
HAL Id: hal-04231797
https://hal.science/hal-04231797

Submitted on 6 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Visualization for Client-Server Architecture
Assessment

Nour Jihene Agouf, Soufyane Labsari, Stéphane Ducasse, Anne Etien, Nicolas
Anquetil

To cite this version:
Nour Jihene Agouf, Soufyane Labsari, Stéphane Ducasse, Anne Etien, Nicolas Anquetil. A Visualiza-
tion for Client-Server Architecture Assessment. IEEE Working Conference on Software Visualization,
Oct 2023, Bogota, Colombia. �hal-04231797�

https://hal.science/hal-04231797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Visualization for Client-Server Architecture
Assessment

Nour Jihene Agouf1, Soufyane Labsari2. Stéphane Ducasse2, Anne Etien2, Nicolas Anquetil2
1: Arolla and Univ. Lille, CNRS, Inria, Centrale Lille

2: Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Abstract—Maintaining large legacy systems often requires
understanding their architecture. This is important since legacy
system architecture decay over time and architecture violations
may dramatically impact planned renovation actions. Merely
reading source files is time-consuming and often highly inefficient.
Visualizations have been proposed as a tool to support archi-
tecture understanding. Some software architecture visualizations
decompose the software system architecture into layers, compo-
nents, or slices from a structural viewpoint. Such visualizations,
however, do not take into account the specificities of client-
server applications. They do not help maintainers identify and
understand software architecture violations. In this paper, we
propose CLISERVO, a new visualization to help software main-
tainers detect architectural violations in client-server systems.
CLISERVO classifies client-server entities into different levels of
dependencies, shared entities, or ambiguous entities (e.g., entities
that belong abnormally to different layers). CLISERVO identifies
and presents entities in their corresponding layers from two
distinct viewpoints: global overview entities and violations, i.e
ambiguous entities and illegal dependencies between layers. We
validated our approach on three real-world industrial projects
with access to their maintainers. We report the findings of 91
ambiguous entities, 29 purportedly shared and idle entities, 24
and 82 elements defined as shared but only used by the client or
server, and 12 relations violating the layered architecture.

Index Terms—Client-server, visualization, architectural viola-
tion

I. INTRODUCTION

During the software lifecycle, the architecture often be-
comes inaccurate which results in architectural erosions [28],
[31]. Consequently, recovering the existing architecture of
legacy software is challenging [8]. Over the past decades,
tools have been implemented to recover software architecture
such as Rigi [33], SNIFF [37], Rose [9], MicroART [15] and
ARCADE [35]. However, software architecture is a very fuzzy
notion that lives mostly in the mind of the beholder. There is
no one-size-fits-all, universal, definition of what is software
architecture (see for example the 4+1 model [22]). Moreover,
software architecture is materialized by coding conventions
(such as class names, package dependencies, etc.) that are
often not documented, not explicit in the code, and violated
by programmers [21].

A high-level design description plays, de facto, an important
role in successfully understanding and reasoning about large
and complex software systems [4], [26]. The importance of

We thank Arolla for the funding of Nour J. Agouf’s research, and our other
industrial partner maintainers for their availability and willingness to perform
our experiment.

visualizing software architecture has been extensively inves-
tigated as it can be of interest to various stakeholders such
as architects, developers, testers, and project managers [13],
[19], [36]. Visualizations are widely used and more efficient in
representing large-scale software [17], [20], [23], [39]. With
thousands of classes and millions of code elements, however,
not dedicated visualizations do not scale up.

In this paper, we focus on a certain type of software
architecture, i.e., client-server architecture. Such architecture
is nowadays very common. It has the advantage that, due to the
use of a framework for the communication between the client
and the server parts, for some entities, their membership to
one part or the other is well-defined and not ambiguous. Note
that concerning the ambiguous entities, judging their belonging
based on their names or package names can be misleading.
Other rules that define the entities belonging, sometimes only
known by system experts have to be recovered: as any other
rules, with time and after aging, such conventions are often
lost or at least violated [6].

We propose a new visualization (CLISERVO 1) that recovers
the high-level architecture of software from software rules
(low-level knowledge about the components inter-relations)
extracted from the system or known by the experts. It breaks
down a software system into layers and components from
a structural viewpoint and attributes each component to its
corresponding layer.

Applied to real industrial projects, due to their size, vi-
sualizations can become complex and not readable if all
elements are represented. This is why CLISERVO supports
two configurations: Big-Picture and Server-focus combined
with two viewpoints. The first viewpoint represents all the
elements (at the class level). The second one focuses on rule
violations and only visualizes the elements violating at least
one architectural rule.

The proposed approach has been evaluated on three real-
world industrial software with validation with their maintain-
ers. Finally, we report the findings of 91 ambiguous entities, 29
purportedly shared and idle entities, and 12 relations violating
the layered architecture.

II. A LAYERED ARCHITECTURE IDENTIFICATION

The client-server architecture is a distributed application
structure that divides tasks or workloads between providers of

1https://github.com/LABSARI/ClientServer-Visualization

a resource or service, called servers, and service requesters,
called clients. Such an architecture mostly relies on three parts.
The client part requests content or service from a server.
In contrast, the server part runs programs to answer client
requests. Finally, the shared part, corresponding mainly to the
data transfer objects (DTOs), are resources transferred by the
client part to the server to execute the programs on a given
data or on the opposite transferred by the server to the client
to display them. In this section, we show that assigning a class
of a given layer is a challenging task.

A. Challenges for Layers Identification

These three parts (client, server, and shared) may eventually
be well-identified during the design phase, through architec-
tural rules. Some rules are structural e.g., a DTO inherits
from a specific class or a client class implements a dedicated
interface. Other rules concern the behavior, e.g., a class for
which at least a method is called by a server class, belongs
to the server part or, a class for which at least a method
calls a client class is considered client side. However, these
rules are not always documented. And even so, over time and
several evolutions, these rules are violated. Thus in practice,
the separation between the different parts is fuzzy and is no
more clearly identified. For example, on real systems, it is not
rare that some classes belonging to a (sub)package of a client
may in fact play the role of server and vice versa. Some DTOs
may be only used by one part, or even not used by either part.
Finally, other elements that DTO may be shared between the
client and the server or may be so complex that some of their
methods play the role of the client and others of the server.
The belonging of these elements to exactly one part may often
need further investigation.

If a class satisfies only an architectural rule defining a layer,
it is easy to assign it to this layer. In case a class satisfies
several rules corresponding to different layers, there is an
ambiguity and it is not possible to clearly identify the layer the
class belongs to: violations are thus observed, since normally,
a class should belong to a single layer.

In the context of a future migration such as the migration
from a client application to another (e.g., from GWT to
Angular [38]) or the decomposition into micro-services of the
server part, the shared elements which are not DTOs or the
violations between client and server parts are problematic. In
practice, they correspond to violations of software architectural
rules.

B. Layers in the Server Part

Even when the client and server parts are clearly separated,
for example, because they structurally belong to two different
projects, architecture violations may occur. Indeed, the server
part may be decomposed into several layers, such as the server
interacting with the client part, the services corresponding to
the core program, and the database access objects (DAOs)
corresponding to the interface between the server and the
database. Each part corresponds to a layer and the communi-
cations between them are strictly defined. The server elements

can call services, which in their turn can call DAOs. All
other communication between layers is considered a violation.
For example, a DAO is not allowed to have dependencies on
services or server elements.

Due to the challenges to assign classes to different architec-
tural parts and understanding architecture violations, there is
a need to support maintainers to understand why a class may
play different roles and how rules are violated.

III. A CLIENT-SERVER ARCHITECTURE VISUALIZATION:
CLISERVO

We propose a dedicated visualization, CLISERVO, to support
client-server navigation and architectural violation identifica-
tion. Figure 1 displays an annotated version of one of the two
views of CLISERVO applied to a real industrial system. The
remainder of the paper presents in detail the different aspects
of the visualization: its two configurations, its two viewpoints,
and the levels that can be applied to support the understanding
of application architects.

This visualization structures the software into layers and
uses the traditional node-link diagram to connect the layers’
components. These layers rely on rules that can be structural
i.e., a class belongs to a specific hierarchy, or behavioral
i.e., a class calls or is used by another one. The constraints
imposed by the membership of a class to a specific hierarchy
are stronger (since the behavior and the state of the classes
are shared) than those resulting from the use of/by a specific
class. Consequently, we consider that the assignment to a layer
is sure when it relies on a structural rule, and uncertain when
it is based on behavioral rules.

CLISERVO offers two configurations: first, the Big-Picture
showing all the parts (client, server, shared and purgatory)
(See III-A) and the Server focus one showing the server part
(See III-B), as we will show now.

A. Configuration 1: Big-Picture with Four Main Layered Parts

In the Big-Picture configuration, CLISERVO splits the sys-
tem into four main layered parts (see Figure 2): Client side,
Server side, Shared Space and Purgatory. The parts are layered
because each element implied in a relation may be called by
other elements (acting as subsequent layers). We explain each
part:

• Client part: This layered part contains the core set of
classes or interfaces, establishing the communication with
the server part (a). In addition, it includes the classes
using this core, either directly or indirectly through other
classes (c, h). If the core part relies on a structural
architectural rule, the remainder is built successively,
level by level by considering first the direct clients of
these original interfaces and then the direct clients of
these resulting classes and so on.

• Server part: The server part has a similar structure as
the client part. The core part is composed of (imple-
mentation) classes that enable communication with the
client part (b). The remainder of the server part contains
classes used by these original implementations directly

Implementations

L1

Client Side

Server Side

Shared-Space

Purgatory

L1L2L3 L2 L3 L4

Interfaces

Class/package Class/Package in relation with selection

Only used by client
Not shared

Only used by server

Class/package violating name conventions

Fig. 1. An annotated version of CLISERVO’s Big-Picture from Violation Viewpoint applied to WD: Four parts (Client, Server, Shared and Purgatory) and
their relation/violation (L = Level). Note that the class names are deliberately blurred to respect the company constraints.

P3P1
I1

I2

I3

IS4

I5

I6

I7

I8

I9

I10

I1Impl

I2Impl

I3Impl

I4Impl

I5Impl

I6Impl

I7Impl

I8Impl

I9Impl

I10Impl

P23

P3

P25

P1

P3P1

Client Side Server Side

Shared Space

a

c d

ef

Purgatory

P33 P34 P35

g
P50 P51 P51

h
i

b

Fig. 2. Big-Picture in CLISERVO: It features four parts (Client Side, Server
Side, Shared and Purgatory) – the Server part includes layers b, d and i; the
Client part, a, c, h.

or indirectly (d, i). This part is built successively level by
level.

• Shared part: This part contains DTO (Data Transfer
Object) classes i.e., software resources which can be
used by both client-server entities (e, f). Hence, this part
contains DTOs that are meant to be shared but may not
be actually shared in the project.

• Purgatory: The purgatory part gathers elements that are
not DTOs and whose classification into the client or the
server parts is not clear (g). These elements are used by
at least one entity of the server part and use at least one
entity of the client part. Such entities are in relation to
both client and server entities leading to ambiguity about
their layer affiliation. Further analysis of such entities is
needed to be attributed to their correct layer.

B. Configuration 2: Server-focus with Three Layers

It is possible to focus only on the server part, which is also
composed of layers: Server, Services, and DAOs.

• Server: This layer corresponds to what has been pre-
viously described in the Big-Picture visualization (Sec-
tion III-A). It includes the core part, i.e., the (implemen-
tation) classes enabling communication with the client

Services
Server

DAO
07/10 40

24

L1 L2

Fig. 3. Illustration of the visualization Server-focus.

part, and contains classes directly or indirectly used by
the core (L1 and L2 respectively).

• Services: This layer corresponds to the services of the
server application. It relies on a structural rule and thus
corresponds to a specific class hierarchy.

• Data Access Object (DAOs): Entities of this layer rep-
resent the classes accessing the database of the software.
They also result from a structural rule and represent a
specific class hierarchy, such as the AbstractDao class in
Hibernate.

C. Two Viewpoints for each Configuration

In addition to the Big-Picture and Server-focus configu-
rations, the visualization features two viewpoints: a general
component overview view and an architectural violation view.
Both viewpoints use the same graphical elements (nodes and
arrows) to quickly convey information about the software, the
main difference is that the second viewpoint does not display
all elements of the software but the necessary information to
detect violations.

• Big-Picture in Architectural Violation View. When
looking at violations applied to the Big-Picture overview,
only the elements in relation to the purgatory are dis-
played in the client and server parts. Only the classes used
by the server part and using the client part are considered
ambiguous and are put in purgatory. However, all the ele-
ments in relation to these classes require specific attention
to determine which relation is a mistake to remove a class
from purgatory and put it either in the client or server
part. In addition, the DTO part is decomposed into three
sets, (i) the DTOs only linked with the client part, (ii)
the DTOs only linked with the server part, and (iii) the
DTOs linked with neither the client nor the server part.
Indeed, since DTOs are considered shared, these three
cases correspond to violations. Finally, since the client
and server parts mainly rely on behavioral architectural
rules, for each class, we check if its position in the client
or server part is consistent with the name of the package
in which it is. If it is not the case, there is a violation that
is expressed by displaying the class with another color.

For example, a class in the server part cannot be in a
subpackage of a client package.

• Big-Picture in General Component View. The Big-
Picture in the General Component View depicts ALL
entities of the software, meaning entities in violations
and entities that are directly or indirectly in relation to the
core components (interfaces in client and their implemen-
tations in server). Including entities in purgatory. In this
mode, the DTO part is not decomposed into three layers
but groups all DTO entities in one layer, highlighting the
ones in violation in a different color. This view could
be of use in case the user wishes to see the violations
present in the system and how they interact with the other
components.

• Server-focus in architectural Violation View. In the
Server-focused configuration from the architectural viola-
tion viewpoint, only the server elements calling directly a
DAO (without going through a class of the Services layer)
or called by a Services or DAO element are displayed in
the visualization. Similarly, only the service class called
by a DAO is displayed. All other elements respect the
architectural rules and consequently are not displayed to
simplify the visualization and scale.

• Server-focus in General Component View. This view
focuses on the server part and offers a view of the entire
entities in the layers of the server. Including the different
violations explained in the violation view. All elements
with respect or deviating from the architectural rules are
consequently displayed.

In addition to the aforementioned viewpoints, the visual-
ization also offers the hybrid view that allows the selective
display of the violation view and general component view in
different layers of the software as shown in Figure 5.

D. Nodes, Links, and Interaction
Inside layers, we place nodes to represent classes or pack-

ages. Such nodes are connected by links.
Nodes. The visualization presents classes, interfaces, and

packages as nodes. Except if the communication protocol or
the used framework imposed that the communication between
the client and the server parts is performed through interfaces,
the other nodes inside the layers correspond to classes or
packages. For readability and scalability reasons, if the number
of classes to represent in a layer is too high, classes are
grouped in their corresponding packages. This threshold can
be modified in the settings of the visualization. By default, we
use 100.

The visualization is modular in displaying the following
layers of the next distances of the core entities, meaning that
the decomposition of the parts into layers is built progressively
layer proceeding or following a layer for client and server
parts, respectively. Consequently, new ambiguous entities in
Purgatory may be added at each iteration.2 when a new
distance is computed.

2iteration means the addition of a new level representing a behavioral
relation between a group of entities and another

Links. Given the use of the conventional node-link diagram,
it is evident that an arrowed line means the dependency be-
tween interconnected nodes. To avoid overloading the visual-
ization with links, by default, only the dependencies from or to
classes of the purgatory or in violation of a rule are displayed.
For instance, in Figure 1 the class ClientServiceFactory (selected
class in purgatory) depends on all 34 interfaces defined on the
client side, hence the red arrows and green color of nodes. On
the other hand, 14 class nodes on the server part depend on
ClientServiceFactory, hence the blue arrows and green color of
nodes.

Interactions. Since the visualization is built as a tool,
different interactions with its elements are provided. We list a
few of them:

• The user can explore (sub-)nodes or links i.e., investigate
their properties and possibly access the corresponding
source code.

• The user chooses to hide or show the links coming out
or into a single node.

• The user chooses to hide or show all links coming out
or into a layer thus improving clarity and not clutter the
visualization with links.

• A package node can be expanded to show its internal
sub-nodes. Such an expanding feature is also applicable
to groups of nodes in layers.

• The visualization provides users with the ability to zoom
in on layers and nodes, as well as zoom out to gain a
broader perspective.

• The user can progressively display the following nodes
of the next dependency level by interacting with it.

IV. CONSTRUCTING THE VISUALIZATION

This section provides an in-depth explanation of the con-
struction process for the visualization. This process is auto-
mated but requires human intervention to adjust to it specific
situations. It shows in particular that the proposed approach is
generic enough to be applied to different client-server frame-
works. This section delves into the process of identifying parts
based on software rules, while also outlining the architectural
violations that will be specifically examined.

A. Rule-based Parts/Layer Identification

The visualization relies on an abstract representation of the
software using the Famix metamodel [7] and is integrated into
the Moose metaplatform 3 [2]. Once the model is built, we
import it into the Moose platform.

To construct the visualization, we extract (1) essential
structural rules (inheritance, interfaces, annotations,...) and (2)
behavioral information (calls, attribute accesses, ...) from the
software entities to build the different parts/layers, both from
the model. This extraction is performed using queries over
the code model. It means that the visualization elements are
populated by executing queries that represent rules that define
the different elements of the visualization.

3Moose is an extensive platform for software and data analysis:
https://moosetechnology.org

Such rules take into account the way the different frame-
works expresses client-server relationships - e.g., inheritance
to certain classes as in frameworks such as GWT. In addi-
tion, these architectural rules are often adapted to reflect the
knowledge of the system based its maintainers.

Structural Rules. In the Big picture configuration, the ap-
plication of structural rules extracts the three key components
in the visualization: the client core, the server core, and the
shared space. The fourth part of the visualization which is the
purgatory is based on a behavioral rule which is explained in
the next paragraph. The client core corresponds to interfaces
and their corresponding implementations as the server core, as
depicted by (a) and (b) in Figure 2 respectively.

In the case of the case studies presented in this paper, the
structural rules are mainly inheritance relations. For example,
in WD and OJ based on the GWT RPC4 protocol, client
core (a) consists of interfaces implementing the RemoteService
class. On the other hand, the server core (b) consists of classes
that satisfy two structural conditions: (1) being direct or indi-
rect subclasses of RemoteServiceServlet, and (2) implementing
interfaces descending from the RemoteService class, meaning
at least one of the interfaces in the client core.

For example, the use of GWT RPC in the analyzed projects
guides the rules followed by the maintainers and provides
standardized guidelines for extracting these core components.

The shared space also relies on the use of the GWT RPC
framework. Classes of this part are all subclasses of the
BaseModelData class provided by the GWT RPC framework.

In the server-focus configuration (Figures 3 and 5), the parts
of the visualization are built following similar structural rules.
The identification of the server, services, and DAOs also relies
on inheritance. For instance, the server core classes all inherit
from the RemoteServiceServlet and implement a descendent
interface of the RemoteService interface. The services part
classes are all subclasses of the AbstractServices class. Note
that during the validation of our approach, a maintainer
mentioned another condition to define this part which consists
of following the tree structure of sub-packages. For instance,
classes that are contained in packages following such a naming
structure: x.y.services.z.w. This means that the services part can
be identified using a disjunction of these two conditions which
can be easily changed in the codebase of the visualization.
Finally, the DAO layer contains classes that inherit from the
AbstractDAO class.

If these rules enable us to build the visualization, they are
either imposed by the use of a framework or by decisions
made during the software development phase.

Behavioral Rules. The behavioral rules are responsible for
identifying the different layers contained in the parts (client,
server) of the visualization. The behavioral rules consist of
method calls, attribute access, and class references. All layers
in the client part are primarily built from the core of the client
(interfaces (a) in Figure 2) and directly or indirectly calling the
interfaces. Similarly, layers of the server part classes directly

4https://www.gwtproject.org

or indirectly have a behavioral relation with the core of the
server (implementations (b)) meaning they are called by these
implementations.

Additionally, the purgatory part in Figures 1 and 2 adds
entities at each iteration. The visualization tool computes at
each level the entities in a behavioral relation with both client
and server entities and adds them to the collection of classes in
purgatory. The same logic applies to entities of Shared Space
(DTOs).

These structural and behavioral rules represent queries that
capture the relationships between software components which
are customizable depending on each software rules. They
serve as flexible mechanisms for examining and assessing the
interconnections among software elements.

B. A language-Independent Metamodel

The tool is implemented on top of the Moose analysis plat-
form developed in the Pharo language [2]. Therefore the tool
is independent of the language used in the analyzed project.
For the moment, it was used for Java projects since we had
access to the development teams. However, the approach itself
is applicable to all client-server applications because it merely
relies on the structural and behavioral rules inside the codebase
for defining the distinct parts/layers of the visualization as
elucidated in the previous section.

V. BIG-PICTURE VISUALIZATION CONFIGURATION IN
ACTION

In this section, we present the application of CLISERVO
to industrial systems. For confidential reasons, we changed
the name of the software systems and cannot mention the
name of the companies. Moreover, to respect one company’s
constraints we blurred the figures. While during our analyses
we applied different configurations of CLISERVO, for space
reasons, we report the general overview of CLISERVO visual-
ization viewpoint on OJ project and the violation viewpoint on
WD project. These projects are presented in the next sections.

A. OJ: Distribution System of Updates

OJ is a system of updates distribution, built for a list
of clients such as small and big city halls. It was initially
developed by a single developer in 2008 replacing an old
updates downloading system. It was continuously maintained
by the same developer then maintainers changed throughout
the years. However, only ten maintainers were responsible for
this system throughout the years, with few system evolutions
because the system was not exposed to changing needs. It
was conceived for one thing (distribution of updates) which is
still functioning correctly. The system is decomposed into two
projects, the client and the server project. The client project is
built using GWT, and the server project is built in Java. The
two projects use the RPC protocol automatically generated by
the framework to ensure communication between the client
and the server.

OJ counts 3277 classes spread in 599 packages. There
are 3 packages named client and 2 named server packages.

Altogether, the client packages contain 1051 classes. The
server packages count 102 classes.

Analysis: Big-Picture in general component overview
viewpoint. In Figure 4, we use the general component
overview, where all the components are displayed. We added
all levels to the visualization, in addition to the core interfaces
and implementations respectively. The server part holds only
four levels, whereas the client has five.

There are two main dashed boxes each containing at most
five dashed smaller boxes. The big left dash box corresponds
to the client part. The right one refers to the server. In each
of these two boxes, the vertical dashed boxes on the right
for the client and the left for the server correspond to the
core implementing the communication protocol. The other
dashed boxes correspond to the indirection levels successively
computed. In the server part, some classes are in red, meaning
that they are considered in the server part, but belong to client
packages.

The DTOs have not been separated into several groups since
they are all used by both the client and the server parts.

The purgatory is empty meaning that all the communica-
tions between the client and the server parts are done via
the interfaces and the implementations as foreseen by GWT.
Consequently, the separation between the two parts is pretty
clear and net.

B. WD: a Multidisciplinary Healthcare Management System

With WD, doctors can plan meetings, enrol patients in a
session, register proposed decisions, and validate and publish
decisions. This software system is largely used in hospitals
and has been developed around 18 years ago using a client-
server architecture. The client part has been developed with
GWT, the server part is in full Java, and the communication
protocol uses RPC. The system evolved; new functionalities
have been added. But also, technology has changed: GWT is
no more maintained by Google. New versions of browsers
do not support well the Typescript code transpiled from
Java. It becomes urgent to migrate the client part to a new
technology. In parallel, the company wants to modify the
server part. However, after multiple evolutions, the client-
server architecture drifted. It is impossible to just remove the
client parts and replace them.

WD counts 6030 classes spread in 1044 packages. There
are 8 packages named client and 7 named server. Altogether,
the client packages contain 3016 classes. The server packages
count 389 classes.

Analysis: Big-Picture in violation viewpoint. As for OJ,
in Figure 1, we added four levels to the visualization, in ad-
dition to the core interfaces and implementations respectively.
However, due to the state of the communication between the
client and the server parts, we used the violation viewpoint.

On top, there are the DTOs. As explained before, in the
violation viewpoint, they are separated into groups between
those that are used only by the client (24), those only used

Client Server

Shared Space

Purgatory

Core

Fig. 4. The Big-Picture of CLISERVO visualization for the OJ software system in Global Component Overview (all nodes of the project)

by the server (82) and those not shared (29). The other DTOs
(192) are not displayed in the visualization since, as expected,
they are used by elements of the client and the server parts.
Only the link from the purgatory at the bottom and the DTOs
are displayed in the figure.

At the bottom, there is the purgatory containing the classes
whose categorization is ambiguous. At this level of indirection
from the core, there are 91 classes. They are used by the
server part and they use the client part. Only the links from the
purgatory to the client classes or from the server classes are
displayed. Since the figure presents the violation viewpoint,
all the classes in the client (respectively server) part are
targets (respectively source) of such a link. We see that the
separation between the client and the server parts is unclear.
The communication does not always respect the framework
and goes through other classes represented in purgatory. In
addition, a lot of classes in the server part belong to client
packages.

Note that the violation viewpoint, in this case, enabled the
architect to focus on interest points to correct the architecture.
When the violation viewpoint shows no more entity, the
separation between parts is clear, and adopting the general
component overview makes sense for OJ.

VI. FINANCIAL SYSTEM: SERVER FOCUS VISUALIZATION
APPLIED

EGF is a financial management system for local authorities.
Once again, for confidential reasons, the name of the
application has been changed and the figure anonymized.
This application has been developed in full Java using the
RMI protocol. The client and the server parts are physically

separated into two different projects. This physical separation
has consequences on the software logic: The categorization of
each entity is clear, it either belongs to the server or the client
part. Consequently, we focus on the server part, containing
4028 packages among which 180 are named dao and 352
service for a total of 11424 classes.

Analysis: Server focus in hybrid viewpoint. Figure 5
shows the Server-Focused visualization on the EGF industrial
case.

To better highlight the differences, the visualization is
displayed in a hybrid viewpoint: The server part is displayed
in the violation viewpoint – this is why the user can see the
ratio of displayed classes in each layer. On the opposite, the
services and the DAO parts are displayed using the general
viewpoint. All the entities of these parts are displayed. Since
they are too many, classes are grouped by packages.

When the services bypass the services objects and talk
directly to the DAO, these DAO are displayed in dark red,
or more precisely, the packages, containing these classes are
like so. In addition, to know which Service objects to focus
on among all, entities in violation are in orange (those calling
a server entity or called by a DAO).

VII. VALIDATION

In this section, we report our analysis of the results of
CLISERVO on the industrial projects. This was validated with
the current maintainers of each project.

The validation followed the steps: (1) the authors performed
the analysis of the three systems using CLISERVO. This phase
lasted half a day. The analysis produced a list of potential

Fig. 5. The server focus of CLISERVO visualization for the EGF software system from the Violation viewpoint (limited to nodes participating to the violations).

violations and points to clarify; (2) all the raised points were
discussed and validated with the current maintainers of the
systems for half a day each. This phase leads to the opening
of bug tickets or the identification of serious and larger
problems for some cases (i.e., migration to other front-ends).
The subsequent sections summarize our findings.

A. OJ results

The results of the OJ project are depicted in Figure 4. The
OJ system is an example of a well-conceived project with
relatively few classes, few evolutions, and a limited number of
different maintainers throughout the years. CLISERVO showed
some classes in client packages are referenced from the server
part (colored in orange in Figure 4). During the CLISERVO
validation, the maintainers explained that these classes are
referenced by server entities to avoid code duplication: Instead
of creating a new class with the same code, maintainers
preferred to refer directly to these classes.

The visualization also showed classes with the DTO keyword
in their names appearing on the server part instead of on top
in the Shared Space. This means that they do not follow the
rules of inheritance on which the Shared Space is built. This
was a false positive of the way the classification is done by
our tool. Indeed the maintainer explained that such classes do
not belong to the OJ system but to a framework developed
by the company from GWT components to share common
functionalities over projects.

B. WD results

The results of the WD project are depicted in Figure 1.
The tool helps the maintainers to reclassify the messy package
structure where client and server names were mixed in an ad-
hoc fashion. In addition, 29 unused DTOs were identified, 24
DTOs only used by the client, and 82 only used by the server.
Furthermore, 91 purgatory elements were identified:

• 17 entities using only one client entity and only one server
entity,

• 4 entities using only one client entity and used by very
few server entities,

• 13 entities using several client entities but only used by
one server entity,

• 2 entities using several client entities but very few server
entities,

• 4 entities using both client and server entities and being
used by very few server entities,

• the rest are entities automatically categorized in purgatory
because of indirect relations. For instance, an entity using
only clients is used by an entity in purgatory.

Note that the server entities being used are mostly entities
categorized in the server part but in client packages depicted in
orange in Figure 1. The tool helped current project maintainers
identify the idle DTOs and those in violation because they
are not actually shared between both client and server parts.
Moreover, they were mostly interested in the ambiguous enti-
ties in Purgatory since their belonging represents an important
problem for them to eventually investigate and classify.

The results of the WD experiment allowed maintainers to
reconsider the architecture of their software especially since
they were in an architectural transition phase. WD followed
a monolithic architecture changed into a client-server archi-
tecture. The reasons behind this architectural transition are
primarily to make the software system more modular and easy
to maintain. However, this transition was not fully successful
because of the enormous number of classes (6030 classes)
which made it harder for maintainers to correctly reorganize
the whole software. The results we presented helped the
WD maintainers in detecting entities contributing to the tight
coupling of the software (i.e., the entities in purgatory used by
both client and server parts). Such cases blur the boundaries
between the client and server parts and can lead to architectural
confusion, making it harder to reason about and evolve the
system. Also, a server part class might not be compatible
with the constraints of the client part environment, leading
to technical challenges and compatibility issues. Furthermore,
sharing a class between the client and server parts may expose
sensitive logic or data to the client part. This can potentially
create security vulnerabilities if the client is compromised or
if the client has access to sensitive information that should be
handled securely on the server. Additionally, the visualization

allowed maintainers to detect idle DTOs. Such entities are not
only misleading entities that increase cognitive load but they
also play a part in the low performance of the overall software
since they unnecessarily occupy memory resources.

C. EGF results

The tool helps the maintainers to spot violations. An excep-
tional class from the DAO part is accessed by all the server
implementation classes. One of the maintainers explained that
each of their applications has some known and accepted design
issues. This violation is one of them. However, CLISERVO also
revealed seven other direct links from the implementations to
the DAOs layers which are indeed considered as relations not
respecting the architecture of their software.

Moreover, the tool showed eight direct links from classes
in the first level of the server (classes directly used by the
implementations) to the DAOs. One maintainer confirmed that
such links do not represent violations because the calling
classes found in the server layer are de facto classes that
belong to the Services layer, however, organized according
to a different structural packaging set (classes of the service
subpackaging). Changing the rule of the Services layer to
include classes with such a structure helps avoid these false
positives. Nonetheless, to our knowledge of the system and
communication with its maintainers, the naming conventions
are not perfectly respected so adjusting the tool to an incon-
sistent rule might produce more unintended consequences.

Finally, CLISERVO helped the maintainers identify five
confirmed violations coming from the DAOs to the services
layer caused by the intertwining entities. The fact that the code
was too coupled and spaghetti-like made it impossible for the
maintainer to decide what to do. In addition, the visualiza-
tion helped external experts of the projects and visualization
specialists identify the violations which were claimed by the
software maintainers.

VIII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of the
experiment.

Internal Validity: To what extent we can draw a causal link
between the treatment in the experiment and the response? The
study exhibits robust internal validity as it employed a rigorous
experimental design involving three different software systems
from diverse domains, two different companies, and three
project teams. The systems were real industry applications, and
access was granted to their current maintainers, who possessed
distinct levels of knowledge about the software systems. The
study enabled architects to draw insightful conclusions and
make modifications to the client-server architecture. Further-
more, it is noteworthy that the software systems are currently
undergoing a remodularization phase in preparation for future
migration. These factors contribute to the study’s internal
validity by providing a controlled environment for evaluating
the impact of the tool on architectural decision-making within
real-world software systems.

External Validity: Are our results generalizable for practice
modernization? The CLISERVO visualization validation was
applied on three industrial projects since it was not possible
to take open-source projects. Indeed, unfortunately, on public
repositories like GitHub, it is not easy to introduce search
criteria relative to architectural matters. In addition, once
found, access to the developers or to the architects of these
projects is almost impossible. Consequently, we focused on
industrial partners. The variability of the application domains,
the sizes, and the development teams encourages us to believe
in the generalization of the CLISERVO visualization.

Concerning other object-oriented languages than Java such
as Python, C#, or Dart we did not apply our tool because
parsers for such languages are not available at the time of
writing. Nevertheless, the approach remains applicable to soft-
ware employing a client-server layered architecture, since the
structural and behavioral rules used to build the visualization
can be adapted to specific situations.

Construct Validity: Are we measuring what we intend to
measure? CLISERVO enabled us to identify both cases where
the separation between the client and server is clear respecting
the used framework and others where it is not the case.
The focus on the server part highlighted an expected layered
architecture but also enabled the identification of architectural
rule violations between these layers. This leads us to the
conclusion that the interest of the visualization is justified.

Reliability: To what extent can the results be reproduced
when the research is repeated under the same conditions?
One potential reliability threat in this study is the potential for
variations in the interpretation of the results by maintainers.
To address this threat, efforts were made to provide clear
guidelines to maintainers, ensuring a standardized understand-
ing and consistent results. By establishing explicit instructions
for interpreting the visualization, potential discrepancies in the
findings were minimized, enhancing the reliability of the study.
Additionally, the availability of the CLISERVO on GitHub and
its use of an importer specifically designed for Java projects
contribute to the reproducibility and consistency of the study
results across different projects and maintainers.

IX. RELATED WORK

Several approaches recover software architecture from dif-
ferent perspectives [8]. Some tools have been implemented
to recover the architecture of the software such as Rigi [33],
SNIFF [37], Rose [9], Dali [16], and Software Bookshelf [10].
Schmitt Laser et al., [35] propose the ARCADE tool which is
a research workbench for the recovery of software architecture,
architectural smells and anti-patterns. It also uses two visual-
izations Eva [30] and ArcadeViz [24]. Granchelli et al., [15]
provide MicroART, a prototypical tool for architecture recov-
ery of microservice-based systems and Deissenboeck et al., [5]
worked on the ConQAT tool for architecture conformance
assessment capabilities.

Such tools work similarly to our tool in recovering the
software architecture. However, CLISERVO is a visualization

that takes into account the client-server architecture. To the
best of our knowledge it is unique.

When studying the architecture of software some re-
searchers focus on assessing the quality of the software
through its architecture. For instance, Fontana et al., [12]
propose the Arcan tool for the detection of architectural
dependencies. Samarthyam et al., [34] motivate the need for
refactoring of software code smells that decay the system
quality from a high-level perspective by analyzing the impact
of the evolution of both the Windows operating system and
JDK. They report an elevated complexity and unhealthy de-
pendencies between modules. Such analyses are important in
assessing the quality degree of software and measuring the
effect of evolution. Indeed, our tool can support the evolution
of the software architecture by monitoring and comparing
different versions of the same software using different views.
Other tools such as the Hotspot Detector [29] detect smells
at file and package levels. Lippert et al., [25] also identified
architectural smells at various levels: inside inheritance hier-
archies, inside and between packages, subsystems, and layers.
Maria et al., outlines code smells as indicators of architecture
degradation [27]. In this paper, we focus on the detection of the
dependencies between classes (packages) from the software
architecture layers perspective and entities used by both client
and server whose classification is ambiguous. Other work
relies on component-based software, Zhang et al., [40] propose
the Dedal architecture recovery model for component-based
developed software to support design decisions by separating
the representations of architecture specifications, configura-
tions, and assemblies. Allier et al., [1] help understand the
architecture of a software system by grouping methods in
terms of their owner classes to identify the interfaces of service
candidates based on the internal structure of components.
Although such approaches are per se interesting in software
architecture recovery, CLISERVO approach recovers client-
server software based on structural and behavioral rules and
displays the result as views.

According to Ghanam et al., [14] researchers and architects
are more interested in visualizing the high-level design of
the software. The work presented in this paper supports
such a statement with regard to the use of visualizations
in mapping the architecture of software systems. Moreover,
the prominent city metaphor used by Wettel et al., [39] and
adopted by many other researchers to visualize the architecture
of software [18], [32] and as such it was also applied to virtual
reality [11]. In their work, Kobayashi et al., [18] use the city
metaphor but also consider the software layers and viewpoints
conceptually similar to what we do in this paper. However, in
this work, we do not use nor extend the city metaphor but
use a 2D approach to represent the high-level design of the
software. Nonetheless, Balzer et al., [3] introduce the Software
Landscapes visualization for the structure of large software
systems. Although, the previously mentioned visualizations
use metaphors to portray the architecture of the software they
do not differentiate between client and server entities of the
software.

X. CONCLUSION

Understanding source code and recovering its architecture is
a challenging task, particularly for complex systems that have
been developed over a long period of time or have undergone
numerous changes and modifications. We propose a novel
visualization called CLISERVO for recovering the architecture
of client-server systems. CLISERVO help software maintainers
detect architectural violations. By extracting structural and
behavioral information from the software source code, CLIS-
ERVO constructs the different parts and layers of the software.
Furthermore, the visualization incorporates DTOs present in
the codebase, identifying both violations and adherence to
architectural rules. Ambiguous entities that raise questions
regarding their proper placement are also represented in a
dedicated category called “purgatory”. To enhance scalability,
ease of focus, and usability, CLISERVO offers two configura-
tions: the Big-Picture view, which encompasses all software
components (client, server, DTOs, and purgatory), and the
Server-focus view, which focuses solely on the server part.

The application of CLISERVO to industrial projects has
yielded highly promising results. For example, in the WD
project, the visualization exposed DTO-related violations, in-
cluding the presence of unused entities and entities exclusively
used by either the client or the server. These violations under-
mine the software’s architectural integrity by introducing un-
necessary complexity and consuming additional memory and
resources. Moreover, they hinder software comprehension and
navigation, especially in large-scale projects like WD, which
comprise numerous classes (6030 classes). On the other hand,
when applied to the OJ project, which demonstrates a well-
conceived and maintained architecture, CLISERVO revealed
relatively few violations, primarily false positives stemming
from design decisions to avoid code duplication and the inclu-
sion of DTO classes specific to the core software on which OJ
is built. This gives insight into the architecture of the software.
Additionally, by employing the server-focus configuration,
CLISERVO exposed illegal dependencies between layers within
the server part of the EGF project, including seven direct links
from service implementations to DTOs and five violations
from DTOs to the services layer.

The validation with the maintainers shows that, in a couple
of hours, the CLISERVO users were able to spot architectural
violations and qualify architecture design decisions. It shows
also that CLISERVO users were able to conceptualize a coarse-
grained quality model of the systems architecture (ranging
from 3277 to 6030 classes), clearly identifying situations
where future evolutions will be challenging. The visualization
not only aids in detecting architectural violations but also
facilitates the identification of unnecessary elements, thereby
enhancing the maintainability and performance of client-server
applications. For future work, we plan to extend the viewpoints
and apply the visualization to a larger set of projects.

REFERENCES

[1] Allier, S., Sadou, S., Sahraoui, H., Fleurquin, R.: From object-oriented
applications to component-oriented applications via component-oriented

architecture. In: 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture. pp. 214–223. IEEE (2011)

[2] Anquetil, N., Etien, A., Houekpetodji, M.H., Verhaeghe, B., Ducasse,
S., Toullec, C., Djareddir, F., Sudich, J., Derras, M.: Modular moose:
A new generation of software reengineering platform. In: International
Conference on Software and Systems Reuse (ICSR’20). No. 12541 in
LNCS (Dec 2020)

[3] Balzer, M., Noack, A., Deussen, O., Lewerentz, C.: Software landscapes:
Visualizing the structure of large software systems. In: IEEE TCVG
(2004)

[4] Clements, P., Kazman, R., Klein, M.: Evaluating software architectures:
methods and case studies. 2002

[5] Deissenboeck, F., Heinemann, L., Hummel, B., Juergens, E.: Flexible
architecture conformance assessment with conqat. In: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2. pp. 247–250 (2010)

[6] Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering
Patterns. Morgan Kaufmann (2002)

[7] Ducasse, S., Anquetil, N., Bhatti, U., Cavalcante Hora, A., Laval, J.,
Girba, T.: MSE and FAMIX 3.0: an Interexchange Format and Source
Code Model Family. Tech. rep., RMod – INRIA Lille-Nord Europe
(2011)

[8] Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-
oriented taxonomy. IEEE Transactions on Software Engineering pp.
573–591 (2009)

[9] Egyed, A., Kruchten, P.B.: Rose/architect: a tool to visualize architec-
ture. In: Proc. 32nd Annual Hawaii Conference on Systems Sciences
(1999)

[10] Finnigan, P., Holt, R., Kalas, I., Kerr, S., Kontogiannis, K., Mueller,
H., Mylopoulos, J., Perelgut, S., Stanley, M., Wong., K.: The software
bookshelf. IBM Systems Journal pp. 564–593 (1997)

[11] Fittkau, F., Krause, A., Hasselbring, W.: Exploring software cities in
virtual reality. In: Working Conference on Software Visualization. IEEE
(2015)

[12] Fontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M.,
Di Nitto, E.: Arcan: A tool for architectural smells detection. In: 2017
IEEE International Conference on Software Architecture Workshops. pp.
282–285. IEEE (2017)

[13] Gallagher, K., Hatch, A., Munro, M.: Software architecture visualization:
An evaluation framework and its application. IEEE Transactions on SE
pp. 260–270 (2008)

[14] Ghanam, Y., Carpendale, S.: A survey paper on software architecture
visualization. University of Calgary, Tech. Rep p. 17 (2008)

[15] Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino,
L., Di Salle, A.: Microart: A software architecture recovery tool for
maintaining microservice-based systems. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). pp. 298–
302. IEEE (2017)

[16] Kazman, R., Carriere, S.J.: View extraction and view fusion in architec-
tural understanding. In: Proceedings. Fifth International Conference on
Software Reuse. pp. 290–299. IEEE (1998)

[17] Knight, C., Munro, M.: Visualising software-a key research area. In:
Proceedings of the IEEE International Conference on Software Mainte-
nance. p. 437 (1999)

[18] Kobayashi, K., Kamimura, M., Yano, K., Kato, K., Matsuo, A.: Sarf
map: Visualizing software architecture from feature and layer view-
points. In: International Conference on Program Comprehension. pp.
43–52. IEEE (2013)

[19] Koschke, R.: Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution: Research and Practice 15(2), 87–109 (2003)

[20] Koschke, R.: Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution: Research and Practice pp. 87–109 (2003)

[21] Koschke, R., Simon, D.: Hierarchical reflexion models. In: Working
Conference on Reverse Engineering. p. 36. IEEE Computer Society
(2003)

[22] Kruchten, P.B.: The 4+1 view model of architecture. IEEE Software pp.
42–50 (1995)

[23] Langelier, G., Sahraoui, H.A., Poulin, P.: Visualization-based analysis
of quality for large-scale software systems. In: ASE ’05: Proceedings of
the 20th international Conference on Automated software engineering.
pp. 214–223. ACM, USA (2005)

[24] Le, D.M.: Architectural evolution and decay in software systems. Ph.D.
thesis, University of Southern California (2018)

[25] Lippert, M., Roock, S.: Refactoring in large software projects: perform-
ing complex restructurings successfully. John Wiley & Sons (2006)

[26] Lung, C.H., Kalaichelvan, K.: An approach to quantitative software
architecture sensitivity analysis. International Journal of SE and Knowl-
edge Engineering pp. 97–114 (2000)

[27] Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., von Staa,
A.: Are automatically-detected code anomalies relevant to architectural
modularity? an exploratory analysis of evolving systems. In: Proceedings
of the 11th annual international conference on Aspect-oriented Software
Development. pp. 167–178 (2012)

[28] Medvidovic, N., Egyed, A., Gruenbacher, P.: Stemming architectural
erosion by architectural discovery and recovery. In: Proceedings of the
2nd Second International Workshop from Software Requirements to
Architectures (2003)

[29] Mo, R., Cai, Y., Kazman, R., Xiao, L.: Hotspot patterns: The formal
definition and automatic detection of architecture smells. In: 2015 12th
Working IEEE/IFIP Conference on Software Architecture. pp. 51–60.
IEEE (2015)

[30] Nam, D., Lee, Y.K., Medvidovic, N.: Eva: A tool for visualizing
software architectural evolution. In: Proceedings of the 40th international
conference on software engineering: companion proceeedings. pp. 53–
56 (2018)

[31] Perry, D.E., Wolf, A.L.: Foundations for the study of software architec-
ture. ACM SIGSOFT Software Engineering Notes 17, 40–52 (1992)

[32] Pfahler, F., Minelli, R., Nagy, C., Lanza, M.: Visualizing evolving
software cities. In: Working Conference on Software Visualization. IEEE
(2020)

[33] Rigi home page, http://www.rigi.csc.uvic.ca/
[34] Samarthyam, G., Suryanarayana, G., Sharma, T.: Refactoring for soft-

ware architecture smells. In: Proceedings of the 1st International Work-
shop on Software Refactoring. pp. 1–4 (2016)

[35] Schmitt Laser, M., Medvidovic, N., Le, D.M., Garcia, J.: Arcade:
an extensible workbench for architecture recovery, change, and decay
evaluation. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 1546–1550 (2020)

[36] Sharafi, Z.: A systematic analysis of software architecture visualization
techniques. In: 2011 IEEE 19th International Conference on Program
Comprehension. pp. 254–257. IEEE (2011)

[37] TakeFive Software GmbH: SNiFF+ (1996)
[38] Verhaeghe, B., Shatnawi, A., Seriai, A., Anquetil, N., Etien, A., Ducasse,

S., Derras, M.: Migrating GUI behavior: from GWT to Angular. In:
International Conference on Software Maintenance and Evolution. Lux-
embourg (2021)

[39] Wettel, R., Lanza, M.: Visualizing software systems as cities. In:
Working Conference on Software Visualization. pp. 92–99. IEEE (2007)

[40] Zhang, H., Urtado, C., Vauttier, S.: Architecture-centric component-
based development needs a three-level adl. In: Software Architecture:
4th European Conference, ECSA 2010, Copenhagen, Denmark, August
23-26, 2010. Proceedings 4. pp. 295–310. Springer (2010)

	Introduction
	A Layered Architecture Identification
	Challenges for Layers Identification
	Layers in the Server Part

	A Client-Server Architecture Visualization: Cliservo
	Configuration 1: Big-Picture with Four Main Layered Parts
	Configuration 2: Server-focus with Three Layers
	Two Viewpoints for each Configuration
	Nodes, Links, and Interaction

	Constructing the Visualization
	Rule-based Parts/Layer Identification
	A language-Independent Metamodel

	Big-Picture Visualization Configuration in Action
	OJ: Distribution System of Updates
	WD: a Multidisciplinary Healthcare Management System

	Financial System: Server Focus Visualization Applied
	Validation
	OJ results
	WD results
	EGF results

	Threats to Validity
	Related Work
	Conclusion
	References

