
Seleroute.jl, a generic 

package for network-

routing optimisation
Thibaut Cuvelier



What is network routing? 



What is network routing? 

 What path should each packet take throughout the network? 

 Most basic answer: shortest path

 Fewest number of routers crossed

 No prior knowledge of the flows that will traverse the network

 Traffic engineering

 Optimise some metric: network congestion, end-to-end delay, etc.

 Based on what you know about the users of the network (e.g., traffic)



What are practitioners interested in?

 Performance at scale

 Find a good routing for a large network (1000s of nodes) in minutes

 Find the optimum routing for a large network in hours

 Choice of objective function

 Minimise the worst-case load / delay

 Maximise the fairness between links

 Choice of uncertainty model

 Typically, uncertain demand (optical fibre)

 Sometimes, link capacity (wireless networks)



How to 

perform 

traffic 

engineering
Using mathematical optimisation



How to decide how to route?

 A routing: path from source to destination for all pairs with traffic

 Almost all deployed algorithms are based on mathematical optimisation

 For variables, use paths (column generation) or flows in the graph

 Integer program: a single path per pair — easy to implement, no load 

balancing

Extremely hard to compute!

 Linear program: multiple paths per pair — hard to implement, paths have 

fractional solution for load balancing

For instance, 50% of total flow for path 1, 30% for path 2, 20% for path 3

Still very hard to compute!



Fundamental tool: 

multicommodity flow (MCF)

 Knowing the traffic the network will face, how to route it? 

 How does the model work? 

 Objective function: minimise the maximum link utilisation

 Link utilisation: amount of traffic through the link / link capacity

 Maximum link utilisation: utilisation of the most loaded link

 Usual formulation: path-based (column generation)

 Variables: fraction of each demand in each path



Fundamental tool: 

multicommodity flow (MCF)

min𝜇

෍

𝑝∈𝒫𝑑

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 = 1 ∀𝑑 ∈ 𝒟

෍

𝑑∈𝒟

෍
𝑝∈𝒫𝑑:
𝑒∈𝑝

𝑑𝑒𝑚𝑎𝑛𝑑𝑑 × 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 ≤ 𝜇 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑒 ∀𝑒 ∈ 𝐸

 Intuition? 

 If µ is 1, at least one edge needs its full capacity, and has a 100% utilisation

 If µ is 0.5, no edge needs more than half its capacity: the worst utilisation is 50%



Routing and uncertainty



Uncertainty? Where? 

 Problem of the previous formulation? 

 Only one traffic matrix is considered! 

 In practice: the traffic is probably far from this matrix

 Even from the average matrix

 Congestion can be arbitrarily far from that of the optimal routing of the 

average matrix

 Oblivious routing: consider several traffic matrices

 Only those that correspond to the worst traffic conditions

 Only one routing for the network that works reasonably well 

for any traffic scenario



The new MCF
 Main difference? Multiple traffic matrices, taken in Δ (details later)

min𝜇

෍

𝑝∈𝒫𝑑

𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 = 1 ∀𝑑 ∈ 𝒟, ∀𝒟 ∈ Δ

෍

𝑑∈𝒟

෍
𝑝∈𝒫𝑑:
𝑒∈𝑝

𝑑𝑒𝑚𝑎𝑛𝑑𝑑 × 𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑑,𝑝 ≤ 𝜇 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑒 × 𝑂𝑃𝑇 𝐷 ∀𝑒 ∈ 𝐸, ∀𝒟 ∈ Δ

 OPT(D) is the optimum congestion for D

 In the end: µ is the worst ratio between the oblivious routing and optimal 

routing

 For the first constraint, no real impact, as long as all matrices 𝒟 ∈ Δ have 

the same origin-destination pairs



Maybe oblivious is too extreme

 Oblivious routing keeps everything under control

 Whatever the uncertainty, it is dealt with

 In practice, not that useful

 Operators monitor their networks and know what traffic they usually see

 Future traffic can be estimated with a high accuracy (± 5%)

 How about restraining the set of traffic matrices Δ? 

 Robust routing



Seleroute.jl
One package to rule them all!



Seleroute.jl

So far, many options to compute a routing:

 Formulation: flows vs. paths

 Uncertainty source: demand, capacity, or both

 Uncertainty formulation: none, robust, oblivious, stochastic

And several algorithms for each: iterative or reformulation

 Objective functions:

 Maximise fairness:

max-min fairness (LP), α-fairness (convex program: LP, SOCP, POW, EXP)

 Minimise the maximum load:

standard load (LP), Kleinrock (SOCP), Fortz-Thorup (convex piecewise linear)



Seleroute.jl: software engineering

 Major goal: share as much code as possible between these choices!

Second goal: be extensible

 Use Julia’s multiple dispatch!

 Encode the choices into a structure, ModelType: one field per 

parameter

 Many abstract types, one per kind of decision to make

 Result? No performance penalty compared to a direct implementation 

for each choice of parameters!



Seleroute.jl: software engineering
Many abstract types:

 How to measure the load per edge: EdgeWiseObjectiveFunction
standard load, Kleinrock, Fortz-Thorup, α-fairness

 How to aggregate the load per edge: AggregationObjectiveFunction
sum, maximum/minimum, max-min fairness

 What formulation to use: FormulationType
flows or path (iterative with column generation)

 What algorithm to use: AlgorithmChoice
reformulation or cutting planes (iterative)

 What parameters are uncertain: UncertainParameters
demand or capacity

 What uncertainty model to use: UncertaintyHandling
none, robust, oblivious, stochastic



Seleroute.jl: software engineering

 Code-wise, the major decision is: the algorithm!

Seleroute.jl provides only four:

 Without uncertainty

 Max-min fairness

 Oblivious/robust: iterative or reformulation

 Implementation split in basic blocks: capacity constraints, solving 

main problem, modifying it with one iteration, etc.

 Several variants for each: use (multiple) dispatch to choose



Seleroute.jl: software engineering

 Minor decisions: 

 Flows vs. paths

 Objective function

 The algorithms call helpers:

 Build the main mathematical formulation:
basic_routing_model, total_flow_in_edge

 Build a term of the objective function:
objective_edge_expression



Seleroute.jl: what does it look like?
Compute a routing without uncertainty: 

function compute_routing(rd::RoutingData, edge_obj::EdgeWiseObjectiveFunction,
        agg_obj::Union{MinimumTotal, MaximumTotal}, ::FormulationType,
        ::Val{false}, ::Automatic, ::NoUncertaintyHandling, ::NoUncertainty)

    m = _create_model(rd)

    rm = basic_routing_model_unitary(m, rd)

    capacity_constraints(rm, rd.traffic_matrix)

    obj = sum(objective_edge_expression(rm, edge_obj, e) for e in edges(rd))

    if agg_obj <: MinimumTotal

        @objective(m, Min, obj)

    # ...

    end    optimize!(m)

    return RoutingSolution(…)

end



Seleroute.jl: numerical results

 Having several 

implementation allows 

comparing their results

 JuMP makes it easy to 

change the underlying

solver!



Conclusions



Conclusion

 Julia has a good ecosystem for mathematical optimisation and graphs

 Julia has interesting features and allows efficient software engineering

with virtually no performance impact

 Very little open-source software for traffic engineering:

 Focus on infrastructure (P4, OpenFlow, and their implementations)

 Or on protocols (Quagga, Facebook Open/R, BIRD, OpenBPGD, etc.)



23


	Default Section
	Slide 1: Seleroute.jl, a generic package for network-routing optimisation
	Slide 2: What is network routing? 
	Slide 3: What is network routing? 
	Slide 4: What are practitioners interested in?

	Traffic engineering
	Slide 5: How to perform traffic engineering
	Slide 6: How to decide how to route?
	Slide 7: Fundamental tool:  multicommodity flow (MCF)
	Slide 8: Fundamental tool:  multicommodity flow (MCF)

	Routing and uncertainty
	Slide 9: Routing and uncertainty
	Slide 10: Uncertainty? Where? 
	Slide 11: The new MCF
	Slide 12: Maybe oblivious is too extreme

	Seleroute.jl
	Slide 13: Seleroute.jl
	Slide 14: Seleroute.jl
	Slide 15: Seleroute.jl: software engineering
	Slide 16: Seleroute.jl: software engineering
	Slide 17: Seleroute.jl: software engineering
	Slide 18: Seleroute.jl: software engineering
	Slide 19: Seleroute.jl: what does it look like?
	Slide 20: Seleroute.jl: numerical results

	Conclusion
	Slide 21: Conclusions
	Slide 22: Conclusion
	Slide 23


