

Characterization of a (p)ppApp Synthetase Belonging to a New Family of Polymorphic Toxin Associated with Temperate Phages

Julia Bartoli, Audrey C Tempier, Noa L Guzzi, Chloé M Piras, Eric Cascales, Julie P M Viala

▶ To cite this version:

Julia Bartoli, Audrey C Tempier, Noa L Guzzi, Chloé M Piras, Eric Cascales, et al.. Characterization of a (p)ppApp Synthetase Belonging to a New Family of Polymorphic Toxin Associated with Temperate Phages. Journal of Molecular Biology, 2023, 435 (21), pp.168282. 10.1016/j.jmb.2023.168282. hal-04231945

HAL Id: hal-04231945 https://hal.science/hal-04231945v1

Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Characterization of a (p)ppApp synthetase belonging to a new family of polymorphic
toxin associated with temperate phages
Julia Bartoli, Audrey C Tempier, Noa L Guzzi, Chloé M Piras, Eric Cascales and Julie PM
Viala [™]
Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie,
Bioénergies et Biotechnologie (IM2B), CNRS - Aix-Marseille Université UMR7255, 31
Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
⊠ jviala@imm.cnrs.fr

ABSTRACT

1

2 Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal 3 4 domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. 5 Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified 6 7 in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted 8 to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA SpoT activities. In this study, we characterized the MuF-RelA SpoT toxin associated with the temperate phage of 9 10 Streptococcus pneumoniae SPNA45. We show that the RelA SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further 11 12 determine that the two genes located downstream encode two immunity proteins, one binding 13 to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp 14 15 synthetases that distinguishes them from (p)ppGpp synthetases. 16

17

18 Keywords: MuF, Apk2, IapK, Aph1, modified nucleotide

1920

21

- 22 Abbreviations: CDI, contact dependent inhibition- MSA, multiple sequence alignment- PT,
- 23 polymorphic toxin- RSH, RelA SpoT homolog- SAH, small alarmone hydrolase- SAS, small
- 24 alarmone synthetase- TxSS, type x secretion system

1 INTRODUCTION

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Polymorphic toxins (PTs) belong to a broad family of toxins involved in interbacterial competition and pathogenesis [1,2]. These modular proteins are comprised of one or more conserved N-terminal domains usually involved in a transport step fused to a variable Cterminal domain corresponding to a toxic activity of variable nature. Each class of PT is characterized by a conserved N-terminal domain that directs the toxin to a specific mode of transport for its delivery into the target cell. Typical classes of PT include colicins, passengers of Type 5 secretion systems (T5SS) involved in contact-dependent inhibition (CDI), evolved effectors of Type 6 secretion system (T6SS), neisserial MafB effectors, and LXG/WXG effectors of Esx-like secretion systems (or Type 7 secretion system, T7SS). The C-terminal domain is very diverse and bears the toxic activity, such as nuclease, deaminase, ADP-rybosyl transferase, phospholipase, phosphatase, amidase, etc. The gene encoding the PT is immediately followed by an immunity gene which protects the cell from the toxin it produces and/or from that which may be injected by its siblings. Immunity proteins are of small size, generally do not contain typical domain and usually bind to their cognate enzymatic toxins to occlude the active sites. Bioinformatic analyses identified a new family of PTs, associated with temperate phages [3,4]. The conserved N-terminal domain of these PTs corresponds to MuF, which shares homologies with the F protein of the Mu phage that infects Escherichia coli. MuF proteins categorize into two length variants: short proteins containing only the MuF domain, and long proteins that include a C-terminal extension either of unknown function or with a predicted toxic activity [4]. The MuF long versions with a C-terminal toxic domain thereby define this new family of PTs, for which a variety of toxic activities can be predicted: nuclease,

metallopeptidase, ADP-ribosyl transferase and RelA SpoT domains.

In this study, we characterize a member of the new MuF PT family belonging to a large prophage from Streptococcus pneumoniae SPNA45 (snu) with a predicted RelA SpoT Cterminal domain (see Accession Numbers hereinafter for genome and protein ID). In E. coli, the RelA and SpoT proteins govern the stringent response, a regulatory program occurring during nutritional starvation. This program consists of switching off the cell's macromolecule biosynthesis pathways while switching on the stress response and amino acid biosynthesis pathways to replenish the cell [5–7]. The stringent response is mediated by the accumulation of a modified nucleotide, the (p)ppGpp alarmone, which results from the transfer of a pyrophosphate group from ATP to the 3'-OH of a GDP or GTP. In E. coli, (p)ppGpp could bind to some fifty proteins [8,9]. Notably, (p)ppGpp binds to two distinct RNA polymerase sites [10,11], thereby modifying the transcription initiation step according to the kinetic properties of the promoters concerned, and more generally the cell's transcriptional program [12]. Although RelA is only capable of synthesizing (p)ppGpp (RelA SpoT domain), SpoT can synthesize (RelA SpoT domain) and degrade (HD domain) this nucleotide. The ability to degrade (p)ppGpp is necessary to halt the program and to promote growth when conditions are better. The enzymatic activities of RelA and SpoT are carried by N-terminal domains and controlled by the C-terminal region of the protein, depending on its interaction with partners. For example, RelA associates with the ribosome and synthesizes (p)ppGpp when it detects uncharged tRNA [13]. Thus in E. coli, RelA responds specifically to amino acid starvation. By contrast, SpoT is responsive to carbon, fatty acid, phosphate, or iron starvation [5,14]. Hence, two (p)ppGpp synthetases exist in E. coli and some other γ - and β -Pseudomonata. In other organisms, such as Bacillota, α-,δ- and ε-Pseudomonata, RelA SpoT Homologs (RSH) carry both synthesis and degradation activities as well as a regulatory C-terminal domain. Finally, in some organisms (p)ppGpp levels are additionally controlled by small alarmone synthetases (SAS) and hydrolases (SAH), which consist only of a catalytic domain [15,16]. The (p)ppGpp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2 motifs. The (p)ppGpp synthetase domain is comprised of five motifs, Syn1-5, involved in the coordination of magnesium, GDP/GTP and ATP. The (p)ppGpp HD hydrolase domain bears

synthesis and degradation domains are characterized by the presence of conserved sequence

six conserved catalytic motifs, HD1-6, involved in the coordination of manganese and the

guanine base [17].

Recently a novel nucleotide synthetase, responsible for the production of (p)ppApp was identified. (p)ppApp results from the transfer of a pyrophosphate group from ATP to the 3'-OH of an ADP or ATP. The structure of this enzyme showed that it displays a similar fold to (p)ppGpp synthetase domains. This (p)ppApp synthetase domain lies in the C-terminal region of the T6SS Tas1 effector from *Pseudomonas aeruginosa* PA14 [18]. Tas1 also includes a N-terminal PAAR domain, which associates with the VgrG spike of the T6SS needle. The (p)ppApp synthetase activity of Tas1 is bactericidal, likely due to the depletion of the ADP /ATP pool. Cells producing Tas1 protect themselves with the Tis1 immunity protein encoded immediately after *tas1*.

Here, we show that the C-terminal RelA_SpoT domain of the *snu* MuF PT is bactericidal when produced in *E. coli*, and that it carries a (p)ppApp synthetase activity. Its toxicity is counteracted by two immunity proteins encoded by genes immediately downstream of the toxin gene. While the first immunity binds to and inhibits the toxin, the second candidate immunity protein harbors a functional (p)ppApp hydrolase domain similar to SpoT HD. We finally compare (p)ppApp and (p)ppGpp synthetase sequences and identify conserved amino acid positions in the Syn2 and Syn4 motifs that might serve as signature of (p)ppApp or (p)ppGpp synthetases. While we were conducting our study, Ahmad et al. published a study on the same enzyme encoded by a prophage of the Gram negative bacterium *Bacteroides caccae* [19]. As our work corroborates their results, we adopted the same nomenclature to avoid confusion. (p)ppApp synthetase toxic domains were named Apk (adenosine 3'-pyrophosphokinase). Apk

- 1 domains associated with N-terminal PAAR and MuF were named Apk1 and Apk2,
- 2 respectively. The (p)ppApp hydrolase enzyme was named Aph1 for adenosine 3'-
- 3 pyrophosphohydrolase. However, taking into consideration the change of nomenclature for the
- 4 Tas1 effector domain, we propose to name the immunity proteins that bind and inhibit Apk1
- 5 and Apk2 domains IapK (immunity of adenosine 3'-pyrophosphokinase).

RESULTS

Apk $2_{tox-snu}$ is a bactericidal toxin in *E. coli*

In addition to genes encoding phage components, the *S. pneumoniae* SPNA45 (snu) large prophage comprises the *apk2*, *iapK* and *aph1* genes located between the portal and scaffold genes (Fig. 1a). Apk2 is composed of an N-terminal MuF domain fused to a C-terminal RelA_SpoT domain [4]. To evaluate the toxicity of the C-terminal domain, hereafter named Apk2_{tox-snu}, the corresponding coding sequence was cloned into the pBAD33 plasmid under the control of the P_{BAD} promoter. While *E. coli* MG1655 cells producing the putative toxin grew similarly to those bearing the empty parental plasmid in repression conditions, no colony was growing when Apk2_{tox-snu} expression was induced (Fig. 1b). This toxicity was due to the enzymatic activity of Apk2_{tox-snu} since the substitution of the conserved Syn2 aspartate 72 residue, involved in Mg²⁺ binding in (p)ppGpp synthetases, abolished Apk2_{tox-snu} toxicity (Fig. 1b).

To determine whether Apk2_{tox-snu} has bacteriostatic or bactericidal impacts on cell growth and viability, *E. coli* cells were grown in liquid medium to mid-exponential phase, Apk2_{tox-snu} expression was induced, and cells harvested at different time post-induction were washed and spotted on a repressive LB agar medium. Growth monitoring in liquid medium showed that bacteria stopped growing from the moment Apk2_{tox-snu} was produced (Fig. 1c), and they were not able to resume growth when washed and spotted on a repressive LB agar medium

1 (Fig. 1d). In comparison, cells producing a constitutively active truncated RelA variant (RelA

2 ΔCt 288) [20] stopped growing upon induction in liquid medium but formed colonies on

repressive LB agar medium, whereas cells carrying the empty parental plasmid or producing

an inactive version of RelA (RelA ΔCt 412) [20] grew normally upon induction (Fig. 1c and

1d). Taken together, these results indicate that the activity of Apk2_{tox-snu} is bactericidal.

It has been proposed that the bactericidal effect associated with the production of Apk domains results from the depletion of ADP and ATP and hence alters essential metabolism [18]. In agreement with this hypothesis, an *in vitro* coupled transcription/translation assay attempting to produce Apk2_{tox-snu}-Strep_{tag} (Apk2_{tox-snu}St) did not provide any product that could be immunodetected (Fig. 1e). While GFP-Strep_{tag} (GFPSt) could be produced with such an assay, no GFPSt could be detected if the template to produce Apk2_{tox-snu}St was also added (Fig. 1e). We suggest that nucleotide di- or tri-phosphate consumption by Apk2_{tox-snu} leads to transcription/translation inhibition. Although *in vitro* production can be a solution when working with toxic proteins, this experiment further shows that it is unlikely an option when trying to produce Apk.

Apk2_{tox-snu} is a (p)ppApp synthetase

The fact that Apk2_{tox-snu} shares homologies with RelA_SpoT domains prompted us to test whether it synthesizes (p)ppGpp. We therefore used a genetic approach by complementation of an *E. coli* strain unable to produce (p)ppGpp (ppGpp°). While a wild-type strain grows on minimal media, the ppGpp° strain cannot since it does not synthesize (p)ppGpp to activate amino acid biosynthesis pathways [21]. As expected, our control experiment showed that the production of SpoT complemented the ppGpp° strain, demonstrating that (p)ppGpp is synthesized (Fig. 2a). By contrast, the production of Apk2_{tox-snu} did not complement the ppGpp° strain, suggesting that no (p)ppGpp is synthesized (Fig. 2a). Though, this experiment is tricky

to interpret, as it is difficult to distinguish between the protein's toxicity and the absence of 1 production of (p)ppGpp. Indeed, the absence of complementation could be due to the toxicity 2 3 of Apk2_{tox-snu} although the strain was grown in glucose minimal medium, which is a repressive 4 condition for pBAD-driven expression, as the wild-type strain carrying apk2_{tox-snu} is slightly 5 intoxicated (Fig. 2a). In addition, if the protein is too active, too much (p)ppGpp would inhibit 6 the growth of the ppGpp° strain that is deleted of both relA and spoT. 7 To better define the activity of Apk2_{tox-snu}, the protein was purified (see Material and Methods) and its activity on nucleotide phosphate was assayed using an in vitro assay. As controls, we 8 9 also purified and assayed Rel_{seq} (1-385) and Apk 1_{tox} (Tas 1_{tox}). Rel_{seq} (1-385) is the catalytic N-10 terminal fragment (residues 1 to 385) of the bifunctional Rel/Spo homolog from S. dysgalactiae 11 subsp. equisimilis that displays (p)ppGpp synthetase activity [22], while Apk1_{tox} corresponds 12 to the C-terminal domain of the P. aeruginosa PA14 T6SS Tas1 PT that displays (p)ppApp 13 synthetase activity [18]. In vitro assays were first performed by incubating both ATP and GTP 14 with purified protein domains, before separation of the reaction products by Strong Anion Exchange (SAX) High Performance Liquid Chromatography (HPLC). As expected, Rel_{seq} (1-15 395) synthesized pppGpp (Fig. 2b). By contrast Apk2_{tox-snu} was responsible for the synthesis of 16 17 a different molecule (Fig. 2b), which one was also detected when ATP was provided as only 18 substrate for the *in vitro* assay (Fig. 2c). As previously shown, ATP was converted into AMP, pApp and pppApp when incubated with the *P. aeruginosa* Apk1 toxin (Apk1_{tox-pau})(Fig. 2c). 19 An identical profile was obtained when ATP was incubated with Apk2tox-snu (Fig. 2c), 20 21 demonstrating that Apk2_{tox-snu} is a (p)ppApp synthetase.

22

23

24

25

IapK and Aph1 are two distinct immunity proteins rescuing from Apk2tox-snu toxicity

The *apk2* gene is followed by 4 open reading frames encoding <150-residue proteins with no assigned function (Fig. 1a). The first ORF is the best candidate for serving as immunity protein,

as they are usually encoded directly downstream the gene encoding the toxin. The second ORF harbors a HD domain, found in a superfamily of metal-dependent phosphohydrolases, enzymes that cleave phosphoester bonds of phosphorylated compounds. We suspected that the second ORF could thus protect from the toxicity associated with the production of Apk2_{tox-snu}. The genes corresponding to these two ORFs, that we named *iapK* and *aph1*, were cloned together or independently into the pASK-IBA37+ vector, under the control of the P_{TET} promoter. Coproduction of Mesh1, a Drosophila melanogaster hydrolase, which has been shown to hydrolyze both (p)ppGpp and (p)ppApp [23], with Apk2_{tox-snu} shows that the E. coli cell viability can be partly rescued (Fig. 3a), likely by the partial hydrolysis of the (p)ppApp pool. The co-production of both candidate immunity proteins IapK and Aph1 fully rescued E. coli and this rescue could only rely on IapK since its production alone provided full protection (Fig. 3a). Still, Aph1 was able to provide partial protection, comparable to that provided by Mesh1. This partial protection is likely due to its phosphohydrolase activity as a substitution of the predicted D48 catalytic residue did not confer protection (Fig. 3a). The third and fourth ORFs downstream apk2 were also tested for their ability to protect the cell against Apk2_{tox-snu} but no rescue was observed (data not shown). An AlphaFold2 structural model suggested that IapK binds to Apk2_{tox-snu} (Fig. 3b). Interestingly, in this model the IapK protein interacts with a groove of the Apk2_{tox-snu} toxin and occludes the catalytic pocket (Fig. 3b). The interaction between IapK and a catalytic-null variant of Apk2_{tox-snu} (carrying the D72G substitution to avoid cell toxicity, see Fig. 1b) was experimentally validated by a bacterial adenylate cyclase two-hybrid (BACTH) assay (Fig. 3c). The IapK-Apk2_{tox-snu} interaction was also detected by co-purification upon co-production of the two partners from a pET-Duet vector (Fig. 3d). Taken together, these results demonstrate that IapK inhibits Apk2_{tox-snu} toxicity via protein-protein interaction, likely by occlusion of its active site.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

In contrast, no interaction was detected between Apk2_{tox-snu} and Aph1 (Fig. 3c). Aph1 also partly rescued Apk2_{tox-snu} toxicity and phenocopied the Mesh1 phosphohydrolase, in agreement with the observation that Aph1 carries a phosphohydrolase HD motif. We therefore conducted *in vitro* assays by co-incubating the purified Aph1 protein and pppApp or ppGpp nucleotides. Mesh1 was used as control, as it was previously shown that it is a versatile phosphohydrolase able to cleave the 3'-pyrophosphate group from (p)ppGpp and (p)ppApp [23]. Indeed, the *in vitro* assay shows that Mesh1 hydrolyzed both pppApp and ppGpp (Fig. 3e). In contrast, Aph1 only cleaved the 3'-pyrophosphate group from pppApp (Fig. 3e).

Overall, these results show that the gene encoding the Apk2 MuF PT is followed by two ORFS encoding two proteins that confer protection against Apk2_{tox-snu} toxicity via two distinct mechanisms. The first and most protective one, IapK, inhibits Apk2_{tox-snu} toxicity most probably by occlusion of the active site, while the second, Aph1, partly rescues the cell from Apk2_{tox-snu} action by detoxification through its pyrophosphohydrolase activity.

Attempts to identify signatures of (p)ppGpp and (p)ppApp synthetases

Classical protein sequence alignment tools, such as Blastp, do not distinguish (p)ppApp synthetase and (p)ppGpp synthetase domains. As our work and the study of Ahmad et al. identified three members of (p)ppApp synthetases, we carried out a protein multiple sequence alignment (MSA) with representative members of well-known (p)ppGpp synthetases [24,25] and newly experimentally characterized (p)ppApp synthetases [18,19]. We also included homologs of Apk1_{tox} and Apk2_{tox} identified by Ahmad and collaborators and Jamet and collaborators [4, 19], which belong to different bacterial genera and share between 18 and 64% identity (Fig. 4). This MSA shows that the Syn1 motif is relatively well conserved between the two sub-families, including the conserved Arg, Lys, Ser and Lys residues of the RxKxxxSxxxK consensus. However, while the conserved Syn2 Asp and Syn4 Glu residues involved in Mg²⁺

coordination and ATP binding [17] are perfectly conserved in both (p)ppApp and (p)ppGpp synthetase domains, we noticed significant differences in these two motifs (Fig. 4). In Syn2, the alignment shows that residue at positions +3 with respect to the conserved Asp residue corresponds to short non-polar side-chain residue (Ala or Gly) in (p)ppGpp synthetase domains while an Arg residue is found at this position in (p)ppApp synthetase domains. This Arg residue is positioned at the +5 position in (p)ppGpp synthetases, where a Thr residue is found in (p)ppApp synthetases. Thus, while the motif Syn2 is defined as DxxxxR in (p)ppGpp synthetases, a conserved DxxRxT motif is found in (p)ppApp synthetases (Fig. 4 and 5a). In Syn4, the residue at position +4 with respect to the conserved Glu residue corresponds to an Arg residue in (p)ppGpp synthetases and His or Asn residue in (p)ppApp synthetases. Thus, while the motif Syn4 is defined as ExQIRT in (p)ppGpp synthetases, a conserved ExQxH/N T is associated with (p)ppApp synthetases (Fig. 4 and 5a). Finally, in the Syn3 motif that coordinates GDP/GTP substrate in (p)ppGpp synthetase domains, the position +3 of the YxxxH motif corresponds to a Ser and Gly residues in (p)ppGpp and (p)ppApp synthetases, respectively, while the +5 His residue is not conserved in (p)ppApp synthetases and replaced by a Ser or Asn residue (Fig. 4 and 5a). Interestingly, all the side chains of the Syn2, -3 and -4 residues that differ between (p)ppGpp and (p)ppApp synthetases locate on the same side of the β-sheet of the Apk2_{tox-snu} AlphaFold2 model (Fig. 5b).

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

DISCUSSION

In this study, we demonstrated that the RelA_SpoT domain of Apk2 from the large prophage of the Gram-positive bacterium *S. pneumoniae* SPNA45 has a (p)ppApp synthetase activity. With Apk1 (or Tas1) from *P. aeruginosa* PA14 and Apk2 from *B. caccae* temperate phage [18,19], the *S. pneumoniae* Apk2 protein is the third member of a family of strict (p)ppApp synthetases. With the experimental set-up used in this study, i.e. heterologous expression of a

synthetic gene from the pBAD33 vector in E. coli MG1655, the activity of the (p)ppApp synthetase domain is toxic and bactericidal. Apk2tox-snu toxicity is abolished by the coproduction of IapK, which is encoded downstream of apk2 on the S. pneumoniae SPNA45 prophage. IapK binds Apk2 and likely occlude its active site. The ORF downstream iapK encodes Aph1, a protein with the HD motif specific to the superfamily of metal-dependent phosphohydrolases. When co-produced with Apk2_{tox-snu}, Aph1 partially rescues cell survival. Our *in vitro* results demonstrated that Aph1 cleaves pppApp to regenerate ATP, suggesting that Aph1 detoxifies the cell from the accumulation of pppApp or from ATP depletion. It is not yet clear why there are two immunity proteins. Possibly a cumulative effect would be required for full protection, but this would have to be explored in physiological conditions of expression and in the natural host. What is remarkable is that these two immunity proteins confer protection through two distinct modes of action. IapK seems specific of the toxic partner protein since the immunity protein from B. caccae is unable to protect from P. aeruginosa Apkl_{tox} toxicity [19]. In contrast, because the activity of Aph1 is directed toward the product of the (p)ppApp synthetase and not toward the enzyme, its protection is "universal". Indeed, a similar level of protection was conferred by the *Drosophila* Mesh1 phosphohydrolase. As a result, Aph1 may still offer a minimal level of protection to the bacterial host in case the latter would be intoxicated by a variant form of Apk2tox for which it would not have the specific IapK immnunity protein. Our results also showed that Apk2_{tox} does not have (p)ppGpp synthesis activity. A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

multiple sequence alignment with members of the (p)ppApp or (p)ppGpp synthetase domain families showed that there are significant differences at some positions of the conserved and functional Syn motifs. We therefore propose signatures that could distinguish (p)ppApp and (p)ppGpp synthetases in Syn2 and Syn4 motifs: DxxxxR and ExQIRT, and DxxRxT and ExQxH/N T in (p)ppGpp and (p)ppApp synthetases, respectively (Fig. 5a). Interestingly, recent

1 studies mention the ability of the Methylobacterium extorquens RSH, B. subtilis SasA and

2 Treponema denticola SAS proteins to synthesize both (p)ppGpp and (p)ppApp [26-28].

3 However, in agreement with the observation that the predominant activity of these enzymes is

(p)ppGpp synthesis, the examination of their sequences revealed Syn2 and Syn4 motifs typical

of (p)ppGpp synthetases. Conversely, the Cellulomona marina FaRel, described to synthesize

both ppGpp and ppApp, has a sequence corresponding to a possible (p)ppApp synthetase

signature. Only the FaRel ppApp synthesis activity was confirmed in vitro [16].

Modified nucleotides (p)ppGpp and (p)ppApp appear to play a role in phage cycle, given the distribution of (p)ppGpp and (p)ppApp Toxin-Antitoxin systems encoded by phage and prophage genomes [4,16,19,29]. While this co-occurrence is not yet understood, one study suggests that it could provide protection against superinfection. Hence, the mycobacterial Phrann prophage Gp29 (p)ppGpp synthetase is proposed to be maintained inactive by an interaction with the Gp30 membrane protein and that infection by lytic phages would induce their dissociation and the consequent activation of Gp29 [29]. Accumulation of (p)ppGpp would turns the host bacterium in a dormancy state that would be unfavorable to virulent bacteriophages.

Given the definition of polymorphic toxins and the involvement of conserved N-terminal domains in a transport step, it is tempting to propose that the MuF domain of Apk2 serves to transport the toxin. The *muf* genes are generally located close to the genes encoding the portal and terminase proteins and therefore belong to the head morphogenesis and DNA packaging modules of the phage [4]. The portal protein i) acts as a nucleation site to initiate capsid assembly, ii) forms a channel for the bidirectional passage of viral DNA, and iii) acts as an attachment point for the tail of the phage. The portal protein also works in concert with the TerSL terminase complex to translocate viral DNA. The TerS protein recognizes the DNA

based on a packaging signal and addresses it to the TerL protein, which is organized as a pentameric ring interacting with a dodecamer of the portal protein [30]. Little is known about the MuF protein and most studies have been carried out on the short MuF protein (Gp7) from the Bacillus subtilis SPP1 virulent phage. A series of in vitro experiments proposed that Gp7 binds the Gp6 portal protein, and this interaction is necessary to locate Gp7 to the procapsid. One or two copies of Gp7 would be therefore present in proheads and phages. Then, either because the passage of DNA entering the capsid displaces the interaction between the portal and Gp7 proteins, or because this entry triggers a conformational change in the portal protein, Gp7 detaches and instead binds viral DNA. Although it is tempting to hypothesize that Gp7 is co-ejected with viral DNA, this is not yet supported by experimental data. Instead, what has been shown is that Gp7 would slow down the release of viral DNA by keeping it anchored into the capsid by one of its extremities during the ejection. The absence of Gp7 does not prevent the formation of virions, but these are 5 to 10 times less infectious [31–33]. However, recent studies on staphylococcal temperate bacteriophage 80\alpha suggest that gp44, which belongs to the (short) MuF family, has a post-injection role and is therefore co-injected with phage DNA. These conclusions are based on a trans-complementation experiment in which the production of gp44 in recipient cells restores cycles of infection of a $\Delta gp44$ phage lysate [34]. The authors further suggest that gp44 would protect the phage DNA from degradation post-injection [35]. The presence of a toxin on a continuous polypeptide with MuF in the phage head and the perspective that the toxin could be delivered to a recipient cell upon infection by bacteriophage raises the question of the biological role. This question must be considered in the context of infection by temperate phages since those are the ones associated with this novel PT family. From the point of view of interbacterial competition, the injection of a toxin would be beneficial to lysogenic bacteria already equipped with the immunity protein. However, this immunity protein would have to be produced by the lysogen at the time of infection and, as it

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

is encoded within the module of the phage head morphogenesis, it is not clear why it should be unless the phage is in lytic mode. Otherwise, PT and immunity genes, which together appear as an operonic organization, would have to be independently regulated. Alternatively, regardless of when the immunity protein is produced, the prophage could confer an advantage on its host if it avoids poisoning thanks to a superinfection exclusion system. Other hypothesis could be that the activity of the toxin favors the bacteriophage lysogenic cycle. For example, one possibility could be that the products of the enzymatic activity regulate the expression of genes that are important for lysogeny. Precisely, ppApp has been shown to bind to the RNA polymerase, albeit at different sites compared to ppGpp, and an in vitro study showed a positive regulation by ppApp on rrnB P1 activity, unlike ppGpp, highlighting the possibility of a distinct impact for these two modified nucleotides [36]. A study comparing the cellular targets and global effects of these two nucleotides would be of great interest. Otherwise, the enzymatic activity could impact the state of the recipient cell and influence the lytic/lysogenic decision. Indeed, although the activity of Apk2_{tox-snu} was shown to be bactericidal in this study, the level of intoxication might be lower with only a bacteriostatic effect in physiological conditions, considering that only one or two copies of the polypeptide might be present in the phage head as it has been estimated for the short MuF protein from the SPP1 bacteriophage from B. subtilis [31]. In this case, can the arrest of host cell growth processes be unfavorable to the lytic cycle option and lead to a lysogenic decision? In the context of the arms race between bacteria and phages, another suggestion could be that the toxin's activity counteracts a possible anti-phage mechanism. But why such a defense process would be more beneficial to temperate phages than lytic ones? Interesting new avenues of research aimed at understanding the biological role of these toxinantitoxin systems in the life cycle of temperate phages and their bacterial host are therefore

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- open. And more discoveries are yet to come with the investigation of MuF proteins that display
- 2 C-terminal domains of unknown functions.

4

5

MATERIALS AND METHODS

- Bacterial strains and media
- 6 E. coli strains used in this study are described in Table S1. Bacteria were grown in 2YT, Luria-
- 7 Bertani (LB) (Sigma-Aldrich), MacConkey agar (BD), M9 minimal medium (1× M9 salts,
- 8 1 mM MgSO₄, 0.1 mM CaCl₂, 2 μg/mL vitamin B12, 0.2% glucose). Plasmids were maintained
- 9 by the addition of antibiotics (ampicillin 100 μg/mL, kanamycin 50 μg/mL or chloramphenicol
- 10 50 μ g/mL).

11

12

Plasmid construction and site-directed mutagenesis

- Plasmids and primers used in this study are described in Tables S2 and S3, respectively. PCR
- amplifications were performed with Phusion High-Fidelity DNA Polymerase (Finnzymes).
- 15 Site-directed mutagenesis was performed on plasmids following the instructions of the
- 16 QuickChange site-directed mutagenesis kit (Stratagene). DNA template corresponding to a
- portion of a Streptococcus pneumoniae SPNA45 prophage genomic region was sequence-
- optimized for *E. coli* and synthesized by IDT.

19

20

Toxicity and toxicity neutralization assays

- 21 For toxicity assays, E. coli MG1655 was transformed with pBAD33 encoding the Apk2_{tox-snu}
- domain and transformants were selected on LB agar plate containing the appropriate antibiotic
- and 1% glucose for toxin repression. Stationary phase overnight cultures were diluted to an
- OD₆₀₀ of 0.05 in fresh LB medium supplemented with 1% glucose. Bacteria were cultivated at
- 25 37°C to exponential phase (OD₆₀₀ \approx 0.5). An aliquot was washed twice with LB and cultures

- were normalized to $OD_{600} = 0.5$. Serial dilutions in sterile PBS were performed and spotted on
- 2 LB agar containing 1% glucose for P_{BAD} promoter repression or 0.2% arabinose for induction.
- 3 For toxicity neutralization assays, E. coli MG1655 was co-transformed with pBAD33 encoding
- 4 the Apk2_{tox-snu} domain and pASK-IBA37+ encoding the candidate immunity proteins. Co-
- 5 transformants were selected on LB agar containing the appropriate antibiotic and 1% glucose.
- 6 Experiments were carried out as described above and dilutions were spotted on LB agar plates
- 7 containing appropriate antibiotics, anhydrotetracycline 200 ng/mL to induce the P_{TET} promoter
- 8 from pASK-IBA37+, and either 1% glucose or 0.2% arabinose to repress or induce the P_{BAD}
- 9 promoter from pBAD33.

11

Bacteriostatic or bactericidal effect of the toxin

- 12 To examine the bacteriostatic or bactericidal effect associated with the production of the toxin,
- 13 E. coli MG1655 was transformed with plasmids encoding the Apk2_{tox-snu} domain, or a
- 14 constitutively active (RelA ΔCt 288) or an unactive (RelA ΔCt 412) truncated variant of RelA
- as controls [20]. From stationary-phase overnight cultures, fresh LB medium containing 1%
- glucose was inoculated to an OD_{600} of 0.01. Bacteria were cultivated at 37°C to $OD_{600} = 0.3$,
- washed twice with LB before induction of P_{BAD} with 0.2% arabinose for pBAD33 plasmids, or
- 18 induction of P_{tac} with 500 μM Isopropyl β-D-thiogalactopyranoside (IPTG) for RelA-
- 19 containing plasmids. At time 0, 30 and 60 min post-induction, an aliquot was recovered and
- 20 chilled in ice water for 2 min. Cells were pelleted at 6,000g at 4 °C and re-suspended in ice-
- 21 cold fresh LB. Serial dilutions were done in sterile PBS and spotted on LB agar plates
- 22 containing appropriate antibiotics and 1% glucose.

23

24

In vitro transcription-translation assays

- 1 Coupled in vitro transcription-translation assays were performed with the PURExpress® In
- 2 vitro Protein synthesis kit (NEB) supplemented with murine RNase inhibitor (NEB) as
- 3 recommended by the manufacturer. DNA templates encoding the Apk2_{tox-snu}-Strep_{tag} and the
- 4 GFP-Streptag proteins, were amplified using the primer pairs ebm2109/2110 and
- 5 ebm2120/2121, respectively. These templates were added to the reactions (3ng/μL), which
- 6 were performed for 2 h at 37°C. Proteins were separated by SDS-PAGE, transferred onto
- 7 nitrocellulose membranes and *in vitro* synthesized proteins were detected by immunoblotting
- 8 with antibodies against Strep tag (Classic, BioRad).

10

Bacterial two-hybrid

- Plasmids allowing the production of proteins fused to the T18 or T25 domains of the *Bordetella*
- 12 pertussis adenylate cyclase were co-transformed in E. coli BTH101. Bacteria were grown
- overnight in LB supplemented with 0.5 mM IPTG, and 2 μL were spotted on McConkey agar
- medium containing 1% maltose.

15

16

17

Protein production, purification or co-purification

- Toxins purification or co-purification
- 18 6×His-Apk1_{tox-pau} and 6×His-Apk2_{tox-snu} were co-produced with their cognate IapK-S-tag
- immunity proteins from the pET-Duet1 plasmid, using E coli BL21 DE3 (pLys). For this, 1 L
- of culture was grown at 30° C until $OD_{600} = 0.5$ and protein production was induced with
- 21 500 μM IPTG at 25°C for 4h. Cells were harvested by centrifugation at 4,000g for 20 min,
- 22 washed with PBS, and resuspended in 20 mL lysis buffer (20 mM Tris-HCl pH 8, 200 mM
- NaCl, 10 mM imidazole 2 mM β-mercaptoethanol, 0.2% NP40) supplemented with DNase 0.1
- 24 mg/mL, MgCl₂ 10 mM and protease inhibitor (PMSF, 0.5 mM). Cells were disrupted using a
- 25 high-pressure homogeniser (Emulsiflex) and unbroken cells or fragments were eliminated by

- 1 centrifugation at 15,000g for 30 min. His-tagged proteins were purified by affinity
- 2 chromatography on metal/cobalt affinity resin (Takara). Unbound fraction was recovered by
- 3 gravity using a Poly-Prep Chromatography column (Bio-rad) and the resin was washed with
- 4 15 mL of lysis buffer.
- 5 For purification of the Apk1_{tox-pau} and Apk2_{tox-snu} domains alone, inspired by the protocol of
- 6 Ahmad et al., 2019, the immunity protein (IapK) was dissociated by denaturing the protein-
- 7 protein complex using 10 mL of lysis buffer supplemented with 8 M urea. Renaturation of the
- 8 toxin was then performed by washing the resin with 20 mL of lysis buffer. Finally, proteins
- 9 were eluted using lysis buffer containing 300 mM imidazole.
- Rel_{seq} (1-385) has been produced and purified as previously published [37,38].
- 11 Protein concentration and buffer exchange was performed using centrifugal filter (Amicon
- 12 Ultra-4, 10 MWCO, Millipore). Glycerol was finally added for long-term -80°C conservation,
- resulting in a final protein buffer composition of 10 mM Tris-HCl pH 8, 75 mM NaCl, and 40%
- 14 Glycerol.
- Immunity-protein purification
- 16 6×His-IapK, 6×His-Aph1 and 6×His-Mesh1 were produced from pASK-IBA37+ in E. coli
- MG1655. The experimental protocol for protein production and purification was the same as
- described above except that only 100 mL of culture were necessary, that cells were disrupted
- 19 by sonication and buffer exchange was carried out by dialysis (Side-A-lyzer dialysis cassette,
- 20 3.500 MWCO; Thermo Scientific).

22 Western Blot

- Western blot analyses of protein samples were performed using mouse anti-Strep-tag (Biorad),
- 24 mouse anti-His-tag (Proteintech) or mouse anti-S-tag (Sigma) and detected with anti-mouse

- 1 horseradish peroxidase-conjugated secondary antibodies (SantaCruz) or with anti-mouse
- 2 phosphatase alkaline-conjugated secondary antibodies (Sigma).

- 4 In vitro synthesis or hydrolysis of (p)ppGpp/(p)ppApp coupled with HPLC analysis or
- 5 purification
- 6 In vitro synthesis of guanosine pentaphosphate nucletotide followed by analytical separation or
- 7 purification using HPLC was performed as previously described [38].
- 8 For testing pppApp synthetase activity, a 20-µL reaction containing 5 mM ATP, used as both
- 9 the phosphate donor and acceptor, and 1 μM of purified enzyme (Apk2_{tox-snu} or Apk1_{tox-pau}) in
- 10 mM Tris-HCl pH 8, 100 mM NaCl and 15 mM MgCl₂ was incubated at 37°C for 2 h. After
- 15-fold dilution in HPLC solvent A (KH₂PO₄ 50 mM pH 3.4), the enzyme was eliminated by
- 12 passing the reaction mixture through a spin filter column (Nanosep 10K Omega, Pall
- 13 Corporation).
- 14 For analytical purpose, 20 μL of reaction was injected on an Agilent 1260 Infinity HPLC
- system equipped with a SAX 5 μ m 4.6 \times 250 mm Waters Spherisorb analytical column.
- Nucleotides separation was carried out over 35 min using an ionic strength gradient from
- solvent A to solvent B (KH₂PO₄ 1 M pH 3.4) at a flow rate of 1 mL.min⁻¹ [38]. The nucleotides
- were monitored at 254 nm (max absorption for guanosine nucleotide) and/or 260 nm (max
- 19 absorption for adenosine nucleotide).
- 20 For pppApp purification, the initial *in vitro* reaction was performed in 120 μL, followed by
- 21 dilution and passing through the spin filter column, and 15 injections of 100 μL of reaction
- 22 mixture were repeated during which the nucleotide was collected. The collected fractions were
- 23 pooled and purified using Oasis WAX SPE Cartridges (6 cc Vac Cartridge; Waters) and

- 1 lyophilized as described before [38]. pppApp was then resuspended in 5 mM Tris-HCl pH 8
- 2 before verification by HPLC and quantification by spectrophotometry.
- 3 For testing ppGpp and pppApp hydrolysis, 20-μL reaction mixtures containing either 3 mM
- 4 ppGpp (Jena Bioscience) or 180 μM pppApp and 7 μM 6×His-Mesh1 or 6×His-Aph1 in
- 5 10 mM Tris-HCl pH 8, 100 mM NaCl and 15 mM MgCl₂ were incubated at 37 °C for 2 h. The
- 6 following steps and the separation using HPLC were performed as described above.

8

ACCESSION NUMBERS

- 9 Proteins that were analyzed in this study were encoded by genes belonging to a prophage carried
- by Streptococcus pneumoniae SPNA45, whose organism code in Kyoto Encyclopedia of Genes
- and Genomes (https://www.genome.jp/kegg/) is snu and GenBank HE983624. The start and
- end limits of the prophage are 294 427 and 329 589, respectively (Jamet 2017). The locus tags
- and NCBI-protein ID were respectively SPNA45 00317 and CCM07607 for Apk2,
- 14 SPNA45_00318 and <u>CCM07608</u> for IapK and SPNA45_00319 and <u>CCM07609</u> for Aph1.
- UniProt ID used to collect the protein sequences, whose (p)ppApp synthetase motifs have been
- aligned, are the following (the organism from which they originate is indicated in brackets):
- 17 TAS1 PSEAB (Pseudomonas aeruginosa), A5ZE37 (Bacteroides caccae) A0A7Y7QXY9
- 18 (Sphingomonas sanguinis), A0A3L8C885 (Ketobacter sp.), A0A1I3VM54 (Paraburkholderia
- 19 megapolitana), <u>A0A7W4VSZ0</u> (Nocardioides soli), <u>A0A2S6HSH1</u> (Hungatella xylanolytica),
- 20 <u>A0A502JM48</u> (Haemophilus haemolyticus), <u>A0A7V7UC92</u> (Candidatus Galacturonibacter
- 21 soehngenii), H5Y2L1 (Desulfosporosinus youngiae DSM 17734), A0A096KKG4 (Collinsella
- 22 sp. 4_8_47FAA), A0A437UU02 (Coriobacteriales bacterium OH1046), A0A2N6SUF2
- 23 (Finegoldia magna), B8I908 (Ruminoclostridium cellulolyticum), V4NCR8 (Pasteurella
- 24 multocida), <u>A0A547E9T1</u> (Mannheimia haemolytica).

1 ACKNOWLEDGEMENTS

- 2 We thank Emmanuelle Bouveret (Institut Pasteur, Paris France) for sharing materials and
- 3 knowledge. We are grateful to people from Cascales group and to Dukas Jurėnas (ULB,
- 4 Belgium), a former post-doctoral fellow, for fruitful discussions. This work was funded by the
- 5 CNRS and the Aix-Marseille Université.

6

7 REFERENCES

- 8 [1] Z.C. Ruhe, D.A. Low, C.S. Hayes, Polymorphic Toxins and Their Immunity Proteins:
- 9 Diversity, Evolution, and Mechanisms of Delivery, Annu. Rev. Microbiol. 74 (2020) 497–
- 10 520. https://doi.org/10.1146/annurev-micro-020518-115638.
- 11 [2] A. Jamet, X. Nassif, New Players in the Toxin Field: Polymorphic Toxin Systems in
- 12 Bacteria, MBio. 6 (2015) e00285-15. https://doi.org/10.1128/mBio.00285-15.
- 13 [3] D. Zhang, R.F. De Souza, V. Anantharaman, L.M. Iyer, L. Aravind, Polymorphic
- 14 toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms
- of action, immunity and ecology using comparative genomics, Biol Direct. 7 (2012) 18.
- 16 https://doi.org/10.1186/1745-6150-7-18.
- 17 [4] A. Jamet, M. Touchon, B. Ribeiro-Gonçalves, J.A. Carriço, A. Charbit, X. Nassif, M.
- 18 Ramirez, E.P.C. Rocha, A widespread family of polymorphic toxins encoded by temperate
- 19 phages, BMC Biol. 15 (2017) 75. https://doi.org/10.1186/s12915-017-0415-1.
- 20 [5] S.E. Irving, N.R. Choudhury, R.M. Corrigan, The stringent response and physiological
- 21 roles of (pp)pGpp in bacteria, Nat Rev Microbiol. 19 (2021) 256–271.
- 22 https://doi.org/10.1038/s41579-020-00470-y.
- 23 [6] B.W. Anderson, D.K. Fung, J.D. Wang, Regulatory Themes and Variations by the
- 24 Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria, Annu. Rev. Genet. 55 (2021)
- 25 115–133. https://doi.org/10.1146/annurev-genet-021821-025827.

- 1 [7] N.Y.E. Chau, S. Ahmad, J.C. Whitney, B.K. Coombes, Emerging and divergent roles
- 2 of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis, PLoS Pathog. 17
- 3 (2021) e1009532. https://doi.org/10.1371/journal.ppat.1009532.
- 4 [8] Y. Zhang, E. Zborníková, D. Rejman, K. Gerdes, Novel (p)ppGpp Binding and
- 5 Metabolizing Proteins of *Escherichia coli*, MBio. 9 (2018) e02188-17.
- 6 https://doi.org/10.1128/mBio.02188-17.
- 7 [9] B. Wang, P. Dai, D. Ding, A. Del Rosario, R.A. Grant, B.L. Pentelute, M.T. Laub,
- 8 Affinity-based capture and identification of protein effectors of the growth regulator ppGpp,
- 9 Nat Chem Biol. 15 (2019) 141–150. https://doi.org/10.1038/s41589-018-0183-4.
- 10 [10] W. Ross, C.E. Vrentas, P. Sanchez-Vazquez, T. Gaal, R.L. Gourse, The Magic Spot:
- A ppGpp Binding Site on E. coli RNA Polymerase Responsible for Regulation of
- 12 Transcription Initiation, Molecular Cell. 50 (2013) 420–429.
- 13 https://doi.org/10.1016/j.molcel.2013.03.021.
- 14 [11] W. Ross, P. Sanchez-Vazquez, A.Y. Chen, J.-H. Lee, H.L. Burgos, R.L. Gourse,
- ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on
- 16 Transcription Initiation during the Stringent Response, Molecular Cell. 62 (2016) 811–823.
- 17 https://doi.org/10.1016/j.molcel.2016.04.029.
- 18 [12] S.P. Haugen, W. Ross, R.L. Gourse, Advances in bacterial promoter recognition and
- its control by factors that do not bind DNA, Nat Rev Microbiol. 6 (2008) 507–519.
- 20 https://doi.org/10.1038/nrmicro1912.
- 21 [13] A. Brown, I.S. Fernández, Y. Gordiyenko, V. Ramakrishnan, Ribosome-dependent
- activation of stringent control, Nature. 534 (2016) 277–280.
- 23 https://doi.org/10.1038/nature17675.
- 24 [14] A. Srivatsan, J.D. Wang, Control of bacterial transcription, translation and replication
- by (p)ppGpp, Current Opinion in Microbiology. 11 (2008) 100–105.

- 1 https://doi.org/10.1016/j.mib.2008.02.001.
- 2 [15] G.C. Atkinson, T. Tenson, V. Hauryliuk, The RelA/SpoT Homolog (RSH)
- 3 Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases
- 4 across the Tree of Life, PLoS ONE. 6 (2011) e23479.
- 5 https://doi.org/10.1371/journal.pone.0023479.
- 6 [16] S. Jimmy, C.K. Saha, T. Kurata, C. Stavropoulos, S.R.A. Oliveira, A. Koh, A.
- 7 Cepauskas, H. Takada, D. Rejman, T. Tenson, H. Strahl, A. Garcia-Pino, V. Hauryliuk, G.C.
- 8 Atkinson, A widespread toxin–antitoxin system exploiting growth control via alarmone
- 9 signaling, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 10500–10510.
- 10 https://doi.org/10.1073/pnas.1916617117.
- 11 [17] W. Steinchen, G. Bange, The magic dance of the alarmones (p)ppGpp: The structural
- biology of the alarmones (p)ppGpp, Molecular Microbiology. 101 (2016) 531–544.
- 13 https://doi.org/10.1111/mmi.13412.
- 14 [18] S. Ahmad, B. Wang, M.D. Walker, H.-K.R. Tran, P.J. Stogios, A. Savchenko, R.A.
- 15 Grant, A.G. McArthur, M.T. Laub, J.C. Whitney, An interbacterial toxin inhibits target cell
- 16 growth by synthesizing (p)ppApp, Nature. 575 (2019) 674–678.
- 17 https://doi.org/10.1038/s41586-019-1735-9.
- 18 [19] S. Ahmad, I.J. Gordon, K.K. Tsang, A.G. Alexei, D. Sychantha, J. Colautti, S.L.
- 19 Trilesky, Y. Kim, B. Wang, J.C. Whitney, Identification of a broadly conserved family of
- enzymes that hydrolyze (p)ppApp, Proc. Natl. Acad. Sci. U.S.A. 120 (2023) e2213771120.
- 21 https://doi.org/10.1073/pnas.2213771120.
- 22 [20] G. Schreiber, S. Metzger, E. Aizenman, S. Roza, M. Cashel, G. Glaser,
- Overexpression of the relA gene in Escherichia coli, Journal of Biological Chemistry. 266
- 24 (1991) 3760–3767. https://doi.org/10.1016/S0021-9258(19)67860-9.
- 25 [21] H. Xiao, M. Kalman, K. Ikehara, S. Zemel, G. Glaser, M. Cashel, Residual guanosine

- 1 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null
- 2 mutations., Journal of Biological Chemistry. 266 (1991) 5980–5990.
- 3 https://doi.org/10.1016/S0021-9258(19)67694-5.
- 4 [22] T. Hogg, U. Mechold, H. Malke, M. Cashel, R. Hilgenfeld, Conformational
- 5 Antagonism between Opposing Active Sites in a Bifunctional RelA/SpoT Homolog
- 6 Modulates (p)ppGpp Metabolism during the Stringent Response, Cell. 117 (2004) 57–68.
- 7 https://doi.org/10.1016/S0092-8674(04)00260-0.
- 8 [23] K. Potrykus, N.E. Thomas, B. Bruhn-Olszewska, M. Sobala, M. Dylewski, T. James,
- 9 M. Cashel, Estimates of RelSeq, Mesh1, and SAHMex Hydrolysis of (p)ppGpp and (p)ppApp
- by Thin Layer Chromatography and NADP/NADH Coupled Assays, Front. Microbiol. 11
- 11 (2020) 581271. https://doi.org/10.3389/fmicb.2020.581271.
- 12 [24] U. Mechold, H. Malke, Characterization of the stringent and relaxed responses of
- 13 Streptococcus equisimilis, J Bacteriol. 179 (1997) 2658–2667.
- 14 https://doi.org/10.1128/jb.179.8.2658-2667.1997.
- 15 [25] H. Nanamiya, K. Kasai, A. Nozawa, C.-S. Yun, T. Narisawa, K. Murakami, Y. Natori,
- 16 F. Kawamura, Y. Tozawa, Identification and functional analysis of novel (p)ppGpp
- synthetase genes in Bacillus subtilis: Novel (p)ppGpp synthetase genes in B. subtilis,
- 18 Molecular Microbiology. 67 (2007) 291–304. https://doi.org/10.1111/j.1365-
- 19 2958.2007.06018.x.
- 20 [26] M. Sobala, B. Bruhn-Olszewska, M. Cashel, K. Potrykus, Methylobacterium
- 21 extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo, and Leads
- to Discovery of pppApp Synthesis in Escherichia coli, Front. Microbiol. 10 (2019) 859.
- 23 https://doi.org/10.3389/fmicb.2019.00859.
- 24 [27] D.K. Fung, J. Yang, D.M. Stevenson, D. Amador-Noguez, J.D. Wang, Small
- 25 Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp,

- 1 and AppppA in Bacillus subtilis, Front. Microbiol. 11 (2020) 2083.
- 2 https://doi.org/10.3389/fmicb.2020.02083.
- 3 [28] M. Wang, N.-Y. Tang, S. Xie, R.M. Watt, Functional Characterization of Small
- 4 Alarmone Synthetase and Small Alarmone Hydrolase Proteins from Treponema denticola,
- 5 Microbiol Spectr. (2023) e0510022. https://doi.org/10.1128/spectrum.05100-22.
- 6 [29] R.M. Dedrick, D. Jacobs-Sera, C.A.G. Bustamante, R.A. Garlena, T.N. Mavrich, W.H.
- 7 Pope, J.C.C. Reyes, D.A. Russell, T. Adair, R. Alvey, J.A. Bonilla, J.S. Bricker, B.R. Brown,
- 8 D. Byrnes, S.G. Cresawn, W.B. Davis, L.A. Dickson, N.P. Edgington, A.M. Findley, U.
- 9 Golebiewska, J.H. Grose, C.F. Hayes, L.E. Hughes, K.W. Hutchison, S. Isern, A.A. Johnson,
- 10 M.A. Kenna, K.K. Klyczek, C.M. Mageeney, S.F. Michael, S.D. Molloy, M.T. Montgomery,
- J. Neitzel, S.T. Page, M.C. Pizzorno, M.K. Poxleitner, C.A. Rinehart, C.J. Robinson, M.R.
- Rubin, J.N. Teyim, E. Vazquez, V.C. Ware, J. Washington, G.F. Hatfull, Prophage-mediated
- defence against viral attack and viral counter-defence, Nat Microbiol. 2 (2017) 16251.
- 14 https://doi.org/10.1038/nmicrobiol.2016.251.
- 15 [30] P.E. Prevelige, J.R. Cortines, Phage assembly and the special role of the portal protein,
- 16 Current Opinion in Virology. 31 (2018) 66–73. https://doi.org/10.1016/j.coviro.2018.09.004.
- 17 [31] A. et al Droge, Shape and DNA Packaging Activity of Bacteriophage SPP1 Procapsid:
- 18 Protein Components and Interactions during Assembly, (n.d.).
- 19 [32] A.C. Stiege, A. Isidro, A. Dröge, P. Tavares, Specific targeting of a DNA-binding
- 20 protein to the SPP1 procapsid by interaction with the portal oligomer: Targeting of a minor
- 21 protein to the viral capsid, Molecular Microbiology. 49 (2003) 1201–1212.
- 22 https://doi.org/10.1046/j.1365-2958.2003.03631.x.
- 23 [33] I. Vinga, A. Droge, A.C. Stiege, R. Lurz, M.A. Santos, R. Daugelavičius, P. Tavares,
- 24 The minor capsid protein gp7 of bacteriophage SPP1 is required for efficient infection of
- 25 Bacillus subtilis, Mol Microbiol. 61 (2006) 1609–1621. https://doi.org/10.1111/j.1365-

- 1 2958.2006.05327.x.
- 2 [34] K.A. Manning, N. Quiles-Puchalt, J.R. Penadés, T. Dokland, A novel ejection protein
- 3 from bacteriophage 80α that promotes lytic growth, Virology. 525 (2018) 237–247.
- 4 https://doi.org/10.1016/j.virol.2018.09.025.
- 5 [35] K.A. Manning, T. Dokland, The gp44 Ejection Protein of Staphylococcus aureus
- 6 Bacteriophage 80α Binds to the Ends of the Genome and Protects It from Degradation,
- 7 Viruses. 12 (2020) 563. https://doi.org/10.3390/v12050563.
- 8 [36] B. Bruhn-Olszewska, V. Molodtsov, M. Sobala, M. Dylewski, K.S. Murakami, M.
- 9 Cashel, K. Potrykus, Structure-function comparisons of (p)ppApp vs (p)ppGpp for
- 10 Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory
- responses in vitro, Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms.
- 12 1861 (2018) 731–742. https://doi.org/10.1016/j.bbagrm.2018.07.005.
- 13 [37] U. Mechold, K. Potrykus, H. Murphy, K.S. Murakami, M. Cashel, Differential
- regulation by ppGpp versus pppGpp in Escherichia coli, Nucleic Acids Research. 41 (2013)
- 15 6175–6189. https://doi.org/10.1093/nar/gkt302.

- 16 [38] J. Bartoli, S. Citerne, G. Mouille, E. Bouveret, B. Field, Quantification of guanosine
- triphosphate and tetraphosphate in plants and algae using stable isotope-labelled internal
- standards, Talanta. 219 (2020) 121261. https://doi.org/10.1016/j.talanta.2020.121261.

1 Table S1 -Bacterial strains

Lab code	Name	Genotype	Reference
EB3	BTH101	F-, cya-99, araD139, galE15, galK16, rpsL1 (Str r), hsdR2, mcrA1, mcrB1	1
EB70	DH5α	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	Lab stock
EB72	BL21(DE3) pLys	F- ompT gal dcm lon hsdSB (rB- mB-) λ(DE3) pLysS(cmR)	Lab stock
EB944	MG1655	$F^ λ^-$ ilvG- rfb-50 rph-1	Lab stock
EB421	$\Delta relA$	MG1655 $\Delta relA$ without antibiotic resistance	2
EB544	ppGpp ⁺	MG1655 ΔrelA spoT203	3
EB1080	ppGpp°	MG1655 $\Delta relA \Delta spoT$ without antibiotic resistance	

1 Table S2- Plasmids

Lab code	Description	Reference
pEB1017	pBAD33	4
pJV381	pBAD33-apk2 _{tox-snu} (PCR product w/ primers ebm 2104/2095 cloned in pEB1017 at restriction sites KpnI/SalI)	This study
pJV390	pBAD33-apk2 _{tox-snu} D72G (mutagenesis w/ primers ebm 2118/2119 on pJV381)	This study
pEB698	pSM11harbors a truncated version of <i>relA</i> coding for a constitutively active protein of 455 amino acids out of 742. Expression is driven by P _{tac} .	5
pEB699	pSM12 harbors a truncated version of $relA$ coding for an unactive protein of 331 amino acids out of 742. Expression is driven by P_{tac} .	5
pEB227	pBAD24	4
pEB774	pBAD24_SpoT (SpoT contains mutation Y190H)	Generous gift from E. Bouveret
pEB1242	pASK-IBA37plus	IBA
pJV374	pP _{tet} iapK (PCR product w/ primers ebm 2083/2084 cloned in pEB1242 at restriction sites EcoRI-XhoI)	This study
pJV375	pP _{tet} aph1 (PCR product w/ primers ebm 2085/2086 cloned in pEB1242 at restriction sites EcoRI-XhoI)	This study
pJV377	pP _{tet} mesh1 (mesh1 cloned in pEB1242 at restriction sites EcoRI-HindIII)	This study
pJV378	pP _{tet} iapK aph I	This study
pJV390	pP _{tet} aph1 D48Y	This study
pJV417	pP _{tet} SPNA45_00320 (PCR product w/ primers ebm 2156/2157 cloned in pEB1242 at restriction sites EcoRI/XhoI)	This study
pJV418	pP _{tet} SPNA45_00321 (PCR product w/ ebm 2158/2159 cloned in pEB1242 at restriction sites EcoRI/XhoI)	This study
pEB354	pKT25linker	6
pEB362	TolB	Generous gift from E. Bouveret
pJV396	pT25-Apk2 _{tox-snu} D72G (PCR product w/ primers ebm 2122/2082 cloned in pEB354 at restriction sites EcoRI/XhoI)	This study
pEB355	pUT18Clinker	6
pEB356	Pal	Generous gift from E. Bouveret

pJV397	pT18-IapK (PCR product w/ primers ebm 2083/2084 cloned in pEB355 at restriction sites EcoRI/XhoI)	This study
pJV398	pT18-Aph1 (PCR product w/ ebm 2085/2086 cloned in pEB355 at restriction sites EcoRI/XhoI)	This study
pEB1520	pETDuet-1	Novagen
pJV403	pETDuet-1 <i>apk2</i> tox-snu <i>iapK</i> (PCR product w/ primers ebm 2129/2082 and ebm 2130/2131 cloned in pEB1520 at restriction sites EcoRI/SalI and NdeI/XhoI)	This study
pJV405	pETDuet-1- apk1 _{tox} pau iapK pau (PCR product w/ primers ebm 2124/2125 and ebm 2126/2127 cloned in pEB1520 at restriction sites KpnI/SalI and NdeI/XhoI) (Apk1 _{tox-pau} contains mutation R206S)	This study
pEB1886	Rel _{seq} (1-385) production plasmid	7

1 Table S3- Primers

Lab	Sequence	Usage
code		
ebm	ctcctcgagTCATTTAACACGCTCAATGTTTTT	Cloning apk2tox-snu
2082		
ebm	gaagaattcAGCGTGTTAAATGATATGAAAGAC	Cloning <i>iapK</i> _{snu}
2083		
ebm	ctcctcgagTCAAGCTGCCACCATGCGG	Cloning iapK _{snu}
2084		
ebm	gaagaattcATTGATATTGCACTTGCAATCG	Cloning aph1 _{snu}
2085		
ebm	ctcctcgagTTATGTGGATAAATAATAAATCGCG	Cloning aph1 _{snu}
2086		
ebm	ccagtgaattcctcgagcacgtgTCATTTAACACGCTCAATGTTTTTTG	Cloning apk2tox-snu
2095		
ebm	ggtggtaccGGGGGcgtctgg <u>atg</u> GCGAAAGCTAAATTCTATAGTGAA	Cloning apk2 _{tox-snu}
2104		
ebm	gcgaattaatacgactcactatagggcttaagtataaggaggaaaaaatatgGCGAAAGCTAAATTCTATAGTGAA	Fwd IVT apk2tox-snu
2109		
ebm	a a a accect cegtt tag ag ag gggt tat get ag tta TTA ttttt teg a act geg gg t gget cea TTTA ACACGCTCA ATGTTTTTT	Rev IVT apk2tox-snu
2110	GGAA	
ebm	AAAGCAGTTAGCAAAATTAACGgCGCTTTACGTTATACAACTATCTTT	Mutagenesis
2118		apk2 _{tox} -snu
ebm	AAAGATAGTTGTATAACGTAAAGCGcCGTTAATTTTGCTAACTGCTTT	Mutagenesis
2119		apk2 _{tox-snu}
ebm	GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATATGAGTAAAG	Fwd IVT gfp
2120	GAGAAGAACTTTTCAC	
ebm	AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTATTATTTTTCGAACTGCGGGTGGCTCC	Rev IVT gfp
2121	ATTT	
ebm	gaagaattcatgGCGAAAGCTAAATTCTATAGTGAA	Cloning apk2 _{tox-snu}
2122		
ebm	gtcgtcgac <u>TCA</u> ATTGCCATTGCCTTTGCGC	Cloning apk1 _{tox-pau}
2124		
ebm	gaagaattcgATGGCACGGCTCGGCAACG	Cloning apk1 _{tox-pau}
2125		
ebm	cat <u>catATG</u> GCAATTGAAAAGGGCGAAG	Cloning <i>iapK</i> _{pau}
2126		

ebm	ctcctcgagGCCCTTGGGAAAGCCCGTC	Cloning iapK _{pau}
2127		
ebm	gaagaattcgATGGCGAAAGCTAAATTCTATAGTGAA	Cloning apk2tox-snu
2129		
ebm	cat <u>catATG</u> AAAGACATTAAGTATTACCGTAC	Cloning iapK _{snu}
2130		
ebm	ctcctcgagAGCTGCCACCATGCGGTCAA	Cloning iapK _{snu}
2131		
ebm	gaagaattcATGAAATATCGCAAAAAGCCCG	Cloning
2156		SPNA45_00320
ebm	ctcctcgagTTATTCCTCGGTCTTCTCATAA	Cloning
2157		SPNA45_00320
ebm	gaagaattcATGCTTGAAAAGGCTAAGCAAT	Cloning
2158		SPNA45_00321
ebm	ctcctcgagCTAATCCTTAATTGCGCGGTT	Cloning
2159		SPNA45_00321

References	Supp!	lementary	Tables
------------	-------	-----------	---------------

- G. Karimova, J. Pidoux, A. Ullmann, D. Ladant, A bacterial two-hybrid system based on a
 reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 5752–
- 5 5756. https://doi.org/10.1073/pnas.95.10.5752.
- 6 [2] A. Wahl, L. My, R. Dumoulin, J.N. Sturgis, E. Bouveret, Antagonistic regulation of dgkA
- 7 and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia
- 8 coli: dgkA and plsB regulation by ppGpp, BasR, and σE, Molecular Microbiology. 80
- 9 (2011) 1260–1275. https://doi.org/10.1111/j.1365-2958.2011.07641.x.
- 10 [3] L. My, B. Rekoske, J.J. Lemke, J.P. Viala, R.L. Gourse, E. Bouveret, Transcription of the
- 11 Escherichia coli Fatty Acid Synthesis Operon fabHDG Is Directly Activated by FadR and
- 12 Inhibited by ppGpp, J Bacteriol. 195 (2013) 3784–3795.
- 13 https://doi.org/10.1128/JB.00384-13.
- 14 [4] L.M. Guzman, D. Belin, M.J. Carson, J. Beckwith, Tight regulation, modulation, and high-
- level expression by vectors containing the arabinose PBAD promoter, J Bacteriol. 177
- 16 (1995) 4121–4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995.
- 17 [5] G. Schreiber, S. Metzger, E. Aizenman, S. Roza, M. Cashel, G. Glaser, Overexpression of
- the relA gene in Escherichia coli, Journal of Biological Chemistry. 266 (1991) 3760–
- 19 3767. https://doi.org/10.1016/S0021-9258(19)67860-9.
- 20 [6] D. Gully, E. Bouveret, A protein network for phospholipid synthesis uncovered by a
- variant of the tandem affinity purification method in Escherichia coli, Proteomics. 6
- 22 (2006) 282–293. https://doi.org/10.1002/pmic.200500115.
- 23 [7] U. Mechold, K. Potrykus, H. Murphy, K.S. Murakami, M. Cashel, Differential regulation
- by ppGpp versus pppGpp in Escherichia coli, Nucleic Acids Research. 41 (2013) 6175–
- 25 6189. https://doi.org/10.1093/nar/gkt302.

FIGURE CAPTIONS

1

2 Figure 1 S. pneumoniae Apk2tox-snu is a bactericidal toxin

3 (a) Schematic representation of the genetic environment of the apk2 gene found within the large prophage of S. pneumoniae SPNA45. Genes encoding proteins associated with capsid 4 formation are shown in color and genes shown in white correspond to proteins with not yet 5 6 defined functions. Locus tags are indicated above apk2, iapK and aph1. (b) Toxicity assays. 7 E. coli MG1655 cells carrying the pBAD33 empty plasmid (ø) or pBAD33 expressing the wildtype (Apk2_{tox-snu}) or the D72G catalytic-null variant of Apk2_{tox-snu} D72G, were grown to an 8 9 OD₆₀₀ 0.5, serially diluted, and spotted on LB agar containing glucose 1% or arabinose 0.2% 10 to repress or induce the production of the Apk2_{tox} domain, respectively. (c) Growth inhibition in liquid medium. E. coli MG1655 cells carry the pBAD33 empty plasmid (ø) or pBAD33 11 expressing wild-type Apk 2_{tox} , or plasmids expressing constitutively-active (RelA Δ Ct 288) or 12 13 inactive (RelA ΔCt 412) RelA C-terminal truncated variants [20]. Cell growth in liquid medium was monitored upon induction of the production of the indicated protein. (d) Bactericidal effect 14 15 associated with the production of Apk2_{tox-snu}. E. coli MG1655 cells from panel (c) were harvested 0, 30, and 60 min post-induction, washed, serially diluted and spotted on LB agar 16 17 containing glucose to repress the production of the indicated protein. (e) In vitro 18 transcription/translation assays with indicated DNA templates coding Apk2tox-snu-Streptag (Apk2_{tox-snu}St) or GFP-Strep_{tag} (GFPSt). Products of the assays were separated on SDS-PAGE 19 and immunodetected with an antibody against the Strep tag. MW: molecular weight. 20

21

Figure 2 Apk2_{tox-snu} has (p)ppApp synthetase activity

- 23 (a) Complementation assays. Wild-type and ppGpp° E. coli strains carrying the empty plasmid
- 24 (ø) or containing the spoT or $apk2_{tox-snu}$ genes were streaked on minimal medium agar. (b, c)
- 25 In vitro synthesis assay of modified nucleotides. The indicated domains were purified and

1 incubated in the presence of ATP/GTP (b) or ATP alone (c). The reaction products were

2 separated by anion exchange HPLC. In the control panel, no enzyme was mixed with the

nucleotides. Rel_{seq} is the catalytic N-terminal fragment (residues 1 to 385) of the bifunctional

Rel/Spo homolog from S. dysgalactiae subsp. equisimilis [22]. Apk1_{tox pau} is the (p)ppApp

synthetase domain from the formerly named T6SS-effector Tas1 from Pseudomonas

6 *aeruginosa* PA14 [18,19].

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3

4

5

Figure 3 Two distinct immunity proteins confer protection against Apk2_{tox-snu}

(a) Toxicity neutralization assays. E. coli MG1655 cells producing Apk2_{tox-snu} and the HD domain Drosophila melanogaster Mesh1 protein, or one or the two ORFs following the apk2 gene: iapK and aph1, or the aph1 D48Y variant were grown to OD600 0.5, serially diluted and spotted on LB agar containing anhydrotetracycline to induce the production of the proteins for which immune function was tested, and glucose 1% or arabinose 0.2% to repress or induce the production of the Apk2_{tox-snu}, respectively. (b) Ribbon (top) and surface (bottom) representations of the Apk2tox-snu- IapK complex AlphaFold2 structural model. Apk2tox-snu and IapK are shown in purple and pink, respectively. The side chains of the two conserved Syn2 Asp and Syn4 Glu residues, involved in Mg²⁺ binding in (p)ppGpp synthetases, are highlighted in red. (c) BACTH experiment. E. coli BTH101 cells producing the indicated proteins fused to the T18 or T25 domains of the Bordetella pertussis adenylate cyclase were spotted on MacConkey agar (Ø, no protein fused to the T18 or T25 domain). The T25 TolB / T18 Pal pair serves as a positive control of protein-protein interaction. Due to high toxicity of the Apk2_{tox-snu} toxin, the inactivated version D72G was used in these experiments. (d) Copurification. Cell lysates of E. coli BL21(DE3) cells producing Histag-Apk2tox-snu and IapK-Stag were subjected to immobilized metal affinity chromatography on cobalt beads. Fractions corresponding to the protein extract, unbound proteins and two successive elutions were 1 separated by SDS-PAGE, transferred onto nitrocellulose membranes and immunodetected

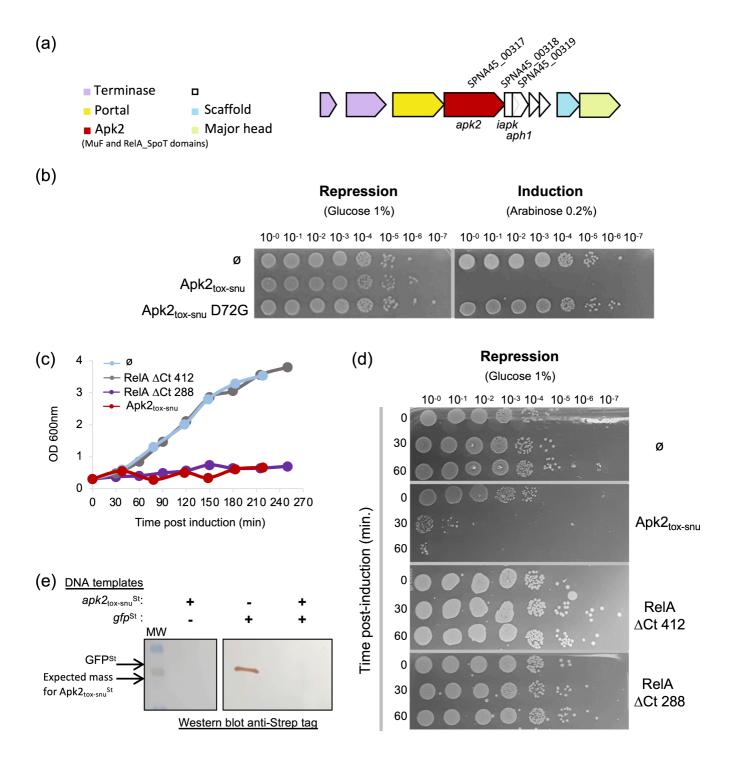
2 using anti-His (upper blot) and anti-S-tag (lower blot) antibodies. (e) Chromatograms of the in

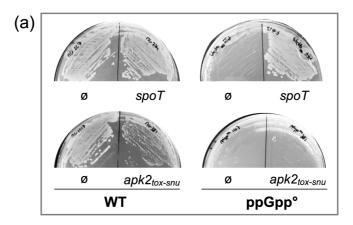
vitro degradation assay of modified nucleotides. The indicated proteins were purified and their

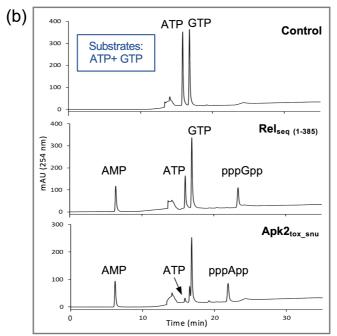
activity on the nucleotides indicated in the frames was tested in vitro (control, no protein). The

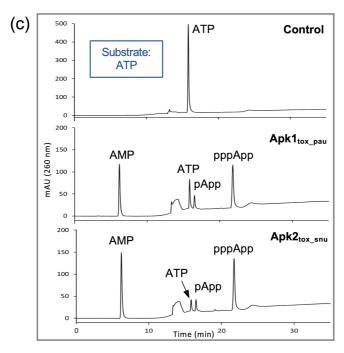
products of the reaction were separated by anion exchange HPLC.

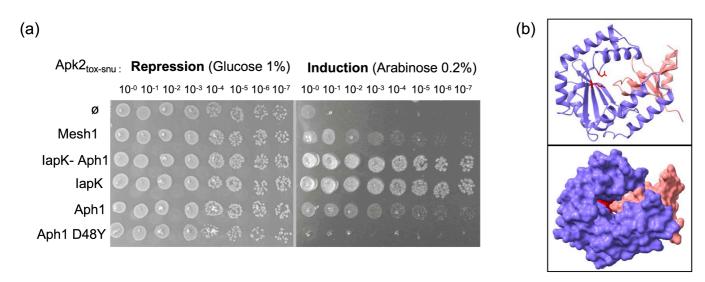
Figure 4 Multiple sequence alignment of (p)ppGpp and (p)ppApp synthetase domains

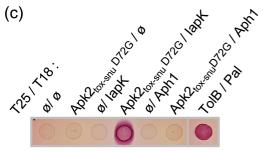

Clustal Omega protein multiple sequence alignment of synthesis domains from (p)ppGpp synthetases (RelA and SpoT from *Escherichia coli* (eco), Rel from *Streptococcus dysgalactiae subsp. equisimilis* (seq), and small alarmone synthetases YjbM and YwaC from *Bacillus subtilis* (bsu)) and from Apk1 and Apk2 (p)ppApp synthetase domains from different bacterial genera (see Accession Numbers hereinafter for protein ID). Members of the two synthetase families are separated by a black line. Amino acids are colored according to Clustal omega grouping (red, acidic residues; blue, basic residues except His; grey, hydrophobic and aromatic residues except Tyr; the other amino-acids were left uncolored). The 5 conserved motifs (Syn1-5) of the (p)ppGpp synthetase domains are indicated. Catalytic Asp (Syn2) and Glu (Syn4) residues, involved in Mg²⁺ binding, are indicated by red stars. Residues that are conserved but different in each synthetase family are boxed. MSA was shorten after syn5 motif, most of Apk2

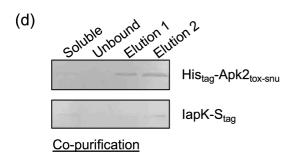

Figure 5 Distinction between (p)ppGpp and (p)ppApp synthetases

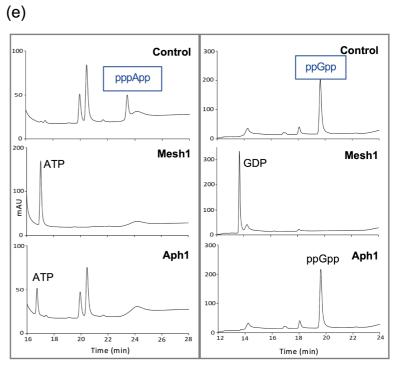

synthetase domain sequences were already ended.

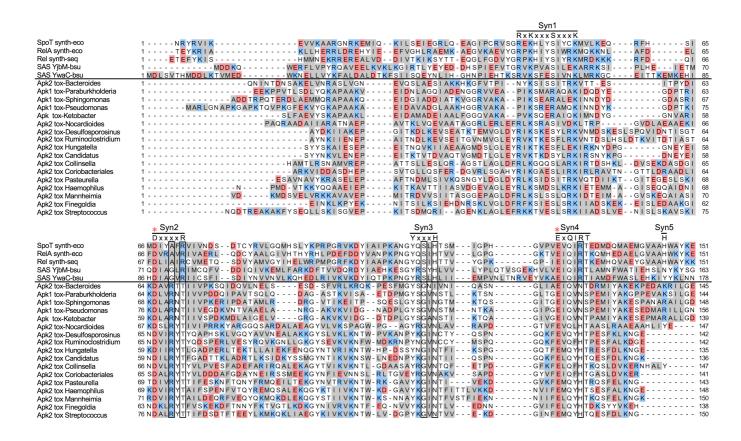

(a) Domain architecture of enzymes involved in (p)ppGpp and (p)ppApp metabolism (domains found in the C-terminal regulatory region of SpoT are not detailed). Catalytic motifs are shown as black lines. Dashed lines symbolized slightly different motif from the (p)ppGpp synthetase reference. Scheme inspired form Steinchen and Bange 2016 [17]. (b) Ribbon representation of

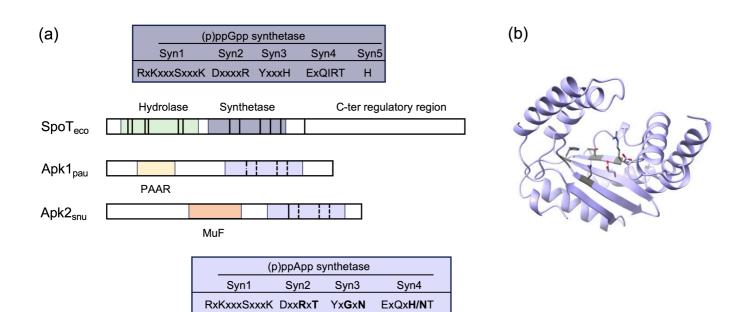

- 1 the Apk2_{tox-snu} AlphaFold2 structural model. The side chains of residues conserved in the syn
- 2 motifs of (p)ppApp synthetases, but which are different from those found in (p)ppGpp
- 3 synthetases (in bold in the (p)ppApp synthetase box, Fig. 5a) are colored grey and heteroatom.
- 4 The side chain colored heteroatom of the conserved catalytic Asp (Syn2) and Glu (Syn4)
- 5 residues are also shown.











Bacterial two-hybrid

ExQx**H/N**T