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Abstract—Fault attacks consist in changing the program be-
havior by injecting faults at run-time in order to break some
expected security properties. Applications are hardened against
fault attack by adding countermeasures. According to the state
of the art, applications must now be protected against multi-
fault injection [23], [33]. As a consequence developing applications
which are robust becomes a very challenging task, in particular
because countermeasures can be also the target of attacks [4],
[20]. The aim of this paper is to propose an assisted methodology
for developers allowing to harden an application against multi-
fault attacks, addressing several aspects: how to identify which
parts of the code should be protected and how to choose and
place the appropriate countermeasures, giving guarantees on the
robustness of the protected program.

Index Terms—multiple fault-injection; code analysis; software
countermeasure; dynamic-symbolic execution

I. INTRODUCTION

Fault injection is a powerful attack vector, allowing to
modify the code and/or data of a software, going much be-
yond more traditional intruder models relying “only” on code
vulnerabilities and/or existing side channels to break some
expected security properties. This technique initially targeted
security critical embedded systems, using physical distur-
bances (e.g., laser rays, or electro-magnetic fields) to inject
faults. However, it may now also concern much larger software
classes when considering recent hardware weaknesses like
the so-called Rowhammer attack [30], or by exploiting some
weaknesses in the power management modules [27], [22].
Furthermore, in the growing domain of IoT, security is based
on very sensitive operations such as boot-loading or Over-the-
Air firmware update which must be protected against fault
injections [32], [11].

As a result, programs must be hardened against fault in-
jection, combining hardware and/or software countermeasures
aiming to detect runtime security violations. According to
the state of the art, applications must now be protected
against (spacial or temporal) multi-fault injection [23], [33],
namely when several faults can be injected at various times or
locations during an execution. As a consequence developing
applications which are robust becomes a very challenging task
and a trial and errors game, in particular because countermea-
sures can be also the target of attacks [4], [20]. The aim of
this paper is to propose a methodology for developers allowing
to harden an application against multi-fault attacks: taking
into account the fact that countermeasures themselves can be

attacked and helping to place protection schemes inside the
program w.r.t a set of fault models and an attack objective.

There exist tools adding countermeasures, generally at
compilation-time. They are dedicated to particular fault models
(data modification, instruction skip, flow integrity) [17], [26],
[5], for instance by adding redundant checks or duplicating
idempotent instructions. Nevertheless these tools generally
target single fault robustness, where countermeasures them-
selves cannot be faulted. Furthermore such countermeasures
are added in a brute force approach, based on (coarse-grained)
directives given by the developers, indicating which parts
of the code must be protected. Such an approach is no
longer realistic when multi-fault must be taken into account,
since more countermeasures must be added, potentially adding
unnecessary performance/size overheads.

The objective of this paper is to assist security developers
in the software countermeasure insertion process in proposing
a compositional approach. More precisely this paper provides
the following contributions:

1) we formulate the problem of robustness comparison of
programs in presence of multi-fault;

2) we propose a methodology to analyze countermeasures
“in isolation”, studying their effectiveness at blocking
attacks in single-fault and multi-fault contexts;

3) we propose several algorithms allowing to harden ap-
plications starting from identified attacks, based on the
previous isolation analysis and we establish their guar-
antees w.r.t. the proposed comparison definition;

4) we provide an implementation of this approach, based on
a Dynamic Symbolic Execution (DSE) tool and evaluate
our approach on a benchmark of code examples.

Section II introduces multiple fault-injection and coun-
termeasures through a motivating example and presents the
tool Lazart. Section III proposes definitions for robustness
evaluation and comparison dedicated to multi-fault. Section
IV describes the proposed methodology for analyzing counter-
measures in terms of their adequacy and weakness against es-
tablished fault models. Section V presents our countermeasure
placement algorithms and illustrates them on several examples.
Finally, Section VII discusses related works, limitations of our
solution and future directions.



II. MULTI-FAULT ATTACKS AND DEFENCES

Firstly we briefly present Lazart, a tool allowing to analyze
high level code against multi-fault attacks, which has been
successfully used for assisting developers and auditors [4],
[18], thanks to its combination of multi-fault capabilities and
expressive fault models.

A. łazart: a symbolic multi-fault injection tool
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Fig. 1. Lazart workflow

Lazart [25], [6], is a multi-fault analysis tool based on the
KLEE DSE engine [7] which computes multi-fault injection
attack paths (see Fig. 1). This is achieved by mutating the
target program (at the LLVM level) in order to simulate
faulty behaviors based on some fault models and performing a
dynamic symbolic execution analysis to find execution paths
violating a security property. If no such paths are obtained,
and if the path exploration is complete, the target program is
robust. Otherwise KLEE exhibits all different paths violating
the security property, supplying in that a coverage of attacks.
Inconclusive verdicts are issued when the full path coverage
cannot be reached. Lazart supports the two main fault models,
that can be used to simulate other more complex models very
effectively:
• Test Inversion where a conditional jump can be inverted

(e.g., in if instructions and loop conditions).
• Data Fault where the value returned when reading a

variable from memory can be altered (the mutated value
being made symbolic, possibly with extra constraints).

// a sensitive conditional jump
if (C) then goto bb_true else goto bb_false;

// the mutation due to a fault
klee_make_symbolic(inject);
if (inject && fault_nb<n)
{

fault_nb++;
if (C) goto bb_false; else goto bb_true;

}
else if (C) goto bb_true; else goto bb_false;

Listing 1. Test inversion mutation

Listings 1 and 2 illustrate how sensitive instructions are
mutated, transformations being described at the C level for
readability reasons. The function make_symbolic produces
a symbolic variable for the symbolic execution engine KLEE:
two values for the variable inject will be produced in order
to execute the two branches of the mutation schemes (without
fault, and with fault, if the fault limit n is not exceeded). In the
same way a symbolic value is chosen in Listing 2, possibly
constrained by a predicate Px supplied by the user. Thanks
to the symbolic execution engine and because a single mutant
is produced embedding all possible faults, the combinatorial

path exploration process is mastered. In particular, symbolic
data mutation could result in the exploration of several paths,
giving in that a very powerful fault model.
// a sensitive data load operation
v = x;

// the mutation due to a fault
klee_make_symbolic(inject);
if (inject && faults_nb<n)
{

klee_make_symbolic(new_x);
klee_assume(Px(new_x);
faults_nb++;

}
else {new_x = x;}
v= new_x;

Listing 2. Symbolic data load mutation

B. Two versions of a byteArrayCmp function

We now introduce an example illustrating how a frag-
ile version can be hardened. Listing 3 is an excerpt of a
byteArrayCmp function used in the verifyPIN collection
taken from the FISSC public benchmark [12]. Such a func-
tion compares two PIN codes and returns true if they are
equal. BOOL_TRUE and BOOL_FALSE are robust encoding
of boolean constants true and false1. The security property we
want to guarantee is that result is true if and only if the
two PIN codes are equals.

1 BOOL byteArrayCmp(UBYTE* a1, UBYTE* a2, UBYTE size){
2 int i;
3 int result = BOOL_TRUE;
4 for(i = 0; i < size; i++)
5 if(a1[i] != a2[i])
6 result = BOOL_FALSE;
7 return result;
8 }

Listing 3. Fragile byteArrayCmp function

This example is insecure against fault injection consisting
in inverting control flow conditions. Table I line V1 gives the
results supplied by Lazart for Listing 3 when size is fixed
to 4 assuming all bytes of the two input arrays a1 and a2 are
different. We consider here a limit of 8 faults.

TABLE I
LAZART RESULTS FOR THE byteArrayCmp VERSIONS

# faults 0 1 2 3 4 5 6 7 8
V1 0 1 1 1 2 0 0 0 0
V2 0 0 1 0 1 0 1 0 2

The 1-fault attack consists in inverting the loop condition
i < size (line 4), stopping directly the array comparison.
The 2-faults, 3-faults and one of the 4-faults attack consist in
inverting the test of line 5, one, two or three times respectively,
and then stopping the loop. The last 4-faults attack consists
in inverting four times the test of line 5 and exiting the loop
normally.

Listing 4 presents a more robust version of the function
byteArrayCmp, adding classical redundant-check counter-
measures: 1) a test line 9 checking the exit value of the loop

1Classically 0xAA and 0x55 to be resistant to bit flip.



counter and 2) a systematic duplication of the verification of
the result of conditions (lines 6 and 8). Calls to the function
atk_detected stop the execution, signaling the detection
of an abnormal behavior. The attacker is now able to bypass
countermeasures. For instance here he can invert the extra tests
(lines 6, 8 and 9) in order to hijack the detection. Results
supplied by Lazart for this new version (still for the test
inversion fault model) are given on Table I, line V2. Therefore,
the 1-fault attacks found in the fragile function is no longer
possible and it now requires two test inversions: the loop
condition and its associated check line 9. More generally
each previous attack now requires to double the number
of injected faults. As we can see, added countermeasures
make our function more robust, but unfortunately they also
come with their own attack surface (here our encoding of
countermeasures is sensitive to test inversion).

1 BOOL robust_byteArrayCmp(UBYTE* a1, UBYTE* a2, UBYTE
size){

2 int i;
3 int result = BOOL_TRUE;
4 for(i = 0; i < size; i++) {
5 if(a1[i] != a2[i]) {
6 if(a1[i] == a2[i]) atk_detected();
7 result = BOOL_FALSE;
8 }
9 else if(a1[i] != a2[i]) atk_detected();

10 }
11 if(i != size) atk_detected();
12 return result;
13 }

Listing 4. Example: A robust byteArrayCmp function

TABLE II
LAZART HOTSPOTS ANALYSIS FOR LISTING 4

IP line
# faults 0 1 2 3 4 5 6 7 8 Total

line 4 0 0 1 0 1 0 1 0 1 4
line 5 0 0 0 0 1 0 2 0 7 10
line 6 0 0 0 0 0 0 0 0 0 0
line 8 0 0 0 0 1 0 2 0 7 10
line 9 0 0 1 0 1 0 1 0 1 4

Attacks are represented by sequences of fault occurrences
consisting in pairs (injection point, fault model), where an
injection point denotes an instruction occurrence which is
sensitive to the fault model. For instance the first attack of
Table I is represented by <IP4(TI), IP9(TI)>, where IP4 is the
fault injection point of line 4 and TI denotes “test inversion”.
From that Lazart can compute how many times a fault injection
point occurs into successful attacks. Table II shows results
associated to Table I, for the robust version of byteArrayCmp
(listing 4). In particular, we can observe that attacking IP6,
corresponding to an added countermeasure, never results in
a successful attack. As a consequence this countermeasure
is superfluous for the considered security property. In the
same way if we only consider attacks of order 2 or 3,
countermeasures lines 5 and 8 are no longer useful.

C. Our objectives and contributions

In single-fault context, hardening a code generally follows
a “try and test” approach: countermeasures are added as long

as attacks are found and robustness is checked again through a
new analysis (as such a secure implementation is now expected
to become robust against single-fault attacks). However, this
approach becomes impractical in a multi-fault context since
countermeasures can be themselves targeted by attacks. The
aim of this paper is to propose several placement algorithms
allowing to add countermeasures advisedly, targeting to avoid
unnecessary code, as illustrated before. To do that we propose
a methodology for stating and analyzing countermeasures “in
isolation” in order to formally establish properties such as
the adequacy of a countermeasure w.r.t. a given fault model
and its inherent attack surface. Countermeasures we target are
systematic countermeasures detecting attacks, like test or load
duplication, and, more generally, countermeasures allowing to
detect errors in data or control flows, at software level.

To the best of our knowledge, this approach is innovative.
As pointed out before, tools generally add countermeasures in
a systematic way (as stack canaries are added by compilers to
any functions satisfying some basic syntactic criteria) without
precisely taking into account which control locations should
be protected w.r.t. the security properties which have to be
enforced. This solution introduces serious and unnecessary
run-time overheads. On the other hand, methods have been
proposed to prove hardened programs [8], [28], [20], or to
verify the efficiency of a given form of countermeasures
against attacker models [15], [16]. All these approaches are
developed in the context of single fault and adapted to a
particular countermeasure or fault model. On the contrary
the approach we consider here is general, modular, able to
cope with multi-fault attacks and addressing the problem of
optimization of countermeasures placements The methodology
presented in [6] proposes to reduce the set of countermeasures
applied in a program already protected, without introducing
new faults. The approach we propose here allows to add
countermeasures on a program (that may be already partially
protected) in order to ensure a robustness in n faults for a set
of fault models.

III. ROBUSTNESS METRICS FOR MULTI-FAULT

In the context of certification for high levels of security
[9], applications and devices are submitted to vulnerability
analyses (the AVA class of Common Criteria), conducted by
expert teams (as ITSEF laboratories). For instance rating phys-
ical attacks for smart cards or similar devices is established
by the JIL Hardware Attacks Subgroup [2], based on a set
of relevant factors: elapsed time, expertise, knowledge of the
target of evaluation, access to it, . . . etc.

Concerning code-based simulation tools some metrics are
generally used such as the number of successful attacks,
potentially weighted by the total number of attack or the attack
surface [13]. Nevertheless these metrics are not really used in
practice to compare robustness of applications: the “try and
test” approach turns out to be sufficient when single fault is
considered. On the contrary, in the context of multi-fault we
have to formalize how implementations can be compared, as
we propose here. Furthermore we will use our formalization



to validate our methodology and algorithms showing that we
improve the robustness of applications when adding counter-
measures.

A. Multi-fault Robustness

Generally simulation tools give the number of attacks for a
given golden run starting from a fixed initial state. A simulated
trace t is a finite sequence of transitions corresponding to
nominal execution steps or faulted steps, starting from an
initial state. In the following init(t) denotes the initial state
(including inputs) of t and fault(t) the number of faulted
transitions into t. For a success condition S (generally the
negation of a security property), a set of fault models M ,
simulated traces T of a program P can be partitioned into the
following way:
• TN (M,S) : traces obtained under the nominal execution

without fault (fault(t) = 0)
• TD(M,S) : faulted traces that are detected by a counter-

measure
• TS(M,S) : successful attacks (faulted traces verifying S

and not detected)
• TF (M,S) : non detected faulted traces that do not verify
S

Traces terminating in error can be assimilated to one of
these classes by the user, depending if he considers them as
a form of attack detection, a successful attack or a failure.

Definition 1: Input vulnerability characterization
Let P be a program, i an initial state, µ the order to consider,

M a set of fault models and S a success condition. We define
as V ulnµ(P, i,M, S) the attack function associated to the
input i defined from the rank 0 to µ:
V ulnµ(P, i,M, S)=̂f ∈ [0..µ]→ N | ∀n ∈ [0..µ] (f(n) =

#{t ∈ TS(M,S) | init(t) = i ∧ fault(t) = n}
Definition 1 can be extended to a set of initial states I . For

instance Table I describes V ulnµ(P, I,M, S) with µ = 8,
I = {a2[0..3], a1[0..3], 4) | ∀i ∈ 0..3 a1[i]6=a2[i]}, M =
{Test inversion} and S being result==BOOL_TRUE.

Definition 2: Robustness level
If I is the set of all initial states and

V ulnµ(P, i,M, S)(n) = 0 for all n ∈ [0..µ] and for
all i ∈ I we say that P is said to be robust up to µ faults.

B. Robustness comparison

Here we target to compare a program P with a hardened
version of P . For instance we want to state that the secure
version of function byteArrayCmp is more robust than
the initial version, up to order 8. We propose a fine grained
definition, respecting transitivity and, more importantly, a
monotony property.

Definition 3: Input robustness comparison
Let P be a program, i an initial state, µ the order to consider,

M the set of fault models and S the successful condition. Let

P ′ be an hardened version of P . Robustness comparison is
defined as follow:

P ′ ≥robµ,i,M,S P =̂
∀n ∈ 1..µ

∑n
j=1 V ulnµ(P

′, i,M, S)(j) ≤∑n
j=1 V ulnµ(P, i,M, S)(j)

As before, this definition can be extended to a set of inputs,
and we define P ′ ≥robµ,M,S P if the condition holds for each
possible inputs.

Our definition does not only compare the total number
of attacks for a given order but all intermediary sums,
telling we expect a hardened version to increase the
number of faults required to get successful attacks.
For instance for the example of section II attacks of
order n are moved to order 2 ∗ n (Table I). Thanks to
definition 3, several nice properties hold as monotony
(P ′ ≥robn+1,i,M,S P ⇒ P ′ ≥robn,i,M,S P ) and transitivity
(P ′′ ≥robµ,i,M,S P

′ ∧ P ′ ≥robµ,i,M,S P ⇒ P ′′ ≥robµ,i,M,S P ).

C. Discussion

A classical approach to evaluate the robustness of a code
against fault attacks is to count the number of faults issued
from a given golden run, where both the inputs and the initial
states are fixed in advance. Several works [31], [21], [13] use
metrics to compare protected program versions in this setting.
The robustness comparison relation we propose can be seen
as a generalization of these metrics, taking into account a
set of initial states as well as multi-fault and still offering
good properties. Note that this comparison relation is relevant
only for two programs having the same nominal behaviors
(i.e. the same functionality without fault). Moreover, it is a
partial relation. Typically, two programs P and P ′ can become
incomparable up to n + 1 faults if P ′ is more robust than P
up to n faults and, for n+ 1 faults, the sum of the attacks of
program P ′ is greater than the one of P , taking in that the
attack surface paradox [13].

IV. COUNTERMEASURES ANALYSIS

We will consider detection countermeasures (based on a
potential proper internal state and some verifications allowing
to detect an attack) for which the protection scheme is applied
on an Injection Point (IP) for a fault model m. This section
proposes a systematic approach for analyzing such counter-
measures “in isolation”, aiming to compare the behavior of
Unprotected Schemes and Protected Schemes in multi-fault
contexts:

1) Sensitive Schemes (SS), which characterize structures
and instructions sensitive to a fault model (i.e. an IP for
the model m), and its nominal behavior.

2) Protected Schemes (PS), which describe how counter-
measures are inserted to protect Sensitive Schemes (SS)
to produce a protected IP.

The targeted goal is to replace sensitive schemes with
adapted protected schemes depending on their properties.
We will illustrate our approach using two fault models: test
inversion and symbolic data load modification. Other forms of



fault models and countermeasures are discussed at the end of
this section.

A. Sensitive schemes and protected schemes

We illustrate PS and SS with two countermeasures: test
duplication and load duplication. Listing 5 encodes the LLVM
instruction br %cond bb_true bb_false correspond-
ing to a SS for model test inversion and the PS test du-
plication. In the same way, Listing 6 describes the LLVM
statement %target = load %var (SS for symbolic data
load IP) and the PS load duplication. A call to the function
atk_detected corresponds to the detection of an attack.
Listings 5 and 6 are stated at the C level, for readability issue,
but Fig. 2 and 3 give the actual LLVM implementation of
these protections and the corresponding SS. The red and purple
circles corresponds respectively to test inversion IPs and to
data load mutation IPs. The yellow code blocks corresponds to
SS’s basic blocks that are modified by the protection scheme.
The gray blocks corresponds to unmodified basic blocks and
blue blocks to new basic blocks added by the PS.

1 // sensitive scheme
2 int cond_scheme(int cond, int bb_true, int bb_false) {
3 if(cond) return bb_true;
4 return bb_false;
5 }
6

7 // protected version
8 int test_duplication(int cond, int bb_true, int bb_false

) {
9 if(cond) {

10 if(!cond) atk_detected();
11 else return bb_true;
12 }
13 if(cond) atk_detected();
14 return bb_false;
15 }

Listing 5. test inversion sensitive scheme and its protected version

1 // sensitive scheme
2 int data_load(int *var) {
3 int target = *var;
4 return target;
5 }
6

7 // protection version
8 int load_duplication(int *var) {
9 int target = *var;

10 int clone = *var;
11 if(target != clone) atk_detected();
12 return(target);
13 }

Listing 6. load sensitive scheme and its protected version

We are now introducing two properties that will be used
later in our placement algorithms : the Adequacy condition
stating that a protected scheme detects faults of a given fault
model, in single-fault scenario, and the Vulnerability level,
computing the “resilience” of a protected scheme against a
set of fault models in multi-fault context.

B. Adequacy condition

Definition 4: Adequacy condition
Let m be a fault model associated to a sensitive scheme SS

and PS a protection scheme associated to SS, i.e. targeting
to detect an attack with the fault model m. SS can be safely
replaced by PS in a program P iff:

Fig. 2. Test duplication in LLVM and its attack surface.

Fig. 3. Load sensitive scheme and two protected versions



• condition 1: in absence of a fault of m PS behaves as
SS (or possibly stops before the end of the scheme)

• condition 2: in the presence of a fault of m either PS
behaves as SS (the fault has no impact), or the attack is
detected (through a specific function atk_detected)

• condition 3: PS does not modify any variables of P in
other way than SS (frame condition)

If the 3 conditions above are fulfilled we can establish that
PS is robust for m up to 1 fault.

For instance we will prove that the protected version of
Listing 3 is secured against the effect of a test inversion fault
described on Listing 1, and similarly data modification (Listing
3 provides a protected scheme against mutation described in
Listing 2).

Definition 4 describes a set of sufficient conditions which
can be reasonably verified in practice. For condition 3 a man-
ual frame analysis can be conducted, but generally protection
schemes do not change any variable except their internal ones.
For conditions 1 and 2 we run Lazart twice on the protection
scheme, applying the fault model m only on the injection point
already present in the sensitive scheme, with two configura-
tions. Firstly we use no oracle in order to cover all feasible
paths of PS for any input value. Let C be the set of obtained
traces. Secondly we run Lazart with an oracle specifying the
expected nominal behavior of SS. Let N be the set of obtained
traces. Then we verify that all paths in C −N terminate in a
countermeasure state (calling the atk_detected function).
That means that it does not exist any 1-fault attack violating
the nominal behavior (this case corresponding to an erroneous
countermeasure) nor reaching any nominal exit point (e.g.,
because of some control flow hijacking). Such situations would
correspond to a countermeasure which cannot be analysed in
isolation2. Due to the simplicity of the analyzed code we can
suppose here (and manually verify) that all paths have been
covered.

Listing 7 illustrates how these verifications are conducted
for our examples, lines 5 and 11 respectively stating the
expected nominal behaviors. Parameters are made symbolic,
in order to cover all paths3. The klee_assume(P) allows
to only focus on paths verifying the predicate P.

1 int verify_ti_protection() {
2 int cond, bb_true, bb_false;
3 klee_make_symbolic(&cond, sizeof(cond), "cond");
4 int br = test_duplication(cond, bb_true, bb_false);
5 klee_assume((br == (cond ? bb_true : bb_false)));}
6

7 int verify_ld_protection() {
8 int value;
9 klee_make_symbolic(&value,sizeof(value),"value");

10 int result = load_duplication(value);
11 klee_assume(result == value); }

Listing 7. Adequacy protection verifications

2for instance if we hide the line if (false) {int *p=null;
return(*p)} in a protection scheme it does not fit our condition 2. We
can also hide the call to a malicious function which does not return.

3for readability reason we do not make symbolic the branches bb_true
and bb_false in the function verify_ti_protection, and we suppose
these two addresses are different.

TABLE III
ADEQUACY CONDITION FOR TEST INVERSION AND LOAD DUPLICATION

#feasible paths #paths in cm #nominal paths difference
TD 4 2 2 0
LD 3 1 2 0

Results relatively to conditions 2 and 3 are shown in Table
III. Normally all paths with 0 faults are in N . After fault
injections the protected scheme test_duplication (TD
in table III) produces 8 paths among them 4 are unfeasible
(terminating in cm with 0 faults or terminating in the nominal
state with 1 fault). 2 remaining paths terminate normally (with
0 faults) and 2 are detected (with 1 fault)4. In the same way
after a fault injection consisting in modifying the value which
is actually loaded by any other value, the protected scheme
load_duplication (LD in table III) produces 4 paths,
among them 3 are feasible: a detected path when the new value
differs from the initial value and two nominal paths when no
fault is introduced or when the chosen value is identical to the
initial value (a fault without effect).

C. Countermeasure vulnerability level

In the context of multi-fault, countermeasures come with
their proper attack surface, the added code that may contains
additional IPs. Thus, injecting faults into this code can produce
new execution traces, which may potentially lead to successful
attacks. To address this we define (and compute) the vulner-
ability level of a PS, which quantifies the minimal number
of faults allowing to produce an abnormal behavior (w.r.t the
nominal behavior of the corresponding SS) without detection,
w.r.t a set of fault models.

Definition 5: Vulnerability level
Let PS be a protected scheme defined by its nominal behavior
N and M a set of fault models including the model m for
which PS is adequate. Let vl(PS,M) = v the level of
vulnerability of PS w.r.t. M defined as:
• condition 1: v is the minimal number of neces-

sary faults producing an attack violating N : v =
min{(fault(t) | t ∈ TS(M,¬N)} (or∞ if no successful
attack exists).

• condition 2: any traces t such that 0 ≤ fault(t) < v
are detected or terminate in a nominal state: ∀t (0 ≤
fault(t) < v ⇒ t ∈ TD(M,¬N) ∪ TS(M,N))

Sets TS(M,¬N) and TD(M,¬N), introduced in Section
III, respectively represent the set of successful attacks w.r.t.
¬N and the set of detected attacks. Condition 2 of Definition
5 is similar to Condition 2 of Definition 4: then we can verify
this condition in iterating the previous process from 0 faults
and, as soon as this condition is violated, we have reached the
vulnerability level. Remark that a scheme with a vulnerability
level of 1 cannot be adequate for the considered fault models,

4if the two adresses bb_true and bb_false are symbolic two new
nominal paths appear because if these values are equal the fault has no impact
on the nominal behavior.



TABLE IV
VULNERABILITY LEVELS OF COUNTERMEASURE SCHEMES

Countermeasure
Fault model

Test inversion Load modification Comb

Test duplication 2 - 2
Load duplication - 2 2
Load triplication - 3 3
Test i-plication i+ 1 - i+ 1
Load i-plication - i+ 1 i+ 1

and an unprotected IP (SS) has a vulnerability level of 1 by
definition.

Table IV shows the vulnerability level5 of countermeasures
of Figures 2 and 3, for the two fault models test inversion
and data load modification and their combination (denoted
Comb here). Figures 2 and 3 show the new injection points
introduced in the test duplication scheme and data duplication
and triplication. Here we extend the protected schemes Test
duplication and Load duplication as new protected schemes
corresponding to the i-plication of the protection6, for which
we can also compute the vulnerability level.

For a given set of fault models M , the “isolation” analysis
allows for the generation of a catalog associating each PS
with the fault model (in M ) for which it is adequate, and its
vulnerability level for M . This catalog C is used by placement
algorithms presented in section V.

D. Discussion

We have presented here two basic detection countermea-
sures in particular because our implementation is actually
tailored for them. But the methodology proposed here can
be extended to some more complex sensitive and protected
schemes: for instance an if-then-else structure such that the
“else” part can be executed after the “then” part (a classical
fault model consisting in nop-ing the goto instruction at the
end of the “then” block) or classical CFI protections, for
instance based on basic block signatures as SWIFT [29], [10]
or instruction counter [16]. For this type of protection a global
state is introduced such as a General Signature Register or a
global instruction counter. Then the difficulty is first to specify
properly the nominal behavior including this global state but
also the precondition on the initial value of this global state.
Secondly these classical countermeasures, dedicated to a 1-
fault analysis, must be reinforced to be resistant to several
fault and fault models (for instance the global state must be
duplicated to be resistant to a load attack). Our methodology
can become more complex for sophisticated protection such
as loop protection [26], but this complexity is inherent to the
proof process.

Some, fault models such as jumps are difficult to analyze in
isolation, because they can introduce jump from and into the

5The symbol “-” denotes that the countermeasure cannot be attacked with
this fault model. For test duplication, no attack surface exists for load mutation
model. In the case of load duplication, tests can be inverted but cannot be
successful without a combination with data load mutation.

6Load triplication protection scheme is presented in figure 3, and corre-
sponds to the Load i-plication of level 2.

IP. Verifying pre/post-condition on the SS and PS using such
fault models is part of future work.

V. COUNTERMEASURES PLACEMENT ALGORITHMS

A. Objective and general approach

Our objective is to harden a program P , up to n faults,
with respect to a set of fault models M and a given attack
objective S. We want to generate a new program P ′ derived
from P by protecting some of its sensitive IPs, thanks to a
catalog C of available protection schemes. As defined in the
previous section a catalog associates a protection scheme with
its vulnerability level vl (w.r.t. M and n) and the fault model
for which it is adequate.

In the following we propose several countermeasure place-
ment algorithms and we show that, under some hypotheses,
they allow to produce a program P ′ which is indeed robust
up to n faults, according to Definition 2. Table V presents
the principle of these five placement algorithms. All algo-
rithms return a mapping, denoted as “Minimal Vulnerability
Levels” (MV L), associating to each injection point ip of P ,
the minimum required vulnerability level, according to this
algorithm7. Algorithm 1 describes how the hardened program
P ′ is generated from mapping MV L. We suppose here the
catalog C complete with respect to MV L, namely, for each
ip, if MV L[ip] = p then it exists a protection scheme ps in
C such that ps is adequate for ip and with a vulnerability
level of k with k ≥ p for the considered fault model set
M . This hypothesis is valid for us because we dispose of
“unbounded” protection schemes (Test i-plication and load
i-plication) against test inversion and data load modification
fault models. We discuss in section V-F what happens when
this hypothesis is relaxed.

Algorithm 1 Generation of P ′

Require: a program P , a set of minimal vulnerability level
MV L, a catalog C
P ′ ← P
for all ip of P do

if MV L[ip] > 1 then . ip should be protected
choose ps in C adequate for ip with a vulnerability

level > MV L[ip]
P ′ ← protect ip of P ′ with ps

end if
end for
return P ′

B. Expected properties

Due to the definition of countermeasure adequacy (defini-
tion 4), P ′ either behaves as P or stops. We now want to
establish that P ′ is robust at order n (according to definition
2 of section III) or, at least, more robust than P (according to
definition 3 of section III).

7Note that MV L[ip] = 1 when ip can be left unprotected.



TABLE V
PRINCIPLE OF EACH PLACEMENT ALGORITHMS

Algorithm Description

naive All IPs in P are protected with vl ≥ n+ 1.
atk All IPs in attacks are protected with vl ≥ n+ 1.
min All IPs in minimal attacks are protected with vl ≥ n+ 1.
block At least one IP per minimal attacks is protected with vl ≥ n+ 1.

opt
Protection is distributed between the IPs in minimal
attacks, to get rid of attacks in less than n+ 1 faults.

Proposition 1 (Robustness of P’): The two following
condition are sufficient to ensure the robustness of P ′:
• condition 1: all n-successful attack paths of P are

detected in P ′;
• condition 2: P ′ should not introduce new attack path at

order less or equal than n.
For instance the naive placement algorithm (Table V) pro-

tects all IPs in the program P with a vulnerability level of
at least n + 1. This algorithm generalizes, in the context of
robustness of order n, the approach implemented in many
systematic countermeasures placement tools [24], [5], [19]
against 1-fault. Proposition 1 holds in this case since no
injection point of P can be bypassed in less than n+1 faults
(whatever is the attack objective S). The validity of conditions
1 and 2 will be discussed for each other countermeasure
placement algorithm we propose below.

C. Systematic placement algorithms

The four last algorithms of Table V work from a computed
set A of successful attacks on program P w.r.t. to M and
S. We are interested to cover all attacks a of Ts(m,S) with
fault(a) ≤ n, as computed in our examples of section II.
We qualify the attack set A as representative when each trace
of Ts(m,S) owns a representative in A, meaning that each
combination of faults leading to a successful attack Ts(m,S)
is represented in A. In particular symbolic execution is a good
way to compute that8. In the following we suppose that A is
representative and we discuss later (see section V-F) which
guarantees can be stated when this hypothesis is relaxed.

1) Attack-based placement algorithm: This algorithm,
called atk in Table V, protects all injection points of A at
level n+ 1, namely;
∀ip ∈ IP (P ). MV L(ip) =

(if ∃a ∈ A s.t. ip ∈ a then n+ 1 else 1)
Condition 1 is met if Proposition 1 holds when using

this algorithm, since no attack of A may occur in fewer
than n + 1 faults, and any occurence of fewer than n + 1
attacks are detected, according to condition 2 of vulnerability
level definition. In the same way no new attack is introduced
because, under n+ 1, they are detected (condition 2).

2) Minimal attack-based placement algorithm: Multi-fault
analysis often results in redundant attacks: for instance if we
have a path being a 1-fault attack on an injection point ip,
all attacks with the same prefix until ip are considered as

8We only have to guarantee a k-completeness, including the expected
combination of faults.

redundant. We can compute the set of minimal attacks [25] as
explained in definition 6. Considering at first minimal attacks
happens to be useful for larger examples [18].

Definition 6 (Minimal attacks): Let E be a set of attacks.
Minimal(E) is the smallest subset of E such that every attack
b in E is represented by an unique attack a in Minimal(E)
such that the formed by the sequence of faults(a) is a proper
prefix of the word faults(b).

A substantial improvement of the previous algorithm is to
protect all the IPs of the set Minimal(A) at level n+1. Indeed,
as a direct consequence of Definition 6, to each redundant (i.e.
non minimal) attack b in A corresponds a minimal attack a
which is a proper prefix of b. Hence, protecting all the IPs of
a is sufficient to prevent b. This new version is called min in
Table V.

D. Block placement algorithm

A way to further improve the previous algorithms is to
reduce the set of IPs to protect at level n+1 per minimal attack
of A. Several heuristic combinations can be used to choose
this subset. The placement algorithm proposed in Algorithm 2
– called block in Table V – proceeds as follows: each
minimal attack a ∈ A is traversed by increasing number of
faults, followed by a decreasing number of redundant attacks
associated to a. Then, for each attack which is not already
protected, the injection point with the highest occurrence in
the set A is selected.

Algorithm 2 Block placement algorithm
Require: a program P , a set of attack paths A of P up to a
n faults
Protected← ∅ . set of protected paths of A
IpProtected← ∅ . set of protected ips of P
MV L← ∅ . map of required vulnerability level for each

IP of P
for ip in IPs(P ) do . Init MV L to 1

MV L[ip]← 1
end for
for k in 1 to n do

Ak ← attacks of A with k faults
for a in Ak do

if IPs(a) ∩ IpProtected 6= ∅ then
Protected← Protected ∪ {a}

else . If a is not already protected
choose ip ∈ IP with a maximal number of

occurrences in A \ Protected
MV L[ip] = n+ 1
IpProtected← IpProtected ∪ {ip}
Protected← Protected ∪ {a}

end if
end for

end for
return MV L

Proposition 1 always holds because of the complete explo-
ration of attacks set A for the program P and the fault models



Fig. 4. Constraints on vulnerability levels given by traces in A

M . The set of attacks A indicates which unprotected IP invalid
behavior (i.e. faulted) can lead to a violation of S, and isolation
analysis guarantees that an IP protected with vl = n+1 cannot
produce any abnormal behavior in n faults. As at least one IP
per attack in A is protected with vl = n + 1 with the block
algorithm, the composition of the generation of the attacks A
and isolation analysis allow to guarantee that Proposition 1
holds.

E. Optimal distributed placement algorithm

Finally, the last algorithm we propose aims to distribute
protections among the IPs to ensure that the “global” vulner-
ability level of P ′ for each attack of A is at least n + 1.
This algorithm – called opt in Table V – is illustrated on
Figure 4, by associating to each attack a a constraint Ca
telling that the sum of the vulnerability levels of each IP
of a, should be strictly greater than n. More precisely, to
prevent (up to n faults) an attack a of A with IPs [ipa1 ,
. . . ipak], the constraints to fulfill are expressed by the equality
Ca of the form α1x1 + · · · + αkxk > n, where, for each
injection point ipai , xi is the minimal vulnerability level
required to protect ipai and αi is the number of occurrences
of ipai in a. The solutions {x#i } obtained for this Integer
Linear Programming (ILP) problem, minimizing the objective
function x1+x2+ ...+xm, are then the optimal vulnerability
levels required to protect P .

This distributed placement algorithm prevents existing P
attacks of A (Condition 1 of Proposition 1). Indeed, if we
consider an l-faults attack a = [ipa1 , ip

a
2 , · · · , ipal ] of P , then

executing the same attack in P ′ would now require at least
n+1 faults since constraint Ca is satisfied. Condition 1 holds
if the non-nominal behaviors produced by partially protected
IP (IP protected with vl < n + 1) is subsumed by the fault
models considered when building A from P . It is the case in
our fault models and countermeasures, but for instance, for a
set-to-0 fault model, if the protected scheme can produce other
integer values besides its vulnerability level, then Condition 1
does not hold and another more general fault model have to
be used when generating A.

F. Discussion

From a practical point of view, some of the hypotheses we
considered so far to produce a program P ′ robust up to n faults
may not always hold. We discuss below which guarantees we
can still obtain in these situations.

1) Non representative attack set: Computing a representa-
tive attack set A may not always be possible, in particular
for large programs and large values of n. However, in such a
situation, the last four algorithms we propose still ensure that
P ′ is more robust than P in the sense of Definition 3.

2) Incomplete catalog: Another issue may arise when the
catalog C is not complete with respect to the mapping MV L,
namely some required protection schemes are not available.
Here again, useful information regarding the robustness of P ′

can still be provided to the user, for instance:
• the subset U of unprotected attacks, that is the ones in
A containing some unprotected enough injection points
in P ′ ;

• the robustness level obtained for P ′, that is the smallest
number of fault required to achieve an attack in U , taking
into account applied vulnerability level to IPs.

VI. EXPERIMENTATIONS

In this section, we present the results obtained with the
placement algorithms introduced in last section. We consider
the test inversion and data load mutation fault models, with
their combination, and the Test i-plication and Load i-plication
countermeasures. We used a set of programs from the FISSC
collection [12], three are presented here:
• VP a version of the verifyPIN program corresponding to

a generalization of our introductive examples (section II),
• FU an implementation of a firmware updater (using a

systematic test duplication allowing to evaluate how the
placement algorithm behave if P already contains some
countermeasures),

• and finally MCMPS that corresponds to a secure com-
parison of arrays, using multiple calls to the standard
memcmps function and masks.

All these programs are already be used for large experimen-
tations [6] and will be made freely available. Our results are
summarized in Table VI. Columns ”PM” gives the program
P to protect and the fault models m to consider. Column
”IPs” gives the total number of injection points in P wrt m.
Five placement algorithms are considered, indicated in column
”Algorithm”: naive, atk, min, block and opt. Column
“#added-cms” indicates the total sum of vulnerability levels
required for P ′, for each algorithm, up to n = 4 faults. In those
experimentation, the catalog is complete for all fault models,
test i-plication and load i-plication giving a protection scheme
for any required vulnerability level.

As expected, distributed approach opt gives at least better
results than block algorithm that is at least better than
systematic approach. In particular the naive one, used by all
tools adding countermeasures in a systematic way (disregard-
ing actual attacks) is clearly outperformed. More generally, the
sum of protection generated by algorithms follows the order
opt ≤ block ≤ min ≤ atk ≤ naive. In case of unique fault,
all algorithms using the set of attacks (starting from atk)
gives the same results because only one IP can be protected
per attacks and thus require a vulnerability level of n+1 = 2
to ensure robustness.



TABLE VI
COUNTERMEASURES ADDED BY PLACEMENT ALGORITHMS

algorithm #added-cms
PM IPs 1 faults 2 faults 3 faults 4 faults

VP 8 naive 8 16 24 32
with test inversion atk 3 8 12 16

min 3 8 12 16
block 3 6 9 12
opt 3 6 9 12

MCMPS 12 naive 12 24 36 48
with test inversion atk 0 0 0 16

min 0 0 0 16
block 0 0 0 4
opt 0 0 0 1

MCMPS 15 naive 15 30 45 60
with data load mutation atk 1 6 15 32

min 1 6 15 32
block 1 4 6 8
opt 1 3 5 7

MCMPS 27 naive 27 54 81 108
with test inversion atk 1 8 24 56
+ data load mutation min 1 8 24 56

block 1 6 9 12
opt 1 3 5 8

FU 42 naive 42 84 126 168
with test inversion atk 0 28 42 88

min 0 28 42 72
block 0 14 21 28
opt 0 7 14 21

FU 2 naive 2 4 6 8
with data load mutation atk 1 4 6 8

min 1 2 3 4
block 1 2 3 4
opt 1 2 3 4

FU 44 naive 44 88 132 176
with test inversion atk 1 32 60 96
+ data load mutation min 1 32 60 80

block 1 16 24 32
opt 1 9 17 25

VP shows optimal results with block placement algorithm,
meaning that distribution of protection is not required to
achieve optimal placement.

For MCMPS program, results are presented for both fault
models and their combination. As no test inversion attacks
are possible below 4 faults, only naive placement requires
countermeasure in less than 4 faults. The 4-faults attack with
test inversion corresponds to the attack of the same IP four
times, allowing the opt algorithm to protect this IP only
with vl = 2. Only one 1-fault attack is possible with data
load mutation, giving the same results for every algorithm
(except naive). For both fault models, distributed placement
is required to obtain optimal protection sum.

Similarly, FU results are presented with both fault models
and combined fault model. Distributed placement is also
required to achieve optimal placement for test inversion, and
thus for the combination of fault models.

For both MCMPS and FU, the protection applied for
combined fault model is not always the sum of the protection
(except for 1-fault). However, the protection for the combina-
tion can never be smaller than the sum of the protection for
each fault model separately.

Table VII resumes the properties of the five placement
algorithms (column ”Algo.”) presented in this paper. Column
”Type” indicates if the algorithms use systematic, block or

distributed placement approach. The column ”Guarantees P ′”
precises if the algorithm is robust (with a complete A attacks
set and a complete catalog), and if the algorithm is guaranteed
to find an optimal solution. Finally, the ”Required analysis”
corresponds to the analysis that are necessary for the algo-
rithm: attack analysis (”AA”), redundancy analysis9 (”Red”)
and hotspots analysis (”HS”).

TABLE VII
CHARACTERISTICS OF THE PLACEMENT ALGORITHMS

Algo. Type Guarantees P ′ Complexity Required analysis
Robust Optimal AA Red HS

naive syst. X - O(t) - - -
atk syst. X - O(t) X - -
min syst. X - O(t) X X -
block block X - O(t) X X X
opt distr. X X NP-Complete X X -

Performance wise, DSE remains the limiting factor of the
methodology. Redundancy analysis can approach the compu-
tation time of KLEE in some example such as FU , but attacks
analysis and hotspots analysis are O(t) (with t the set of attack
traces). The ILP solving worst case is NP − complete, but
our experimentation shows that its computation time is very
low. Indeed, low order attacks add strong constraints to the
ILP and if 1-fault attacks exist, the distributed algorithm has
to protect those IPs with vl > n.

VII. CONCLUSION

In this paper, we proposed an innovative methodology to
assist developers when adding countermeasures to protect a
program against multi-fault attacks, nowadays considered at
the state of the art by certification authorities. Generalizing
the existing single fault hardening approaches is difficult
due to the attack surface introduced by countermeasures,
potentially adding new attacks and new paths to explore. To
handle this inherent complexity, we propose a compositional
approach combining isolation analysis, allowing to compute
the vulnerability level of a protection scheme characterizing
how many faults are required to violate the postcondition of an
IP, and placement algorithms, relying on a representative set
of attacks to select which minimal vulnerability level should
be applied on each IP in order to obtain robustness in n faults.

The isolation analysis allows to reason about a protection
scheme locally. The adequacy of the scheme allows to verify
if the protection actually blocks the single fault attacks and the
vulnerability level allows to abstract the additional behaviors
of the protected scheme introduced by the countermeasures.
The key of this analysis is the specification of the nominal
behavior of instructions, how it can be impacted by faults and
how deviations can be detected.

Formally establishing the robustness of a countermeasure
scheme against an attacker model is not new. In the context
of CFI many protections have been proposed and proved, as
in [3]. In the context of fault injection, formal methods have

9Redundancy analysis corresponds to the computation of the minimal
attacks.



been used to establish the effectiveness of countermeasures
[15], [16], [20]. But these works are dedicated to particular
forms of countermeasures and specific fault models, and they
address single faults only. Here we propose a generic approach
extended to multi-fault. To the best of our knowledge, no
analysis has been already proposed to take into consideration
the attack surface of a countermeasure, because this question
is not relevant single fault.

Five placement algorithms have been presented in this paper.
Under some reasonable hypothesis these algorithms guarantee
the robustness of the protected program up to n faults, w.r.t. the
considered fault model and attack objective. In particular, we
assume that a representative attacks set has to be computed
beforehand, similarly to what is done in simulation based
approaches, when the program is protected with respect to
weaknesses revealed by profiling techniques.

This methodology has been experimented with (combina-
tions of) test inversion and data load mutation fault models
on a set of program from the FISSC collection [1]. These
experiments demonstrate that our approach is effective on
realistic codes, and allows to drastically reduce the cost of
protections to insert w.r.t. systematic strategies consisting in
protecting all IPs.

Experimentation focused on test inversion and data mutation
fault models which are standard fault models at software
level [18]. Test i-plication and load i-plication are protections
scheme that can provide any vulnerability level required for
those fault models. Our approach could be extended to other
countermeasures that propagate an internal state, like the one
proposed in [10], requiring then to take this internal state into
account during isolation analysis. However, some limitations
may occur with more “distributed” countermeasures, namely
when the protection scheme consists in modifying the target
code “as a whole”, at several locations. This could be hardly
compatible with the local isolation analysis we propose.

Similarly, fault models based on (arbitrary) jumps would
require to take into account all possible entry points and output
points of a protection scheme in order to run isolation analysis.
In particular, if a fault can produce a jump anywhere outside
the protected scheme, the postcondition to be verified in order
to correctly compute its vulnerability level may be difficult to
specify. More generally, this raises the question of knowing
which fault models can be protected by our approach (with IP
granularity protection), require a more global transformations
to be robust, or cannot be make robust at all [14].

In another field, our methodology can be applied to fault
tolerance analysis, using a bit-flip data model and load dupli-
cation, for instance. However, some crypto-based code (with
high cyclomatic complexity) are difficult to explore with
Lazart that forks the DSE exploration each time a fault can
be injected. If another tool or method produces the set of
attacks A, our compositional approach can be applied to make
the program robust. In the same way, side-channel attacks
evaluation would require to handle this type of attack objective
for the generation of A.

Finally, this work has been implemented using LLVM level

and a future work could be to implement it on a lower level.
Nevertheless, this would require to adapt isolation analysis to
those specific fault models and sensitive schemes.
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