
Seleroute.jl, a generic

package for network-

routing optimisation
Thibaut Cuvelier

What is network routing?

What is network routing?

 What path should each packet take throughout the network?

 Most basic answer: shortest path

 Fewest number of routers crossed

 No prior knowledge of the flows that will traverse the network

 Traffic engineering

 Optimise some metric: network congestion, end-to-end delay, etc.

 Based on what you know about the users of the network (e.g., traffic)

What are practitioners interested in?

 Performance at scale

 Find a good routing for a large network (1000s of nodes) in minutes

 Find the optimum routing for a large network in hours

 Choice of objective function

 Minimise the worst-case load / delay

 Maximise the fairness between links

 Choice of uncertainty model

 Typically, uncertain demand (optical fibre)

 Sometimes, link capacity (wireless networks)

How to

perform

traffic

engineering
Using mathematical optimisation

How to decide how to route?

 A routing: path from source to destination for all pairs with traffic

 Almost all deployed algorithms are based on mathematical optimisation

 For variables, use paths (column generation) or flows in the graph

 Integer program: a single path per pair — easy to implement, no load

balancing

Extremely hard to compute!

 Linear program: multiple paths per pair — hard to implement, paths have

fractional solution for load balancing

For instance, 50% of total flow for path 1, 30% for path 2, 20% for path 3

Still very hard to compute!

Fundamental tool:

multicommodity flow (MCF)

 Knowing the traffic the network will face, how to route it?

 How does the model work?

 Objective function: minimise the maximum link utilisation

 Link utilisation: amount of traffic through the link / link capacity

 Maximum link utilisation: utilisation of the most loaded link

 Usual formulation: path-based (column generation)

 Variables: fraction of each demand in each path

Fundamental tool:

multicommodity flow (MCF)

min𝜇

𝑝∈𝒫𝑑

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 = 1 ∀𝑑 ∈ 𝒟

𝑑∈𝒟

𝑝∈𝒫𝑑:
𝑒∈𝑝

𝑑𝑒𝑚𝑎𝑛𝑑𝑑 × 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 ≤ 𝜇 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑒 ∀𝑒 ∈ 𝐸

 Intuition?

 If µ is 1, at least one edge needs its full capacity, and has a 100% utilisation

 If µ is 0.5, no edge needs more than half its capacity: the worst utilisation is 50%

Routing and uncertainty

Uncertainty? Where?

 Problem of the previous formulation?

 Only one traffic matrix is considered!

 In practice: the traffic is probably far from this matrix

 Even from the average matrix

 Congestion can be arbitrarily far from that of the optimal routing of the

average matrix

 Oblivious routing: consider several traffic matrices

 Only those that correspond to the worst traffic conditions

 Only one routing for the network that works reasonably well

for any traffic scenario

The new MCF
 Main difference? Multiple traffic matrices, taken in Δ (details later)

min𝜇

𝑝∈𝒫𝑑

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 = 1 ∀𝑑 ∈ 𝒟, ∀𝒟 ∈ Δ

𝑑∈𝒟

𝑝∈𝒫𝑑:
𝑒∈𝑝

𝑑𝑒𝑚𝑎𝑛𝑑𝑑 × 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 ≤ 𝜇 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑒 × 𝑂𝑃𝑇 𝐷 ∀𝑒 ∈ 𝐸, ∀𝒟 ∈ Δ

 OPT(D) is the optimum congestion for D

 In the end: µ is the worst ratio between the oblivious routing and optimal

routing

 For the first constraint, no real impact, as long as all matrices 𝒟 ∈ Δ have

the same origin-destination pairs

Maybe oblivious is too extreme

 Oblivious routing keeps everything under control

 Whatever the uncertainty, it is dealt with

 In practice, not that useful

 Operators monitor their networks and know what traffic they usually see

 Future traffic can be estimated with a high accuracy (± 5%)

 How about restraining the set of traffic matrices Δ?

 Robust routing

Seleroute.jl
One package to rule them all!

Seleroute.jl

So far, many options to compute a routing:

 Formulation: flows vs. paths

 Uncertainty source: demand, capacity, or both

 Uncertainty formulation: none, robust, oblivious, stochastic

And several algorithms for each: iterative or reformulation

 Objective functions:

 Maximise fairness:

max-min fairness (LP), α-fairness (convex program: LP, SOCP, POW, EXP)

 Minimise the maximum load:

standard load (LP), Kleinrock (SOCP), Fortz-Thorup (convex piecewise linear)

Seleroute.jl: software engineering

 Major goal: share as much code as possible between these choices!

Second goal: be extensible

 Use Julia’s multiple dispatch!

 Encode the choices into a structure, ModelType: one field per

parameter

 Many abstract types, one per kind of decision to make

 Result? No performance penalty compared to a direct implementation

for each choice of parameters!

Seleroute.jl: software engineering
Many abstract types:

 How to measure the load per edge: EdgeWiseObjectiveFunction
standard load, Kleinrock, Fortz-Thorup, α-fairness

 How to aggregate the load per edge: AggregationObjectiveFunction
sum, maximum/minimum, max-min fairness

 What formulation to use: FormulationType
flows or path (iterative with column generation)

 What algorithm to use: AlgorithmChoice
reformulation or cutting planes (iterative)

 What parameters are uncertain: UncertainParameters
demand or capacity

 What uncertainty model to use: UncertaintyHandling
none, robust, oblivious, stochastic

Seleroute.jl: software engineering

 Code-wise, the major decision is: the algorithm!

Seleroute.jl provides only four:

 Without uncertainty

 Max-min fairness

 Oblivious/robust: iterative or reformulation

 Implementation split in basic blocks: capacity constraints, solving

main problem, modifying it with one iteration, etc.

 Several variants for each: use (multiple) dispatch to choose

Seleroute.jl: software engineering

 Minor decisions:

 Flows vs. paths

 Objective function

 The algorithms call helpers:

 Build the main mathematical formulation:
basic_routing_model, total_flow_in_edge

 Build a term of the objective function:
objective_edge_expression

Seleroute.jl: what does it look like?
Compute a routing without uncertainty:

function compute_routing(rd::RoutingData, edge_obj::EdgeWiseObjectiveFunction,
 agg_obj::Union{MinimumTotal, MaximumTotal}, ::FormulationType,
 ::Val{false}, ::Automatic, ::NoUncertaintyHandling, ::NoUncertainty)

 m = _create_model(rd)

 rm = basic_routing_model_unitary(m, rd)

 capacity_constraints(rm, rd.traffic_matrix)

 obj = sum(objective_edge_expression(rm, edge_obj, e) for e in edges(rd))

 if agg_obj <: MinimumTotal

 @objective(m, Min, obj)

 # ...

 end optimize!(m)

 return RoutingSolution(…)

end

Seleroute.jl: numerical results

 Having several

implementation allows

comparing their results

 JuMP makes it easy to

change the underlying

solver!

Conclusions

Conclusion

 Julia has a good ecosystem for mathematical optimisation and graphs

 Julia has interesting features and allows efficient software engineering

with virtually no performance impact

 Very little open-source software for traffic engineering:

 Focus on infrastructure (P4, OpenFlow, and their implementations)

 Or on protocols (Quagga, Facebook Open/R, BIRD, OpenBPGD, etc.)

23

	Default Section
	Slide 1: Seleroute.jl, a generic package for network-routing optimisation
	Slide 2: What is network routing?
	Slide 3: What is network routing?
	Slide 4: What are practitioners interested in?

	Traffic engineering
	Slide 5: How to perform traffic engineering
	Slide 6: How to decide how to route?
	Slide 7: Fundamental tool: multicommodity flow (MCF)
	Slide 8: Fundamental tool: multicommodity flow (MCF)

	Routing and uncertainty
	Slide 9: Routing and uncertainty
	Slide 10: Uncertainty? Where?
	Slide 11: The new MCF
	Slide 12: Maybe oblivious is too extreme

	Seleroute.jl
	Slide 13: Seleroute.jl
	Slide 14: Seleroute.jl
	Slide 15: Seleroute.jl: software engineering
	Slide 16: Seleroute.jl: software engineering
	Slide 17: Seleroute.jl: software engineering
	Slide 18: Seleroute.jl: software engineering
	Slide 19: Seleroute.jl: what does it look like?
	Slide 20: Seleroute.jl: numerical results

	Conclusion
	Slide 21: Conclusions
	Slide 22: Conclusion
	Slide 23

