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Abstract—Cooperative Perception (CP) allows 

Connected and Autonomous Vehicles (CAVs) to 

enhance their Environmental Awareness (EA) by 

sharing locally perceived objects through CP 

messages (CPMs). The European 

Telecommunications Standards Institute has recently 

defined a set of CPM generation rules to achieve a 

trade-off between EA and Channel Busy Ratio (CBR) 

despite massive perception data. Nonetheless, these 

rules still lack the consideration of information 

usefulness, resulting in a considerable volume of 

useless information transmitted in the CP network. 

This limitation could increase CBR and thus decrease 

EA due to the loss of CPMs in the network. This paper 

introduces CloudAC-IU, a cloud-based deep 

reinforcement learning approach to learn CAVs to 

maximize perception information usefulness in the 

network. Simulation results highlight that CloudAC-

IU enhances EA by decreasing CBR and increasing 

CPM reception for CAVs compared to the state-of-

the-art works. 

Keywords—connected and autonomous vehicles, 

V2X communications, cooperative perception, 

reinforcement learning, advantage actor-critic. 

I. INTRODUCTION 

Vehicles gather information using onboard sensors 
such as radars, lidars, and cameras to perceive the road 
environment. However, the perception capabilities of 
these sensors are limited to only visible objects in their 
Field-of-Views (FoVs) due to the occlusions caused by 
other users and buildings. Consequently, this limitation 
leads to a poor perception of the surrounding environment 
[1]. Alternatively, vehicle-to-everything (V2X) 
communications have emerged as a feasible solution to 
overcome this limitation. V2X enables Connected and 
Autonomous Vehicles (CAVs) to exchange information 
using wireless communication technologies, such as the 

European Telecommunications Standards Institute 
(ETSI) ITS-G5 [2]. In this context, Cooperative 
Perception (CP) [3] represents a new paradigm employed 
to improve road safety and increase Environmental 
Awareness  (EA). This is accomplished by enabling 
CAVs to exchange perceived objects with other CAVs 
using Cooperative Perception Messages (CPMs). 
However, as the same object might appear simultaneously 
in the FoV of multiple CAVs, the CP may result in 
significant transmission redundancy due to the large 
amounts of perception data. This unnecessary exchange 
could increase the channel load and decrease EA for 
CAVs.  

Recently, several kinds of research have demonstrated 
that paradigms such as supervised, unsupervised, and 
reinforcement learning (RL) provide better results in 
Cooperative Intelligent Transport Systems (C-ITS) [4]. In 
particular, RL in our context represents a powerful 
paradigm that learns a CAV to select and broadcast useful 
objects in CPMs based on the state of the environment in 
order to maximize a reward value such as usefulness. 
Although traditional RL is often used to fit simple models, 
it suffers from significant limitations in terms of 
scalability and performance when applied to complex 
tasks. On the other hand, Deep Neural Networks (DNNs) 
coupled with RL, called Deep RL (DRL), have been 
proved to be an excellent alternative for boosting the 
learning capacity of RL systems [5]. However, given the 
complexity of the driving environment, a significant issue 
may arise when dealing with large state and action spaces 
where the exploration process seems impossible. In this 
regard, [6] has introduced new policy-based RL 
approaches, such as actor-critic, that gradually fit and 
evaluate a strategy without exploring the whole action 
space. 

In this paper, a cloud-based DRL approach called 
CloudAC-IU is proposed. Its main goal is to learn CAVs 
to exchange only perceived objects that maximize the 
benefit of their neighboring CAVs. We start by 
formulating object usefulness as a maximization problem 
for each CAV over its communication coverage. 



Following that, we build a Partially Observable MDP 
(POMDP) framework [7] to characterize the CloudAC-IU 
environment under uncertain information that may come 
from onboard sensors and network restrictions. CAVs in 
CloudAC-IU cooperate in training a cloud-based 
Advantage Actor-Critic (A2C) [8] model. Once the 
training converges, each CAV uses a pre-trained copy of 
the global model individually to select which objects to 
include in a CPM. For that purpose, we introduce the A2C 
algorithm to conduct the learning process of the proposed 
approach. Obtained results show the ability of CAVs to 
conduct the training process on the cloud side and 
highlight the performances achieved by the proposal in 
terms of object redundancy, Channel Busy Ratio (CBR), 
and Packet Reception Ratio (PRR) compared to state-of-
the-art works. 

The rest of this article is structured as follows. Section 
2 gives an overview of the most recent related works. 
Section 3 introduces the formulation of the information 
usefulness problem. In the next section, we present the 
CloudAC-IU design and algorithm. In Section 5, we 
present simulations and results. Finally, we conclude this 
work in Section 6. 

II. RELATED WORKS 

Despite the volume of data produced by onboard 
sensors and the restriction of the V2V-dedicated 
frequency range, the exchange of perception information 
between CAVs has been an active research topic in C-ITS. 
The work described in [9] is the first proposed system, 
called CarSpeak. It enables CAVs to exchange sensor 
information as 3D point clouds. This work encodes the 
raw perception information using an octree scheme, and 
CAVs broadcast their associated regions over networks. In 
the same context, the authors in [10] have introduced a 
multimodal cooperative perception system that provides 
drivers with see-through views using massive vision-
based information from cameras and Lidars. Experiments 
in these works have shown that exchanging raw perception 
information may significantly degrade network 
performances. Regarding network constraints, the work in 
[11] has proposed the realization of CP by periodically 
exchanging only descriptions of tracked objects. This 
work was crucial in initiating the standardization of CP by 
the ETSI. 

Regardless of the massive perception data and the 
restrictions of the V2V-dedicated frequency band, the 
ETSI has proposed a CPM format and a set of message 
generation rules based on tracked objects’ dynamicity [3] 
to achieve a trade-off between EA and CBR. Authors in 
[12] have shown that employing CP may result in a large 
amount of useless information using these generation rules 
since CAVs do not analyze perceived information from 
their neighbors. This study also has demonstrated the need 

to design advanced techniques that dynamically control 
the information exchange on the wireless channel while 
ensuring the capacity of EA. 

Various works have been proposed to reduce 
information redundancy. The authors of [13] have 
proposed a dynamics-based technique. Using this 
technique, CAVs analyze the last CPM received from all 
neighboring and exclude perceived objects that exceed a 
position and speed thresholds. In the same context, the 
authors in [14] have introduced an entropy-based 
technique to reduce redundant transmissions caused by 
multiple CAVs that may perceive the same object. During 
each CPM generation interval, each CAV  estimates the 
entropy value of a perceived object to a potential receiver 
CAV based on an estimated history of received CPMs. 
Using this technique, a CAV excludes an object if all 
neighboring CAVs are anticipated to perceive it, and the 
relative entropy for all their neighbors is less than a 
predefined threshold. However, we highlight two 
significant drawbacks of these methods. First, they 
evaluate static thresholds that may not have suitable values 
in heterogeneous driving environments with changing 
vehicle densities. Second, they assume that all other CAVs 
in the surrounding employ the same technique, which is 
not always the case in mixed traffic when a group of 
vehicles cannot send or receive messages.   

Authors in [15] have demonstrated that the existing 
message generation rules might result in a significant 
redundancy level in highway scenarios and then proposed 
a probabilistic data selection scheme [16]. This scheme 
enables each CAV to adapt the adaptive transmission 
probability of each detected object depending on its 
location and other road traffic information. As a DRL-
based scheme, the work in [17] has proposed omitting 
duplicated perceived objects with objects that neighbor 
CAVs can perceive. Using this scheme, CAVs exchange 
perception information depending on an empty, occupied, 
or occluded state of the grid-based projection of their 
FoVs. However, these schemas transmit CPMs without 
considering information usefulness over the transmitter 
network coverage. This limitation still represents an open 
challenge in maintaining EA, especially in highly 
congested networks. 

In the next section, we propose the formulation of 
object usefulness as a maximization problem, considering 
numerous perceptual settings such as position, distance, 
object size, viewing angle, and occlusions caused by other 
road users. 

III. FORMULATION OF OBJECT USEFULNESS 

To begin, let 𝑉  denote a set of vehicles of various 
classes driving in a CP environment. Each vehicle may be 
represented as a rectangle of length 𝑙  and width 𝑤. We 



assume that 𝑉′ ⊆ 𝑉 is a set of CAVs equipped with 360° 
onboard sensors with a maximum sensing range 𝑚 and a 
circular communication coverage of radius 𝑅 . At each 
status-related time interval 𝑡𝑠 , each CAV 𝑣𝑖  of index 𝑖 
broadcast its current status information 𝑠𝑡𝑎𝑡𝑢𝑠𝑖

𝑡𝑠  and 

receive other statuses 𝑆𝑡𝑎𝑡𝑢𝑠𝑗≠𝑖
𝑡𝑠  from other CAVs within 

its communication coverage 𝐶𝑜𝑣𝑖
𝑡𝑠.The status information 

𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 can be described by one or a set of properties, 

including position, type, speed, length, and width. For 

simplicity, we define the 𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 by a set consisting of 

the current position 𝑥𝑖
𝑡𝑠 and 𝑦𝑖

𝑡𝑠 in the global coordinate 

system, the length 𝑙𝑖, and width 𝑤𝑖 as follows: 

𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 = {𝑥𝑖

𝑡𝑠, 𝑦𝑖
𝑡𝑠, 𝑙𝑖 , 𝑤𝑖}  () 

On the other hand, 𝑆𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 can be denoted by:  

𝑆𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 = {𝑠𝑡𝑎𝑡𝑢𝑠𝑗

𝑡𝑠; 𝑗 ≠ 𝑖 𝑎𝑛𝑑 𝑣𝑗 ∈ 𝐶𝑜𝑣𝑖
𝑡𝑠 }         () 

where 𝐶𝑜𝑣𝑖
𝑡  can be formally described by: 

𝐶𝑜𝑣𝑖
𝑡𝑠 = {𝑣𝑗  ; 𝑗 ≠ 𝑖 𝑎𝑛𝑑 𝐸𝐷𝑖

𝑗,𝑡𝑠
≤ 𝑅 } () 

with 𝐸𝐷𝑖
𝑗,𝑡𝑠

is the Euclidean-based distance between 𝑣𝑖 and 𝑣𝑗 at 

𝑡𝑠, computed as: 

𝐸𝐷𝑖
𝑗,𝑡𝑠

= √(𝑥𝑖 
𝑡𝑠 − 𝑥𝑗

𝑡𝑠)
2
+ (𝑦𝑖

𝑡𝑠 − 𝑦𝑗
𝑡𝑠)

2
 () 

We consider 𝑡𝑐𝑝 as a CP-related time. Each 𝑣𝑖  performs a 
local perception phase using onboard sensors and perceives a set 

of objects 𝑂𝑖
𝑡𝑐𝑝

 identifying a set of features, such as position and 

size, for each object during each 𝑡𝑐𝑝. However, including the 

perceived objects 𝑂𝑖
𝑡𝑐𝑝

 into a CPM and broadcast to the other 

CAVs without prior processing could result in redundant useless 
information in the CP network.  

Fig. 1 depicts an Ego CAV 𝑣𝑒𝑔𝑜  that has received status 

information from multiple CAVs within its network coverage 
𝐶𝑜𝑣𝑒𝑔𝑜

𝑡𝑠  at a given 𝑡𝑠 but has only perceived two CAVs within 

its sensing range. Aiming to reduce redundant useless 
information in the CP network, 𝑣𝑒𝑔𝑜 have to determine whether 

objects are useful to other CAVs within 𝐶𝑜𝑣𝑒𝑔𝑜
𝑡𝑠 . However, the 

usefulness of an object 𝑜𝑏𝑗  perceived by 𝑣𝑒𝑔𝑜  to another 

receiver CAV 𝑣𝑗 might rely on distance and occlusion factors. 

The distance-related factor can be defined as a membership 
value in [0,1], of which 𝑜𝑏𝑗 appears in the FoV of 𝑣𝑗. It can be 

determined inversely proportional to 𝑚  and means that the 
closer the distance is to 𝑚, the closer the membership value to 
zero, indicating that 𝑜𝑏𝑗  is being unperceivable by 𝑣𝑗 . The 

distance-related factor can be denoted by: 

𝐷𝐹𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

 = {
0, 𝐸𝐷𝑗

𝑜𝑏𝑗,𝑡𝑐𝑝
> 𝑚

1 −
𝐸𝐷𝑗

𝑜𝑏𝑗,𝑡𝑐𝑝

𝑚
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            () 

where 𝐸𝐷𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

 is the Euclidean-based distance between 𝑜𝑏𝑗 

and 𝑣𝑗 as denoted in (4). On the other hand, the occlusion-related 

factor can be a membership value in [0,1] that refers to which 
𝑜𝑏𝑗  is directly in the Line-of-Sight (LoS) of 𝑣𝑗 .  It can be 

determined proportionally to the sum 𝑠𝑢𝑚  of all angles that 

overlap and occlude the viewing angle 𝑣𝐴𝑛𝑔𝑙𝑒𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

 from 𝑣𝑗 

to 𝑜𝑏𝑗, meaning that the closer this sum is to 𝑣𝐴𝑛𝑔𝑙𝑒𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

, the 

more the LoS to this object is occluded. The occlusion-related 
factor can be denoted by: 

𝑂𝐹𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

 = {
0, 𝑠𝑢𝑚 > 𝑣𝐴𝑛𝑔𝑙𝑒𝑗

𝑜𝑏𝑗,𝑡𝑐𝑝

1 −
𝑠𝑢𝑚

𝑣𝐴𝑛𝑔𝑙𝑒
𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  () 

We employ the 𝑎𝑡𝑎𝑛𝑔2  function to determine the angle 
between two global coordinate system positions. Since 𝑎𝑡𝑎𝑛𝑔2 
computes the angle between a given position and the X-axis, a 
simple subtraction can be performed to get the recommended 
angle. 

 
 

Fig. 1. A geometric representation of the CP environment by the 

ego CAV 𝑣𝑒𝑔𝑜 , where 𝑜𝑐𝑐  is the only angle representing the 

occluded part of the viewing angle from 𝑣1 to 𝑣2 caused by 𝑣3.  

To that end, we can define a visibility membership value 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑒𝑗≠𝑒𝑔𝑜
𝑜𝑏𝑗,𝑡𝑐𝑝

 that indicates the value in [0,1] to which 𝑜𝑏𝑗 is 

visible to 𝑣𝑗 based on the distance-related and occlusion-related 

factors defined in (5) and (6), respectively.: 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑒𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

=𝑂𝐹𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

∗ 𝑂𝐹𝑗
𝑜𝑏𝑗,𝑡𝑐𝑝

 () 

Assuming that 𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

⊆ 𝐶𝑂𝑒𝑔𝑜
𝑡𝑐𝑝

 is a subset of connected 

objects determined by 𝑣𝑒𝑔𝑜  at 𝑡𝑐𝑝. The visible value of 𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

 to 

𝑣𝑗  can be determined as an average value of all objects it 

includes, as follows:  
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𝑉𝑖𝑠𝑖𝑏𝑙𝑒
𝑗

𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

,𝑡𝑐𝑝
=

1

|𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

|
∑ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑗

𝑜𝑏𝑗,𝑡𝑐𝑝

𝑜𝑏𝑗∈𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

𝑜𝑏𝑗≠𝑣𝑒𝑔𝑜

 

(9) 

According to (9), we can generalize the visible value of 

𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

 for multiple CAVs in 𝐶𝑜𝑣𝑒𝑔𝑜
𝑡𝑠 , as follows:  

𝑉𝑖𝑠𝑖𝑏𝑙𝑒
𝐶𝑜𝑣𝑒𝑔𝑜

𝑡𝑠

𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

=
1

|𝐶𝑜𝑣𝑒𝑔𝑜
𝑡𝑠 |

∑ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒
𝑗

𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

𝑣𝑗∈𝐶𝑜𝑣𝑒𝑔𝑜
𝑡𝑠

𝑣𝑗≠𝑣𝑒𝑔𝑜

 

(8) 

To that end, the objective of each transmitter CAV 𝑣𝑒𝑔𝑜 in 

the CP environment is to broadcast disconnected objects 

combined with only useful connected objects 𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

  that 

maximizes the nonvisible value defined in (10), as follows:  

maximiz 
𝑀ego
tcp

      1 − 𝑉𝑖𝑠𝑖𝑏𝑙𝑒
𝐶𝑜𝑣𝑒𝑔𝑜

𝑡𝑠

𝑀𝑒𝑔𝑜
𝑡𝑐𝑝

 () 

Subject to: 

                 C1:     𝑡𝑠 + 𝜖 < 𝑡𝑐𝑝 < 2𝑡𝑠, 

where C1 ensures that CAVs  broadcast and receive status 

information before sharing their local perception and that the 

environment is unchanged between 𝑡𝑠 and 𝑡𝑐𝑝. 

IV. MAXIMIZING INFORMATION USEFULNESS USING ACTOR-

CRITIC REINFORCEMENT LEARNING 

This section introduces the system model and learning 
algorithm. 

A. System design   

In RL, an agent interacts with a stateful environment without 
prior information by maximizing its reward through action and 
feedback at each timestep. Typically, a fully observable 
environment is modeled as an MDP in which the RL agent 
collects complete state information of the environment. 
However, in our context, CAVs construct the state of the 
environment and provide it to the cloud device based on the 
status information received from other CAVs. This results in the 
RL agent receiving only partial state information on the cloud 
device due to network restrictions and message loss. Therefore, 
we develop a POMDP to characterize the state of the CloudAC-
IU environment in the presence of uncertain data. 

Given that the CP environment varies among CAVs and that 
the training and storage of experienced state-decision are 
performed centrally in the cloud, a position-based representation 
may not conduct the training process. Therefore, as a position-
independent representation, the environment state at timestep t 

 

𝑠𝑡 = {(𝐸𝐷𝑒𝑔𝑜
𝑗,t

, 𝑣𝐴𝑛𝑔𝑙𝑒𝑒𝑔𝑜
𝑗,t

, 𝑙𝑗 , 𝑤𝑗); vj ∈ 𝐶𝑜𝑣𝑒𝑔𝑜
𝑡 }         () 

Where 𝐸𝐷𝑒𝑔𝑜
𝑗,t

 and 𝑣𝐴𝑛𝑔𝑙𝑒𝑒𝑔𝑜
𝑗,t

 are the distance and viewing 

angle from an ego that is providing its state to the cloud device 
and a CAV j in its communication coverage. As the environment 
is partially observable, we define an observation 𝑜𝑡 ⊆ 𝑠𝑡  as a 
partial set from 𝑠𝑡  that is computed based on received status 
information in 𝑆𝑡𝑎𝑡𝑢𝑠𝑒𝑔𝑜

𝑡 . 

To define the action 𝑎𝑡  of the RL agent at timestep t, we 
propose the region-based FoV that divides the FoV of each  
CAV into 𝑝 pistes and 𝑠 sectors. We represent the region-based 
FoV of a 𝑣𝑒𝑔𝑜 at 𝑡 by a set of regions of size 𝑠 ∗ 𝑝 as follows:  

 𝐹𝑜𝑉𝑒𝑔𝑜
𝑡 = {𝑅0,0

𝑡 , 𝑅0,1
𝑡 , … , 𝑅0,𝑠−1

𝑡 , 𝑅1,0
𝑡 , … , 𝑅𝑝−1,𝑠−1

𝑡 }        () 

where 𝑅𝑝′,𝑠′
𝑡  is the region indexed by piste 𝑝′ and sector 𝑠′ at 𝑡. 

To that end, given a received environment observation from 
𝑣𝑒𝑔𝑜 by the cloud device, the action 𝑎𝑡 is selecting the regions 

whose objects are useful for the other CAVs in 𝐶𝑜𝑣𝑒𝑔𝑜
𝑡 . 

Finally, the reward represents the usefulness value denoted 
in (10) of the generated objects from the selected regions.  

B. Learning Algorithm 

We develop the A2C algorithm as a centralized cloud-based 
model to conduct the learning process. In particular, A2C is a 
policy gradient method used to solve large action spaces in 
complex RL problems. Its main goal is to find an optimal policy 
to obtain optimal rewards.  

Algorithm 1 illustrates the CloudAC-IU learning algorithm. 
The main goal is to train a cloud-based A2C model to maximize 
the usefulness of CPM objects in the coverage of each 
transmitter CAV. Therefore, we define Algorithm 1 by the 
following three stages. 

1) Initialization stage: At this stage, we initialize an actor-

network 𝜋  with random weights 𝜃 , critic-network 𝑄  with 

random weights 𝜃′, and a buffer of experiences 𝐷 on the cloud 

device.  

2) Action stage: This stage consists of the building, acting, 

and storing processes performed 𝑁𝑠𝑡𝑒𝑝𝑃𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒  times. 

Particularly, the building process consists of constructing the 

observation describing current environment of a given each 

CAV as defined in (12) and sending to the cloud device. The 

acting process of the cloud-based agent involves predicting an 

action according the policy model π and sending it back to the 

target CAV. This policy is modeled as a mapping from locally 

stored action-observation history 𝜏 to an action. On the other 

hand, the training process can be unstable or even diverge when 

nonlinear approximator functions such as DNN models are 

employed for the critic model [18]. To overcome this issue, we 

adopt the concept of experience replay [19]. Thus, the storing 

process involves recoding an experience  𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) 
at each timestep 𝑡 in 𝐷.  

 

 



Algorithm 1: The CloudAC-IU learning algorithm 

1: Input 

 

2: 𝑁𝑢𝑝𝑑𝑎𝑡𝑒𝑠 // Number of learning updates 

3: 𝑁𝑠𝑡𝑒𝑝𝑃𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒 // Number of steps per learning update  

 

4: Output 

 
5: Learned model 

 

6: Initialization stage 

 

7: Initialize a critic network 𝑉 with random weights 𝜃′ 
8: Initialize a buffer of experiences D 

9: Initialize a policy network 𝜋 with random weights 𝜃  
 

10: Action stage 

 

11: 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ← 0 

12: while 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 < 𝑁𝑢𝑝𝑑𝑎𝑡𝑒𝑠 do 

13:         𝑠𝑡𝑒𝑝 ← 0 

14:        while 𝑠𝑡𝑒𝑝 < 𝑁𝑠𝑙𝑜𝑡𝑠𝑃𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒  do     

15:              Each CAV builds 𝑜𝑠𝑡𝑒𝑝 and sends it to the 

             cloud device  
16:              Cloud: predict an action 𝑎𝑠𝑡𝑒𝑝 and send it to     

             the target CAV 

17:              Cloud:  receive a reward 𝑟 
𝑡 and  Store  

             𝑒𝑠𝑡𝑒𝑝= (𝑜𝑠𝑡𝑒𝑝 , 𝑎𝑠𝑡𝑒𝑝 , 𝑟 
𝑠𝑡𝑒𝑝 , 𝑜𝑠𝑡𝑒𝑝+1 ) into 𝐷 

18:              𝑠𝑡𝑒𝑝 ← 𝑠𝑡𝑒𝑝 + 1 

19: 
 

20: 

       end while 

 

Update stage  

 
21:              Sample minibatch 𝑏 from 𝐷   

22:              Compute Critic loss in 𝑏 based on (15) and  

             update 𝜃′ according to (14)           

23:              Compute Actor loss in 𝑏 based on (17) and  

             update 𝜃 according to (16)                         

24: 

25: 
26: 

 

27 

             𝑢𝑝𝑑𝑎𝑡𝑒𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 + 1 

end while 

Cloud : send a pre-trainind copy of the policy network to each 
CAV in the driving scenario  

End. 

 
3) Update stage:  During the learning process, the policy 

and critic models are updated 𝑁𝑢𝑝𝑑𝑎𝑡𝑒 times. The update of an 

embedded critic is usually performed by minimizing the 

Temporal Difference (TD) calculated between the estimated and 

the actual values on a sampled minibatch of experiences 𝑏 =
(𝑠, 𝑎, 𝑟, 𝑠′)~𝑈(𝐵) of size 𝑛, as, follows: 

𝜃′ = 𝜃′ + 𝛼𝐿(𝜃′) () 

where 𝛼  is the learning rate used to adjust model 
parameters and 𝐿(𝜃′) is the loss function calculated as: 

𝐿(𝜃′) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∈𝑏[(𝑟 + 𝛾𝑄𝜃′(𝑠′) − 𝑄𝜃′(𝑠))
2] 

= 1/𝑛∑(𝑟𝑡 + 𝛾𝑄𝜃′(𝑠
𝑡+1) − 𝑄𝜃′(𝑠

𝑡))2
𝑛−1

𝑡=0

 

() 

Following that, we perform an update step of the policy 
model as follows:  

𝜃 = 𝜃 + 𝛼𝛻𝜃𝐽(𝜃), () 

where 𝛻𝜃𝐽(𝜃) is gradient calculated based on the policy 
gradient theorem [20], as follows:  

𝜃𝛻𝜃𝐽(𝜃) = 𝔼𝑠,𝑎~𝜏[𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃 (𝑎|𝑠)𝐴(𝑠, 𝑎)] 

            = ∑ 𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃 (𝑎
𝑡| 𝑠𝑡)𝐴(𝑠𝑡  , 𝑎𝑡)

𝑇=|𝜏|−1

𝑡=0

, () 

where 𝐴(𝑠𝑡  , 𝑎𝑡)  is the advantage value denoting how 
good the chosen action is in the state 𝑠𝑡. It is calculated as: 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑄𝜃(𝑠
𝑡+1) − 𝑄𝜃(𝑠

𝑡) 
() 

where γ ∈ [0,1]  is a discount factor given to early 
discounted accumulative rewards to reduce their impact. 
Once the training process reaches 𝑁𝑢𝑝𝑑𝑎𝑡𝑒𝑠  model 

updates, the cloud device sends a pre-trained copy of the 
policy network to each CAV in order to employ it to select 
which useful objects to include in a CPM at each 
generation interval. 

V. SIMULATION AND RESULTS 

We conduct simulations using the Artery [21] and 
SUMO (Simulation of Urban Mobility) [22] frameworks 
on a 10 km2 real-world map of Bordeaux, France. The 
map is obtained from OpenStreetMap and includes 
various road traffic scenarios, such as the city center and 
highways with various situations, such as ramps and T-
junctions. We randomly generate vehicles with different 
classes and sizes. We consider an ITS-G5 communication 
profile for each CAV and a coverage of 500 m where it 
can send and receive messages. We set the transmission 
power to 23 dBm. CAVs exchange CAMs and CPMs 
every 0.1s and 0.15s, respectively, using a 6Mbps data rate 
and the control channel (CCH) without Decentralized 
Congestion Control (DCC). We configure all CAVs with 
the same local perception capabilities. We set up 360° 
radar and lidar sensors on each CAV with a maximum 
sensing range of 100 m. 

We implemented the CloudAC-IU by building 
Multilayer Perceptron (MLP) networks based on the 
PyTorch library. The simulation spans 50s. The training 
process starts at the first simulation step. The training 



phase consists of 𝑁𝑢𝑝𝑑𝑎𝑡𝑒𝑠 =  000 update times, where 

each update time be made up every 𝑁𝑠𝑙𝑜𝑡𝑠𝑃𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒 = 10 

time steps. To conduct the training process, we applied the 
RMSprop optimizer [23] with a learning rate α = 10−3, a 
minibatch size |𝑏| = 6 , a discount factor γ = 0.99, and 

a buffer size |𝐵| = 106. Finally, for complexity reasons, 
we divide the CAV FoVs equally into 3 pistes and 3 
sectors, resulting in 9 distinct FoV regions.  

We start by analyzing the training convergence of the 
proposal. The cloud continuously receives environment 
states from CAVs and performs a learning step at each 
received state. Fig. 2 depicts the average reward 
representing the average CPM usefulness as a function of 
model update steps. As illustrated, the average CPM 
usefulness shows a high variance during the first update 
steps due to the dynamicity of the environment and the 
lack of sufficient data. However, this metric increases with 
the update steps and is maximized after around 1000 
model update steps. This means that CAVs have 
collaboratively trained a centralized object selection 
policy after around 10000 learning steps successfully. 

 

Fig. 2. Average Reward variation as a function of learning 

update steps. 

After the training update times reaches the predefined 
number of updates steps, each CAVs receives a pre-
training copy of the policy model and then uses it to select 
useful objects to include in a CPM at each generation 
interval. To that end, we compare the CloudAC-IU 
performance to the ETSI CPM generation rules [3] 
(baseline) and the dynamics-based technique [13]. We 
consider an object redundant for both techniques if the 
absolute speed or position value difference is less or equal 
to 0.5 m/s and 4 m, respectively. 

Fig. 3 depicts an Object Redundancy (OR) metric, 
which identifies the number of times a CAV receives an 
update about the same object over the selected time 
interval as a function of the distance between the 
perceived object and the CAV receiving it. As shown, the 
baseline results in higher OR levels at short distances 

because perceived objects are successfully detected and 
exchanged by multiple CAVs simultaneously in the 
network. However, analyzing the last CPM from all 
CAVs by the dynamic-based technique has a marginally 
reduced OR compared to the baseline. On the other hand, 
CloudAC-IU reduces OR considerably at short and 
medium ranges of less than 300 m., which means that 
CAVs exchange only useful objects in the CPMs.  

Fig. 3. OR as a function of the distance between the perceived 

object and the CAV receiving it. 

Fig. 4. EA as a function of the distance between the detected 

object and the vehicle receiving it. 

Typically, the improvement achieved in OR improves 
the network reliability. We measure this reliability using 
Channel Busy Ratio (CBR) and the Packet Reception 
Ratio (PRR) metrics as follows. Table I illustrates the 
average CBR and PRR for all CAVs in the driving 
scenarios. We notice that the baseline approach results in 
a higher CBR value of 40,25 % as it generates a high 
number of redundant objects depicted by the OR. 
However, the dynamic-based technique improves slightly 
by reducing the CBR value by around 4 %. On the other 
hand, CloudAC-IU significantly reduces CBR by around 
10 % and 14 %, compared to the dynamic-based 
technique and the baseline approach, respectively. These 
improvements in CBR by the CloudAC-IU ensure an 
increase of 10% and 11% in the average PRR compared to 
the baseline approach and the dynamic-based technique. 

 

   

   

   

   

   

   

   

   

   

                   

  
  
  
  

  
  
   
 
  
  
  
 

                          

        

             

          

    

    

    

    

   

    

    

    

    

    

    

                        

 
  
  
  
  
 
 
 
  

               

 

 

 

 

 

  

  

                   

 
  
  
  
  
 
  
  
  
 

                            

        

             

          



TABLE I.  CHANNEL BUSY RATIO (CBR) AND  PACKET RECEPTION RATIO 

(PRR)  

Approach / Metrics CBR PRR 

Baseline 40,25 % 77.83 % 

Dynamic-based  36.54 % 78.20 % 

CBR-selective  34.12 % 80.32 % 

CloudAC-IU 26.34 % 88.11 % 

 

Improving the network’s reliability allows CAVs to 
receive additional useful objects via CPMs, increasing 
their EA. In this context, EA represents the ratio between 
the number of unique objects known by a CAV and the 
total number of objects in its communication coverage. 
Fig. 4 plots EA as a function of the distance between the 
detected object and the vehicle receiving it. Compared to 
the baseline, the dynamic-based has almost attained the 
same EA at distances larger than 100 m; meanwhile, they 
lower this metric by around 5% at distances smaller than 
100 m. In contrast, the CloudAC-IU improved EA at 
distances smaller than 100 m as well as in medium and 
large distances from 100 to 400 m. The improvements 
obtained by the CloudAC-IU can be expressed because the 
CAVs send and receive additional CPMs, which seem to 
be lost or not sent by the remaining approaches. 

CONCLUSION 

In this paper, we proposed CloudAC-IU as a cloud-
based DRL approach to maximize the utility of perception 
information and reduce information redundancy in the 
network. We implemented and evaluated the proposed 
approach using advanced network and road traffic 
simulators. Simulation results showed that the proposed 
mitigated redundant objects and improved network 
reliability without sacrificing environmental awareness. 
However, further research should be conducted to ensure 
CP resiliency while addressing the centralized training 
delay and system failure limitations. 
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