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Abstract 

Hidden Markov chains (HMCs) are widely used in unsupervised Bayesian hidden discrete data restoration. They are very robust and, in spite of 

their simplicity, they are sufficiently efficient in many cases. However, in complex situations, extensions of HMCs models are of interest. In 

particular, when sojourn time in hidden states is not geometrical, hidden semi-Markov chains (HSMCs) may work better. Besides, hidden 

evidential Markov chains (HEMCs) showed its interest in non-stationary situations. In this paper, we propose a new model simultaneously 

extending HSMCs and HEMCs. Based on triplet Markov chains (TMCs), it is used in an unsupervised framework, parameters being estimated 

with the Expectation-Maximization (EM) algorithm. We validate its interest through some experiments on hand-drawn images noised with 

artificial noises. 

Keywords: Hidden Markov chains, hidden semi-Markov chains, non-stationary data, theory of evidence, triplet Markov chains, unsupervised Bayesian 

segmentation. 

1. Introduction 

The problem dealt with by this article is to estimate a hidden realization of a random sequence from an observed one. This 

general problem is recurrent in many fields. One of them is signal segmentation, where the hidden sequence corresponds to labels 

assigned to each observation. One key aspect of the problem is the modelization of the probabilistic links between hidden and 

observed data. Indeed, the modelization chosen must be rich enough, to best reflect the reality that we try to model, but also simple 

enough, to ensure that the computations associated to the estimation and segmentation processes are feasible and relatively fast.  

One model that has been particularly popular in this context is the hidden Markov chain (HMC).  The primary reason is that HMCs 

permit the computation of Bayesian solutions to the problem in a fast manner [1], [2], [3], [4], [5], among others. In particular, in 

the case of a discrete hidden sequence, HMCs allow Bayesian restoration through Maximum Posterior Mode (MPM), which 

consists in estimating each hidden label as the mode of the marginal law of each component of the hidden sequence, conditionally 

to the observations. This is the method we consider in this paper. Despite their simplicity, hidden Markov chains turn out to be 

very robust and are sufficiently efficient in many situations. Therefore, authors applied them in many fields such as image analysis 

[6], handwritten recognition [7], analysis of genome structure [8], transportation forecasting [9], weather [10] and financial 

forecasting [11], or still speech recognition [5] and synthesis [12]. However, in some complex situations, models that are more 

sophisticated may be of interest. Therefore, authors have extended HMCs in different directions. Among extensions, hidden semi-

Markov chains (HSMCs) can be very useful as they allow the modelling of any sojourn time in a given class, when it is necessarily 

geometric in HMCs [13], [14], [15], [16]. Hidden bivariate Markov chains [17], [18], double Markov chains [19], or still pairwise 

Markov chains (PMCs) [20],  [21], [22], [23] are other extensions. This paper is related to “triplet Markov chains” (TMCs), which 

is an extension of PMCs consisting in considering a third stochastic sequence, which might or might not have a practical 

signification, along the hidden sequence to be estimated and the sequence of observations, and assuming the joint Markovianity of 

the three sequences. The probabilistic dependencies of TMC, as well as those of HMC and PMC for comparison, are represented 

in Figure 1. 
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To develop further, let us consider two stochastic sequences, one that correspond to hidden values 𝑋𝑁 = (𝑋1, … , 𝑋𝑁) and one 

that models the observed values  𝑌𝑁 = (𝑌1, … , 𝑌𝑁). For 𝑛 = 1, … , 𝑁, 𝑋𝑛 takes its values in the set of classes Ω =  {1, … , 𝐾}, and 

𝑌𝑛 takes its values in ℝ. With these notations, the problem is to estimate the hidden 𝑋𝑁 = 𝑥𝑁 from the observed 𝑌𝑁 = 𝑦𝑁. The 

“triplet Markov chains” (TMCs) consists in adding a third stochastic chain 𝑈𝑁 = (𝑈1, … , 𝑈𝑁) and assuming that the triplet 𝑇𝑁 =

(𝑋𝑁, 𝑈𝑁 , 𝑌𝑁) is Markovian. TMCs are very rich as 𝑈𝑁 is arbitrary. However, when each 𝑈𝑛 take its values in a finite set, MPM is 

still computable in a similar way it is done in HMCs and PMCs. TMCs have been successively used in image segmentation [24], 

[25], [26], normalized difference vegetation index modelling [27], activity classification [28], repayment of consumer loan 

modelling [29], non-stationary fuzzy data segmentation [30], [31], or still respiratory signal analysis [32]. As 𝑈𝑁 is arbitrary in the 

general case, it may not have a practical interpretation. However, in practical applications, one often particularizes 𝑈𝑁 such as it is 

at least partially interpretable. It is the case in the two TMCs we are interested in, which are discussed in the following. 

The first TMC is constructed by considering Theory of Evidence (TE) of Dempster-Shafer [33], [34], [35], [36], [37], which is 

of interest in numerous situations. It is based on “plausibility” notion that can be seen, in some sense, as extension of probability. 

TE can be used in a Markovian context [38], [39], and in some situations introducing TE in the Markov chain framework results 

in a TMC, which turns out to be particularly interesting when dealing with non-stationary data [40] , [41], [42]. We call the related 

model “hidden evidential Markov chain” (HEMC). In the latter, the variables 𝑈𝑛 are particular random sets, taking their values in 

the power set 2Ω of  Ω. Their joint law, which is Markovian, corresponds to prior defined on the power set of  Ω𝑁 by a “basic belief 

assignment”. The deep reasons of the interest of these evidential models are not easy to understand and there is no theoretical 

results, at our knowledge, until now. There is only a partial result obtained in the simple case of independent variables given in 

[41], that we recall in paragraph 2.4. 

The second TMC is constructed by noticing that hidden semi-Markov chains (HSMCs), which are well-known extensions of 

HMCs, can be considered as particular TMC. In usual HSMCs variables 𝑈𝑛 take their values in ℕ and designate the remaining 

sojourn time in a given state. Taking as value of 𝑈𝑛 the minimal remaining sojourn time instead of the exact remaining sojourn 

time, allows considering a finite set of values for variables 𝑈𝑛, and gives a TMC allowing MPM. The difference between such 

HSMC [43] considered here, and the classical approach is that when the sojourn time is up the state chain can continue remaining 

in the same state, while it must leave in the classical presentation. Thus, the set of possible durations is ℕ in both models. 

Finally, one can consider TMCs with multivariate 𝑈𝑁. Then 𝑈𝑁 = (𝑈𝑁,1, … , 𝑈𝑁,𝑚), with each 𝑈𝑁,𝑖 = (𝑈1
𝑖 , … , 𝑈𝑁

𝑖 ) modelling 

some property of (𝑋𝑁, 𝑌𝑁). For example, in [28] and [43] one considers 𝑈𝑁 = (𝑈𝑁,1, 𝑈𝑁,2), with 𝑈𝑁,2 modeling the semi-

Markovianity of 𝑋𝑁, while 𝑈𝑁,1 models a noise with mixtures in [28], and models the presence of switches in [43].   

In the present paper we consider 𝑈𝑁 = (𝑈𝑁,1, 𝑈𝑁,2), where 𝑈𝑁,1 = (𝑈1
1, … , 𝑈𝑁

1 ) models the evidential nature of 𝑋𝑁 with TE, 

while 𝑈𝑁,2 = (𝑈1
2, … , 𝑈𝑁

2)  extends to the semi-Markovianity the Markov chain (𝑋𝑁 , 𝑈𝑁,1). Thus, the new model, called “hidden 

𝑦1 𝑦2 𝑦3 

𝑥3 𝑥2 𝑥1 

𝑦1 𝑦2 𝑦3 

𝑥3 𝑥2 𝑥1 

𝑥2 𝑥3 

𝑦1 𝑦2 𝑦3 

𝑥1 

𝑢1 𝑢2 𝑢3 

HMC PMC TMC 

Figure 1. Probabilistic dependencies of, successively, hidden Markov chains (HMC), pairwise Markov chains (PMC) and triplet Markov chains 

(TMC). The sequence (𝑦1, 𝑦2, 𝑦3 ) is the sequence of observations, (𝑥1, 𝑥2, 𝑥3 ) corresponds to the hidden sequence that we want to estimate, and 

finally (𝑢1, 𝑢2, 𝑢3 ) is a third stochastic sequence that we add, when constructing a TMC.  
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evidential semi-Markov chain” (HESMC) simultaneously extends HEMCs [41], [44] and HSMCs [13], [16]. As HEMCs and 

HSMCs showed their interest, our aim is thus to study whether the proposed new model can still simultaneously improve the 

efficiency of both of them. Of course, it is theoretically true as it extends both of them; however, the problem is to see whether this 

remains true in practice, in an unsupervised framework. Indeed, the new model is more complex than both HEMCs and HSMCs, 

implying the rapid growth of the number of parameters; then the problem is to verify that they are estimated robustly enough to 

ensure an efficient unsupervised segmentation. We show through experiments that the proposed adaptation of the well-known 

Expectation-Maximization (EM [45]) algorithm, which is frequently used in HMC [46], works with these triplets. By considering 

different experiments on hand-drawn images noisy with stationary or non-stationary noise, we show that the unsupervised 

segmentation based on HESMC can improve the results obtained by both hidden evidential Markov chain and by hidden semi-

Markov chains. The practical interest of our model is potentially important, as it is an extension of both HEMC and HSMC, which 

are in turns two extensions of HMC. As the latter can be used in many applications, so can our model, and replacing HMC by 

HESMC in any application can potentially improve the results quite significatively, more so if the data considered are non-

stationary.  

The paper is organized as follows. We present the new model with related processing in section II. Section III is devoted to the 

parameter estimation algorithm, while section IV contains experiments. We present some conclusions and perspectives in the last 

section V. 

2. Hidden Evidential semi-Markov Chain 

2.1. Non stationarity and triplet Markov chains 

Let us specify what “non-stationarity” means in this paper, and why it is of importance in image segmentation. We will consider 

two kinds of non-stationarity. In the first, described in [43], the model parameters switch at stochastic moments, while taking their 

value in a finite set of possible parameters. As they are stationary between two switches, such models are “piecewise stationary”. 

The second one is more general, the parameters can stochastically evolve in a continuous manner, or even in a hybrid manner. 

Let us consider the classic hidden Markov chain model (𝑋𝑁 , 𝑌𝑁), where each 𝑋𝑛 takes its values in Ω =  {1, … , 𝐾}, and 𝑌𝑛 takes 

its values in ℝ. Then the couple (𝑋𝑁 , 𝑌𝑁) is Markovian, with distribution 𝑝(𝑥𝑁 , 𝑦𝑁) defined by 𝑝(𝑥1, 𝑦1) and transitions of the 

form 

𝑝(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛 , 𝑦𝑛) = 𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)                            (1) 

 

To set these ideas on a simple example, let us assume 𝑝(𝑦𝑛|𝑥𝑛) Gaussian. The model is said “homogenous” when neither 

𝑝(𝑥𝑛+1|𝑥𝑛) nor 𝑝(𝑦𝑛+1|𝑥𝑛+1) (for 𝑛 = 1, … , 𝑁 − 1)  depend on 𝑛. Then the number of parameters defining 𝑝(𝑥𝑁 , 𝑦𝑁) is limited: 

there is one transition matrix of size 𝐾 × 𝐾 for 𝑝(𝑥𝑛+1|𝑥𝑛), 𝐾 means and 𝐾 variances for Gaussian 𝑝(𝑦𝑛+1|𝑥𝑛+1), and, to define 

𝑝(𝑥1, 𝑦1), there are 𝐾 parameters defining 𝑝(𝑥1), and  𝐾 means and 𝐾 variances defining 𝑝(𝑦1|𝑥1) (note that 𝑝(𝑦1|𝑥1) is possibly 

different from other 𝑝(𝑦𝑛+1|𝑥𝑛+1)). In homogeneous HMC the marginal distributions from 𝑝(𝑥𝑛 , 𝑦𝑛) can vary and can all be 

different. Stationary HMC are homogeneous HMCs such that 𝑝(𝑥𝑛 , 𝑦𝑛) do not depend on 𝑛 = 1, … , 𝑁. Then the distribution 

𝑝(𝑥𝑁 , 𝑦𝑁) of a stationary HMC is defined by 𝑝(𝑥1, 𝑦1, 𝑥2, 𝑦2), assumed equal to all 𝑝(𝑥𝑛 , 𝑦𝑛 , 𝑥𝑛+1, 𝑦𝑛+1), 𝑛 = 2, … , 𝑁 − 1. As 

𝑝(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝑝(𝑥1, 𝑥2)𝑝( 𝑦1|𝑥1)𝑝( 𝑦2|𝑥2), we see that it is defined by a matrix of size 𝐾 × 𝐾 giving 𝑝(𝑥1, 𝑥2) - with identical 

margins 𝑝(𝑥1), 𝑝(𝑥2) -, 𝐾 means and 𝐾 variances giving Gaussian 𝑝(𝑦𝑛|𝑥𝑛). To simplify, let us consider a stationary HMC, with 

the set of parameters denoted with 𝜃. Let us now imagine that there are two stationary HMCs given with parameters 𝜃1, 𝜃2, 

respectively. Let us consider HMC with 𝑝(𝑥𝑁, 𝑦𝑁) defined by 𝜃1 for (𝑥1, 𝑦1), …, (𝑥𝑚 , 𝑦𝑚), and by 𝜃2 for (𝑥𝑚+1, 𝑦𝑚+1), …, 

(𝑥𝑁 , 𝑦𝑁). Such a HMC is called “switching” HMC. We can easily extend it to a finite number of switches, which we will assume 

in what follows. Such situations are usual in image segmentation. Let us consider two examples: 

(i) Let 𝑦𝑁 be a line of an optic aerial image with two classes “water” and “forest”, and let 𝑥𝑁 be the line of hidden classes. 

Because of the clouds, the sun lights a part of the line, and another part is in the shade. Then the 𝑝(𝑦𝑛|𝑥𝑛) are different in lit or not 

lit parts, and thus we have two different 𝜃1, 𝜃2. Such a situation is thus a “noise switching” one [47]. 

A line of such an image is presented in Figure 2, (a). 

 (ii) Let 𝑦𝑁 be as above, with two classes “urban area” and “trees”. 𝑁 = 500, and the pixels in the image are of size 25 meters. 

There is a town in the image, with its center containing parks for (𝑥1, 𝑦1), …, (𝑥40, 𝑦40), its suburbs for (𝑥41, 𝑦41), …, (𝑥150, 𝑦150), 

a forest for (𝑥151, 𝑦151), …, (𝑥490, 𝑦490), and a village for (𝑥491, 𝑦491), …, (𝑥500, 𝑦500). Obviously, the 𝑝(𝑥𝑛+1|𝑥𝑛) are different 

on these four pieces of HMC (𝑋𝑁 , 𝑌𝑁). Such a situation is thus a “class transitions switching” one.  
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A line of such an image is presented in Figure 2 (b). 
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Figure 2. (a) line of non-stationary image partly in full sun and partly in shade. (b) line of image with non-stationary priors 

. 

Note that it is possible to deal with both situations simultaneously. When we know switches, we have a classic non-stationary 

HMC, which is piecewise stationary. The interesting case is when we do not know the switches. To find them by a probabilistic 

method, we have to define a random sequence, say 𝑈𝑁, taking its values in the set of switches Θ = {𝜃1, … , 𝜃𝑀}, and its distribution 

𝑝(𝑢𝑁). Usual way is setting it Markovian. Then the distribution of the triplet (𝑋𝑁, 𝑈𝑁 , 𝑌𝑁) is 𝑝(𝑥𝑁 , 𝑢𝑁 , 𝑦𝑁) =

𝑝(𝑢𝑁)𝑝(𝑥𝑁, 𝑦𝑁|𝑢𝑁), with 𝑝(𝑢𝑁) Markovian and 𝑝(𝑥𝑁 , 𝑦𝑁|𝑢𝑁) a HMC (1). An example of such a model, in which, in addition 

(𝑋𝑁, 𝑈𝑁 , 𝑌𝑁) is Markovian, is given by the following equation: 

𝑝(𝑥𝑁, 𝑢𝑁 , 𝑦𝑁) = 𝑝(𝑢1)𝑝(𝑥1, 𝑦1|𝑥1), ∏ 𝑝(𝑢𝑛+1|𝑢𝑛)𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑢𝑛+1)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝑁−1
𝑛=1               (2) 

The interesting point is that (2) can be used to estimate (𝑥𝑁 , 𝑢𝑁) from 𝑦𝑁; indeed, as described in the next subsection, this is 

possible because (𝑋𝑁 , 𝑈𝑁 , 𝑌𝑁) is a triplet Markov chain. Another interesting point is that (𝑋𝑁 , 𝑈𝑁 , 𝑌𝑁) is stationary, and thus, 

setting 𝑉𝑁=(𝑋𝑁 , 𝑈𝑁), (𝑉𝑁 , 𝑌𝑁) is a stationary HMC. Then the parameters of 𝑝(𝑥𝑁 , 𝑢𝑁, 𝑦𝑁) can be estimated by the usual methods, 

for example of the Expectation-Maximization (EM) family ones. We see how a switching HMC, which is non-stationary 

conditionally on switches (but remains piecewise stationary), can be converted into a stationary TMC, allowing non-supervised 

(with parameters estimated from the sole 𝑦𝑁) estimation of both 𝑥𝑁 and switches 𝑢𝑁. It is worth noticing that in switching 

(𝑋𝑁, 𝑈𝑁 , 𝑌𝑁)  the couple (𝑋𝑁, 𝑌𝑁) is not Markovian in general, while it is always Markovian conditionally on 𝑈𝑁. 

The second kind of non-stationarity is more general in that the parameters 𝜃 are not necessarily in a finite set of values and can 

evolve continuously. For example, in the first example above, if the nature of clouds is such that they produce more or less shadows, 

the situations “lit” and “not lit” evolve continuously, with the shade more or less important. Then the parameters of 𝑝(𝑦𝑛+1|𝑥𝑛+1) 

evolve in a continuous manner. Similarly, in the second example above, one can imagine that passing from the town center to the 

suburb implies continuous modification of 𝑝(𝑥𝑛+1|𝑥𝑛). We can still model such situations with a triplet (𝑋𝑁 , 𝑈𝑁 , 𝑌𝑁) as above; 

however, for 𝑈𝑁 taking its values in a continuous set like ℝ, analytical estimation of (𝑥𝑁, 𝑢𝑁) from 𝑦𝑁 is no longer computable in 

general. As recalled in subsection 2.4 below, one can deal with such situations using the so-called “hidden evidential Markov 

chains”, see [41] and references therein. On the contrary to the switching non-stationarity above, interpreting 𝑈𝑁 is not immediate, 

and the reason why it allows improving non-stationary HMC segmentation is not clearly established. There is a very partial 

theoretical justification in [42], page 3093, example 3.3, in the simple case of two classes and independent variables (𝑋1, 𝑌1), …, 

(𝑋𝑁 , 𝑌𝑁).    

2.2. MPM restoration in general Triplet Markov chain 

Let 𝑇𝑁 = (𝑇1, … , 𝑇𝑁) be a triplet Markov chain (TMC) as introduced above, with each 𝑈𝑛 taking its values in Λ = {1, … , 𝐿}. 

Let us note 𝑝(𝑡1) the distribution of 𝑇1, and 𝑝(𝑡𝑛+1|𝑡𝑛) distributions of 𝑇𝑛+1 conditional on 𝑇𝑛 =  𝑡𝑛. In the whole paper, we will 

consider a particular TMC, verifying 

𝑝(𝑡1) = 𝑝(𝑥1, 𝑢1)𝑝(𝑦1|𝑥1), 

𝑝(𝑡𝑛+1|𝑡𝑛) = 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1),                            (3)  
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Thus (3) is a simplified TMC, obtained by assuming 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛, 𝑦𝑛) = 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛), and 

𝑝(𝑦𝑛+1|𝑥𝑛 , 𝑢𝑛, 𝑦𝑛 , 𝑥𝑛+1, 𝑢𝑛+1) = 𝑝(𝑦𝑛+1|𝑥𝑛+1) . The graphical probabilistic dependencies of such a model are represented in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An important point is that the Bayesian Maximum Posterior Mode (MPM) method �̂�𝑀𝑃𝑀, defined by 

[�̂�𝑀𝑃𝑀(𝑦𝑁) =  �̂�𝑁] ⇔  [𝑝(�̂�𝑛|𝑦𝑁) =  max
𝑥𝑛∈Ω

𝑝(𝑥𝑛|𝑦𝑁)],                         (4) 

is computable with a complexity linear in 𝑁. Indeed, the posterior marginal distributions 𝑝(𝑥𝑛|𝑦𝑁) are computable as follows: 

(i) compute “forward” probabilities 𝛼𝑛(𝑥𝑛 , 𝑢𝑛) = 𝑝(𝑥𝑛, 𝑢𝑛 , 𝑦1, … , 𝑦𝑛) with  

𝛼1(𝑥1, 𝑢1) = 𝑝(𝑥1, 𝑢1, 𝑦1);  

𝛼𝑛+1(𝑥𝑛+1, 𝑢𝑛+1) = ∑ 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝛼𝑛(𝑥𝑛 , 𝑢𝑛)(𝑥𝑛 ,𝑢𝑛) ;                  (5) 

 (ii) compute “backward” probabilities 𝛽𝑛(𝑥𝑛 , 𝑢𝑛) =  𝑝(𝑦𝑛+1, … , 𝑦𝑁|𝑥𝑛 , 𝑢𝑛) with  

𝛽𝑁(𝑥𝑁 , 𝑢𝑁) = 1;                

𝛽𝑛(𝑥𝑛 , 𝑢𝑛) = 𝛽𝑛+1(𝑥𝑛+1, 𝑢𝑛+1) ∑ 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)(𝑥𝑛,𝑢𝑛) ;                  (6) 

(iii) compute 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁) with 

𝑝(𝑥𝑛, 𝑢𝑛|𝑦𝑁) =  
𝛼𝑛(𝑥𝑛,𝑢𝑛)𝛽𝑛(𝑥𝑛,𝑢𝑛)

∑ 𝛼𝑛(𝑥𝑛 ,𝑢𝑛)𝛽𝑛(𝑥𝑛,𝑢𝑛)(𝑥𝑛,𝑢𝑛)∈Ω×Λ
 ;                             (7) 

(iv) compute 𝑝(𝑥𝑛|𝑦𝑁) with 

  𝑝(𝑥𝑛|𝑦𝑁) =  ∑ 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁)𝑢𝑛∈Λ .                                  (8) 

The computation of the forward and backward probabilities in a triplet Markov chain verifying (3) are summarized in respectively 

algorithm 1 and algorithm 2. The overall procedure to calculate the MPM estimator in a triplet Markov chain verifying (3) is 

presented in algorithm 3. 

Inputs: A sequence of observations 𝒚𝑵 = (𝑦1, … , 𝑦𝑁), |Ω||Λ| initial probabilities 𝑝(𝑥1, 𝑢1), |Ω||Λ| × |Ω||Λ|  transition laws 

𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛), |Ω| noise densities 𝑝(𝑦𝑛|𝑥𝑛).  

Results: A matrix |Ω||Λ| × 𝑁 of forward values 

1. For each value of  (𝑥1, 𝑢1)  ∈ Ω × Λ, compute 𝛼1(𝑥1, 𝑢1) = 𝑝(𝑥1, 𝑢1) 𝑝(𝑦1|𝑥1) 

2. For n from N to 1: 

Figure 3. Probabilistic dependencies of a TMC verifying 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛 , 𝑦𝑛) = 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛), and 𝑝(𝑦𝑛+1|𝑥𝑛 , 𝑢𝑛 , 𝑦𝑛 , 𝑥𝑛+1, 𝑢𝑛+1) =
𝑝(𝑦𝑛+1|𝑥𝑛+1). The sequence (𝑦1, 𝑦2, 𝑦3 ) is the sequence of observations, (𝑥1, 𝑥2, 𝑥3 ) corresponds to the hidden sequence that we want to estimate, 

and finally (𝑢1, 𝑢2, 𝑢3 ) is a third stochastic sequence that we add, when constructing a TMC. 

𝑥1 𝑥2 𝑥3 

𝑦1 𝑦2 𝑦3 

𝑢1 𝑢2 𝑢3 
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For each value of  (𝑥𝑛 , 𝑢𝑛) ∈ Ω × Λ, compute 𝛼𝑛+1(𝑥𝑛+1, 𝑢𝑛+1) with (5) 

end 

Algorithm 1: Computation of forward probabilities in a triplet Markov chain verifying (3), |. | is the cardinal function.  

 

Inputs: A sequence of observations 𝒚𝑵 = (𝑦1, … , 𝑦𝑁), |Ω||Λ| initial probabilities 𝑝(𝑥1, 𝑢1), |Ω||Λ| × |Ω||Λ|  transition laws 

𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛), |Ω| noise densities 𝑝(𝑦𝑛|𝑥𝑛). |. | is the cardinal function. 

 Results: A matrix |Ω||Λ| × 𝑁 of backward values 

3. For each value of  (𝑥𝑁 , 𝑢𝑁)  ∈ Ω × Λ, set 𝛽𝑁(𝑥𝑁 , 𝑢𝑁) = 1 

4. For n from N to 1: 

For each value of  (𝑥𝑛 , 𝑢𝑛) ∈ Ω × Λ, compute 𝛽𝑛(𝑥𝑛 , 𝑢𝑛) with (7) 

end 

Algorithm 2: Computation of backward probabilities in a triplet Markov chain verifying (3), |. | is the cardinal function. 

Inputs: A sequence of observations 𝒚𝑵 = (𝑦1, … , 𝑦𝑁), |Ω||Λ| initial probabilities 𝑝(𝑥1, 𝑢1) of size, |Ω||Λ| × |Ω||Λ|  transition 

laws 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛), |Ω| noise densities 𝑝(𝑦𝑛|𝑥𝑛). 

Results: A sequence of estimated values 𝒙 = (�̂�1, … , �̂�𝑁)  

1. Compute forward probabilities with algorithm 1 

2. Compute backward probabilities with algorithm 2 

3. For n from 1 to N: 

For each value of  (𝑥𝑛 , 𝑢𝑛)  ∈ Ω × Λ, compute 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁) with (7) 

For each value of 𝑥𝑛 ∈ Ω, compute 𝑝(𝑥𝑛|𝑦𝑁) with (8) 

Set �̂�𝑛 = max
𝑥𝑛∈Ω

𝑝(𝑥𝑛|𝑦𝑁) 

end 

Algorithm 3: Computation of the mode of posterior marginals estimator of 𝑥𝑁 in a triplet Markov chain verifying (3), |. | is the cardinal 

function.  

 

2.3. MPM restoration with hidden semi-Markov chains 

In stationary (thus also homogeneous) Markov chains 𝑝(𝑥𝑁), the sojourn time in a given class obeys a geometrical distribution. 

Indeed, knowing that the chain is in class 𝑘 at 𝑛 (𝑥𝑛 = 𝑘), the probability that it remains in 𝑘 exactly 𝑟 times is 

𝑝(𝑥𝑛+1 = 𝑥𝑛+2 = ⋯ = 𝑥𝑛+1 = 𝑘, 𝑥𝑛+𝑟+1 ≠ 𝑘|𝑥𝑛 = 𝑘) = [𝑝(𝑥𝑛+1 = 𝑘|𝑥𝑛 = 𝑘)]𝑟[1 − 𝑝(𝑥𝑛+1 = 𝑘|𝑥𝑛 = 𝑘)] (recall that the 

transitions 𝑝(𝑥𝑛+1 = |𝑥𝑛 = 𝑘) do not depend on 𝑛). It means that this probability decreases “rapidly” when 𝑟 increases. In images 

with large size class areas this can be a serious drawback. Of course, one can choose 𝑝(𝑥𝑛+1 = 𝑘|𝑥𝑛 = 𝑘) very close to 1, but then 

it will be poorly adapted to the parts of the images containing small size class areas. To remedy this, Markov chains have been 

extended to semi-Markov chains. The idea is to introduce a random variable 𝑈 valued in ℕ with any distribution, non-necessarily 

geometric, to model the exact sojourn time in a given class. Then for 𝑥𝑛 = 𝑘 and 𝑥𝑛+1 ≠ 𝑘, the realization 𝑈 = 𝑟 means that 

𝑥𝑛+1 = 𝑥𝑛+2 = ⋯ = 𝑥𝑛+1 = 𝑘, 𝑥𝑛+𝑟+1 ≠ 𝑘. To avoid ℕ and replace it by a finite set, allowing introduction of triplet Markov 

chains, we consider here a slightly different semi-Markov model [28], [43]. In the model considered 𝑈𝑛 = 𝑢𝑛 is the minimal 

remaining sojourn time instead of the exact remaining sojourn time. 
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More precisely, let (𝑋𝑁 , 𝑌𝑁) be random sequences as above, with 𝑋𝑁 hidden and 𝑌𝑁  observed. We introduce a third random 

sequence 𝑈𝑁 = (𝑈1, … , 𝑈𝑁) taking its values in Λ = {0,1, … , 𝐷 − 1}, such that 𝑈𝑛 = 𝑑 ≠ 0 means that 𝑋𝑛 will remain in the same 

state at least 𝑑 times. Therefore (𝑋𝑛, 𝑈𝑛) = (𝑥𝑛, 𝑑) implies 𝑥𝑛 = 𝑥𝑛+1 = 𝑥𝑛+2 = ⋯ =  𝑥𝑛+𝑑. Thus for 𝑑 = 0 we can have 

𝑥𝑛+1 = 𝑥𝑛 or not: 𝑑 is the minimum remaining time of sojourn in the current state, not the exact one as it is usual in classic semi-

Markov models. This allows considering a finite Λ. For 𝑎, 𝑏, 𝑐, 𝑑 let us set 𝛿(𝑎,𝑏)(𝑐, 𝑑) = 1 if (𝑎, 𝑏) = (𝑐, 𝑑), and 𝛿(𝑎,𝑏)(𝑐, 𝑑) = 0 

if (𝑎, 𝑏) ≠ (𝑐, 𝑑). Then the distribution of the hidden semi-Markov (𝑋𝑁, 𝑌𝑁)  considered is the marginal distribution of the TMC 

(𝑋𝑁, 𝑈𝑁 , 𝑌𝑁) distribution defined by 𝑝(𝑥1, 𝑢1, 𝑦1) and transitions (3) with 

𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛) =  {
𝛿(𝑥𝑛+1,𝑢𝑛+1)(𝑥𝑛, 𝑢𝑛 − 1) 𝑖𝑓 𝑢𝑛 > 0 

𝑝∗(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛 = 0) 𝑖𝑓 𝑢𝑛 = 0
 ;                      (9) 

𝑝(𝑦𝑛+1|𝑥𝑛+1, 𝑢𝑛+1) = 𝑝(𝑦𝑛+1|𝑥𝑛+1). 

(9) means that for 𝑢𝑛 = 0,  the next (𝑥𝑛+1, 𝑢𝑛+1) is driven by 𝑝∗(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛 = 0) and for 𝑢𝑛 ≠ 0, 𝑥𝑛+1 = 𝑥𝑛 and 𝑢𝑛+1 =

𝑢𝑛 − 1. The graphical probabilistic dependencies of a hidden semi-Markov chain are the same than the general model presented 

in subsection 2.2, and therefore can also be observed on Figure 3. Finally, (𝑋𝑁 , 𝑈𝑁 , 𝑌𝑁) is a TMC verifying (3), and thus (4) is 

computable with (5)-(8). 

2.4. MPM restoration with hidden evidential Markov chains 

Let us consider a finite set  Ω =  {1, … , 𝐾} and 2Ω its power set. In theory of evidence one considers “basic belief assignments” 

- or “masses” - 𝑚  which are functions from 2Ω to [0,1] verifying 𝑚(∅) = 0 and ∑ 𝑚(𝐴)𝐴∈2Ω = 1. Such masses are extensions of 

probability distribution; indeed, 𝑚 null outside singletons are probabilities. Basic belief assignments are very useful in merging 

heterogeneous information sources, which is achieved by the following "Dempster-Shafer fusion" (DS fusion). 

For two masses 𝑚1, 𝑚2, their DS fusion 𝑚 = 𝑚1⨁𝑚2 is defined with 

𝑚(𝐴) = (𝑚1⨁𝑚2)(𝐴) = 𝐶 ∑ 𝑚1(𝐴1)𝑚2(𝐴2)𝐴1∩𝐴2=𝐴                         (10) 

The sum in (10) is taken over all couples (𝐴1, 𝐴2) in 2Ω × 2Ω such that 𝐴1 ∩ 𝐴2 = 𝐴, and 𝐶 is the normalizing constant making 

the sum of 𝑚(𝐴) over 2Ω equal to 1.  

Example 1 

For 𝑝 probability on {1, … , 𝐾}, 𝑚 mass on {{1}, … , {𝐾}, {1, … , 𝐾}}, 𝑝⨁𝑚 is the probability on {1, … , 𝐾} given with 

(𝑝⨁𝑚)({𝑘}) = 𝐶𝑝({𝑘})(𝑚({𝑘}) + 𝑚({1, … , 𝐾})), with  
1

𝐶
= ∑ 𝑝({𝑘})(𝑚({𝑘}) + 𝑚({1, … , 𝐾}))𝐾

𝑘=1 .  

One can see that DS fusion of a probability – i.e. mass null outside singletons – with any other mass is a probability. In this 

paper we will use in experiments the masses null outside singletons and {1, … , 𝐾} from Example 1. We show in Example 2 below 

how replacing erroneous priors by such masses can improve Bayesian segmentation in non-stationary case of independent data 

(𝑋1, 𝑌1), …, (𝑋𝑁 , 𝑌𝑁). This simple example is a kind of justification for the use of evidentatial Markov models; however, the interest 

of the latter models for segmentation of non-stationary data is observed experimentally, and, to our knowledge, has not yet been 

demonstrated. 

Example 2 

Let us consider the following example extracted from [42]. (𝑋1, 𝑌1), …, (𝑋𝑁 , 𝑌𝑁) is a sequence of independent random variables, 

with each 𝑋𝑛 taking its values in Ω = {𝜔1, 𝜔2}, and each 𝑌𝑛 taking its values in [0,1]. Let us assume that 𝑝𝑛 = 𝑃[𝑋𝑛 = 𝜔1] depends 

on 𝑛, but the two densities of the distributions 𝑓1(𝑦) = 2(1 − 𝑦) and 𝑓2(𝑦) = 𝑦 – which models 𝑝(𝑦n|𝑥n) - do not depend on 𝑛. 

When using the true parameter 𝑝𝑛, the Bayesian restoration corresponding to the classical “0–1” loss function is 𝑑(𝑦) = 𝜔1 if 𝑦 ≤

𝑝𝑛, and 𝑑(𝑦) = 𝜔2 if 𝑦 ≥ 𝑝𝑛. This gives the error probability 𝐸𝑟(𝑝𝑛) = 𝑝𝑛 ∫ 2(1 − 𝑦)𝑑𝑦
1

𝑝𝑛
+ (1 − 𝑝𝑛) ∫ 2𝑦𝑑𝑦

𝑝𝑛

0
= 𝑝𝑛(1 − 𝑝𝑛). 

When using a false 𝑟 instead of 𝑝𝑛, the error probability, given with similar calculus, becomes 𝐸𝑟(𝑝𝑛, 𝑟) = 𝑝𝑛 ∫ 2(1 − 𝑦)𝑑𝑦
1

𝑟
+

(1 − 𝑝𝑛) ∫ 2𝑦𝑑𝑦
r

0
= 𝑝𝑛(1 − 𝑝𝑛) + (𝑝𝑛 − 𝑟)2.  Finally, according to what will be done in the Markov context below, we replace 

the false 𝑟 = 𝑃[𝑋𝑛 = 𝜔1], 1 − 𝑟 = 𝑃[𝑋𝑛 = 𝜔2]  with a basic belief assignment  𝑚({𝜔1}) = 𝑟 − 𝑡, 𝑚({𝜔2}) = 1 − 𝑟 − 𝑡, 

𝑚({𝜔1, 𝜔2}) = 2𝑡 obtained by “weakening” the probability 𝑟, 1 − 𝑟. The Dempster-Shafer fusion 𝑚⨁𝑞, where 𝑞(𝜔1) =
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𝑓1(𝑦)

𝑓1(𝑦)+𝑓2(𝑦)
, 𝑞(𝜔2) =

𝑓2(𝑦)

𝑓1(𝑦)+𝑓2(𝑦)
,  is then a probability extending the posterior probability, which is found again for 𝑡 = 𝑟 − 𝑝𝑛. 

Using the latter probability 𝑚⨁𝑞 to perform the restoration - that is to say, putting 𝑑∗(𝑦) = 𝜔1 if 𝑚⨁𝑞({𝜔1}) ≤ 𝑚⨁𝑞({𝜔2}), 

and 𝑑∗(𝑦) = 𝜔2 if 𝑚⨁𝑞({𝜔1}) ≥ 𝑚⨁𝑞({𝜔2}) -, gives 𝑑∗(𝑦) = 𝜔1 if 𝑦 ≤
𝑟+𝑡

1+2𝑡
, and 𝑑∗(𝑦) = 𝜔2 if 𝑦 ≥

𝑟+𝑡

1+2𝑡
. With a calculation 

similar to the one above, this leads to the error probability 𝐸𝑟(𝑝𝑛 , 𝑟, 𝑡) = 𝑝𝑛(1 − 𝑝𝑛) + (𝑝𝑛 −
𝑟+𝑡

1+2𝑡
)2. Therefore, the problem is to 

know whether a 𝑡 > 0 such that 𝐸𝑟(𝑝𝑛 , 𝑟, 𝑡) < 𝐸𝑟(𝑝𝑛 , 𝑟) – which is equivalent to (𝑝𝑛 −
𝑟+𝑡

1+2𝑡
)2 < (𝑝𝑛 − 𝑟)2 - does exist. In other 

words, is it possible to decrease the error probability by introducing a basic belief assignment  𝑚 when having a false  ? The 

response is positive in the following context. As 𝑝1, …,  𝑝𝑁 are not known and 𝑝𝑛 can vary with 𝑛, let us assume that they do vary 

with 𝑛 and that they are realizations of a random variable 𝑊, with 𝐸[𝑊] = 0.5. The problem is then to see whether the error 

expectation 𝐸[𝐸𝑟(W, 𝑟, 𝑡)] = 0.5 −
𝑟+𝑡

1+2𝑡
+ (

𝑟+𝑡

1+2𝑡
)2 decreases when using the basic belief assignment  𝑚 instead of 𝑟 or, in other 

words, when 𝑡 starts from 0. A classical calculus leads to 
𝑑

𝑑𝑡
(𝐸[𝐸𝑟(W, 𝑟, 𝑡)])(0) = −(1 − 2𝑟)2, which shows that the “mean” error 

decreases, and thus, for an 𝑁 large enough, the error also decreases when using 𝑚 instead of 𝑟. 

Let (𝑋𝑁, 𝑌𝑁) be random sequences as above with 𝑋𝑁 hidden and 𝑌𝑁 observed. We wish estimate 𝑋𝑁 from 𝑌𝑁 using the classic 

hidden Markov model. However, 𝑋𝑁 in non-stationary, we don’t know its distribution, and only 𝑌𝑁 is observed. If we consider 𝑋𝑁 

as stationary with margins 𝑝(𝑥𝑛) equal to some 𝑝∗, we will have the problem 𝑝(𝑥𝑛) ≠ 𝑝∗ mentioned above for each 𝑛. The idea is 

to try applying the idea of Example 2 in Markov context. To do so, one possibility is to consider an “evidential” Markov model, in 

which marginal distributions 𝑝(𝑥𝑛) would be extended to evidential masses 𝑚(𝐴𝑛) on 2Ω, similarly to what is made in Example 

2 above. The constraint to be respected is that when 𝑚(𝐴𝑛) = 0 outside singletons, then the model gives again the classic hidden 

Markov chain. We propose to use the following Evidential Markov Chain. First, the Markov distribution 𝑝(𝑥𝑁) is extended to an 

evidential mass on [2Ω]𝑁: 

𝑚(𝑢𝑁) =  𝑚(𝑢1) ∏ 𝑚(𝑢𝑛+1|𝑢𝑛)𝑁−1
𝑖=1 .                             (11) 

Example 3 

Let set  Ω =  {1,2,3}. Consider that each 𝑈𝑛 takes values in the following subset of 2Ω: 𝐴 = {{1}, {2}, {1,3}, {1,2,3}}. Setting 

𝐴 =  {𝑎1, 𝑎2, 𝑎3, 𝑎4}, 𝑚(𝑢𝑁) simply is a classic Markov chain defined on 𝐴𝑁.  

For Ω =  {1, … , 𝐾}, if 𝑚(𝑢1) = 0 and 𝑚(𝑢𝑛+1|𝑢𝑛) = 0 outside singletons {1}, …, {𝐾}, 𝑚 is equivalent to a classic Markov chain.  

Then the evidential Markov chain (EMC) is defined as a couple (𝑋𝑁, 𝑈𝑁) of random variables valuable in Ω𝑁 × [2Ω]𝑁, whose 

probabilistic distribution is defined such as: 

𝑝(𝑥𝑁, 𝑢𝑁) = 𝑚(𝑢1)𝑝(𝑥1|𝑢1) ∏ 𝑚(𝑢𝑛+1|𝑢𝑛)𝑁−1
𝑖=1 𝑝(𝑥𝑛+1|𝑢𝑛+1),                             (12) 

with 

𝑝(𝑥𝑛+1|𝑢𝑛+1) =
1[𝑥𝑛+1∈𝑢𝑛+1]

|𝑢𝑛+1|
,                                     (13) 

 Example 4 

 Let us assume that 𝑚(𝑢𝑁) is a classic Markov chain defined on 𝐴𝑁, with 𝐴 = {{1}, {2}, {1,3}, {1,2,3}} as in Exemple 3. Then, 

according to (13), each (𝑋𝑛, 𝑈𝑛) takes its values in  

𝐵 = {(1, {1}), (1, {1,3}), (1, {1,2,3}), (2, {2}), (2, {1,2,3}), (3, {3}), (3, {1,3})(3, {1,2,3})} = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8},   

and thus 𝑝(𝑥𝑁 , 𝑢𝑁) is a classic Markov chain on 𝐵𝑁. Its transitions are defined with 𝑚(𝑢𝑛+1|𝑢𝑛) – which are estimated with EM 

in experiments section – and transitions 𝑝(𝑥𝑛+1|𝑢𝑛+1), which are, accordingly to (13), of the form [

1 0 0
0 1 0

1/2
1/3

0
1/3

1/2
1/3

]. 

Let us notice: 
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(i) EMC (12) considered in this paper has the structure of the very classic HMC, where 𝑥𝑁 would be “observed” and 𝑢𝑁 “hidden”; 

more complex EMC are possible [41], 

(ii) It is well known that in HMC the observed chain is not Markov in general, so that EMC is a couple (𝑋𝑁 , 𝑈𝑁) with 𝑋𝑁 non-

Markov in general. However, important is that the couple (𝑋𝑁 , 𝑈𝑁) is Markov. 

The couple (𝑋𝑁 , 𝑈𝑁) being Markov, we define hidden EMC as a classic HMC with (𝑋𝑁, 𝑈𝑁) hidden and 𝑌𝑁 observed. More 

precisely, we consider 

      𝑝(𝑥𝑁, 𝑢𝑁 , 𝑦𝑁) = 𝑚(𝑢1)𝑝(𝑥1|𝑢1)𝑝(𝑦1|𝑥1) ∏ 𝑚(𝑢𝑛+1|𝑢𝑛)𝑁−1
𝑖=1 𝑝(𝑥𝑛+1|𝑢𝑛+1)𝑝(𝑦𝑛+1|𝑥𝑛+1),          (14)  

We can notice that (14) is a particular HMC in which 𝑝(𝑦𝑛+1|𝑢𝑛+1, 𝑥𝑛+1) = 𝑝(𝑦𝑛+1|𝑥𝑛+1). 

Note that is is very easy to sample realizations of such a hidden EMC: one samples the classical Markov chain 𝑈𝑁 = 𝑢𝑁 according 

to (11), then 𝑋𝑁 = 𝑥𝑁 is sampled – using 𝑢𝑁 - accordingly  to (13), and finally 𝑌𝑁 = 𝑦𝑁 is sampled according to Gaussian 

distributions 𝑝(𝑦1|𝑥1), …, 𝑝(𝑦𝑁|𝑥𝑁). 

Important is that when if 𝑚(𝑢1) = 0 and 𝑚(𝑢𝑛+1|𝑢𝑛) = 0 outside singletons {1}, …, {𝐾}, we have, according to (13), 

𝑝(𝑥𝑛+1|𝑢𝑛+1) = 1, and thus 𝑥𝑛+1 = 𝑢𝑛+1, and (14) become the classic hidden Markov chain (1). 

Now, as (14) is a TMC, 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁) are computable with (5)-(7), which allows computation of 𝑝(𝑥𝑛|𝑦𝑁) with (8), which is here 

𝑝(𝑥𝑛|𝑦𝑁) = ∑ 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁)𝑢𝑛∈2Ω ,                               (15) 

making the use of MPM (4) possible. The overall procedure of computing the MPM estimator is the same than presented in 

algorithm 3, with 𝑝(𝑥1, 𝑢1) = 𝑚(𝑢1)
1[𝑥1∈𝑢1]

|𝑢1|
 and 𝑝(𝑥𝑛+1, 𝑢𝑛+1|𝑥𝑛 , 𝑢𝑛) = 𝑚(𝑢𝑛+1|𝑢𝑛)

1[𝑥𝑛+1∈𝑢𝑛+1]

|𝑢𝑛+1|
 and Λ = 2Ω. In addition, is it 

possible to use parameter estimation methods like EM, which makes the MPM unsupervised. 

Let us notice that one can also estimate the realization of latent 𝑈𝑁. Indeed, similarly to (15) giving 𝑝(𝑥𝑛|𝑦𝑁), we can compute 

𝑝(𝑢𝑛|𝑦𝑁):    

𝑝(𝑢𝑛|𝑦𝑁) = ∑ 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁)𝑥𝑛∈Ω .                                 (16) 

Then realization 𝑢𝑁 of 𝑈𝑁 can be estimated with MPM. Such estimates are presented in [41], page 1608. They are somewhat 

difficult to interpret. Let us notice that understanding relationship between estimated 𝑢𝑁 and 𝑥𝑁 is probably the key to understand 

the deep reasons of the efficiency of hidden evidential Markov chains in unsupervised non-stationary data segmentation.   

Given the intended application, we will consider Markovian mass (11) of the simple form: 𝑚(𝑢1) = 0 and 𝑚(𝑢𝑛+1|𝑢𝑛) = 0 for 

𝑢1 and 𝑢𝑛+1 outside {{1}, … , {𝐾}, {1, … , 𝐾}}. Then considering marginal distributions and 𝐾 = 2 we find again, under 

independence hypothesis, example 1. However, model (12)-(14) remains valid for any 𝑚(𝑢𝑁) of form (12), with potential 

applications to any problem involving non-stationary hidden data processed using the classic hidden Markov (1).  

Finally, the overall procedure for setting up unsupervised segmentation of data 𝑦𝑁 = (𝑦1, … , 𝑦𝑁) with non-stationary priors is as 

follows. The set of classes {1, … , 𝐾} and probabilities 𝑝(𝑦𝑛|𝑥𝑛), independent from 𝑛, are given. 

- consider 𝑈𝑁 = (𝑈1, … , 𝑈𝑁), each 𝑈𝑛 taking its values in  {{1}, … , {𝐾}, {1, … , 𝐾}} ; 

- consider 𝑝(𝑥𝑁 , 𝑢𝑁, 𝑦𝑁) defined with (14) as a classic hidden Markov chain 𝑝(𝑣𝑁 , 𝑦𝑁), with 𝑣𝑁 = (𝑥𝑁 , 𝑢𝑁) Markov chain, with 

each (𝑥𝑛 , 𝑢𝑛) in {1, … , 𝐾} × {{1}, … , {𝐾}, {1, … , 𝐾}}; 

- apply classic EM to estimate the parameters of (𝑥𝑁 , 𝑢𝑁 , 𝑦𝑁) ; 

- apply (5)-(7) to compute 𝑝(𝑥𝑛 , 𝑢𝑛|𝑦𝑁); 

- apply (8) to compute 𝑝(𝑥𝑛|𝑦𝑁) ; 

- apply (4) to compute MPM.     
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2.5. MPM restoration with hidden evidential semi-Markov chains 

Let (𝑋𝑁, 𝑌𝑁) be random sequences as in the previous sections, with 𝑋𝑁 hidden and 𝑌𝑁  observed. We recalled in subsection 2.4 

above the construction of an evidential Markov chain 𝑉𝑁 = (𝑋𝑁 , 𝑈𝑁,1), with 𝑈𝑁,1 = (𝑈1
1, … , 𝑈𝑁

1 ) and each 𝑈𝑛
1 taking its values in 

the power set 2Ω. The triplet (𝑉𝑁, 𝑌𝑁)  = (𝑋𝑁, 𝑈𝑁,1, 𝑌𝑁) obtained with (2) is then a hidden Markov chain. To obtain the new 

hidden evidential semi-Markov chains (HESMC) we propose, we apply the introduction of the semi-Markovianity described in 

subsection 2.3 to the HMC (𝑉𝑁 , 𝑌𝑁). Thus, we introduce a second random sequence  𝑈𝑁,2 = (𝑈1
2, … , 𝑈𝑁

2) taking its values in Λ =

{0,1, … , 𝐷 − 1} such as (9) be verified with 𝑋𝑁 replaced by 𝑉𝑁, and 𝑈𝑁 replaced by 𝑈𝑁,2. So that the distribution of the HESMC 

𝑇𝑁 = (𝑉𝑁 , 𝑈𝑁,2, 𝑌𝑁) = (𝑋𝑁 , 𝑈𝑁,1, 𝑈𝑁,2, 𝑌𝑁) is defined by  

𝑝(𝑡1) = 𝑝(𝑢1
1, 𝑢1

2)𝑝(𝑥1|𝑢1
1)𝑝(𝑦1|𝑥1); 

𝑝(𝑡𝑛+1|𝑡𝑛) = 𝑝(𝑢𝑛+1
1 , 𝑢𝑛+1

2 |𝑢𝑛
1 , 𝑢𝑛

2)𝑝(𝑥𝑛+1|𝑢𝑛+1
1 )𝑝(𝑦𝑛+1|𝑥𝑛+1),                    (17) 

with 

𝑝(𝑢𝑛+1
1 , 𝑢𝑛+1

2 |𝑢𝑛
1 , 𝑢𝑛

2) =  {
𝛿(𝑢𝑛+1

1 ,𝑢𝑛+1)(𝑢𝑛
1 , 𝑢𝑛

2 − 1)  𝑖𝑓 𝑢𝑛
2  > 0 

𝑝∗(𝑢𝑛+1
1 , 𝑢𝑛+1

2 |𝑢𝑛
1 , 𝑢𝑛

2 = 0)  𝑖𝑓 𝑢𝑛
2 = 0

 , 

𝑝(𝑥𝑛|𝑢𝑛
1 ) =

1
[𝑥𝑛∈𝑢𝑛

1 ]

|𝑢𝑛
1 |

 for 𝑛 = 1, … , 𝑁. 

Finally, setting 𝑈𝑁 = (𝑈𝑁,1, 𝑈𝑁,2), (𝑋𝑁 , 𝑈𝑁 , 𝑌𝑁) is a TMC verifying (3), and thus (4) can be computed with (5)-(8). The graphical 

probabilistic dependencies of a hidden evidential semi-Markov chain are presented in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 4. Probabilistic dependencies of a hidden evidential Markov chain. The sequence (𝑦1, 𝑦2, 𝑦3 ) is the sequence of observations, (𝑥1, 𝑥2, 𝑥3 ) 
corresponds to the hidden sequence that we want to estimate, and finally (𝑢1, 𝑢2, 𝑢3 ) is a third stochastic sequence that we add, when constructing 

a TMC. 

𝑦1 𝑦2 𝑦3 

𝑥3 𝑥2 𝑥1 

𝑢1
1 𝑢2

1 

 
𝑢3

1 

 

𝑢1
2 𝑢2

2 𝑢3
2 

Figure 5. Probabilistic dependencies of a hidden evidential semi-Markov chain. The sequence (𝑦1, 𝑦2, 𝑦3 ) is the sequence of observations, 

(𝑥1, 𝑥2, 𝑥3 ) corresponds to the hidden sequence that we want to estimate, (𝑢1
1, 𝑢2

1, 𝑢3
1 ) is a stochastic sequence added to model the evidential part, 

and (𝑢1
2, 𝑢2

2, 𝑢3
2 ) is a stochastic sequence added to model the semi-Markovianity of (𝑢1

1, 𝑢2
1, 𝑢3

1 ) 

 

𝑥3 𝑥2 𝑥1 

𝑢1 𝑢2 𝑢3 

𝑦1 𝑦2 𝑦3 

𝑥3 𝑥2 𝑥1 

𝑢1 𝑢2 𝑢3 
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2.6. Comparison with previous semi-Markov non stationary chains 

   There are two other papers published with similar key words; indeed, both deal with non-stationary data segmentation [43], 

[48] using hidden semi-Markov chains and Dempster-Shafer fusion. Let us specify what the novelties of the present paper are with 

respect to them. As specified in subsection 2.1 above, [43] deals with “piece-wise” stationarity of the HSMCs, which is different 

from the “general” non-stationarity considered in this paper. On the contrary, the model discussed in [48] considers semi-Markov 

chains, non-stationnary data, and theory of evidence, likely the model proposed in the present paper. However, the two models are 

fundamentally different.  

More precisely the difference lies in the following. In both models there are a hidden chain 𝑋𝑁 and an observed chain 𝑌𝑁. In 

this paper we first consider an evidential Markov chain 𝑉𝑁 = (𝑋𝑁 , 𝑈𝑁,1). Then we extend the Markov chain 𝑉𝑁 to a semi-Markov 

chain, by introducing the random variables 𝑈𝑁,2 modelling the minimal remaining sojourn time. In the final step, the semi-Markov 

chain (𝑉𝑁 , 𝑈𝑁,2) is considered as hidden. Thus, joined to the observation process 𝑌𝑁, it gives the hidden evidential semi-Markov 

chain (𝑉𝑁 , 𝑈𝑁,2, 𝑌𝑁) (HESMC) proposed in the present paper. Here, variables 𝑋𝑛, 𝑈𝑛
1, 𝑈𝑛

2, 𝑅𝑛 take their values in Ω =  {1, … , 𝐾}, 

2Ω, Λ = {0,1, … , 𝐷 − 1} and ℝ, respectively. 

In [48] we first consider a semi-Markov chain 𝑋𝑁, whose distribution is the marginal distribution of a Markov chain 𝑊𝑁 =

(𝑋𝑁, 𝑈𝑁,2) valued in Ω × Λ. 𝑈𝑁,2 models the minimal remaining sojourn time as above, however, the set of classes is here Ω, while 

it is 2Ω in the case of HESMC above. Then 𝑊𝑁 is extended to an evidential Markov chain (𝑊𝑁 , 𝑈𝑁,1). Adding the observation 

chain 𝑌𝑁, we finally obtain hidden semi-Markov evidential chain (HSMEC) (𝑊𝑁 , 𝑈𝑁,1, 𝑌𝑁). Thus, in the model discussed in [48] 

variables 𝑋𝑛, 𝑈𝑛
1, 𝑈𝑛

2, 𝑅𝑛 take their values in Ω =  {1, … , 𝐾}, 2Ω×Λ, Λ = {0,1, … , 𝐷 − 1}, and ℝ, respectively.  

We see that the variables 𝑈𝑛
1 take their values in different spaces, which is 2Ω for the present model HESMC, and 2Ω×Λ for the 

HSEMC proposed in [48]. This implies that the two models - we call “models” distributions of (𝑋𝑁, 𝑌𝑁) – are necessarily different 

in general.  

For example, let us consider Ω = {1, 2}, Λ = {0, 1, 2}. Concerning HESMC, let 𝑈𝑛
1 takes its values in {{1}, {2}, {1,2}}. Then, 

according to Dempster-Shafer fusion rule, (𝑋𝑛 , 𝑈𝑛
1) takes its values in 𝐴 = {(1, {1}), (1, {1,2}), (2, {2}), (2, {1,2})}. Thus 

(𝑋𝑁, 𝑈𝑁,1, 𝑈𝑁,2) takes its values in 𝐴 × Λ, and thus the related HESMC (𝑋𝑁 , 𝑈𝑁,1, 𝑈𝑁,2, 𝑌𝑁) can be considered as a classical HMC 

with 12 classes. Concerning HSMEC, we first consider (𝑋𝑁 , 𝑈𝑁,2) valued in Ω × Λ, which contains 6 elements. Then 

(𝑋𝑁, 𝑈𝑁,1, 𝑈𝑁,2) takes its values in 2Ω×Λ containing 56 elements, so that HSEMC can be considered as a classical HMC with 56 

classes.   

Let us notice the following: 

- HESMC simultaneously extends both HEMC and HSMC. Indeed, taking the bba 𝑚 null outside singletons, HESMC is a 

HSMC; taking 𝑝(𝑢𝑛
2 ≠ 0) = 0 for each 𝑛, HESMC is a HEMC. 

- According to the dependence graph in Figure 5, the considered HESMC is a quite particular HESMC; the most general one is 

obtained by applying the semi-Markovianity to 𝑉𝑁  = (𝑋𝑁 , 𝑈𝑁,1), not only to 𝑈𝑁,1. Of course, parameter estimation would be 

more difficult, but if EM continues its excellent behavior, extending the model used in the experiments is likely to further improve 

its efficiency. 

- TMC 𝑇𝑁 = (𝑋𝑁, 𝑈𝑁 , 𝑌𝑁) (3) considered in the paper is a very particular one: (𝑋𝑁, 𝑈𝑁) is markovian, and 𝑝(𝑦𝑛|𝑥𝑁 , 𝑢𝑁) =

𝑝(𝑦𝑛|𝑥𝑛). However, 𝑋𝑁 is not necessarily Markovian and thus (𝑋𝑁 , 𝑌𝑁) is not necessarily a HMC. 

3. HESMC Parameter Estimation with EM  

 We will say that HESMC is “Gaussian” if 𝑝(𝑦𝑛+1|𝑥𝑛+1) in (17) are Gaussian. Such a Gaussian HESMC can be considered 

as a particular classic hidden Markov chain (𝑊𝑁 , 𝑌𝑁), with 𝑊𝑁 = (𝑋𝑁, 𝑈𝑁,1, 𝑈𝑁,2). Then one can estimate all parameters with 

the classic version of Expectation-Maximization (EM) algorithm, whose great efficiency in HMCs is well known.  

Let us set Ω =  {1, … , 𝐾}, Λ = {0,1, … , 𝐷 − 1}, and finally let us number each element of 2Ω from 1 to 𝐿. This means that  2Ω 

is equivalent to a set {1, … , 𝐿}, with 𝐿 = 2|Ω|. Let 𝑇𝑁 = (𝑋𝑁 , 𝑈𝑁,1, 𝑈𝑁,2, 𝑌𝑁), be a homogeneous HESMC verifying (17), with 

𝑝(𝑦𝑛|𝑥𝑛) Gaussian. Let 𝜇𝑗 and 𝜎𝑗
2 denote mean and variance of 𝑝(𝑦𝑛|𝑥𝑛 = 𝑗). Thus parameters to be estimated are, for 𝑖, 𝑗 =

1, … , 𝐿; 𝑘, 𝑙 = 1, … , 𝐾, 𝑞, 𝑟 = 0, … , 𝐷 − 1: 𝜋𝑙𝑟 = 𝑝(𝑢1
1 = 𝑙, 𝑢1

2 = 𝑟), 𝑝𝑘𝑙𝑞𝑟 = 𝑝(𝑢2
1 = 𝑙, 𝑢2

2 = 𝑟|𝑢1
1 = 𝑘, 𝑢1

2 = 𝑞), 𝜇𝑗, and  𝜎𝑗
2.  Let 
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us notice that we must ensure that 𝑝(𝑡𝑛+1|𝑡𝑛) = 𝑝(𝑢𝑛+1
1 , 𝑢𝑛+1

2 |𝑢𝑛
1 , 𝑢𝑛

2)𝑝(𝑥𝑛+1|𝑢𝑛+1
1 ), with  𝑝(𝑥𝑛|𝑢𝑛

1 ) =
1

[𝑥𝑛∈𝑢𝑛
1 ]

|𝑢𝑛
1 |

 throughout the 

EM algorithm, for our model to stay a HESMC. Let us note 

𝑝𝑗𝑙𝑟,𝑛 =  𝑝(𝑥1 = 𝑗, 𝑢1
1 = 𝑙, 𝑢1

2 = 𝑟|𝑦𝑁), 

𝑝𝑖𝑗𝑘𝑙𝑞𝑟,𝑛,𝑛+1 = 𝑝(𝑥𝑛+1 = 𝑗, 𝑢𝑛+1
1 = 𝑙, 𝑢𝑛+1

2 = 𝑟, 𝑥𝑛 = 𝑖, 𝑢𝑛
1 = 𝑘, 𝑢𝑛

2 = 𝑞|𝑦𝑁)  

𝑝𝑖𝑗𝑘𝑙𝑞𝑟,𝑛 = 𝑝(𝑥𝑛+1 = 𝑗, 𝑢𝑛+1
1 = 𝑙, 𝑢𝑛+1

2 = r|𝑥𝑛 = 𝑖, 𝑢𝑛
1 = 𝑘, 𝑢𝑛

2 = 𝑞, 𝑦𝑁)  

Let us specify that 𝑝𝑖𝑗𝑘𝑙𝑞𝑟,𝑛,𝑛+1 may be computed, for 𝑛 = 1, … , 𝑁 − 1  with we set 𝑧𝑛 = (𝑥𝑛 , 𝑢𝑛
1 , 𝑢𝑛

2): 

𝑝(𝑥𝑛+1, 𝑢𝑛+1
1 , 𝑢𝑛+1

2 , 𝑥𝑛 , 𝑢𝑛
1 , 𝑢𝑛

2|𝑦𝑁) = 𝑝(𝑧𝑛, 𝑧𝑛+1|𝑦𝑁) =
𝛼𝑛(𝑧𝑛)𝑝(𝑧𝑛+1|𝑧𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝛽𝑛+1(𝑧𝑛+1)

∑ 𝛼𝑛(𝑧𝑛)𝑝(𝑧𝑛+1|𝑧𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝛽𝑛+1(𝑧𝑛+1)𝑧𝑛∈Ω×Λ
         (18) 

and 𝑝𝑗𝑙𝑟,𝑛can be computed with (7).  

Let 𝜃 be the vector of all parameters.  EM is an iterative method producing a sequence 𝜃0, 𝜃1, … , 𝜃𝑢, … . After having determined 

the initial value 𝜃0 in some way, 𝜃𝑠+1 is determined from  𝜃𝑠 and 𝑌𝑁 = 𝑦𝑁  as follows: 

𝜋𝑙𝑟
(𝑠+1)

=
1

𝑁
 ∑ 𝑝𝑗𝑙𝑟,1

(𝑠)
+ ⋯ +  𝑝𝑗𝑙𝑟,𝑁

(𝑠)
𝑗 ;                                   (19) 

𝑝𝑘𝑙𝑞𝑟
(𝑠+1)

=
∑ ∑ [𝑝𝑖𝑗𝑘𝑙𝑞𝑟,1,2

(𝑠)
+⋯+𝑝𝑖𝑗𝑘𝑙𝑞𝑟,𝑁−1,𝑁

(𝑠)
]𝑗𝑖

∑ [𝑝𝑗𝑙𝑟,1
(𝑠)

+⋯+𝑝𝑗𝑙𝑟,𝑁
(𝑠)

]𝑗

;                                 (20) 

𝜇𝑗
(𝑠+1)

=
∑ ∑ ∑ 𝑝𝑗𝑙𝑟,𝑛

(𝑠)
𝑦𝑛

𝐿
𝑙=1𝑟

𝑁
𝑛=1

∑ ∑ ∑ 𝑝
𝑗𝑙𝑟,𝑛
(𝑠)𝐿

𝑙=1𝑟
𝑁
𝑛=1

;                                     (21) 

𝜎𝑗
2,(𝑠+1)

=
∑ ∑ ∑ 𝑝𝑗𝑙𝑟,𝑛

(𝑠)
(𝑦𝑛−𝜇𝑗

(𝑠+1)
)2𝐿

𝑙=1𝑟
𝑁
𝑛=1

∑ ∑ ∑ 𝑝
𝑗𝑙𝑟,𝑛
(𝑠)𝐿

𝑙=1𝑟
𝑁
𝑛=1

.                                  (22) 

Thus, at each iteration 𝜃𝑠 is used to compute 𝑝𝑘𝑙𝑞𝑟
(𝑠)

 with (7) and 𝑝𝑖𝑗𝑘𝑙𝑞𝑟,𝑛,𝑛+1
(𝑠)

 with (18), then (19)-(22) are used to find 𝜃𝑠+1. 

To initialize the EM, we estimate 𝑝(𝑥𝑛+1 = 𝑗, 𝑥𝑛 = 𝑖) from 𝑌𝑁 = 𝑦𝑁 using a K-means method, then we set 

(𝑢2
1 = {𝑗}, 𝑢1

1 = {𝑖}) = (1 − 0.25) × 𝑝(𝑥2 = 𝑗, 𝑥1 = 𝑖), 𝑝(𝑢2
1 = {𝑗}, 𝑢1

1 = Ω) = 𝑝(𝑢2
1 = Ω, 𝑢1

1 = {𝑖}) = 𝑝(𝑢2 = Ω, 𝑢1 = Ω) =

0.25 ∕ (2 × |Ω| + 1), then  𝑝(𝑢2
1 = 𝑙|𝑢1

1 = 𝑘, 𝑢1
2 = 0) = 𝑝(𝑢2

1 = 𝑙|𝑢1
1 = 𝑘). Finally, we set 𝑝(𝑢1

2|𝑢1
1 = 𝑘) and 

𝑝(𝑢2
2|𝑢1

1 = 𝑘, 𝑢2
1 = 𝑙, 𝑢1

2 = 0) uniform on {0,1, … , 𝐷 − 1}. 

4. Experiments 

4.1 Synthetic image segmentations 

In this section, we propose a segmentation study to answer two questions: could HESMC improve simultaneously both HSMC 

and HEMC, how HESMC compare to the NSHSMC from [43]. We applied the four models mentioned before plus a HMC for 

reference to the unsupervised segmentation of three hand-drawn noisy images. 

To use mono-dimensional chains considered in the paper, we convert the bi-dimensional set of pixels to a mono-dimensional 

sequence using Hilbert–Peano scan, which gave interesting results in image segmentation in similar situations [43], [30], [31]. For 

the bba 𝑀 of the HEMC and HESMC, we choose 𝑀 to be null outside of the singletons and Ω. We estimate the parameters by the 

EM algorithm from the previous section. For HSMC, HESMC and NSHSMC the maximum of minimal sojourn time chosen is  

𝐷 = 10. For NSHSMC, 𝑈𝑁,2 is a two-value random chain. On the choice of the images, we can note several things. The first image 

whose segmentations are presented in Figure 6, contain large size homogenous areas, which should favor the HSMC. However, as 

HMC performs already very well on such image, we decided to noise it with a very high independent gaussian noise Ν(0,1) 

and Ν(0.3,1), to increase the influence of the prior law in the segmentation. The second image, whose segmentations are presented 

in Figure 7, contains very fine details which are quite challenging to segment for algorithms such as HMC, but we know from [42] 

that HEMC can improve HMC quite significatively in this case, provided that the noise is not too strong. Therefore, we noised it 

with a relatively low independent gaussian noise Ν(0,1) and Ν(2,1). The third image, whose segmentations are presented in Figure 

8, is a three-class image which was designed to combine both fine details and large size homogenous areas. We noised it with an 

original non-stationary noise obtained in the following way. For each 𝑛 = 1, … , 𝑁, we first sample from uniform law on intervals 

[𝑎, 𝑏] of length 2 centered on a value related to each class. We use the values obtained as the means of the Gaussian law, with 
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variance 1, for noising the pixel in question. We will denote such noises - which are not Gaussian - with 𝑁(𝑈[𝑎, 𝑏],1). This noise 

was designed to increase the influence of the prior law, as it is not gaussian (and the five models assume a gaussian law for the 

noise), while not completely losing the fine details with a noise whose means would be too close. Estimated noise parameters and 

error ratio for the three segmentations in Figure 6, Figure 7 and Figure 8 are presented in TABLE I, TABLE II and TABLE III 

respectively. Additionally, the masses estimated by the EM algorithm for HEMC and HESMC, for the third experiment, namely 

the segmentation in Figure 8, are presented in TABLE IV. The masses for the HEMC are estimated using a simplified version of 

the EM method presented in section 3, replacing 𝑝𝑘𝑙𝑞𝑟 = 𝑝(𝑢2
1 = 𝑙, 𝑢2

2 = 𝑟|𝑢1
1 = 𝑘, 𝑢1

2 = 𝑞) with 𝑚𝑘𝑙 = 𝑚(𝑢2 = 𝑙, |𝑢1 = 𝑘) [42]. 

The masses for HESMC are obtained from (20) with 𝑚(𝑢2 = 𝑙, |𝑢1 = 𝑘) = ∑ 𝑝𝑘𝑙𝑞𝑟(𝑞,𝑟) , moreover these masses are not Markovian 

but rather semi-Markovian. The presented results and some other ones non reported allow the following general conclusions:  

(i) HSMCs are of interest when images have large size homogenous areas and very strong noise such as in Figure 6, where they 

outperform HMC quite significatively. We can explain it partially because the prior law of a HSMC seems more adapted to large 

size homogenous areas than the one from HMC, which assumes that sojourn time in a given class obeys a geometrical distribution. 

We can also note that the HESMC performs very close to HSMC in this case. 

(ii) HEMCs are of interest when the class image is not very homogeneous and simultaneously contains areas of large size and 

small details such as in Figure 7. We already know this from [42] but the key point here is that HESMC performs as well as HEMC 

in this case. Moreover, we can see that NSHSMC, while also designed to manage non-stationarity, is unable to restore very fine 

details in this case. We can infer that the combination of areas of large size and really small details in image segmentation is better 

managed with models that are built for the second kind of non-stationarity (nonfinite, continuous non-stationarity) from section 

2.1, than models that are built for the first one (switching non-stationarity). 

(iii) HESMC can simultaneously improve HSMC and HEMC by up to 40%. This seems to be the case on images containing 

large size homogenous areas and fine details with a noise with continuous non-stationarity such as 𝑁(𝑈[𝑎, 𝑏],1) (Figure 8). We 

suppose that it is because this kind of images allows HESMC to use both its semi-Markov and evidential part. 

(iv) HESMC can improve NSHSMC segmentation by up to 10% in the case of on images containing simultaneously large size 

homogenous areas and fine details with a noise with continuous non-stationarity such as 𝑁(𝑈[𝑎, 𝑏],1) (Figure 8). If the noise is 

stationary however, the performance gap is reduced between the two models and sometimes NSHSMC can even perform better 

than HESMC. This is somewhat consistent with the theory as NSHSMC combine the semi-Markovianity with a switching triplet 

Markov chain, better suited for the first kind of non-stationarity (switching non-stationarity) presented in section 2.1, while 

HESMC combine the semi-Markovianity with an evidential triplet Markov chain, better suited for the second kind of non-

stationarity (nonfinite, continuous non-stationarity). 

(v) Parameters estimation by EM method turns out to be of an extraordinary efficiency. As mentioned above, to differentiate the 

four models, we consider very high-level noises on purpose, and according to TABLE I, TABLE II and TABLE III, parameters 

estimation remains quite correct. It is even more surprising considering that the data is not likely to follow of the four models; 

indeed, the pixel chain obtained by using Hilbert-Peano scan have a very complex structure. In addition, in the segmentation from 

Figure 3, all models consider the noise Gaussian, when it is not. On the estimation of HESMC specifically, we can see that when 

HSMC only seems to be of interest, parameter estimation can “reduce” the HESMC to a HSMC, while when HEMC only seems 

to be of interest, parameter estimation can “reduce” the HESMC to a HEMC. In the third experiment (TABLE III, Figure 8) we 

can see that when HSMC and HEMC improve HMC, HESMC is able to still improve both of them. Those results are close to the 

theoretical fact that HESMC is more general than both HSMC and HEMC, which confirms that EM is efficient enough for the 

greater generality of HESMC to play its role. 

Finally, we can discuss a little about the computational complexity of the models presented here. If we look at MPM restoration 

presented in section 2, all the models have a time complexity of the same form than in an HMC, i.e., 𝑂(𝑆2𝑇) (in space 𝑂(𝑆𝑇)), 

with 𝑆 the number of hidden states (including 𝑋𝑁 and all the 𝑈𝑁 considered), and 𝑇 the length of the sequence. For the parameter 

estimation by EM, the time complexity for one iteration of the algorithm is also 𝑂(𝑆2𝑇) (in space 𝑂(𝑆𝑇)). The key change between 

HMC and our models (HESMC in particular) is that in the latter the number of hidden states is much larger. Fortunately, the 

operations for each hidden state can be run in parallel, which makes the actual time of execution of our algorithms competitive 

with classical HMC if this property is exploited in the code. 
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 Estimates Error 

ratio   Class 1 Class 2 

True M, V 0, 1 0.3, 1  

HMC M, V 0.17, 0.95 0.35, 0.98 0.42 

HSMC M, V 0.03, 0.99 0.28, 1.01 0.20 

HEMC M, V 0.17, 0.96 0.27, 1.00 0.32 

HESMC M, V 0.06, 0.98 0.26, 1.00 0.21 

NSHSMC M, V 0.03, 1.01 0.28, 1.01 0.21 

 

TABLE I Estimated parameters and error ratio. M: mean, V: variance, for the segmentation presented in Figure 1. 

 

 

 Estimates Error 

ratio   Class 1 Class 2 

True M, V 0, 1 2, 1  

HMC M, V 0.99, 2.02 1.99, 1.01 0.23 

HSMC M, V 0.99, 2.02 1.99, 1.02 0.23 

HEMC M, V -0.01, 1.01 2.00, 1.00 0.08 

HESMC M, V 0.09, 1.14 2.00, 1.02 0.08 

NSHSMC M, V 0.99, 2.02 1.99, 1.02 0.23 

 

TABLE II Estimated parameters and error ratio. M: mean, V: variance, for the segmentation presented in Figure 2. 

 

 Estimates Error 

ratio   Class 1 Class 2 Class 3 

True M, V 0, 1.33 2, 1.33 4, 1.33  

HMC M, V -0.19, 1.26 0.05, 1.38 2.55, 2.65 0.29 

HSMC M, V 0.01, 1.38 1.92, 1.48 2.73, 3.62 0.16 

HEMC M, V -0.52, 1.11 0.20, 1.30 2.59, 2.54 0.17 

HESMC M, V -0.02, 1.34 2.02, 1.58 4.12, 1.21 0.09 

NSHSMC M, V -0.01, 1.33 1.96, 1.40 3.74, 1.69 0.10 

 

TABLE III Estimated parameters and error ratio. M: mean, V: variance, for the segmentation presented in Figure 3. 
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Noisy image 1 
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Figure 6. Segmentation of two classes hand-drawn image (Class image 1) corrupted by non-stationary noise 𝑁(0,1), 𝑁(0.3,1) (Noisy image 1). HMC, 

HSMC, HEMC, HESMC and NSHSMC: unsupervised segmentation results with the related models. 
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Class image 1 
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Figure 7. Segmentation of two classes hand-drawn image (Class image 1) corrupted by non-stationary noise 𝑁(0,1), 𝑁(2,1) (Noisy image 1). HMC, HSMC, 
HEMC, HESMC and NSHSMC: unsupervised segmentation results with the related models. 
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Figure 8. Segmentation of three classes hand-drawn image (Class image 1) corrupted by non-stationary noise 𝑁(𝑈([−1,1]),1), 𝑁(𝑈([1,3]),1), and 

𝑁(𝑈([3,5]),1) (Noisy image 1). HMC, HSMC, HEMC, HESMC and NSHSMC: unsupervised segmentation results with the related models. 

 

4.2 Real image segmentations 

In this section, we consider one real gray scale SAR image, and we segmented it by HMC, HEMC, HSMC, HESMC and 

NSHSMC. The settings of the experiment are the same than in the previous paragraph, thus the image is converted to a chain using 

the Peano scan, the parameters are estimated by the EM algorithm and the models considered are exactly the same.  The results 

obtained are presented in Figure. 9. As we have no ground truth it is difficult to draw general conclusions. However, both HESMC 

and NSHSMC based segmentations seem clearly of better quality than the HMC, HEMC and HSMC based ones, mainly because 

some details seem better preserved by the first two models, as demonstrated by the parts of the images framed in yellow. Thus, 

both HESMC and NSHSMC can be of interest when replacing HMC, HSMC or HEMC. If we compare HESMC and NSHSMC, 

the difference is less striking, but NSHSMC segmentation seems a bit less clean for the “white” class. Finally, we are in an 

interesting case where both HEMC and HSMC don’t seem of interest compared to HMC, but HESMC is still able to “improve” 

the segmentation of HMC. 
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HEMC 𝑚(𝑢𝑛 , 𝑢𝑛+1) 

                                              {1} {2} {3} {1,2,3} 
{1}
{2}

{3}
{1,2,3}

(

0.28 0 0.06 0.01
0 0.36 0 0.02

0.06 0 0.04 0
0.01 0.02 0 0.14

) 

HESMC 𝑚(𝑢𝑛
1 , 𝑢𝑛+1

1 ) 

                                              {1} {2} {3} {1,2,3} 
{1}
{2}

{3}
{1,2,3}

(

0.24 0.01 0 0
0.01 0.51 0 0.01

0 0 0.05 0.02
0 0 0.02 0.13

) 

 

TABLE IV Masses estimated by the EM algorithm, for HEMC and HESMC, for the third segmentation presented in Figure 8. 
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NSHSMC 

Figure 9. Segmentation of a real gray scale SAR image (Real image). HMC, HSMC, HEMC, HESMC and NSHSMC: unsupervised 

segmentation results with the related models. 

5. Conclusion 

We dealt in this paper with unsupervised segmentation of complex non-stationary data. The tool used was a new triplet Markov 

chain model called “hidden evidential semi-Markov chain” (HESMC). We obtain it by the introduction of two auxiliary chains: 

the first one is based on theory of evidence to manage the lack of stationarity [41], while the second one uses semi-Markovianity, 

to manage the sojourn time in a given class with more flexibility than Markov models do [13]. When unsupervised image 

segmentation is concerned, HESMC may be of strong interest on images containing simultaneously large homogenous areas, fine 

details, and non-stationary noise, where it can significantly improve hidden evidential Markov chain (HEMC [13]), hidden semi-

Markov chain (HSMC [43]), and “non-stationary hidden semi-Markov chain” (NSHSMC [43]). Furthermore, as shown in the 

experiments, HESMC can perform almost as well as HSMC when the latter is of interest, and we can say the same for HEMC. 

Considering that the actual time of execution of MPM and parameter estimation for HESMC is competitive with HSMC and 

HEMC if the operations for each hidden state are run in parallel, this model can allow someone not to choose between HSMC and 

HEMC modelization by using a model that include both. 

Let us notice that if data are well suited to HESMC, its use must give better or equivalent results compared to those obtained 

with HEMC or HSMC, simply because it extends them. However, this is no longer necessarily true in unsupervised framework 

where results also depend on the effectiveness of parameter estimation. Of course, this is even truer when data match no one of the 

models HESMC, HEMC or HSMC, as considered in experiments. Thus, it is of importance to notice that in spite of the complexity 

of HESMC, the EM considered is efficient enough to improve unsupervised HEMC or HSMC based processing, at least in 

considered experiments framework. Finally, the generality of the HESMC and the efficiency of its parameter estimation by the EM 

algorithm imply that this model could be interesting in a lot of real-world applications. Indeed, as HESMC is an extension of both 
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HEMC and HSMC, which are in turns extensions of HMC. Therefore HESMC could replace HMC in any application it is 

considered. HMC's real-world applications are very popular and continue to be widely used. The most interesting conclusion of 

the article is that the new HESMC is likely to improve the results of any of these applications. 

As perspective for designing more complex models and related unsupervised processing, let us note the possibility to extend 

HESMC by adding others random sequences in a way that the model remains a TMC. Another perspective for extension is the 

simplicity of the considered modelization of the noise in the HESMC presented. It is Gaussian, and its link with the hidden data is 

very simple, while these conditions are not necessary ones for the MPM works. Considering further extensions of different models 

considered is realistic because of the excellent behavior of the EM noticed in the presented studies.  
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