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Communication 
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Abstract: Practitioners have used hidden Markov models (HMMs) in different problems for about 

sixty years. Moreover, conditional random fields (CRFs) are an alternative to HMMs and appear in 

the literature as different and somewhat concurrent models. We propose two contributions: First, 

we show that the basic linear-chain CRFs (LC-CRFs), considered as different from HMMs, are in 

fact equivalent to HMMs in the sense that for each LC-CRF there exists an HMM—that we specify—

whose posterior distribution is identical to the given LC-CRF. Second, we show that it is possible to 

reformulate the generative Bayesian classifiers maximum posterior mode (MPM) and maximum a 

posteriori (MAP), used in HMMs, as discriminative ones. The last point is of importance in many 

fields, especially in natural language processing (NLP), as it shows that in some situations dropping 

HMMs in favor of CRFs is not necessary. 

Keywords: hidden Markov model; linear chain conditional random field; Bayesian classifier;  

discriminative classifier; generative classifier; maximum posterior mode; maximum a posteriori 

1. Introduction

Let 𝑍1:𝑁 = (𝑍1, … , 𝑍𝑁) be a stochastic sequence, with 𝑍𝑛 = (𝑋𝑛, 𝑌𝑛). The random var-

iables 𝑋1, … , 𝑋𝑁  take their values in a finite set Λ, while 𝑌1, … , 𝑌𝑁  take their values ei-

ther in a discrete or continuous set Ω. Realizations of 𝑋1:𝑁 = (𝑋1, … , 𝑋𝑁) are hidden while 

realizations of 𝑌1:𝑁 = (𝑌1, … , 𝑌𝑁) are observed, and the problem we deal with is to esti-

mate 𝑋1:𝑁 = 𝑥1:𝑁 from 𝑌1:𝑁 = 𝑦1:𝑁. We deal with Bayesian methods of estimation, which 

requires some probabilistic model. Probabilistic model is a distribution—or a family of 

distributions—which is denoted by 𝑝(𝑧1:𝑁), or 𝑝(𝑥1:𝑁, 𝑦1:𝑁). We are interested in the case 

of dependent 𝑍1, … , 𝑍𝑁. The simplest model taking into account this dependence is the 

well-known hidden Markov model (HMM) [1–5], whose distribution is given with 

𝑝(𝑥1:𝑁, 𝑦1:𝑁) = 𝑝(𝑥1)𝑝(𝑦1|𝑥1) ∏ 𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝑁−1
𝑛=1  (1) 

In the whole paper, we consider HMMs such that 𝑝(𝑥𝑛+1|𝑥𝑛) and 𝑝(𝑦𝑛+1|𝑥𝑛+1) in 

Equation (1) are non-null. HMMs allow recursive fast computation of Bayesian estima-

tors, called “classifiers” in this paper, and recalled below. In spite of their simplicity, 

HMMs are very robust and provide quite satisfactory results in many applications. 

Moreover, conditional random fields (CRFs) [6,7] also allow estimating 𝑋1:𝑁 = 𝑥1:𝑁 

from 𝑌1:𝑁 = 𝑦1:𝑁. Their definition is different from the definition of HMMs in that in CRFs, 

one directly considers 𝑝(𝑥1:𝑁|𝑦1:𝑁), and neither 𝑝(𝑥1:𝑁, 𝑦1:𝑁)  nor  𝑝(𝑦1:𝑁|𝑥1:𝑁) is needed 

to perform the estimation. The distribution of general LC-CRFs is written as such: 
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𝑝(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1|𝑦1:𝑁) ∏ 𝑝(𝑥𝑛+1|𝑥𝑛, 𝑦1:𝑁)𝑁−1
𝑛=1   (2) 

In this paper, we consider the following basic LC-CRF: 

𝑝(𝑥1:𝑁|𝑦1:𝑁) =
1

𝜅(𝑦1:𝑁)
𝑒𝑥𝑝[∑ 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)𝑁−1

𝑛=1 + ∑ 𝑈𝑛(𝑥𝑛, 𝑦𝑛)𝑁
𝑛=1 ]  (3) 

with 𝜅(𝑦1:𝑁) the normalizing constant. 

Authors usually consider the two families HMMs and LC-CRFs as different [6–13]. 

They classify the former in the category of “generative models”, while they classify the 

latter in the category of “discriminative” models.  

In this paper, we investigate the relationship between HMMs (Equation (1)) and LC-

CRFs (Equation (3)). We immediately see that if 𝑝(𝑥1:𝑁, 𝑦1:𝑁) is of the form (Equation (1)), 

then 𝑝(𝑥1:𝑁|𝑦1:𝑁) is of the form (Equation (3)). Indeed, 𝑝(𝑥𝑛+1|𝑥𝑛) and 𝑝(𝑦𝑛+1|𝑥𝑛+1) in 

Equation (1) being non-zero, one can take 𝑉1(𝑥1, 𝑥2) = 𝐿𝑜𝑔[𝑝(𝑥1, 𝑥2)] , 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) =

𝐿𝑜𝑔[𝑝(𝑥𝑛+1|𝑥𝑛)]  for 𝑛 = 2 , ,, 𝑁 − 1 , 𝑈𝑛(𝑥𝑛, 𝑦𝑛) = 𝐿𝑜𝑔[𝑝(𝑦𝑛|𝑥𝑛)] , for 𝑛 = 1 , ,, 𝑁 , and 

𝜅(𝑦1:𝑁) = 𝑝(𝑦1:𝑁). Thus, the posterior distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁) of each HMM (Equation 

(1)) with the positivity conditions assumed above is a LC-CRF (Equation (3)). Our first 

contribution is to show the converse: for a given LC-CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁) of form (Equation 

(3)), there is an HMM 𝑞(𝑥1:𝑁, 𝑦1:𝑁)  of form (Equation (3)) such that 𝑞(𝑥1:𝑁|𝑦1:𝑁) =

𝑝(𝑥1:𝑁|𝑦1:𝑁) . Moreover, we give exact computation of the HMM parameters 𝑞(𝑥1) , 

𝑞(𝑥𝑛+1|𝑥𝑛) , 𝑞(𝑦𝑛+1|𝑥𝑛+1) , from the LC-CRF parameters 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) , 𝑈𝑛(𝑥𝑛, 𝑦𝑛) . Such a 

general result, without additional constraints on LC-CRF, is new.  

Our second contribution is related to the computation of Bayesian classifiers. In some 

situations, CRFs are preferred over HMMs because the Bayesian classifiers based on CRFs 

are computed without considering 𝑝(𝑦𝑛|𝑥𝑛) distributions, which are difficult to model. 

This is particularly the case with automatic natural language processing (NLP). Indeed, 

when considering an HMM (Equation (1)) and calculating the Bayesian classifiers “maxi-

mum posterior margins” (MPM) and “maximum posterior” (MAP) in the standard way, 

we use 𝑝(𝑦𝑛|𝑥𝑛) and this is the reason why LC-CRFs are preferred over HMMs. In this 

paper, we show that the HMM-based MPM and MAP can also be computed without using 

𝑝(𝑦𝑛|𝑥𝑛) . Also recall that each Bayesian “discriminative” classifier based on LC-CRF 

(Equation (3)) is identical to the “generative” Bayesian classifier based on an HMM (Equa-

tion (1)), since the posterior distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁) of an HMM gives the one of a LC-

CRF. Indeed, Bayesian classifiers only depend on the posterior distribution. Thus, the dis-

tinction between “generative” classifiers and “discriminative” classifiers is misleading, 

they are all “discriminative”, but they can be computed in a “generative” way, using 

𝑝(𝑦𝑛|𝑥𝑛), or in a discriminative manner, without using 𝑝(𝑦𝑛|𝑥𝑛). Thus, we can say that 

our second contribution is to show that the HMM-based MPM and MAP, usually com-

puted in a generative manner, can also be computed in a discriminative manner. This is 

important because it shows that abandoning HMMs in favor of CRFs in the aforemen-

tioned situations is not justified. Indeed, attached to the first contribution, it shows that 

the use of the MPM or MAP based on HMM (Equation (1)) is as interesting as the use of 

the MPM or MAP based on LC-CRF (Equation (3)). 

Let us give some more technical details on the two contributions. 

1. We establish an equivalence between HMMs (Equation (1)) and basic linear-chain 

CRFs (Equation (3)), which completes the results presented in [14]. 

Let us notice that wanting to compare the two models directly is somewhat mislead-

ing. Indeed, HMMs and CRFs are defined with distributions on different spaces. To be 

precise, we adopt the following definition: 

Definition 1. Let 𝑋1, … , 𝑋𝑁, 𝑌1, … , 𝑌𝑁 be the two stochastic sequences defined above. 

(i) We will call “model” a distribution 𝑝(𝑥1:𝑁, 𝑦1:𝑁); 

(ii) We will call “conditional model” a distribution 𝑝(𝑥1:𝑁|𝑦1:𝑁); 
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(iii) We will say that a model 𝑝(𝑥1:𝑁, 𝑦1:𝑁) is “equivalent” to a conditional model 𝑞(𝑥1:𝑁|𝑦1:𝑁) 

if there exists a distribution 𝑟(𝑦1:𝑁) such that 𝑝(𝑥1:𝑁, 𝑦1:𝑁) = 𝑞(𝑥1:𝑁|𝑦1:𝑁)𝑟(𝑦1:𝑁); 

(iv) We will say that a family of models 𝛢 is “equivalent” to a family of conditional models 𝛣 if 

for each model 𝑝(𝑥1:𝑁, 𝑦1:𝑁) in Α there exists an equivalent conditional model 𝑞(𝑥1:𝑁|𝑦1:𝑁) 

in Β. 

According to Definition 1, HMMs are particular “models”, while CRFs are particular 

“conditional models”. Then a particular HMM model cannot be equal to a particular con-

ditional CRF model, but it can be equivalent to the latter.  

Our contribution is to show that the family of LC-CRFs (Equation (3)) is equivalent 

to the family of HMMs (Equation (1)). In addition, we specify, for each LC-CRF 

𝑞(𝑥1:𝑁|𝑦1:𝑁), a particular HMM 𝑝(𝑥1:𝑁, 𝑦1:𝑁) such that 𝑝(𝑥1:𝑁|𝑦1:𝑁) = 𝑞(𝑥1:𝑁|𝑦1:𝑁).  

Finally, the core of our first contribution is the following. Let 𝑝(𝑥1:𝑁, 𝑦1:𝑁, 𝜃) be an 

HMM (Equation (1)), with parameters 𝜃. Taking 𝑟(𝑦1:𝑁) = 𝑝(𝑦1:𝑁, 𝜃), it is immediate to 

see that 𝑝(𝑥1:𝑁|𝑦1:𝑁, 𝜃) is an equivalent CRF. The converse is not immediate. Is a given 

CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁, 𝜃) equivalent to a certain HMM? If yes, can we find 𝑟(𝑦1:𝑁) such that  

𝑝(𝑥1:𝑁|𝑦1:𝑁, 𝜃)𝑟(𝑦1:𝑁) is an HMM? Moreover, can we give its (Equation (1)) form? Answer-

ing to these questions in a simple linear-chain CRF case is our first contribution. More 

precisely, we show that the family of LC-CRFs (Equation (3)) is equivalent to the family 

of HMMs (Equation (1)), and we specify, for each LC-CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁), a particular HMM 

𝑞(𝑥1:𝑁, 𝑦1:𝑁) given in the form (Equation (1)), such that 𝑝(𝑥1:𝑁|𝑦1:𝑁) = 𝑞(𝑥1:𝑁|𝑦1:𝑁). 

2. We show that the “generative” estimators MPM and MAP in HMM are computable 

in a “discriminative” manner, exactly as in LC-CRF. 

One of the interests of HMMs and CRFs is that in both of them there exist Bayesian 

classifiers, which allow estimating 𝑥1:𝑁 from 𝑦1:𝑁 in a reasonable computer time. As ex-

amples, let us consider the “maximum of posterior margins” (MPM) defined with:  

[𝑔(𝑦1:𝑁) = 𝑥̂1:𝑁 = (𝑥̂1, … , 𝑥̂𝑁)] ⟺ [∀𝑛 = 1, … , 𝑁, 𝑝( 𝑥̂𝑛|𝑦1:𝑁) = 𝑠𝑢𝑝
𝑥𝑛

(𝑝(𝑥𝑛|𝑦1:𝑁)) (4) 

and the “maximum a posteriori” (MAP), defined with 

[𝑔(𝑦1:𝑁) = 𝑥̂1:𝑁] ⟺ [𝑝( 𝑥̂1:𝑁|𝑦1:𝑁) = 𝑠𝑢𝑝
𝑥1:𝑁

(𝑝(𝑥1:𝑁|𝑦1:𝑁)) (5) 

Note that likely to any other Bayesian classifier, MPM and MAP are independent 

from 𝑝(𝑦1:𝑁). This means that in any generative model 𝑝(𝑥1:𝑁, 𝑦1:𝑁), any related Bayesian 

classifier is strictly the same as the one related to the equivalent (in the meaning of Defi-

nition 1) CRF model 𝑝(𝑥1:𝑁|𝑦1:𝑁). We see that the distinction between “generative” and 

“discriminative” classifiers is not justified: all Bayesian classifiers are discriminative. 

However, in HMM the related MPM and MAP classifiers are computed using 𝑝(𝑦𝑛|𝑥𝑛), 

while this is not the case in LC-CRF. We show that both MPM and MAP in HMM can also 

be computed in a “discriminative” way, without using 𝑝(𝑦𝑛|𝑥𝑛). Thus, the feasibility of 

using MPM and MAP in HMM is strictly the same as that of their use in LC-CRF, which 

is our second contribution. One of the consequences is that the use of MPM and MAP in 

the two families HMMs and LC-CRFs presents exactly the same interest, in particular in 

NLP. This shows that abandoning HMMs in favor of LC-CRFs in NLP because of the 

“generative” nature [6–9,15–18] of their related Bayesian classifiers was not justified.  

2. Related Works 

Concerning the first contribution, several authors noticed similarities between LC-

CRFs and HMMs in different previous works. Our first remark is to notice that trying to 

compare the two families directly is somewhat incorrect, as they are defined on different 

spaces. In particular, they cannot be equal. It is well-known that the posterior distribution 

𝑝(𝑥1:𝑁|𝑦1:𝑁) of an HMM 𝑝(𝑥1:𝑁, 𝑦1:𝑁) is a LC-CRF. Conversely, showing that for a given 

CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁)  it is possible to find an HMM 𝑞(𝑥1:𝑁, 𝑦1:𝑁)  such that 𝑞(𝑥1:𝑁|𝑦1:𝑁) =
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𝑝(𝑥1:𝑁|𝑦1:𝑁) is more difficult and at our knowledge, there is no general results, except [14], 

published. However, let us mention [19] where authors show a similar result to ours as-

suming an additional constraint on the LC-CRF considered. In [7], authors comment sim-

ilarities and differences between LC-CRFs and HMMs considered here; however, the 

problem of searching an HMM equivalent to a given LC-CRF is not addressed. In this 

paper we show how to compute, from the LC-CRF 𝑝(𝑥1:𝑁|𝑦1:𝑁) given with Equation (3), 

an HMM 𝑞(𝑥1:𝑁, 𝑦1:𝑁) verifying 𝑞(𝑥1:𝑁|𝑦1:𝑁) = 𝑝(𝑥1:𝑁|𝑦1:𝑁), without any additional con-

straints. Concerning the second contribution, the authors generally distinguish between 

“discriminative” classifiers, linked to discriminative models, and “generative” classifiers, 

linked to generative models. As mentioned above, our contribution is to show that the 

MPMs and MAPs based on generative HMMs can also be considered as discriminative 

classifiers. To our knowledge, there is no work on such conversions, except [20]. 

3. Equivalence between HMMs and Simple Linear-Chain CRFs 

We will use the following Lemma: 

Lemma 1. Let 𝑊1:𝑁 = (𝑊1, … , 𝑊𝑁) be random sequence, taking its values in a finite set Δ. Then 

(i) 𝑊1:𝑁 is a Markov chain if and only if (iff) there exist 𝑁 − 1 functions 𝜑1, … , 𝜑𝑁−1 from Δ2 

to R+ such that 

𝑝(𝑤1, … , 𝑤𝑁) ∝ 𝜑1(𝑤1, 𝑤2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁) (6) 

where “∝” means “proportional to”; 

(ii) For the HMM defined with 𝜑1, ,, 𝜑𝑁−1 verifying Equation (6), 𝑝(𝑤1) and 𝑝(𝑤𝑛+1|𝑤𝑛) 

are given with 

𝑝(𝑤1) =
𝛽1(𝑤1) 

∑ 𝛽1(𝑤1)𝑤1

;  𝑝(𝑤𝑛+1|𝑤𝑛) =
𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1) 

𝛽𝑛(𝑤𝑛)
 (7) 

where 𝛽1(𝑤1), ,, 𝛽𝑁(𝑤𝑁) are defined with the following backward recursion: 

𝛽𝑁(𝑤𝑁)=1, 𝛽𝑛(𝑤𝑛) = ∑ 𝜑𝑛(𝑤𝑛 , 𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1)𝑤𝑛+1
 (8) 

Proof of Lemma.  

1. Let 𝑊1:𝑁  be Markov: 𝑝(𝑤1, … , 𝑤𝑁) = 𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤2) … 𝑝(𝑤𝑁|𝑤𝑁−1) . Then 

(Equation (6)) is verified by 𝜑1(𝑤1, 𝑤2) = 𝑝(𝑤1)𝑝(𝑤2|𝑤1), 𝜑2(𝑤2, 𝑤3) = 𝑝(𝑤3|𝑤2), ,, 

𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁) = 𝑝(𝑤𝑁|𝑤𝑁−1). 

2. Conversely, let 𝑝(𝑤1, … , 𝑤𝑁)  verifies (Equation (6)). Thus 𝑝(𝑤1, … , 𝑤𝑁) =

𝐾𝜑1(𝑤1, 𝑤2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁) with 𝐾 constant. This implies that for each 𝑛 = 1, ,, 

𝑁 − 1 we have 

𝑝(𝑤𝑛+1|𝑤1, … , 𝑤𝑛) =
𝑝(𝑤1, … , 𝑤𝑛, 𝑤𝑛+1)

𝑝(𝑤1, … , 𝑤𝑛)
= 

∑ 𝜑1(𝑤1, 𝑤2) … 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1, 𝑤𝑛+2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(𝑤𝑛+2,…,𝑤𝑁,)

∑ 𝜑1(𝑤1, 𝑤2) … 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1, 𝑤𝑛+2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(𝑤𝑛+1,𝑤𝑛+2,…,𝑤𝑁,)
= 

𝜑𝑛(𝑤𝑛, 𝑤𝑛+1) ∑ 𝜑𝑛+1(𝑤𝑛+1, 𝑤𝑛+2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(𝑤𝑛+2,…,𝑤𝑁,)

∑ 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝜑𝑛+1(𝑤𝑛+1, 𝑤𝑛+2) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(𝑤𝑛+1,𝑤𝑛+2,…,𝑤𝑁,)
= 𝑝(𝑤𝑛+1|𝑤𝑛) 

(9) 

which shows that 𝑝(𝑤1, … , 𝑤𝑁) is Markov. 

Moreover, let us set 𝛽𝑛(𝑤𝑛) = ∑ 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1) … 𝜑𝑁−1(𝑤𝑁−1, 𝑤𝑁)(𝑤𝑛+1,𝑤𝑛+2,…,𝑤𝑁)   for 

𝑛 = 1, ,, 𝑁 − 1. On the one hand, we see that 𝛽𝑛(𝑤𝑛) = ∑ 𝜑𝑛(𝑤𝑛, 𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1)𝑤𝑛+1
. 

On the other hand, according to (Equation (9)) we have 𝑝(𝑤𝑛+1|𝑤𝑛) =
𝜑𝑛(𝑤𝑛,𝑤𝑛+1)𝛽𝑛+1(𝑤𝑛+1) 

𝛽𝑛(𝑤𝑛)
. As 𝑝(𝑤1) =

𝛽1(𝑤1) 

∑ 𝛽1(𝑤1)𝑤1

, (Equation (7)) and (Equation (8)) are verified, 

which ends the proof. □ 
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Proposition 1 below shows that the LC-CRF defined with (Equation (3)) is equivalent 

to an HMM defined with Equation (1). In addition, 𝑝(𝑥1), 𝑝(𝑥𝑛+1|𝑥𝑛), and 𝑝(𝑦𝑛|𝑥𝑛) in 

Equation (1) defining an equivalent HMM are computed from 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)  and 

𝑈𝑛(𝑥𝑛, 𝑦𝑛). To the best of our knowledge, except some first weaker results in [19], these 

results are new. 

Proposition 1. Let 𝑍1:𝑁 = (𝑍1, … , 𝑍𝑁)  be a stochastic sequence, with 𝑍𝑛 = (𝑋𝑛, 𝑌𝑛) . Each 

(𝑋𝑛, 𝑌𝑛) takes its values in Λ × Ω, with Λ and Ω finite. If 𝑍1:𝑁 is a LC-CRF with the distribution 

𝑝(𝑥1:𝑁|𝑦1:𝑁) defined by 

𝑝(𝑥1:𝑁|𝑦1:𝑁) =
1

𝜅(𝑦1:𝑁)
𝑒𝑥𝑝[∑ 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)𝑁−1

𝑛=1 + ∑ 𝑈𝑛(𝑥𝑛, 𝑦𝑛)𝑁
𝑛=1 ]  (10) 

then (Equation (10)) is the posterior distribution of the HMM 

𝑞(𝑥1:𝑁, 𝑦1:𝑁) = 𝑞1(𝑥1)𝑞(𝑦1|𝑥1) ∏ 𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1)𝑁−1
𝑛=1   (11) 

with 

𝑞(𝑥1, 𝑦1) =
𝛽1(𝑥1, 𝑦1) 

∑ 𝛽1(𝑥1, 𝑦1)(𝑥1,𝑦1)
 (12) 

and, for 𝑛 = 1, … , 𝑁 − 1: 

𝑞(𝑥𝑛+1|𝑥𝑛) =
𝜓(𝑥𝑛+1)𝑒𝑥𝑝 [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]

∑ 𝜓(𝑥𝑛+1)𝑒𝑥𝑝 [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)] 𝑥𝑛+1

 (13) 

𝑞(𝑦𝑛+1|𝑥𝑛+1) =
𝑒𝑥𝑝 [𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)] 𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)

𝜓(𝑥𝑛+1)
 (14) 

where 

𝜓(𝑥𝑛+1) = ∑ 𝑒𝑥𝑝 [𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)]𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)𝑦𝑛+1
  (15) 

and 𝛽1(𝑥1, 𝑦1), …, 𝛽𝑁(𝑥𝑁, 𝑦𝑁) are given by the backward recursion 

𝛽𝑁(𝑥𝑁, 𝑦𝑁) = 1;   

𝛽𝑛(𝑥𝑛, 𝑦𝑛) = ∑ exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) + 𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)]𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)(𝑥𝑛+1,𝑦𝑛+1)    (16) 

Proof of Proposition 1. Let us consider functions φ1, ,, φ𝑁 defined on [Λ × Ω]2 by 

𝜑1(𝑥1, 𝑦1, 𝑥2, 𝑦2) = 𝑒𝑥𝑝[𝑉1(𝑥1, 𝑥2) + 𝑈1(𝑥1, 𝑦1) + 𝑈2(𝑥2, 𝑦2)] (17) 

𝜑𝑛(𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1) = exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) + 𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)], for 𝑛 = 2, … , 𝑁 − 1. (18) 

According to the lemma, they define a Markov chain 𝑍1:𝑁 = (𝑍1, … , 𝑍𝑁) , with 𝑍𝑛 =

(𝑋𝑛, 𝑌𝑛) . Let us denote its distribution by 𝑞(𝑧1:𝑁) = 𝑞(𝑥1:𝑁, 𝑦1:𝑁) . As 𝑞(𝑥1:𝑁, 𝑦1:𝑁) =

𝐾𝑒𝑥𝑝[∑ 𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)𝑁−1
𝑛=1 + ∑ 𝑈𝑛(𝑥𝑛, 𝑦𝑛)𝑁

𝑛=1 ]  with 𝐾  constant, we have 𝑞(𝑥1:𝑁|𝑦1:𝑁) =

𝑝(𝑥1:𝑁|𝑦1:𝑁). Let us show that q(𝑥1:𝑁, 𝑦1:𝑁) verifies (Equations (11)–(16)). According to the 

lemma, considering 𝛽1(𝑥1, 𝑦1), …, 𝛽𝑁(𝑥𝑁, 𝑦𝑁) defined with (Equation (16)), and 𝜓(𝑥𝑛+1) 

defined with (Equation (15)), we have 

𝑞(𝑥𝑛+1, 𝑦𝑛+1|𝑥𝑛, 𝑦𝑛) =
𝜑𝑛(𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1)𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)

∑ 𝜑𝑛(𝑥𝑛, 𝑦𝑛, 𝑥𝑛+1, 𝑦𝑛+1)𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)(𝑥𝑛+1,𝑦𝑛+1)
= 

exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) + 𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)]𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)

∑ exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1) + 𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)]𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1) (𝑥𝑛+1,𝑦𝑛+1)
= 

(19) 
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exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]exp [𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)]𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)

∑ 𝜓(𝑥𝑛+1)exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]𝑥𝑛+1

= 

[
exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]

∑ 𝜓(𝑥𝑛+1)exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]𝑥𝑛+1

] [exp[𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)] 𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)] = 

[
𝜓(𝑥𝑛+1)exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]

∑ 𝜓(𝑥𝑛+1)exp [𝑉𝑛(𝑥𝑛, 𝑥𝑛+1)]𝑥𝑛+1

] [
exp[𝑈𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)] 𝛽𝑛+1(𝑥𝑛+1, 𝑦𝑛+1)

𝜓(𝑥𝑛+1)
] = 

𝑞(𝑥𝑛+1|𝑥𝑛)𝑞(𝑦𝑛+1|𝑥𝑛+1) 

 

(12) being directly implied by the lemma, this ends the proof. □ 

4. Discriminative Classifiers in Generative HMMs 

One of the interests of HMMs and some CRFs with hidden discrete finite data lies in 

possibilities of analytic fast computation of Bayesian classifiers. As examples of classic 

Bayesian classifiers, let us consider MPM (Equation (4)) and MAP (Equation (5)). How-

ever, in some domains such as NLP, CRFs are preferred to HMMs for the following rea-

sons. As HMM is a generative model, MPM and MAP used in HMM are also called “gen-

erative”, and people consider that HMM-based MPM and MAP require the knowledge of 

𝑝(𝑦𝑛|𝑥𝑛). Then people consider it as improper to use the HMM-based MPM and MAP in 

situations where the distributions 𝑝(𝑦𝑛|𝑥𝑛) are hard to handle. We show that this reason 

is not valid. More precisely, we show two points: 

(i) First, we notice that regardless of the distribution 𝑝(𝑥1:𝑁, 𝑦1:𝑁), all Bayesian classifiers 

are independent from 𝑝(𝑦1:𝑁), so that the distinction between « generative » and « 

discriminative » classifiers is misleading: they are all discriminative;  

(ii) Second, we show “discriminative” computation of MPM and MAP in HMMs is not 

intrinsic to HMMs but is due to its particular classic parameterization Equation (1). 

In other words, changing the parametrization, it is possible to compute the HMM-

based MPM and MAP without using 𝑝(𝑦1:𝑁|𝑥1:𝑁) or 𝑝(𝑦1:𝑁). 

The first point is rather immediate: we note that Bayesian classifier 𝑔𝐿 is defined by 

a loss function 𝐿: Ω2 → ℝ+ through 

[𝑔𝐿(𝑦1:𝑁) = 𝑥̂1:𝑁] ⟺ [𝐸[𝐿(𝑔𝐿(𝑦1:𝑁), 𝑋1:𝑁)|𝑦1:𝑁] = 𝑖𝑛𝑓
𝑥1:𝑁

𝐸[𝐿(𝑥1:𝑁, 𝑋1:𝑁)|𝑦1:𝑁] (20) 

it is thus immediate to notice that 𝑔𝐿(𝑦1:𝑁) only depends on 𝑝(𝑥1:𝑁|𝑦1:𝑁). This implies 

that it is the same in a generative model or its equivalent (within the meaning of Definition 

1) discriminative model. 

We show (ii) by separately considering the MPM and MAP cases. 

4.1. Discriminative Computing of HMM-Based MPM 

To show (ii), let us consider Equation (1) with 𝑝(𝑦𝑛|𝑥𝑛) =
𝑝(𝑦𝑛)𝑝(𝑥𝑛|𝑦𝑛)

𝑝(𝑥𝑛)
. It becomes, 

𝑝(𝑥1:𝑁, 𝑦1:𝑁) =  𝑝(𝑥1|𝑦1) ∏ 𝑝(𝑥𝑛|𝑥𝑛−1)
𝑝(𝑥𝑛|𝑦𝑛)

𝑝(𝑥𝑛)
𝑇
𝑛=2 ∏ 𝑝(𝑦𝑛)𝑁

𝑛=1   (21) 

We see that (Equation (21)) is of the form 𝑝(𝑥1:𝑁, 𝑦1:𝑁) = ℎ(𝑥1:𝑁, 𝑦1:𝑁) ∏ 𝑝(𝑦𝑛)𝑁
𝑛=1  , 

where ℎ(𝑥1:𝑁, 𝑦1:𝑁) does not depend on 𝑝(𝑦1), ,, 𝑝(𝑦𝑁). This implies that ℎ(𝑥𝑛, 𝑦1:𝑁) =
∑ ℎ(𝑥1:𝑁, 𝑦1:𝑁)(𝑥1:𝑛−1,𝑥𝑛+1:𝑁)   does not depend on 𝑝(𝑦1) , ,, 𝑝(𝑦𝑁)  either. Then 

𝑝(𝑥𝑛|𝑦1:𝑁) =
𝑝(𝑥𝑛,𝑦1:𝑁)

𝑝(𝑦1:𝑁)
=

ℎ(𝑥𝑛,𝑦1:𝑁) ∏ 𝑝(𝑦𝑛)𝑁
𝑛=1

[∑ ℎ(𝑥𝑛,𝑦1:𝑁)]𝑥𝑛 ∏ 𝑝(𝑦𝑛)𝑁
𝑛=1

=
ℎ(𝑥𝑛,𝑦1:𝑁)

[∑ ℎ(𝑥𝑛,𝑦1:𝑁)]𝑥𝑛

, so that 

𝑝(𝑥𝑛|𝑦1:𝑁) =

∑ 𝑝(𝑥1|𝑦1) ∏ 𝑝(𝑥𝑛|𝑥𝑛−1)
𝑝(𝑥𝑛|𝑦𝑛)

𝑝(𝑥𝑛)
𝑁
𝑡=2(𝑥1:𝑛−1,𝑥𝑛+1:𝑁)

∑ 𝑝(𝑥1|𝑦1) ∏ 𝑝(𝑥𝑛|𝑥𝑛−1)
𝑝(𝑥𝑛|𝑦𝑛)

𝑝(𝑥𝑛)
𝑁
𝑡=2(𝑥1:𝑁)

 (22) 
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neither depends on 𝑝(𝑦1), ,, 𝑝(𝑦𝑁). Thus, the HMM-based classifier MPM also verifies 

the “discriminative classifier” definition. 

How to compute 𝑝(𝑥𝑛|𝑦1:𝑁) ? It is classically computable using “forward” probabili-

ties 𝛼𝑛(𝑥𝑛) and “backward” ones 𝛽𝑛(𝑥𝑛) defined with 

𝛼𝑛(𝑥𝑛) = 𝑝(𝑥𝑛, 𝑦1:𝑛) (23) 

𝛽𝑛(𝑥𝑛) = 𝑝(𝑦𝑛+1:𝑁|𝑥𝑛) (24) 

then 

𝑝(𝑥𝑛|𝑦1:𝑁) =
𝛼𝑛(𝑥𝑛)𝛽𝑛(𝑥𝑛)

∑ 𝛼𝑛(𝑥𝑛)𝛽𝑛(𝑥𝑛)𝑥𝑛

 (25) 

with all 𝛼𝑛(𝑥𝑛) and 𝛽𝑛(𝑥𝑛) computed using the following forward and backward recur-

sions [21]: 

𝛼1(𝑥1) = 𝑝(𝑥1)𝑝(𝑦1|𝑥1); 𝛼𝑛+1(𝑥𝑛+1) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝑥𝑛
𝛼𝑛(𝑥𝑛), (26) 

𝛽𝑁(𝑥𝑁) = 1; 𝛽𝑛(𝑥𝑛) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)𝑥𝑛+1
𝛽𝑛+1(𝑥𝑛+1). (27) 

Setting 𝑝(𝑦𝑛|𝑥𝑛) =
𝑝(𝑦𝑛)𝑝(𝑥𝑛|𝑦𝑛)

𝑝(𝑥𝑛)
  and recalling that 𝑝(𝑥𝑛|𝑦1:𝑁)  does not depend on 

𝑝(𝑦1), ,, 𝑝(𝑦𝑁), we can arbitrarily modify them. Let us consider the uniform distribution 

over Ω, so that 𝑝(𝑦1) = ⋯ = 𝑝(𝑦𝑁) =
1

#Ω
= 𝑐. Then (Equation (26)) and (Equation (27)) be-

come 

𝛼𝑛+1
∗ (𝑥𝑛+1) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)

𝑐𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)𝑥𝑛

𝛼𝑛
∗ (𝑥𝑛) (28) 

𝛽𝑛
∗(𝑥𝑛) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)

𝑐𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)𝑥𝑛+1

𝛽𝑛+1
∗ (𝑥𝑛+1) (29) 

and we still have 

𝑝(𝑥𝑛|𝑦1:𝑁) =
𝛼𝑛

∗ (𝑥𝑛)𝛽𝑛
∗(𝑥𝑛)

∑ 𝛼𝑛
∗ 𝛽𝑛

∗(𝑥𝑛)𝑥𝑛

 (30) 

Finally, we see that 𝑝(𝑥𝑛|𝑦1:𝑁)  is independent from 𝑐 , so that we can take 𝑐 = 1 . 

Then we can state the following proposition. 

Proposition 2. Let 𝑋1, … , 𝑋𝑁, 𝑌1, … , 𝑌𝑁 be an HMM Equation (1). Let us define “discriminative 

forward” quantities 𝛼1
𝐷(𝑥1) , …, 𝛼𝑁

𝐷(𝑥𝑁) , and “discriminative backward” ones 𝛽1
𝐷(𝑥1) , …, 

𝛽𝑁
𝐷(𝑥𝑁) by the following forward and backward recursions:  

𝛼1
𝐷(𝑥1) = 𝑝(𝑥1|𝑦1); 𝛼𝑛+1

𝐷 (𝑥𝑛+1) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)
𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)𝑥𝑛
𝛼𝑛

𝐷(𝑥𝑛), (31) 

𝛽𝑁
𝐷(𝑥𝑁) = 1; 𝛽𝑛

𝐷(𝑥𝑛) = ∑ 𝑝(𝑥𝑛+1|𝑥𝑛)
𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)𝑥𝑛+1
𝛽𝑛+1

𝐷 (𝑥𝑛+1). (32) 

then 

𝑝(𝑥𝑛|𝑦1:𝑁) =
𝛼𝑛

𝐷(𝑥𝑛)𝛽𝑛
𝐷(𝑥𝑛)

∑ 𝛼𝑛
𝐷(𝑥𝑛)𝛽𝑛

𝐷(𝑥𝑛)𝑥𝑛

 (33) 

Consequently, we can compute the MPM classifier in a discriminative manner, only using 

𝑝(𝑥1), ,, 𝑝(𝑥𝑁), 𝑝(𝑥2|𝑥1), ,, 𝑝(𝑥𝑁|𝑥𝑁−1), and 𝑝(𝑥1|𝑦1), ,, 𝑝(𝑥𝑁|𝑦𝑁). 

Note that this result is similar to the result in [21], with a different proof. 
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Remark 1. Let us notice that according to Equations (31) and (32), it is possible to compute 

𝛼𝑛
𝐷(𝑥𝑛) and 𝛽𝑛

𝐷(𝑥𝑛) by a very slight adaptation of classic computing programs giving classic 

𝛼𝑛(𝑥𝑛) = 𝑝(𝑥𝑛, 𝑦1:𝑛)  and 𝛽𝑛(𝑥𝑛) = 𝑝(𝑦𝑛+1:𝑁|𝑥𝑛)  with recursions (Equations (26) and (27)). 

All we have to do is to replace 𝑝(𝑦𝑛+1|𝑥𝑛+1) with 
𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)
. Of course, 𝛼𝑛

𝐷(𝑥𝑛) ≠ 𝑝(𝑥𝑛, 𝑦1:𝑛) 

and 𝛽𝑛
𝐷(𝑥𝑛) ≠ 𝑝(𝑦𝑛+1:𝑁|𝑥𝑛), but (Equation (33)) holds and thus 𝑝(𝑥𝑛|𝑦1:𝑁) is computable al-

lowing MPM.  

Remark 2. We see that we can compute the MPM in HMM only using 𝑝(𝑥1) , ,, 𝑝(𝑥𝑁) , 

𝑝(𝑥2|𝑥1), …, 𝑝(𝑥𝑁|𝑥𝑁−1), and 𝑝(𝑥1|𝑦1), ,, 𝑝(𝑥𝑁|𝑦𝑁). This means that in supervised classifica-

tion, where we have a learn sample, we can use any parametrization to estimate them. For example, 

we can model them with logistic regression, as currently done in CRFs. It is of importance to note 

that such a parametrization is unusual; however, what is important is that the model remains the 

same. 

Remark 3. When using the MPM to deal with a concrete problem, Proposition 2 implies that 

talking about a comparison between LC-CRFs and HMMs is somewhat incorrect. Indeed, there is 

only one model. However, there are two different parameterizations, and this can produce two dif-

ferent results. Indeed, the estimation of the parameters can give two models of the same nature 

(posterior distribution of an HMM) but unequally situated with respect to the optimal model, the 

best suited to the data. It would therefore be more correct to speak of a comparison of two parametri-

zations of HMM, each associated with its own parameter estimator. The same is true concerning 

the MAP discussed in the next paragraph. 

4.2. Discriminative Computing of HMM-Based Map: Discriminative Viterbi 

Let 𝑋1 , … , 𝑋𝑁 , 𝑌1 , … , 𝑌𝑁  be an HMM (Equation (1)). The Bayesian MAP classifier 

(Equation (5)) based on such HMM is computed with the following Viterbi algorithm [22]. 

For each 𝑛 = 1 , … , 𝑁 , and each 𝑥𝑛 , let 𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛) = (𝑥1

𝑚𝑎𝑥, … , 𝑥𝑛−1
𝑚𝑎𝑥)(𝑥𝑛)  be the path 

𝑥1
𝑚𝑎𝑥, ,, 𝑥𝑛−1

𝑚𝑎𝑥 verifying 

𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛), 𝑥𝑛, 𝑦1:𝑛) = 𝑠𝑢𝑝

𝑥1:𝑛−1

𝑝(𝑥1:𝑛−1, 𝑥𝑛, 𝑦1:𝑛) (34) 

We see that 𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛) is a path maximizing 𝑝(𝑥1:𝑛−1, 𝑥𝑛|𝑦1:𝑛) over all paths ending 

in 𝑥𝑛 . Then having the paths 𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛)  and the probabilities 𝑝(𝑥1:𝑛−1

𝑚𝑎𝑥 (𝑥𝑛), 𝑥𝑛, 𝑦1:𝑛)  for 

each 𝑥𝑛 , one determines, for each 𝑥𝑛+1 , the paths 𝑥1:𝑛
𝑚𝑎𝑥(𝑥𝑛+1)  and the probabilities 

𝑝(𝑥1:𝑛
𝑚𝑎𝑥(𝑥𝑛+1), 𝑥𝑛+1, 𝑦1:𝑛+1) = 𝑝(𝑥1:𝑛−1

𝑚𝑎𝑥 (𝑥𝑛
𝑚𝑎𝑥), 𝑥𝑛

𝑚𝑎𝑥, 𝑥𝑛+1, 𝑦1:𝑛+1), searching 𝑥𝑛
𝑚𝑎𝑥 with 

𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛

𝑚𝑎𝑥), 𝑥𝑛
𝑚𝑎𝑥, 𝑥𝑛+1, 𝑦1:𝑛+1)) = 

𝑠𝑢𝑝
𝑥𝑛

[𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛), 𝑥𝑛, 𝑦1:𝑛)𝑝(𝑥𝑛+1|𝑥𝑛)𝑝(𝑦𝑛+1|𝑥𝑛+1)] 

(35) 

Setting in Equation (35) 𝑝(𝑦𝑛+1|𝑥𝑛+1) =
𝑝(𝑦𝑛+1)𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)
 , we see that 𝑥𝑛

𝑚𝑎𝑥  which 

verifies Equation (35) is the same that 𝑥𝑛
𝑚𝑎𝑥  which maximizes 

𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛), 𝑥𝑛, 𝑦1:𝑛)𝑝(𝑥𝑛+1|𝑥𝑛)

𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)
 , so that we can suppress 𝑝(𝑦𝑛+1) . In other 

words, we can replace Equation (35) with 

𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛

𝑚𝑎𝑥), 𝑥𝑛
𝑚𝑎𝑥, 𝑥𝑛+1, 𝑦1:𝑛+1)) = 

𝑠𝑢𝑝
𝑥𝑛

[𝑝(𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛), 𝑥𝑛, 𝑦1:𝑛)𝑝(𝑥𝑛+1|𝑥𝑛)

𝑝(𝑥𝑛+1|𝑦𝑛+1)

𝑝(𝑥𝑛+1)
] 

(36) 

Finally, we propose the following discriminative version of the Viterbi algorithm: 

- Set 𝑥1
𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥𝑛

[𝑝(𝑥1|𝑦1)]; 

- For each 𝑛 = 1 , ,, 𝑁 − 1 , and each 𝑥𝑛+1 , apply (3.17) to find a path 𝑥1:𝑛
𝑚𝑎𝑥(𝑥𝑛+1) 

from the paths 𝑥1:𝑛−1
𝑚𝑎𝑥 (𝑥𝑛)  (for all 𝑥𝑛 ), and the probabilities 

𝑝(𝑥1:𝑛
𝑚𝑎𝑥(𝑥𝑛+1), 𝑥𝑛+1, 𝑦1:𝑛+1) (for all 𝑥𝑛+1); 
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- End setting 𝑥1:𝑁
𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥𝑁

[𝑝(𝑥1:𝑁−1
𝑚𝑎𝑥 (𝑥𝑁), 𝑥𝑁, 𝑦1:𝑁)].  

As with MPM above, we see that we can find 𝑥1:𝑁
𝑚𝑎𝑥 with the only use of 𝑝(𝑥1), ,, 

𝑝(𝑥𝑁) , 𝑝(𝑥2|𝑥1) , ,, 𝑝(𝑥𝑁|𝑥𝑁−1) , and 𝑝(𝑥1|𝑦1) , ,, 𝑝(𝑥𝑁|𝑦𝑁) , exactly as in CRF case. As 

above, it appears that dropping HMMs in some NLP tasks on the grounds that MAP is a 

“generative” classifier, is not justified. In particular, in supervised stationary framework, 

distributions 𝑝(𝑥𝑛), 𝑝(𝑥𝑛+1|𝑥𝑛), and 𝑝(𝑥𝑛|𝑦𝑛) can be estimated in the same way as in LC-

CRFs case.  

5. Discussion and Conclusions 

We have proposed two results. First, we have shown that the basic LC-CRF (Equation 

(3)) is equivalent to a classical HMM (Equation (1)) in that one can find an HMM whose 

posterior distribution is exactly the given LC-CRF. More precisely, we specified the way 

to calculate the parameters 𝑝(𝑥1) , 𝑝(𝑥𝑛+1|𝑥𝑛) , and 𝑝(𝑦𝑛|𝑥𝑛)  which define Equation (1) 

from the parameters  𝑉𝑛(𝑥𝑛, 𝑥𝑛+1), 𝑈𝑛(𝑥𝑛, 𝑦𝑛) which define Equation (3). Second, noting 

that all Bayesian classifiers are discriminative in the sense that they do not depend on the 

observation distribution, we showed that classifiers based on HMMs, usually considered 

as “generative”, can also be considered as discriminative classifiers. More specifically, we 

have proposed discriminative methods for computing classic maximum posterior mode 

(MPM) and maximum a posteriori (MAP) classifiers based on HMMs. The first result 

shows that LC-CRFs are as general as classical HMMs. The second shows that at the ap-

plication level, HMMs offer strictly the same processing power, at least with regard to 

MPM and MAP, as LC-CRFs. 

The practical interest of our contributions is as follows. Until now, some authors con-

sidered LC-CRFs and HMMs to be equivalent without presenting rigorous proof, and oth-

ers considered LC-CRFs to be more general [19]. Partly because of this uncertainty, CRFs 

have often been preferred over HMMs. We have proved, at least in the particular frame-

work considered, that the two models were equivalent, and the abandonment of HMMs 

in favor of CRFs was not always justified. In other words, faced with a particular applica-

tion, there is no reason to choose CRFs systematically. However, we also cannot say that 

HMMs should be chosen. Finally, our contribution is likely to encourage practitioners to 

consider both models, or rather, according to Remark 3, both parametrizations of the same 

model, on an equal footing.   

We considered basic LC-CRFs and HMMs, which are a limited, yet widely used 

framework. LC-CRFs and HMMs can be extended in different directions. The general 

question to study is to search an extension of HMM which would be equivalent to the 

general CRF (Equation (2)). This seems to be a hard problem. However, one can study 

some existing extensions of HMMs and wonder what kind of CRFs they would be equiv-

alent to. For example, HMMs have been extended to “pairwise Markov models” (PMMs 

[23]), and the question is therefore what kind of CRFs would be equivalent to PMMs? 

Another kind of extension consists of adding a latent process 𝑈1:𝑁 to the pair (𝑋1:𝑁, 𝑌1:𝑁). 

In the case of CRFs this leads to hidden CRFs (HCRFs [24]), and in the case of HMMs this 

leads to triplet Markov models (TMMs [25]). Finally, CRFs were generalized to semi-Mar-

kov CRFs [26], and HMMs were generalized to hidden semi-Markov models, with explicit 

distribution of the exact sojourn time in a given state [27], or with explicit distribution of 

the minimal sojourn time in a given state [28]. The study of the relations between these 

different extensions of CRFs and HMMs is an interesting perspective for further investi-

gations.  
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