πm(a). Following a newborn mosquito that will never be infected, the probability to survive and die at
age a is µm(a)πsm(a) while the average lifespan, i.e. the expected waiting time to death or the mean
life expectancy, is defined as∫ ∞

0
aµsm(a)πm(a)da =

∫ ∞

0
πsm(a)da =

∫ ∞

0
e−

∫ a
0 µm(s)dsda

which is equal to 1 1
µm

in the classical case. On the other hand, the average lifespan of mosquitoes that
will be infected at age ξ, is∫ ξ

0
aµm(a)πsm(a)da+

∫ ∞

ξ
aνm(a, a− ξ)πm,ξ(a)da =

∫ ∞

0
e−

∫min{ξ,a}
0 µm(s)dse

−
∫ a
min{ξ,a} νm(s,s−ξ)ds

da
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which amounts to
1

µm
+ e−µmξ

(
1

νm
− 1

µm

)
in the constant case that is again 1

µm
whenever µm = νm. We can observe that this quantity is larger

than 1
µm

if and only if µm > νm meaning that infected mosquitoes will live in average longer than
susceptible mosquitoes if and only if the mortality rate of the infected population is smaller than the one
of the susceptible population. Considering the probability to be infected at each age, we deduce that the
average lifespan is given by (17) and is equal to{

µm

(µm+θβhIh)2
+ θβhIh

νm(µm+θβhIh)2
(µm + θβhIh + νm) if νm − µm − θβhIh ̸= 0,

µm

(µm+θβhIh)2
+ 2θβhνmIh

(µm+θβhIh)3
if νm − µm − θβhIh = 0

in the constant case (or 1
µm

under Assumption 4.1). For mosquitoes that are infected at age ξ, the median
survival time is defined by the age a such as

e−
∫min{ξ,a}
0 µm(s)dse

−
∫ a
min{ξ,a} νm(s,s−ξ)ds

= 1/2 ⇐⇒
∫ min{ξ,a}

0
µm(s)ds+

∫ a

min{ξ,a}
νm(s, s− ξ)ds = ln(2)

which amounts to

a =

{ ln(2)
µm

if ξ > ln(2)
µm

,

ln(2)+ξ(νm−µm)
νm

if ξ ≤ ln(2)
µm

in the constant case (and still ln(2)
µm

in the classical case). This distinction can be explained as follows: if

the mosquitoes are infected relatively old (ξ > ln(2)
µm

) then only the mortality rate of susceptible mosquitoes
is relevant for the computations since half of the mosquitoes will be already dead before being infected.
On the other hand, if the mosquitoes are infected relatively young (ξ ≤ ln(2)

µm
) then the computations take

also into consideration the mortality rate of infected mosquitoes. We can observe that if µm ≥ νm then
the median life time a is larger than ln(2)

µm
, meaning that the infected mosquitoes survive better than the

non infected ones. A contrario, if µm ≤ νm then a ≤ ln(2)/µm and susceptible mosquitoes survive better
than infected mosquitoes. Let us consider a susceptible mosquito aged of a days, then its life expectancy
in absence of infection is

E(a) :=
∫ ∞

a
e−

∫ s
a µm(w)dwds.

We can note that for a recently emerged mosquito (a = 0) we recover the average lifespan given earlier.
For a mosquito that is aged of a days and that get infected at age ξ (in the past if a ≥ ξ, or in the future
if a < ξ), its life expectancy is defined by

Eξ(a) :=
∫ ∞

a
e
−

∫ ξ
min{a,ξ} µm(w)dw

e
−

∫ s
max{a,ξ} νm(w,w−ξ)dw

ds.

As a consequence, the number of bites given by a mosquito after it has become infectious, clearly depends
on the age at which the mosquito got infected.

In [49], the authors defined the human blood index as the proportion of mosquitoes that will ever fed
on a human and gave the following formula

H =

∫∞
0 πsm(a)(1− e−θa)da∫∞

0 πm(a)da

where they explained that πsm(a)(1 − e−θa) is the proportion of mosquitoes that have survived to age a
and bitten a human. However, since mosquito survival depends on the infection status, it follows that the
latter proportion must depend on when the mosquitoes have bitten a human and whether the bite was
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infectious or not. It then writes as the ratio between the number of mosquitoes that never have bitten
any human, with the total number of mosquitoes. This corresponds to:

H = 1−
Λm

∫∞
0 e−

∫ a
0 (µm(s)+θ)dsda∫∞

0 S∗
m(a)da+

∫∞
0

∫∞
τ I∗m(a, τ)dadτ

that is equivalent to (20). Similarly, the proportion of fed mosquitoes is defined by

Hf = 1−
Λm

∫∞
0 e−

∫ a
0 (µm(s)+f)dsda∫∞

0 S∗
m(a)da+

∫∞
0

∫∞
τ I∗m(a, τ)dadτ

which is equivalent to (21). We can note that the probability for a newborn mosquito to ever bite a
human reads as:

1−
∫ ∞

0
µm(a)πsm(a)e−θada =

∫ ∞

0
θπsm(a)e−θada.

Indeed, the latter expression can readily be explained as the probability πsm(a) for the mosquito to survive
until age a then to die µm(a)e−

∫ a
0 µm(s)ds at age a without biting any human e−θa. As a consequence, the

left part is simply the opposite of the proportion of mosquitoes that will never bite any human, because
they will die before. Concerning the right part, it can also be decomposed as the probability to survive
until age a without never have bitten any human πm(s)(a)e−θa and the proportion, among them, that
bite a mosquito at the age a, that is θ. It is then simply summed over all ages. We can note in the
classical case, we recover the same formula as for H, but not in general. In the same way, the probability
for a newborn mosquito to ever fed is simply:

1−
∫ ∞

0
µm(a)πsm(a)e−fada =

∫ ∞

0
fπsm(a)e−fada.

We clearly recover the latter formula when mosquitoes only bite humans (i.e. Q = 1). In the classical
case, we see that the latter proportion is simply the same as for Hf . Finally, the ratio between the
numbers of mosquitoes and humans is

ρ =

∫∞
0 S∗

m(a)da+
∫∞
0

∫∞
τ I∗m(a, τ)dadτ∫∞

0 S∗
h(a)da+

∫∞
0

∫∞
τ I∗h(a, τ)dadτ +

∫∞
0

∫∞
η R∗

h(a, η)dadη

which leads, after some computations following [44, Section 7], to (22).

6.2 Derivation of a SAIR model

We show here how the model (3) can explicitly highlight the asymptotic stage before infection. Let

Ah(t, a) =
∫ ℓ
0 Ih(t, a, τ)dτ and ih(t, a) =

∫∞
ℓ Ih(t, a, τ)dτ , where ℓ is the average duration of asymptomatic

stage of an infected individuals. Then Ah(t, a) and ih(t, a) represent the asymptomatic and symptomatic
infections (or clinical cases) respectively. Assume that the probability βh(s, τ) of parasite transmission
from an infected human with age s and infected since a time τ to any mosquitoes for each bite is such
that βh(s, τ) = β1h(s)1τ≤ℓ(τ) + β2h(s)1τ>ℓ(τ). Hence, the force of infection from humans to mosquitoes
writes:

λh(t, a) =
1

Nh(t)

∫ ∞

0

∫ ∞

0
θβh(s, τ)Ih(t, s, τ)ds dτ =

θ

Nh(t)

∫ ∞

0

(
β1h(s)Ah(t, s) + β2h(s)ih(t, s)

)
ds.

27



Moreover, from (3) we see that

(
∂
∂t +

∂
∂a

)
Sh(t, a) =

∫∞
0 kh(η)Rh(t, a, η)dη − µh(a)Sh(t, a)− Sh(t, a)λm(t, a),(

∂
∂t +

∂
∂a

)
Ah(t, a) = Ih(t, a, 0)− Ih(t, a, ℓ)−

∫ ℓ
0 (µh(a) + νh(a, τ) + γh(a, τ)) Ih(t, a, τ)dτ,(

∂
∂t +

∂
∂a

)
ih(t, a) = Ih(t, a, ℓ)−

∫∞
ℓ (µh(a) + νh(a, τ) + γh(a, τ)) Ih(t, a, τ)dτ,(

∂
∂t +

∂
∂a + ∂

∂η

)
Rh(t, a, η) = −(µh(a) + kh(η))Rh(t, a, η),(

∂
∂t +

∂
∂a

)
Sm(t, a) = −µm(a)Sm(t, a)− Sm(t, a)λh(t, a),(

∂
∂t +

∂
∂a + ∂

∂τ

)
Im(t, a, τ) = −νm(a, τ)Im(t, a, τ).

From (4), we deduce that

(
∂
∂t +

∂
∂a

)
Sh(t, a) =

∫∞
0 kh(η)Rh(t, a, η)dη − µh(a)Sh(t, a)− Sh(t, a)λm(t, a),(

∂
∂t +

∂
∂a

)
Ah(t, a) = Sh(t, a)λm(t, a)− (δh(a) + µh(a))Ah(t, a)−

∫ ℓ
0 (νh(a, τ) + γh(a, τ)) Ih(t, a, τ)dτ,(

∂
∂t +

∂
∂a

)
ih(t, a) = δh(a)Ah(t, a)− µh(a)ih(t, a)−

∫∞
ℓ (νh(a, τ) + γh(a, τ)) Ih(t, a, τ)dτ,(

∂
∂t +

∂
∂a + ∂

∂η

)
Rh(t, a, η) = −(µh(a) + kh(η))Rh(t, a, η),(

∂
∂t +

∂
∂a

)
Sm(t, a) = −µm(a)Sm(t, a)− Sm(t, a)λh(t, a),(

∂
∂t +

∂
∂a + ∂

∂τ

)
Im(t, a, τ) = −νm(a, τ)Im(t, a, τ),

(29)

where δh(a) :=
Ih(t, a, ℓ)∫ ℓ

0 Ih(t, a, τ)dτ
=

Ih(t, a, ℓ)

Ah(t, a)
is the rate at which asymptomatic infections progress to

symptomatic infections. Next, assume that

νh(a, τ) = νh(a)1τ>ℓ(τ) and γh(a, τ) = γh,1(a)1τ≤ℓ(τ) + γh,2(a)1τ>ℓ(τ).

This assumption implies that death resulting from an infection is negligible for asymptomatic infections.
Additionally, the recovery rate for asymptomatic infections is denoted as γh,1 while the recovery rate for
symptomatic infections is denoted as γh,2. Therefore, the latter system ecomes

(
∂
∂t +

∂
∂a

)
Sh(t, a) =

∫∞
0 kh(η)Rh(t, a, η)dη − µh(a)Sh(t, a)− Sh(t, a)λm(t, a),(

∂
∂t +

∂
∂a

)
Ah(t, a) = Sh(t, a)λm(t, a)− (δh(a) + µh(a) + γh,1(a))Ah(t, a),(

∂
∂t +

∂
∂a

)
ih(t, a) = δh(a)Ah(t, a)− (µh(a) + νh(a) + γh,2(a))ih(t, a),(

∂
∂t +

∂
∂a + ∂

∂η

)
Rh(t, a, η) = −(µh(a) + kh(η))Rh(t, a, η),(

∂
∂t +

∂
∂a

)
Sm(t, a) = −µm(a)Sm(t, a)− Sm(t, a)λh(t, a),(

∂
∂t +

∂
∂a + ∂

∂τ

)
Im(t, a, τ) = −νm(a, τ)Im(t, a, τ),

with the following boundary conditions:
Sh(t, 0) = Λh, Sm(t, 0) = Λm,
Ah(t, 0) = 0, ih(t, 0) = 0,

Rh(t, a, 0) = γh,1(a)Ah(t, a) + γh,2(a)ih(t, a), Rh(t, 0, η) = 0,

Im(t, a, 0) = Sm(t, a)λh(t, a), Im(t, 0, τ) = 0.

Code availability. The code (with R and the Julia Programming Language) used to simulate the model
can be accessed through the Zenodo platform at https://doi.org/10.5281/zenodo.10589288.
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Pathogens, 13(1):1–18, 2017.

[18] T. S. Churcher, B. T., M. Walker, C. Drakeley, P. Schneider, A. L. Ouédraogo, and M. G. Basáñez.
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