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Abstract—The use of Cooperative Perception (CP) enables 

Connected and Autonomous Vehicles (CAVs) to exchange objects 

perceived from onboard sensors (e.g., radars, lidars, and cameras) 

with other CAVs via CP messages (CPMs) through Vehicle-to-

Vehicle (V2V) communication technologies. However, the same 

objects in the driving environment may simultaneously appear in 

the line of sight of multiple CAVs. Consequently, this leads to 

much irrelevant and redundant information being exchanged in 

the V2V network. This overloads the communication channel and 

reduces the CPM delivery to CAVs, thereby decreasing CP 

awareness. To address this issue, we mathematically formulate CP 

information usefulness as a maximization problem in a multi-CAV 

environment and introduce a distributed multi-agent deep 

reinforcement learning approach based on the double deep Q-

learning algorithm to solve it. This approach allows each CAV to 

learn an optimal CPM content selection policy that maximizes the 

usefulness of surrounding CAVs as much as possible to reduce 

redundancy in the V2V network. Simulation results highlight that 

the proposal effectively mitigates object redundancy and improves 

network reliability, ensuring increased awareness at short and 

medium distances of less than 200 m compared to state-of-the-art 

approaches. 

Keywords—connected and autonomous vehicles, cooperative 

perception, redundancy mitigation, multi-agent system, deep 

reinforcement learning. 

I. INTRODUCTION 

Autonomous vehicles rely on onboard sensors such as 
radars, lidars, and cameras to detect road objects, including other 
vehicles, obstacles, and pedestrians, in order to improve their 
driving safety. However, these sensors have a limited line of 
sight and may not detect all objects due to obstructions caused 
by buildings and other road users. This can negatively impact 
the vehicle’s perception capacity, reducing driving safety and 
efficiency. Vehicle-to-Everything (V2X) communications [1], 
which enable a Connected Autonomous Vehicle (CAV) to 
communicate with other vehicles, infrastructure, and even 
pedestrians, have helped to overcome this limitation. This 
communication is performed by exchanging information via 
wireless communication technologies using Vehicle-to-Vehicle 
(V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-
Pedestrian (V2P) scenarios. In this regard, the European 
Telecommunications Standards Institute (ETSI) has 
standardized the ITS-G5 [2], an IEEE 802.11p-based 
communication profile specifically for CAVs to share their 

status information (e.g., speed, position, heading, etc.) through 
Cooperative Awareness Messages (CAMs) [3].  

The development of Cooperative Perception (CP) [4] has 
been the key concept in addressing the limitations of onboard 
sensors. Fundamentally, the CP is utilized to extend the limited 
horizons of CAVs beyond their restricted Field of View (FoV). 
To achieve this goal, CAVs can share sensory information with 
other CAVs and the road infrastructure in the form of high-level 
descriptions of tracked objects, such as speed, position, height, 
and width, via CP Messages (CPMs), allowing them to access 
information that they would not be able to perceive on their own.  

While this paper focuses exclusively on the V2V-based 
exchange of CPMs, the same objects in the driving environment 
may simultaneously appear in the FoV of multiple CAVs and, 
as a consequence, this leads to a large number of irrelevant and 
redundant information being exchanged in the V2V network. 
This overloads the communication channel and reduces the 
CPM delivery for CAVs, thereby decreasing CP awareness. It 
is, therefore, essential to explore ways to optimize the V2V 
exchange of CPMs, such as filtering out redundant information, 
to improve the network’s overall performance. 

The exchange of CPMs between CAVs is crucial for 
ensuring fresh and timely useful perception information. 
However, deriving the optimal message is challenging as it 
requires assessing all possible combinations of perceived objects 
by the transmitter CAV. This becomes computationally complex 
and impractical in dense driving scenarios where CAVs 
continuously perceive large amounts of information. 
Reinforcement Learning (RL) [5] has been developed as a 
powerful automatic decision-making method to tackle this 
challenge. RL enables an agent to interact with a stateful 
environment and learn by taking sequential actions to maximize 
a reward value. In this case, Q-Learning [5], a popular RL-based 
algorithm, can be used to allow a CAV to learn a state-action 
value function to find an optimal CPM content selection policy 
that maximizes the usefulness of the receiver CAVs. However, 
the main limitation of RL-based algorithms is the curse of 
dimensionality, which arises from the exponential growth of the 
state and action spaces due to the number of perceived objects. 
To overcome this limitation, Deep RL (DRL) represents an 
excellent alternative by using Deep Neural Networks (DNNs) as 
function approximators to approximate the optimal value 
function in large state and action spaces. 



This paper proposes a distributed deep reinforcement 
learning method for a multi-CAV setting based on the Double 
Deep Q-Learning (DDQN) algorithm [6]. The primary objective 
of this method is to enable each CAV to learn a CPM content 
selection policy that maximizes the receiver CAVs’ usefulness 
to mitigate the number of redundant objects in the V2V network. 
The obtained results indicate that the proposed method 
effectively reduces object redundancy and improves network 
reliability without the use of static thresholds, resulting in an 
increased perception awareness at short and medium distances 
of up to 200 meters, compared to current state-of-the-art works.  

The main contributions of this paper are summarized as 
follows: 

• We derive a mathematical function for determining the 
usefulness of objects perceived by onboard sensors and 
V2V communications in a multi-CAV environment 
based on various factors, such as distance, object size, 
viewing angle, and occlusions caused by road users, to 
adapt as much as possible to the driving environment. 
This function is then used to formulate the maximization 
problem. 

• As CAVs move through the driving environment and 
store information about past actions to improve future 
decisions, it is not possible to use a positional 
representation for the training process. To address this, 
we propose a scalable position-independent design for 
the state and action spaces that allows CAVs to leverage 
past experiences from different regions and at any time 
during the training process. 

• We develop a distributed DDQN-based algorithm in a 
multi-CAV environment to address the CPM content 
selection problem. 

• We implement and evaluate the proposed method using 
PyTorch library and through advanced discrete-event 
network and road traffic simulators. We then present 
simulations and evaluations to show its performance 
compared to the state-of-the-art approaches. 

The rest of this paper is structured as follows. Section II 
provides an overview of recent related works. The design and 
algorithm of the proposed method are detailed in Section III. 
Simulation results are presented in Section IV. Finally, the paper 
is concluded in Section V. 

II. RELATED WORKS 

Sharing sensory information between CAVs is an active 
research topic in vehicular networks due to the limited resource 
available for the V2V network. Based on the earlier work in [7], 
the ETSI has proposed a CPM format and a set of generation 
rules [4] to balance the amount of perception data exchanged in 
the network with the channel load. Briefly, the CPM format 
includes a set of information containers to describe the 
transmitter CAV, its onboard sensors, and its perceived objects. 
On the other hand, the CPM generation rules determine when a 
CAV generates and transmits a CPM and what information it 
should include. Specifically, a CAV generates and transmits a 
CPM if one of the following conditions is satisfied. (i) It detects 
a new object. (ii) Its position or speed has changed by 4 m 

(meters) or 0.5 m/s (meters per second), respectively, since the 
latest information included in its CPM. (iii) The last time the 
detected object was included in a CPM was 1 (or more) seconds 
ago. If none of the above conditions are met, the CAV still 
generates a CPM every 1 s. 

According to a recent study in [8], the CPM generation rules 
can lead to excessive information redundancy in the V2V 
network as CAVs do not take into account information received 
from their neighbors in the environments. A recent dynamics-
based redundancy mitigation technique is proposed in [9], where 
each CAV analyzes the most recent CPMs received from other 
CAVs and excludes perceived objects that exceed predefined 
position or speed thresholds. This technique allows CAVs to 
adjust the number of updates to each perceived object 
independently; for instance, a fast-moving object will receive 
more updates than a slow-moving object. In addition, authors in 
[10] have proposed redundancy control schemas based on 
channel status, number, and type of V2X stations that have also 
provided the same perceived information. The main objective is 
to adapt the number of V2X stations transmitting data about the 
same object to the channel load while maintaining CP awareness 
close to the default CPM generation rules. However, these 
techniques rely on static thresholds that may not be suitable for 
varying driving environments and vehicular densities. To 
address this, authors in [11] have proposed omitting redundant 
objects based on their usefulness, which is modeled as a RL 
reward based on the distance from the perceived object to the 
receiving CAV. However, this approach does not take into 
account other factors that may influence object usefulness, such 
as object size and road occlusions. There is a need for a more 
comprehensive approach that considers various perception 
contexts and their impact on CP awareness in the V2V network. 

III. DISTRIBUTED DDQN FOR OBJECT REDUNDANCY MITIGATION 

This section introduces the problem formulation and the 
proposed design and learning algorithm.  

A. Problem formulation  

We formulate a mathematical function to determine the 
usefulness of perceived information from onboard sensors and 
V2V communications as a maximization problem in a multi-
CAV environment. This function considers multiple perception 
contexts, including position, distance, object size, viewing 
angle, and occlusions caused by other road users to adapt as 
closely as possible to the driving environment.  

We capture a snapshot of the driving environment illustrated 
in Fig. 1 at time �. Each CAV is modeled as a rectangle, ����� =������, 	� , 
�� , where �����  is the geometric center of the 
rectangle represented by its X-position �����  and Y-position ����� at time � on a global 2-dimensional plane, its length 	� and 
width 
� . As an assumption, all CAVs in the driving 
environment possess the same capabilities, which include: (i) the 
use of Global Positioning System (GPS° and Global Navigation 
Satellite System (GNSS) devices to provide real-time 
information about its location; (ii) the inclusion of 360° sensors 
such as radars and lidars to perceive its surroundings. The 360° 
sensing coverage is defined as a circle with a radius 
 , 
representing the maximum sensing range of all the sensors; (iii) 



the installation of V2V wireless communication devices to share 
information with other CAVs. 

Every � =100 milliseconds (ms), each CAV engages in a 
Cooperative Awareness Service, which uses GPS/GNSS and 
other data to generate and transmit information about its status 
to other CAVs via CAMs through V2V communication [3]. This 
information, known as the CAV’s state, ℎ���� , can include 
various features such as position, speed, length, and width. For 
the purpose of simplicity, this study will only focus on a CAV’s 
position, length, and width on a global 2D plane. Therefore, the 
state of a CAV, ℎ����, can be represented by a set of features, ������, �����, 	� , 
��. As a result of this exchange of information, 
each CAV receives the states of all other CAVs, ����� =�ℎ����, � � � �, via V2V communication. 

 

Fig. 1. A geometric representation of the driving environment at time � 

We consider another time instance, ��, when CAVs perceive 
and share objects through CPMs using V2V communications. 
This process begins with each CAV using its onboard sensors to 
perform a local perception phase, allowing it to perceive the road 
environment locally. Following that, the CAV fuses locally 
perceived objects with received objects from other CAVs and 
provides as an output the final list of objects to be included in a 
CPM and broadcasted in the V2V network. We define this final 

list, ������ = ���,�����, ��,�����, … , ��,������ , by the list of 

perceived features, including the position, length, and width of 

each object, ��,����� = ������, �����, 	� , 
��, perceived by the i-

th CAV. However, without any prior intelligence, the exchange 
of perceived objects between CAVs could result in a large 
amount of unnecessary and redundant information in the V2V 
network. To address this issue, we propose the CPM content 
selection strategy that allows each CAV to select and broadcast 
only useful objects to its surrounding CAVs. This selection 
strategy adapts to the driving environment and does not rely on 
static thresholds. This is done by employing received CAM and 
CPM information to create a geometric representation of its 
surroundings in the driving environment (e.g., provides as an 

output a list of the position, length, and width for each 
surrounding element. 

To that end, the maximization problem at the i-th CAV is 
formulated as follows: 

maximize  &'�()�      1 +
⎝
⎜⎛ 1/�/�� 0   0 1�,�,���′� ∗ 4�,�,���′�5))

�6��7� 

5)

�6��7� ⎠
⎟⎞,         �1� 

Subject to:  � ; �� ; 2�,                                          (2) 

where, 

   =����� = ���,�����, ��,�����, … , ��,5))���� ;  ��,����� ∈ �������, is 

the list of /�� useful objects to be included in a CPM. /� is the 
number of CAVs in the communication coverage of the ith 
CAV. Equation (2) ensures that CAVs broadcast and receive 
CAMs before sharing CPMs and that the environment is 
unchanged between � and ��.  
              1�,�,���′� = @ 0, B�,�,���′� C 


1 + D',E,FG()HI , ��ℎJK
�LJ ,                   (3) 

Equation (3) denotes a distance-related factor, 1�,�,���′�, that 

ranges between 0 and 1 and represents the degree to which the 
j-th object, ��,�����, perceived by the i-th CAV appears in the 

sensing coverage of the k-th CAV. Specifically, as the Euclidean 
distance, B�,�,���′� , between ��,�����  and the k-th CAV gets 

closer to 
, the factor approaches zero, indicating that ��,����� 

is becoming less perceptible to the k-th CAV and, therefore, 
more useful for it. 

4�,�,�����  =  M 0, N�,�,���′� = ∑P�,�,���′� C Q�,�,�����
1 + R',E,F�()�S',E,F�()� , ��ℎJK
�LJ , 

(4) 

Equation (4) represents an occlusion-related, 4�,�,���′� , 

which also ranges from 0 to 1, and signifies the degree to which ��,����� is directly in the LoS of the k-th CAV. This factor is 

proportional to the sum of angles (e.g., P�,�,���′�) that overlap 

and occlude the viewing angle Q�,�,���′� from the k-th CAV to ��,�����. In other words, the more this sum of angles approaches 

the viewing angle, the more occluded the LoS to the object 
becomes. As an illustration, in Fig. 1, for � = 6, � = 4,and X = 2, PY,Z,���′� is the only occlusion angle that occludes 

the viewing angle QY,Z,���′� from the 2nd CAV, ����′�, to the 

4th CAV, �Z��′� , making it impossible for the 2nd CAV to 
detect the latter.  

B. System design 

Each CAV in the driving environment acts as an agent that 
chooses and transmits perception information through CPM at 
each CP-related time. The main goal is to maximize the 
usefulness of its CPM over its communication coverage. 



Therefore, we define the following RL essential components: 
environment state, action, and reward. 

Environment state. As CAVs move within the driving 
environment and collect experienced state-action to improve 
their future decisions, a positional representation cannot be used 
to conduct the training process. Therefore, we introduce a 
flexible position-independent representation of the environment 
state that allows an i-th CAV to draw on its past experiences in 
various locations at any given time, as follows: 

L���′� = �GB�,���′�, [�,���′�, 	� , 
�H; ∀ � � ��,              (5)    

where B�,���′� and [�,���′� are the distance and viewing angle 

from the �th CAV to the j-th CAV. 	� and 
�  are the length and 

width of the j-th CAV.  

Action. Given that CAVs are constantly navigating in a dynamic 
environment, the perception of their surroundings can vary over 
time. Therefore, the action to take should be independent of 
changing characteristics because CAVs store state-action at each 
timestep. To achieve this, we propose a cell-based scheme that 
divides the circular FoV of each CAV into _  pistes and L 
sectors. Hence, the FoV of the i-th CAV at �′ can be represented 
by a vector of cells of size L ∗ _ as follows: `�a���′� = bc�,�d ��′�, … , c�,ef�� ��′�, c�,d� ��′�, … , c,gf�,ef�g∗ef� ��′�h,  

(6)  

where cg),e)� ��′� is representing the cell of p�-th piste and s�-th 

sector indexed by � ∈ k0, _ ∗ L + 1l. To that end, we define the 
action space by the power set of `�a���′� in order to cover all 
the unique possible combinations of cells with a complexity of Θ�2g∗e + 1�. The action n���� can be represented as a natural 
number in the range [0, 2g∗e + 1 ]. This number is then 

converted to a binary string Godo� …  og∗ef�H� of length _ ∗ L. 

Following that, the objects that appear in cg),e)� ��′�  will be 

included in the current CPM only if the corresponding bit in the 
binary string, o�, is set to 1. The CPM will include all perceived 

objects if all bits are set to 1, and will be empty if all bits are set 
to 0. 

Reward. The reward K���′� of the i-th CAV at timestep � is the 
usefulness of the objects generated from the selected action over 
its communication coverage. The mathematical expression for 
this reward function is represented in (1). 

C. Learning algorithm 

The goal of using RL on the i-th CAV is to find a CPM 
content selection policy that maximizes the usefulness of the 
receiving CAVs. As illustrated in Algorithm 1, the i-th CAV, at 
each CP-related time step �′ , builds the state L���′�  of its 
environment, takes an action n���′�, gets a reward K���′�, and 
observes the new state L���′ + 1�. The cumulative discounted 

reward at �′ can be given by q���′� = ∑ r()fsK��t�()s6d , where r ∈ k0,1l  is a discounted factor given to earlier rewards to 
reduce their impact on the current output. The well-known Q-
learning algorithm [5] is one of the most used RL-based 
algorithms that can be applied. The Q-learning in this context 
can lead the i-th CAV to learn a state-action value function, u�vGL���′�, n���′�H = q���′�, when it takes n���′� in state L���′� 

following its CPM content selection policy w�. The Q-learning 
algorithm uses a lookup table that stores the state-action value 
functions of all actions in the action space. This method can be 
impractical for time-sensitive applications, such as the CP, due 
to its high consumption of time and memory when dealing with 
large state and action spaces. However, recent advancements in 
DQN [5] have provided a solution to this issue. DQN utilizes a 
DNN, parametrized by x, to approximate the state-action value 
function of the i-th CAV. This approximation, represented by u��L�����, n�����, x� ≈ u�∗GL�����, n�����H , allows for a more 

efficient and effective means of finding the optimal action value 
function given by the optimal policy. 

 

Algorithm 1: The distributed DDQN-based algorithm for 

object redundancy mitigation in the V2V network  

1: Inputs: 

2: Number of episodes z{g, slots per episode ze, |-greedy | ∈l0,1k 
3: Output: 
4: An optimal policy for each CAV 

5: Begin 
6: Initialize x�, x�� ← x�, and  ~� for each CAV i 
7: J_ ← 0 
8: while J_ ; z{g do 

9:         � ← 0 
10:        while � ; ze do 
11:              each available CAV � :   
12:                   Builds L���� according  to (5) 

                  Samples � from Uniform (0,1) 

                  if � ≤ | then 

                       Performs  n����  

                  else  

                        n���� = nK4 max�'′�(� u�GL����, n�′���, xH 

                  endif                   

                  Gets K����, and observe L��� + 1� 
13:                   Stores J���� ← GL����, n����, K����, L��� + 1�H into ~� 
14:              � ← � + 1 // increase the slots by one CPM gen. interval 
15: 

16: 
       end while 

       each available CAV � :   
17:               Samples a minibatch from ~�   
18:              Updates x� according to (7) and (8) 

19: 
21: 

        J_ ← J_ + 1 

       Following each number of episodes z�5�( , set x�� ← x�  for 
each CAV i 

20: end while 

21: End 

 

In particular, the DQN utilized by the i-th CAV utilizes two 
deep neural networks, known as the train network and the target 
network, which are denoted by x�  and x��, respectively. These 
networks are employed to maintain a stable performance during 
training. The train network is updated every fixed number of 
time steps during an episode, while the target network is updated 
to match the train network after a set number of episodes. The 
well-used experience replay technique is employed to overcome 
learning stability. The i-th CAV stores experiences, represented 

by J����� = GL�����, n�����, K�����, L���� + 1�H, in a replay buffer ~�kJ��0�, J��1�, … , J�����l . The train network is updated by 
minimizing the squared loss, which is calculated from a 
randomly selected mini-buffer from ~� , as follows: 	�LL�x�� = �Ge,�,�,e)H~���'�b����� + u��L, n, x�h,        (7)          



where ����� = K�′ + r max�') u�GL�� , n�� , x��H, L�� , n�� , and K��  are the 

state, action, and reward of the next time step. However, the 
same values are used to select and evaluate an action in the max 
operator defined in (7), which may conduct the training process 
efficiently. To overcome this issue, a DDQN-based algorithm is 
proposed in this paper to conduct the training process of each 
CAV in the driving environment. The proposal follows the same 
DQN process described above and only considers  

������ = K� ′ + ru� �L��, nK4 max�') u�GL��, n�� , x�H , x���,        (8) 

instead of �����
. Note that according to (8), the selection of an 

action depends only on the train network. Meanwhile, the target 
network is being used to evaluate the value of the policy.  

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the proposal’s performance 
based on simulations. 

A. Simulation setup and hyperparameters  

We use Artery [12] and SUMO [13] simulators to simulate 
information exchange and node mobility. We have chosen a 10 
km² area of Bordeaux, France, obtained from OpenStreetMap, 
to represent different road traffic scenarios, including the city 
center and highways with different situations, such as ramps and 
T-junctions. Each CAV is equipped with GPS/GNSS and 360° 
radar and lidar sensors with a maximum sensing range of 100 m. 
The CAVs exchange CAMs and CPMs every 0.1s and 0.15s, 
respectively, using the ETSI ITS-G5 communication protocol 
within a coverage range of 500 m. We implemented the proposal 
based on the PyTorch library. The simulation runs for 70000 
time slots, with each time slot representing a CPM generation 
interval. The training phase includes z{g = 6000  episodes, 

with updates made up every ze = 10 time slots. Furthermore, 
we consider the RMSProp optimizer with a learning rate P =10f�, a minibatch size of 64, a discount factor r = 0.99, and a 
buffer size |�| = 10Y  for each CAV to conduct the training 
process. For complexity reasons, we divide the FoV of each 
CAV into 3 pistes and 3 sectors, resulting in 9 distinct cells. 

B. Evaluation of training convergence  

Fig. 2 illustrates the variation of the average reward for the 
proposed method as a function of the number of episodes. For 
comparison purposes, we also evaluated a multi-CAV DQN 
(MDQN)-based approach, in which each CAV uses a DQN 

model that updates based on �����
 to learn a CPM content 

selection policy. The proposed method shows superior 
performance in maximizing the average reward over 6000 
episodes compared to the MDQN-based method. This suggests 
that using two separate DNNs for action selection and evaluation 
in the proposed method allows CAVs to learn more effective 
policies that optimize the usefulness of objects in V2V 
networks. 

 

Fig. 2. The average reward variation as a function of episodes.  

 

Fig. 3. Object redundancy as a function of the distance between the perceived 

object and the CAV receiving it. 

C. Evaluation of network performance 

After the training process reaches its maximum number of 
episodes, we assess the network performance of the proposed 
method. To compare its performance, we also take into account 
the ETSI CPM generation rules [4] (GRs), as well as the 
dynamics-based [9] technique, and the CBR-selective [10] 
scheme, which are outlined in Section II. For the dynamic-based 
technique and the CBR-selective scheme, we set a redundancy 
threshold of 5, where an object is considered redundant if its 
speed or position value difference is less than 0.5 m/s and 4 m, 
respectively. Furthermore, we set a CBR threshold of 0.6 for the 
CBR-selective scheme. 

Fig. 3 illustrates how object redundancy (OR) changes 
depending on the distance between the perceived object and the 
CAV receiving the information. This metric measures the 
number of times a CAV receives identical information about the 
same object over the selected CP-related time interval. It is 
observed that OR is high at shorter distances as multiple CAVs 
detect and share information about the same object 
simultaneously. However, as the distance increases, the 
perception of the object becomes more difficult, resulting in a 
decrease in OR. The figure demonstrates that the dynamic-based 
technique and the CBR-selective scheme have slightly better 
performance in reducing OR at short and medium distances of 
up to 300 meters. In contrast, the proposal shows more efficient 
OR mitigation at shorter distances of up to 150 meters than the 
other approaches. 

 



 

Fig. 4. The CP awareness as a function of the distance between the perceived 
object and the CAV receiving it.  

 

 

Fig. 5. The CPM delivery ratio as a function of the distance transmitter-
receiver  

The performance achieved by the proposal in mitigating OR 
shall maintain CP awareness in the V2V network close to GRs, 
particularly at short distances that are critical for the safety of 
CAVs. This is shown in Fig. 4, which depicts the CP Awareness 
(CPA) level reached by each method as a function of the 
distance between the detected object and the CAV receiving it. 
In this context, CPA identifies the probability of the number of 
unique objects perceived by a CAV using onboard sensors and 
V2V communication to the total number of objects within its 
coverage. Fig. 4 shows that the dynamics-based technique and 
the CBR-based scheme achieve almost the same CPA as GRs at 
distances larger than 100 m; however, their performance 
degrades by about 5% and 10%, respectively, at distances less 
than 100 m. On the other hand, the proposed solution 
significantly improves CPA compared to the other methods over 
distances less than 200 m, which is critical for the safety of 
CAVs. This improvement is achieved by enhancing the 
reliability of V2V communication, enabling CAVs to receive 
additional useful information that is lost or not transmitted by 
the other methods. We measure this reliability using the CPM 
delivery ratio (CDR) shown in Fig. 5. CDR is presented as a 
function of the distance between the transmitter and the 
receiving CAVs and highlights the increased CPM reception 
ratio achieved by the proposed solution compared to the other 
approaches over distances less than 200 m. 

V. CONCLUSION  

This paper presents a novel method for optimizing the 
selection of perception information by connected autonomous 
vehicles to share in the vehicle-to-vehicle network. The 
approach utilizes a distributed multi-agent double deep Q-
Learning algorithm to learn the optimal information selection 
policy for each CAV, maximizing the usefulness of receiving 
CAVs to reduce redundancy and save network reliability. The 
proposal’s effectiveness was evaluated through simulations, 
which showed that the method significantly reduces redundant 
information and improves V2V communication reliability. This 
leads to an increased level of cooperative perception awareness 
at safety-critical distances of less than 200 meters compared to 
existing state-of-the-art approaches methods. 
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