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Abstract—Recent advancements in autonomous vehicle 

perception have exposed limitations of onboard sensors such as 

radar, lidar, and cameras, which road obstacles and adverse 

weather conditions can impede. Connected and Autonomous 

Vehicles (CAVs) are leveraging wireless communications to share 

perception information through a process called Cooperative 

Perception (CP), aiming to provide a more comprehensive 

understanding of their environment. However, this can result in 

excessive redundant and useless information in the network, as the 

same road objects may be detected and exchanged simultaneously 

by multiple CAVs. This not only consumes more network 

resources but also may overload the communication channel, 

reducing the delivery of perception information to CAVs and 

ultimately decreasing the overall CP awareness in the network. 

This paper introduces MCORM, a multi-agent learning method 

based on the advantage actor-critic algorithm to maximize object 

usefulness and reduce redundancy in the network. Our 

evaluations demonstrate that through this method, CAVs learn 

optimal CP message content selection policies that maximize 

usefulness. Furthermore, our proposal proves to be more effective 

in mitigating object redundancy and improving network 

reliability in comparison to existing approaches. 

Keywords—connected and autonomous vehicles, cooperative 

perception, redundancy mitigation, multi-agent system, 

reinforcement learning, advantage actor-critic. 

I. INTRODUCTION 

One of the paramount challenging encountered in 
autonomous driving pertains to environmental perception. 
Vehicles perceive their surroundings (e.g., other vehicles, 
obstacles, and pedestrians) using onboard sensors, such as 
radars, lidars, and cameras, which enable Advanced Driving 
Assistance Systems (ADASs) to furnish road users with better 
comfort and safety services. Nevertheless, the capability of each 
sensor is constrained by its limited detection range and Field-of-
View (FoV), which can be hindered by the presence of 
obstructions on the road, inclement weather conditions, and 
other environmental factors. These limitations can significantly 
impair vehicles’ perception capabilities, thereby compromising 
their safety and performance [1]. 

Recent improvements in Vehicle-to-Everything (V2X) 
communications [2] provide viable alternatives to this limitation 

by enabling connected road users to share information using 
wireless communication technologies. In this regard, the 
European Telecommunications Standards Institute (ETSI) has 
standardized the ITS-G5 [3] as an IEEE 802.11p-based 
communication protocol, especially for Connected Autonomous 
Vehicles (CAVs) to exchange vital information, such as speed, 
position, and heading, via Cooperative Awareness Messages 
(CAMs) [4]. 

The Cooperative Perception (CP) service [5] is utilized to 
enhance road safety and increase the environmental awareness 
of CAVs. Specifically speaking, the CP may essentially be 
divided into V2V and Vehicle-to-Infrastructure (V2I). In the 
former case, CAVs directly exchange their sensory information 
via periodic broadcasting, allowing for more timely utilization 
of crucial data in making critical driving decisions. In the V2I-
based CP, CAVs periodically send their sensory information to 
a roadside infrastructure using V2I communications for further 
processing. In both cases, the communication is achieved 
through message exchange, where sensory information is 
included in Cooperative Perception Messages (CPMs) as high-
level descriptions of tracked objects, such as speed, position, 
height, and width. As this paper primarily focuses on V2V-based 
CP, the same objects in the driving environment can appear 
simultaneously in the Field of View (FoV) of multiple CAVs. 
As a result, their exchange through CP may result in a significant 
amount of redundant information being transmitted in the V2V 
network, potentially degrading network reliability by increasing 
channel load and reducing CPM delivery, thereby lowering the 
CP awareness level in the V2V network. 

Given the ever-changing nature of the driving environment, 
the sharing of CPMs among CAVs must be automatic and online 
to provide timely and relevant perception data. All possible 
combinations of perceived objects must be assessed for the 
transmitter CAV to determine the best CPM. However, this 
process can be challenging due to the high computational 
complexity and impracticality of evaluating all possible 
combinations of perceived objects to determine the best CPM in 
dense driving scenarios. Reinforcement Learning (RL) [6] can 
be an effective solution to this problem as it allows a CAV to 
learn which objects to include in a CPM based on the state of its 
surroundings, with the aim of maximizing a reward value. 
However, traditional RL training using value-based RL 



algorithms, such as Q-learning and DQN [6], in large state and 
action spaces seems impossible due to the complexity of the 
environment [7].  Policy-based RL algorithms [6], such as policy 
gradient, gradually fit and evaluate a policy without exploring 
entire spaces in order to overcome this limitation to some extent. 
However, they tend to generate a large variance in estimating 
the gradient since they are usually updated per round, which 
reduces the training efficiency. An Actor-Critic (AC)-based RL 
algorithm [8] was proposed to boost RL-based systems in 
complex problems by taking the strengths of both the value-
based and policy-based methods. In fact, AC employs linear 
value functions typically represented by Deep Neural Networks 
(DNNs) to approximate the action-value function. However, 
authors in [9] demonstrated that AC generates a high variance 
and gives inaccurate outputs. In [10], an Advantage AC (A2C) 
algorithm is introduced to reduce training variation. Using its 
policy, the actor chooses an action that is then evaluated by the 
critic, who returns an advantage value. This value, indicating the 
value of the chosen action, enables the actor to adjust its policy 
accordingly. As our paper addresses the CP in a multi-CAV 
environment, we develop a Multi-CAV A2C framework to 
address the dynamicity of each CAV independently. In this area, 
the authors of [11] have focused on the Centralized Training for 
Decentralized Execution (CTDE) paradigm in order to build a 
multi-agent actor-critic environment that serves as a Centralized 
Critic for Decentralized Actors (CCDA). 

This paper proposes a multi-agent advantage actor-critic 
learning method, namely MCORM, for a multi-CAV driving 
environment. Its primary objective is to enable each CAV to 
learn a CPM content selection policy that maximizes the 
receiving CAVs’ usefulness as much as possible to reduce the 
number of redundant objects in the V2V network. Results show 
the ability of MCORM to adapt to the driving environment and 
to learn CPM content selection while maximizing usefulness 
effectively. Furthermore, the results highlight that the proposal 
effectively mitigates object redundancy and improves network 
reliability without static thresholds. This ensures an increased 
awareness of CAVs compared to state-of-the-art approaches. 

The main contributions of this paper are summarized as 
follows: 

• We suggest a mathematical approach to optimize the 
usefulness of information received from onboard sensors 
and V2V communications in a multi-CAV environment. 
This approach considers various perception factors, such 
as distance, object size, viewing angle, and obstructions 
caused by other road users, to adapt as effectively as 
possible to the driving environment.  

• CAVs may not have complete information about their 
surroundings due to limitations from onboard sensors 
and network restrictions. To address this issue, we use a 
Decentralized Partially Observable Markov Decision 
Process (Dec-POMDP) framework [12] to characterize 
the uncertain information in MCORM’s environment. 
Additionally, a position-based representation may not be 
sufficient for the training process as CAVs constantly 
move and update their decision-making process. To 
address this, we propose a scalable design for the state 
and action spaces of the Dec-POMDP, allowing CAVs 

to leverage previous experiences in various regions and 
at any time. 

• We introduce the A2C learning algorithm in a multi-
CAV environment based on CCDA to solve the CPM 
content selection problem on each CAV. Specifically, 
each CAV acts as an agent, using a DNN for its policy 
function to select the perceived objects that maximize its 
neighbors’ usefulness based on the state of its 
environment. On the other hand, we design a DNN 
model to characterize the value function representing the 
critic in a central computing and storage device. Agents 
representing CAVs employ V2D communications to 
exchange training-related information with the central 
device and V2V communications to exchange CAMs 
and CPMs with other agents (CAVs). 

• We implement and evaluate MCORM based on the 
PyTorch library and through advanced discrete-event 
network and road traffic simulators Artery [13] and 
SUMO [14], respectively. We then present results and 
evaluations to show its performance compared to the 
state-of-the-art approaches. 

The rest of this paper is organized as follows. In Section II, 
we provide an overview of the most recent related works. The 
problem formulation of CP’s information usefulness is 
presented in Section III. In Section IV, we introduce the 
MCORM design and learning algorithm. Simulations and 
evaluations are presented in Section V. Finally, we conclude this 
paper in Section VI. 

II. RELATED WORKS 

The ETSI has proposed a set of CPM generation rules to 
balance the channel load and the amount of perception data to 
be exchanged in the V2V network [5]. These rules specify 
whether a CAV generates and broadcasts a CPM and what 
information it should include based on periodic and dynamic 
policies. The periodic policy generates CPMs periodically at 
every generation interval. In every CPM, the transmitting CAV 
includes information about all detected objects. The CPM 
should be transmitted even if no objects are detected. The 
periodic policy is being used as a benchmark in the 
standardization process to compare its performance and 
efficiency with more advanced policies such as the dynamic one. 
With the dynamic policy, the transmitting CAV checks if the 
environment has changed and if it is necessary to generate and 
transmit a new CPM at every generation interval. A CAV 
generates and broadcasts a CPM if one of the following 
conditions is satisfied. (1) It detects a new object. (2) Its position 
or speed has changed by 4 m (meters) or 0.5 m/s (meters per 
second), respectively, since the latest information included in its 
CPM. (3) The last time the detected object was included in a 
CPM was 1 (or more) seconds ago. If none of the above 
conditions are satisfied, the CAV still generates a CPM every 1 
s. 

According to a recent study in [15], the CPM generation 
rules result in significant information redundancy in the V2V 
network. This is because CAVs do not analyze perceived 
information from other CAVs in their environments. A recent 
dynamics-based redundancy mitigation technique is proposed in 



[16], where each CAV analyzes the most recent CPMs received 
from other CAVs and excludes perceived objects that exceed 
predefined position or speed thresholds. In addition, authors in 
[17] have proposed redundancy control schemas based on 
channel status, number, and type of V2X stations that have also 
provided the same perceived information. The main objective is 
to adapt the number of V2X stations transmitting data about the 
same object to the channel load while maintaining CP awareness 
close to the default CPM generation rules. However, these 
techniques consider predefined and static thresholds, which may 
not have the appropriate settings in heterogeneous driving 
environments with varying situations and vehicular densities. 
Moreover, the authors in [18] have demonstrated that the 
existing message generation rules may produce a high level of 
redundant information in highway scenarios and then 
theoretically proposed a probabilistic data selection scheme 
[19]. This schema allows each CAV to adjust the adaptive 
transmission probability for each detected object based on its 
position and road traffic information. In contrast, the 
communication part of this technique is evaluated through 
MATLAB instead of network simulators such as Artery, which 
simulate communications using the ETSI ITS-G5 protocol 
stack. 

In summary, most existing techniques focus on predefined 
thresholds to include perceived objects in a CPM based on their 
position or speed criteria. There still lacks a consideration of 
information usefulness over the coverage of the transmitter 
CAV. To our knowledge, [20] is the first and only work that has 
proposed omitting redundant objects based on object usefulness. 
The authors of this article have introduced a deep RL-based 
schema where object usefulness is modeled as a reward based 
on only the distance from the perceived object to the CAV 
receiving it. Nonetheless, this modeling does not consider 
various perception contexts, such as object size and road 
occlusions, which may influence the usefulness model and affect 
the CP awareness level in the V2V network. 

III. PROBLEM FORMULATION 

This section formulates the usefulness of information 
perceived from onboard sensors and V2V communications in a 
multi-UAV environment as a maximization problem. This 
formulation takes several perceptual factors, such as position, 
distance, object size, viewing angle, and occlusions, to adapt as 
much as possible to the environment. Table I provides a 
summary of the notations used in this work. 

We freeze the image of the driving environment depicted in 
Fig. 1 at time �. At this time, we define the driving environment, ���� � ������, �
���, … , �����
, as a set consisting of n CAVs 
indexed from 1 to �. Each CAV is represented as a rectangle, ����� � ������, �� , ���, where ����� is the geometric center of the 
rectangle represented by its X-position �����  and Y-position ����� at time � on a global 2-dimensional plane, its length �� and 
width �� . As an assumption, all CAVs in the driving 
environment have identical capabilities, as follows: 

• Each CAV is fitted with Global Positioning System 
(GPS) and Global Navigation Satellite System (GNSS) 
devices to provide timely information about its position. 

• Each CAV is equipped with 360° sensors, such as radars 
and lidars, to perceive road objects. We define the 360° 
sensing coverage as a circle whose radius � representing 
the maximum sensing range across all sensors. 

• Each CAV is fitted with V2V and V2D wireless 
communication devices to share information with other 
CAVs and the central device. 

According to the above assumption, Fig. 2 illustrates the 
principle internal services related to this work for a given CAV. 
Each CAV performs a Cooperative Awareness Service every � �100 milliseconds (ms) [4]. This service gathers information 
from GPS/GNSS and other sources to generate and broadcast 
status information via CAMs [4] to the other CAVs through the 
V2V Tx Interface. The status information of a CAV ℎ���� can 

 

Fig. 1. A geometric representation of the driving environment at time �. 

 

Fig. 2. In-CAV Services. 



be described by one or a set of features, including its position, 
speed, length, and width. To simplify, we only consider the 
position on a global 2-dimensional plane, length, and width of 
each CAV. Thus, we express, ℎ���� � ������, �����, �� , ��
, as a 
set of features consisting of  �����, �����, ��, and �� . Following 
the exchange process, each CAV receives other status 

information, ����� � �ℎ����, � ≠ � �, from other CAVs through 

the V2V Rx Interface.  

We consider another time step �  when CAVs perceive and 
exchange objects through CPMs via V2V communications as 
follows. First, each CAV starts by performing a Local 
Perception Service to perceive the road environment using its 
onboard sensors. Then, it conducts a Cooperative Perception 
Service that consists of three principal modules. The Data 
Fusion Module fuses locally perceived objects with received 
objects through the V2V Rx Interface from other CAVs. This 
module outputs the final list of objects to be included in a CPM 
and broadcast to other CAVs. We define this final list, !��� � ��"�,��� �, "�,
�� �, … , "�,#�� �� , as a list of perceived features, 

such as position, length, and width for each object � perceived 

by the �th CAV as follows, "�,��� � � �����′�, ����′�, �� , ���. The 

exchange of perceived objects between CAVs without any prior 
intelligence could result in a significant amount of useless and 
redundant information in the V2V network. Regarding this 
limitation, we propose a CPM Content Selection Module, which 
enables each CAV to select and broadcast only useful objects 
that maximize the benefit of its surrounding CAVs. The 
selection process doesn’t employ static thresholds and adapts to 
the situation of the driving environment. This is done by 
employing the information provided by an Environment 
Descriptor Module, which exploits the received CAMs and 
CPMs to create a geometric representation of the surrounding 
elements in the driving environment at time step �′  (e.g., 
provides as an output a list of the position, length, and width for 
each surrounding element).  

To that end, the maximization problem at the ith CAV is 
formulated as follows: 

maximize    -.�/0�      1 −
⎝
⎜⎛ 1� �  5 5 6�,�,#��′� ∗ 8�,�,#��′��00

�9��:# 

�0

#9�#:� ⎠
⎟⎞,       �1� 

Subject to: � ≤ � < 2�,                                                   (2) 

  6�,�,#��′� � A 0, C�,�,#��′� > �
1 − E.,F,GH/0IJ , "�ℎKL��MK                                    (3) 

8�,�,#��′�  �  N 0, O�,�,#��� � ∑Q�,�,#�� � > R�,�,#��′�
1 − O�,�,#�� �R�,�,#�� � , "�ℎKL��MK  

(4) S��� � � �"�,��� �, "�,
�� �, … , "�,�00�� � ;  "�,��� � ∈ !��� ��  is 

the list of �   useful objects to be included in a CPM. �  is the 

number of CAVs in the communication coverage of the ith 
CAV. Equation (2) ensures that CAVs broadcast and receive 
CAMs before sharing CPMs and that the environment is 
unchanged between � and � . Equation (3) computes a distance-
related factor 6�,�,#��′� in [0,1] that refers to the value of which 

the  �th object "�,��� � perceived by the �th CAV appears in the 

sensing coverage of the  Vth CAV as follows: the closer the 
Euclidian distance C�,�,#��′� between "�,��� � and the Vth CAV 

is to �, the closer the factor is to zero, meaning that "�,��� � is 

being unperceivable by the Vth CAV, thereby being useful for 
it. Equation (4) denotes an occlusion-related 8�,�,#��′� in [0,1] 

that refers to the value of which "�,��� � is directly in the LoS of 

the Vth CAV. This factor is defined proportionally to the sum O�,�,#��′) of all angles (e.g., Q�,�,#���) that overlap and occlude 

the viewing angle R�,�,#��′� from the Vth CAV to "�,��� �. This 

means that the closer this sum is to the viewing angle, the more 
the LoS to this object is occluded. As an example, for � � 6, � �4, and V � 2 in Fig. 1, Q[,\,
��′� represents the only occlusion 

angle that occludes the viewing angle R[,\,
��′� from 2nd CAV �
��� to the 4th CAV �\��′�, which makes the 2nd CAV cannot 
successfully detect this latter. We employ the ]�]�82  function 
to determine the angle between two positions in a global 2D 
coordinate system. Since ]�]�82 computes the angle between 
a given position and the X-axis, a simple subtraction can be 
performed to get the recommended angle.  

IV. ADVANTAGE ACTOR-CRITIC LEARNING IN A MULTI-CAV 

SETTING 

This section provides the system model and learning algorithm 
to mitigate redundant perception information in the V2V 
network. 

A. System design 

Agents in MARL interact with a stateful environment to solve a 
sequential decision-making problem. Each agent takes action 
based on the state of the environment and then receives feedback 
at each timestep to maximize its reward. Typically, a fully 
observable environment is modeled as an MDP, where each 
agent collects complete state information. However, in our 
multi-CAV-based driving environment, CAVs representing 
agents build the state of their environments using information 
perceived by onboard sensors and received by CAMs and 
CPMs. Due to limited onboard sensors and network constraints, 
CAVs may not perceive complete information about their 
surroundings, making the state of their environments uncertain 
and only partially observed. For that reason, we build a 
Decentralized Partially Observable MDP (Dec-POMDP) 
framework [12] to characterize MCORM’s environment states 
under uncertain information. A DEC-POMDP at the �th CAV is 
mainly defined by its essential components as follows: 

Environment state: Given that the CAVs move and store 
environment state and action pair each time to improve their 
decision-making process, a position-based presentation cannot 
be used to conduct the training process. Therefore, we introduce 
a scalable position-independent representation of the 
environment state that allows the ith CAV to leverage past state-
action experiences: 

M���′� � �HC�,���′�, �̂,���′�, �� , ��I; ∀ � ≠ ��,              (5)    



where C�,���′� and �̂,���′� are the distance and viewing angle 

from the �th CAV to the �th CAV. �� and ��  are the length and 

width of the �th CAV. As the environment is partially 
observable, we define an observation `���′�  ⊆ M���′� for the �th 
CAV as a partial set from M���′� determined by its Environment 
Descriptor Module.  

Action. Given the mobility of CAVs in the driving environment, 
the perception changes over time. Therefore, the action should 
be independent of changing characteristics. To that end, we 
propose a cell-based scheme that divides the circular FoV of 
each CAV into b pistes and M sectors. Hence, the FoV of the �th 
CAV at time step �′ can be represented by a vector of cells of 
size M ∗ b as follows: c"����′� � de�,�f ��′�, … , e�,gh�� ��′�, e�,f
 ��′�, … , e,ih�,gh�i∗gh� ��′�j, 

 (6)  

where ei0,g0� ��′� is representing the cell of b �ℎ piste and M �ℎ 

sector indexed by � ∈ k0, b ∗ M − 1l. To that end, we define the 
action space by the power set of c"����′� in order to cover all 
the unique possible combinations of cells with a complexity of Θ�2i∗g − 1�. The action ]���′� can be a natural number in the 
range [0, 2i∗g − 1]. This number is then converted to a binary 

string Hnfn� …  ni∗gh�I
  of length b ∗ M . Following that, the 

objects that appear in ei0,g0� ��′� will be included in CPM only if n� � 1. The CPM include all perceived objects if all bits are set 

to 1s. On the other hand, the CPM is empty if all bits are set to 
0s. 

Reward. The reward L���′� of the �th CAV at timestep �′ is the 
usefulness of the objects generated from the selected action over 
its communication coverage. The reward function is denoted in 
(1). 

B. Learning Algorithm for CAVs 

Mainly, RL algorithms can be classified into two categories: 
policy-based and value-based. The policy-based algorithms, 
such as policy gradient [6], conduct an agent to learn a policy 
function representing a probability distribution over the action 
space. This function maps each environment state to an action 
to perform. Value-based algorithms, on the other hand, such as 
Q-learning and DQN [6], learn an agent to select actions based 
on the predicted value of the state or action. However, due to the 
dynamicity of the environment, which generates large state and 
action spaces, value-based algorithms are limited in conducting 
the learning process of CAVs in MCORM. In contrast, policy-
based algorithms appear to perform better in this context, as they 
gradually fit a policy without exploring the state and action 
spaces but still generate a high variance in estimating the 
gradient value. The work in [10] introduced an A2C algorithm 
that combines advantages from both policy-based and value-
based algorithms to reduce variance during the training process. 

In this paper, we develop a distributed A2C-based learning 
algorithm for a multi-CAV environment to learn each CAV an 
optimal CPM content selection policy that maximizes the 
benefit of the receiving CAVs in the V2V network. In this 
context, the authors of [11] have introduced a centralized critic 
for decentralized actors to build a multi-agent actor-critic 
framework for mixed cooperative and competitive 
environments. Motivating by that, we adopt the same framework 
to develop the following Algorithm 1. The learning process 
requires the number of learning episodes pqi�grEqg  and the 

number of steps per episode pg/qig as inputs.  Before starting the 

learning process, the central computing and storage device 
initializes a critic network s with random parameters t  and a 
buffer of experiences u. Then, each CAV initializes a policy 
network v with random parameters t (Lines 1-9). 

TABLE I.  NOTATION SUMMARY 

Notation Description Notation Description �, �  Status-related and perception-related time instances  � Sensing range  �, �, V Indexes  R�,�,#��′� The viewing angle from the Vth CAV to "�,��� �. �����, �����, �� , �� The position,length, and width of the ith CAV Q�,�,#��′� An  occlusion angle that overlap and occlude R�,�,#��′� ����� The rectangle representing the ith CAV O�,�,#��′) The sum of all occlusion angles overlap and 

occlude R�,�,#��′� ���� The set of � CAVs representing the driving environment M���′�, `���′� The state and observation of the ith CAV ℎ���� The status information of the ith CAV C�,���′�, �̂,���′� The distance and viewing angle from the �th CAV 

to the �th CAV. ����� The set of status information received by the ith CAV from 

other CAVs 
b, M The number of pistes and sectors 

"�,��� � The jth object perceived by the ith CAV c"����′� The vector of the b ∗ M FoV cells of the ith CAV !��� � The final list of perceived objects ei0,g0� ��′� The cell of b �ℎ piste and M �ℎ sector indexed by � ∈ k0, b ∗ M − 1l in c"����′� S��� �, �   The list of �   useful objects to include in a CPM ]���′�, L���′� The action and reward of the ith CAV C�,�,#��′� The Eclidean distance between the ith CAV and  "�,��� � 
s, t  The Critic network parametraized by a vector of 

wheigts t  6�,�,#��′�, 8�,�,#��′� Distance-related and occlusion-related factors v, t The Actor network parametraized by a vector of 

wheigts t  
 



Algorithm 1: The multi-CAV A2C learning algorithm for          

object redundancy mitigation in the V2V network  

1: Inputs: 

2: Number of learning episodes pqi�grEqg 

3: Number of steps per one learning episodes pg/qig  

4: Output: 
5: Learned policy for each CAV 
6: Begin 
7: Initialize a critic network s with random weights t′

 

8: Initialize a buffer of experiences u 
9: Each CAV on creation initializes a policy network v with random 

weights t 
10: Kb�M"CKM ← 0 
11: while Kb�M"CKM < pqi�grEqg do 

12:         � ← 0 
13:        while � < pg/qig do 

14:              Each available CAV � :   
15:                   Builds an observation `���� 
16:                   Selects an action ]����, generates and broadcasts a CPM 
17:                   Gets a reward L���� 
18:                   Stores K���� � H`����, ]����, L����, `��� + 1�I into u 

20:              � ← � + 1 // Increase the steps by one CPM gen. interval 
21:        end while 

22:        Sample a minibatch from u   
24:        Update t  according to (7) 

25:        Update all CAVs’ policies according to (9)     
26:         Kb�M"CKM ← Kb�M"CKM + 1 

27: end while 

28: End 

The learning process is conducted pqi�grEqg  episodes. 

During each episode, each CAV performs pg/qig  times the 

following four processes. First, it builds an observation `��′� 
based on the information provided by its Environment 
Descriptor Module. Second, it chooses an action ]��′� , 
generates objects, and broadcasts a CPM to other CAVs using 
the V2V communication. Next, it receives a reward L��′� and 
sends an experience K��′� � �`�� �, ]�� �, L�� �, `��′ + 1��  to 
the central computing and storage device using V2D 
communication. This latter stores each received experience in a 
buffer of experiences shared for all CAVs (Lines 7-21). 
Following each pg/qig, the critic updates its model first, and then 

each CAV updates its policy model before the system starts the 
next learning episode (Lines 22-28).  

The critic model on the central computing and storage device 
is updated by minimizing the Temporal Difference (TD) 
calculated between the estimated and the actual values on a 
sampled minibatch of experiences �M, ], L, M �~z�u� of size �q 
drawn uniformly from the buffer of experiences u, where M is 
the state, ] is the chosen action, L is the reward, and  M  is the 
next state. The update equation of the critic is denoted by:  

t � t + Q ∗ {"MM�t �,                                (7) 
where Q is the learning rate used to adjust the model parameters 
and       

{"MM�t � � �1/�E� ∑ }L��� + ~s�0HM�� + 1�I −��h�/9f                                                                       s�0HM���, ]���I�

,   (8) 

is the critic loss. γ ∈ k0,1l is a discount factor given to early 
values to reduce their impact.  

On the hand, the update of the actor policy at the �th CAV is 
performed as follows:                                     t� � t� + Q ∗ ��.��t��,                                 (9)     

where, 

��.��θ�� � ∑ ��. �"8 v�.|�.|h�/9f H]����|M����I�HM����, ]����I,                                
                                                                                               (10)     

is the gradient calculated based on the policy gradient method 
[6]. �� � kM��0�, ]��0�, M��1�, �]��1�M��2�, ]��2�, … l is the local 
history of state-action of the �th CAV. The advantage value  �HM����, ]����I � L���� + ~s�HM�� + 1�I −  s�HM���, ]����I  

                                                                                               (11) 

denotes how good the chosen action ]���� is in the state M����. 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of MCORM 
based on simulations using Artery [13] and SUMO (Simulation 
of Urban Mobility) [14] simulators. We consider a 10 km² of a 
real-world obtained from OpenStreetMap and comprises 
different road traffic scenarios, including the city center and 
highways with different situations, such as ramps and T-
junctions. On this map, we randomly generate vehicles with 
different types and sizes. We set up a GPS and 360° radar and 
lidar sensors for each CAV with a maximum sensing range of 
100 m. Each CAV implements cooperative awareness and 
cooperative perception services to exchange CAMs and CPMs 
with other CAVs every 0.1s and 0.15s, respectively, using a 
6Mbps data rate. We consider the ETSI ITS-G5 as a V2V 
communication profile for CAVs with a communication 
coverage of 500 m, where they can broadcast and receive 
messages through the control channel (CCH). we also install a 
central computing and storage device accessible for all CAVs in 
the driving scenario. We implemented MCORM based on the 
PyTorch library. We define a Multilayer Perceptron (MLP) 
network on each CAV to represent its actor policy function. We 
also build a MLP network to represent the critic value function 
on the central device. The simulation spans 60000 time slots, 
where each time slot represents a CPM generation interval. The 
training phase consists of pqi�grEqg � 4000 learning episodes, 

where each episode be made up every pg/qig � 10  CPM 

generation intervals. Furthermore, to conduct the training 
process, we consider a learning rate Q � 10h�, a minibatch size 
of 64, a discount factor � � 0.99, and a buffer size |u| � 10[. 
Finally, for complexity reasons, we divide the FoV of each CAV 
into 3 pistes and 3 sectors, resulting in 9 distinct cells. 

The aim of Algorithm 1 is to learn CAVs to select and 
broadcast perceived objects that maximize the usefulness of 
their surroundings. We start by studying the training 
convergence of our method in terms of reward variation.  Fig. 3 
illustrates the variation of the average reward as a function of 
learning updates. As seen, CAVs continually update their 
policies until they exceed the maximum number of training 
episodes �pqi�grEqg � 4000). At the beginning of the learning 

process, the average reward showed large variations because the 
environment was changing and the CAVs lacked sufficient 
training experience to minimize their prediction loss efficiently. 



However, we observe that this metric increases with the number 
of learning episodes and stabilizes after about 3500 update steps, 
indicating that CAVs maximize the usefulness of their CPMs in 
the V2V network after about 35000 time slots.  

 

Fig. 3. The variation of the average reward as a function of learning episodes.  

Following that, we compare the performances achieved by 
MCORM to the ETSI CPM generation rules [5]  summarized at 
the beginning of Section II, dynamics-based [16] technique, and 
CBR-selective [17] scheme. A CAV utilizing the dynamic-
based technique verifies the most recent CPM received from all 
neighboring CAVs and excludes perceived objects whose 
positions or speeds exceed static thresholds. However, using the 
CBR-selective scheme, the CAV selects objects based on the 
network state and the number of other CAVs that provide the 
same information about these objects. The CAV includes only 
perceived objects that do not exceed static CBR and redundancy 
thresholds. To compare performances, all approaches are 
performed in each time slot. We consider the same values 
defined in [5] for object redundancy for all approaches. An 
object is redundant if the difference in its absolute speed or 
position is less than 0.5 m/s and 4 m, respectively. 

To show the performances offered by MCORM compared to 
the above-described works, we defined the following network-
related KPIs: 

• Object redundancy (OR): indicates the number of times 
a CAV receives identical information about the same 
perceived object over the selected time interval. 

• Cooperative Perception Awareness (CPA): represents 
the number of unique objects known to a CAV, given the 
total number of objects in its coverage. We consider an 
object to be known by a CAV if it is successfully detected 
or received via V2V communication. 

• CBR: identifies the current utilization percentage of the 
V2V communication channel. It is determined by 
assessing the channel in a time interval. Given the 
duration of one OFDM symbol 8 μs (48 bits per symbol 
at a data rate of 6 Mbps in the ITS-G5-CCH), the channel 
is assessed for p � 12500  symbols. Whenever the 
received signal strength exceeds -85 dBm, the channel is 
assessed as busy for this symbol. Thus, we define CBR 
as p��g�/p. 

• CPM delivery (CDR): identifies the probability of 
correctly receiving a CPM at a given distance d to the 
CAV sender. Mathematically, the CDR at ith CAV at d 

is defined by ∑ ��,��C����9f / ∑ ��,� �C����9f , where ��,� �C�  is the number of CAVs whose Euclidean 

distances to the ith CAV are less than C when this latter 
transmits a CPM j. ��,��C� is the number of CAVs that 

successfully receive the CPM j. pE  is the number of 
CPMs sent by the ith CAV. We define the PDR at C as 
an average CDR computed for all CAVs in the driving 
scenarios.  

 

Fig. 4. OR as a function of the distance between the perceived object and the 

CAV receiving it 

We start recording statistics for all network-related KPIs 
after the training process of the proposal reaches the total 
number of learning episodes (i.e., pqi�grEqg � 4000 episodes). 

Fig. 4 depicts OR generated by the proposal and the other 
approaches. This KPI is plotted as a function of the distance 
between the perceived object and the CAV receiving it. We 
notice that the OR results in high levels at short distances 
because perceived objects are successfully detected and 
exchanged by multiple CAVs simultaneously. However, OR 
reduces with increasing distance because objects become farther 
away from the receivers, making their perception more 
challenging. Fig. 4 shows that ETSI CPM generation rules 
generate higher OR levels. This can be explained because CAVs 
generate and broadcast CPMs without prior intelligence. 
However, the dynamic-based technique and the CBR-selective 
scheme have a marginally reduced OR compared to the latter. 
The proposal reduces OR considerably at short and medium 
distances of less than 300 m. For instance, MCORM, on 
average, decreases OR by around 7 redundant objects compared 
to the ETSI CPM generation rules at short ranges of less than 50 
m. However, this gain is lowered to around 4 redundant objects 
compared to the remaining approaches at the same distances.  

 
Fig. 5. The CBR as a function of time slots 



The main purpose of mitigating OR is to reduce the 
resources used to disseminate useless perceived objects. Fig. 5 
depicts the average CBR variation per 10-time slots for the 
proposal and other approaches. We observe that the ETSI CPM 
generation rules result in the highest CBR variations across time 
slots. However, the dynamic-based technique and the CBR-
selective scheme perform marginally better on this KPI, as they 
achieved roughly the same slight performance in OR. The 
proposal significantly reduces CBR by a percentage varying 
from 10% to 20%. 

 

Fig. 6. The CPM delivery ratio as a function of the distance transmitter-

receiver  

 

Fig. 7. The CPA as a function of the distance between the perceived object 

and the CAV receiving it. In the case of “Sensors only”, the X-axis represents 
the distance from the object to the CAV detected it using its onboard sensors.  

Reducing CBR improves the reliability of V2V 
communication. We measure this reliability using CDR plotted 
in Fig. 6. The figure plots CDR variation in the V2V network 
for each approach as a function of the distance between the 
transmitter and the receiver CAVs. As observed, CDR results in 
poor values at short, medium, and long distances as it is mostly 
affected by the propagation conditions due to the presence of 
buildings in the driving scenario. Fig. 6 shows that the ETSI 
CPM generation rules result in lower probabilities for short 
distances of less than 100 m because it has attained the highest 
levels in OR and CBR. However, the dynamic-based technique 
and the CBR-selective scheme improve slightly on this metric at 
the same distances. The proposal considerably increases CDR 
over all distances thanks to the improvements achieved in CBR. 

Typically, the increase in CDR enables CAVs to receive 
additional useful objects via CPMs, resulting in increased CPA 
in the V2V network. This is depicted in Fig. 7, which compares 

the CPA levels reached by each approach. The figure also 
depicts the CPA level attained using only onboard sensors 
without V2V communication. Fig. 7 indicates that relying 
exclusively on the onboard sensors results in a poor perception 
of the driving environment. However, this limitation is 
overcome by including the exchange of CP information between 
CAVs. Compared to the ETSI CPM generation rules, the 
dynamic-based technique and the CBR-based scheme have 
almost attained the same CPA at distances larger than 100 m; 
however, they degrade this metric by around 5% and 10%, 
respectively, at distances smaller than 10 m. 

On the other hand, the proposal improves CPA at distances 
less than 100 m which are critical for the safety of CAVs. 
Moreover, Fig. 7 shows that the proposal increases CPA at 
medium and long distances from 100 to 400 m. This is expressed 
by the performances achieved by CBR and CDR, which have 
enabled CAVs to receive more CPM objects that seem to be lost 
or not sent using the other approaches. 

VI. CONCLUSION  

This paper introduced a multi-agent advantage actor-critic 
learning method in a multi-CAV driving environment. Its 
primary objective is to learn each CAV a CPM content selection 
policy that maximizes object usefulness for the receiving CAVs 
to mitigate redundancy in the V2V network. The proposal is 
evaluated by simulation and compared to the state-of-the-art 
approaches based on various KPIs. Results showed the ability of 
CAVs to learn CPM content selection policies while 
maximizing usefulness efficiently. Results also demonstrated 
that the proposal considerably reduced redundant objects 
without static thresholds while maintaining cooperative 
perception awareness in the V2V network. In our future work, 
we will study the performances of the proposed method by 
including the exchange of CP information with roadside 
infrastructure using V2I communications. 
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