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Abstract—We propose a framework for image compression in
which the fidelity criterion is replaced by a semantic and quality
preservation objective. Encoding the image thus becomes a simple
extraction of semantic, enabling to reach drastic compression
ratio. The decoding side is handled by a generative model
relying on the diffusion process for the reconstruction of images.
We first propose to describe the semantic using low resolution
segmentation maps as guide. We further improve the generation,
introducing colors map guidance without retraining the genera-
tive decoder. We show that it is possible to produce images of high
visual quality with preserved semantic at extremely low bitrates
when compared with classical codecs.

I. INTRODUCTION

An image is traditionally compressed with the aim of
minimizing the error made in the reconstruction. The Mean
Squared Error (MSE) naturally comes as a simple and efficient
criterion to evaluate the fidelity of the output in terms of distor-
tion [1]. This metric remains widely used to evaluate methods
compressing images ranging from high to low bitrates. But
what happens when compression is pushed to the extreme
(∼0.02 bpp)? While excessive compression on sensitive data
such as movies or vacations photos is not desirable, a drastic
reduction of storage could be welcomed for the so-called ”cold
data”. This massive amount of data that is stored but almost
never accessed is estimated to represent 60% of today’s storage
while projected to become 80% by 2025 [2]. In that case,
compression at extremely low bitrates could be an alternative
to deleting potentially useful data or keeping a huge amount
of data that might not be used. However, when targeting such
bitrates, the relevance of the MSE as an evaluation criterion
drops. As showcased by Blau et al. [3] there exists a tradeoff
between the perceived quality of the output and the fidelity in
terms of pixels. They call it the perception-distortion tradeoff.
Moreover, Blau and Michaeli [4] show that decreasing the
bitrate exacerbates the opposing goals of the two metrics, see
Fig.1. Optimization of the MSE then leads to the apparition
of numerous compression artifacts, which makes the use of
such bitrates really unattractive. Recent neural methods, such
as HiFiC [5] and its latest versions [6] [7], propose to alleviate
this issue by integrating perceptual metrics to their training.
They favorably replace latest standards even at low bitrates
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Fig. 1. Illustration of the perception-distortion tradeoff. Pixel (VVC) and
semantic fidelity (SGC) compression methods side-by-side at extremely low
bitrates (0.022 bpp). VVC which optimizes the MSE loses the semantic, while
our approach manages to show semantic and visual quality at the same time.

(0.2 bpp), but this remains insufficient to cope with the
explosion of data. Our focus is on drastically lower bitrates
where MSE-driven generative methods would fail to maintain
semantic fidelity.

Discarding the MSE criterion, we instead choose to optimize
the realism and semantic fidelity of the output. Following
Theis et al. [8], we encode the image by extracting a compact
semantic description. Decoding from this representation then
requires the use of a generative approach. This paradigm is
referred to as semantic based generative compression (SGC).

We propose a new SGC scheme with semantic represented
as information on labels and colors. While labels brings
information on the content of the image, the colors guarantee
a certain level of consistency in the generation, acting as an
overview of the image. The quantity of semantic transmitted



then depends on the precision of the description, i.e. the
number and precision of the labels. The decoding side is
handled using a generative model, which is able to generate
images from abstract semantic concepts. For our decoder, we
propose to rely on diffusion models. Indeed, they showed great
results in guiding the generation using semantic descriptions.
The recent models for text to image generation [9] are a
good illustration of their performance, sometimes even able
to cheat human eyes in art competitions. We choose to rely
on the architecture and weights of Latent Diffusion Models
(LDM) [10]. Their model is designed to generate images
using segmentation map conditioning which allows semantic
fidelity. As color guidance is not native in LDMs, we propose
a way to guide the generative process with a color map
without retraining their network. Our method yields better
visual results at extremely low bitrates when compared to
recent codecs such as VVC while conserving the semantic.

We present the formulation for the generative compression
with semantic representation as well as the architecture of the
model we rely on in Section II. In Section III we present
results of our method and a comparison with recent codecs.

II. SEMANTIC BASED GENERATIVE COMPRESSION

A. Problem formulation

We define the semantic based generative compression
framework and illustrate it in Fig. 2. The input image x is
encoded into its semantic representation σ using a semantic
encoder E . The decoder D, reconstructs the decoded output x̃
using the described semantic requiring a generative approach.
Unlike classical decoders Fig. 2(a), our goal is not to minimize
d(x, x̃), a pixel error. Instead, we want to preserve the semantic
information in decoding while maximizing the realism or
perception of the output. In other words, we switch from a
pixel fidelity to a semantic fidelity, Fig. 2(b). To measure
the quality and fidelity to the input, we define a semantic
reconstruction error. We still measure a distance, but we do
it in the semantic space. Using a projection Φ from the
pixel to the semantic domain, the error can be expressed
as d(Φ(x),Φ(x̃)). Φ is a nonlinear function extracting the
semantic information of an image. Using this metric, two
images can be extremely close semantically while being far in
terms of MSE. Ideally, such a metric is resistant to rotations,
translations or any other operations which do not change the
content of the image and only slightly alter the semantic.

We formulate our problem as a maximization of the visual
quality under constraints of very low bitrates R < Rlow and
semantic fidelity d(Φ(x̃),Φ(x)) < dmin.

max
E,D

Ψ(D(E(x))) (1)

s.t R < Rlow and d(Φ(x̃),Φ(x)) < dmin

where Ψ is an evaluation of the realism (higher is better). In
addition to quality metrics (FID) presented by Rombach et al.
[10], we use several Image Quality Assessment (IQA) metric
as Ψ to evaluate the generation.

b) Proposed SGC framework

a) Classical compression framework

Fig. 2. a) Classical and b) SGC framework for image compression. With an
encoder-decoder(E,D) structure, we propose to use a semantic representation
σ. In contrast to classical frameworks, we choose to optimize the semantic
fidelity formulated as d(Φ(x̃),Φ(x)) rather than the pixel fidelity d(x, x̃).

In the following, we present the choices made for the
semantic encoding for E . We then introduce our generative
decoder D, which uses the semantic representation as input.

B. Encoding the semantic: E
The choice of the semantic representation defines what

should be important to keep inside the image. We propose
to describe σ as a combination of a segmentation map and a
color map.

1) The segmentation map σs: gives information on objects
and their position in the image. Using it as an embedding
of our image, the encoding E(x) of an image then becomes
the computation and compression of the segmentation map. In
our case, it is estimated using the trained model DeepLabV3
[11] on classes of the COCO-Stuff dataset. The segmentation
map is then lossly compressed using downsampling operation.
Using low resolution of segmentation map σs as embedding
still allows for a good reconstruction, losing only the small
semantic labels in the process. At the decoding side, the
segmentation map is upsampled and fed as input to the LDM
model.

Images compressed using only segmentation maps present
a lot of variability in samples. Indeed, labels only captures
one kind of semantic and increasing the number of possible
labels comes at the cost of an increased rate. Therefore, a
photo during taken in the day will have the same labels as if
it were taken during the night. This issue can be observed in
the samples presented in Fig. 3(a). To address this, we decide
to complete σ with a color map.

2) The color map σc: describes roughly the color informa-
tion of the image. The color map is computed using a series of
downsampling and blurring operations. Using a low resolution
color map σc on its own is not enough to guide the generation.
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Fig. 3. a) Illustration of the LDM for generation of images conditioned on segmentation map σs as input, the 2 center images are results of our method. The
generated samples may visually differ a lot from the source, with a lot of variability between samples. b) The proposed alternative for color map σc guidance
without retraining the model. The samples are then more consistent with respect to the color of the source image. Size is indicated here in bytes(B).

This reveals the same problems as an MSE optimization, i.e a
blurred blank spot could then either be decoded as a sheep or
as a dog. The two semantic descriptions that were chosen are
thus complementary. In practice, we use 16 × 16 color map.
This size of color map gives global information on the aspect
of the image. Using a higher resolution color map would not
necessarily bring more precision on the generation, as the
information might be lost when the noise is added at the start
of the diffusion process.

To decode an image from the semantic representation,
we propose to use a generative decoder, in our case LDM.
We modify this model to integrate color guidance without
requiring training of the network.

C. Generative decoding with LDM: D

We choose to use Latent Diffusion Models (LDM) [10] as
our generative decoder. Diffusion models [12] [13] are trained
by maximizing the likelihood that the generated outputs follow
the same distribution as the dataset. They repeatedly denoise
a randomly initialized vector until convergence to the desired
distribution, in our case a realistic image. Rather than doing
the diffusion in the pixel domain, LDM’s authors propose to do
it in the latent space of a separately trained VAE(E ′,D′) [14].
The role of the diffusion model ϵθ then becomes to generate
embeddings of images in this latent space. They present and
provide several models trained conditionally on various inputs
such as text, segmentation maps or layout.

Following the standard process of diffusion, the generation
of samples using an LDM with a conditioned input for image
generation is illustrated in Fig. 3(a). A noise zT is first
randomly drawn with gaussian distribution in the latent space
and repeatedly guided towards an image embedding z0 with
zt−1 = ϵθ(zt, t, σs) for T timesteps. The semantic description
σs serves as a guide for ϵθ and conditions the generation of
the semantic. The VAE decoder D′ is then used to reconstruct
x̃, more details on the generation are present in their article.

We illustrate the generation process on an image of our dataset
in the following figures. With samples generated using only
the segmentation map, there is a lot of variability in output.
We thus added color map to the semantic representation.

In LDMs ϵθ does not natively take a color map as input.
Rather than retraining an already trained, powerful and large
network, we propose an alternative to conditioning for guiding
using colors. This method is illustrated in Fig. 3(b). Inspired
by previous work [15] we propose to use the color map at the
start of the diffusion model. Instead of initializing the diffusion
with a random gaussian noise as the first embedding zT , we
use the color map encoded in the latent space using the VAE
encoder E ′(σc) it corresponds to z0 in Fig. 3(b). Then adding
noise, the diffusion process is intercepted at a timestep t < T
as if the denoising already started. The rest of the diffusion
proceeds normally for t timesteps. This method is possible as
the VAE introduced in LDM was trained optimizing an MSE
loss. The latent space thus contains information on the pixels
of the color map, i.e. the colors.

Note that the choice of the timesteps t at which we intercept
the diffusion has an impact on the generation. Indeed, as shown
[16] the smaller t is the more zt is close to a realistic sample
and the harder it is to redirect the generation. On the other
hand, if t is chosen too close to T then zt does not contain
enough information on the colors for the output to respect
the color map at generation as too much noise was added.
We empirically find that using 70% of T is ideal in our case.
Using the same image encoded, we show samples generated
using this method in Fig. 3(b). The color adds consistency to
generation by transmitting an overview of the original image.

III. EXPERIMENTS

In this section, we compare our method with standard
codecs’ compression targeting similar bitrates. Since our
method is not deterministic, to avoid cherry-picking, we
choose the first generated sample for each image presented. All
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Fig. 4. Using downsampled segmentation maps does not affect neither the
quality of generation nor the fidelity to the input in terms of semantic. The
network is able to extrapolate and generate correct labels, not strictly inside
the given map.

the images present in figures are in 512×512. Reader can find
further results on different images in supplementary material
available at https://project.inria.fr/dare/publications/sgc.

A. Sampling parameters

We use the LDM previously described as our generative
decoder for semantic based image generative compression.
The architecture and weights of the model [10] which can be
found on the LDM’s GitHub1. We use the conditional semantic
generation model trained on the Landscape [14] dataset, fine-
tuned for the generation of 512 × 512 images. Samples are
generated using 200 timesteps with a DDIM scheduler and a
guidance scale of 2 for the diffusion process. The scale guiding
the influence of the condition on the generation.

The segmentation maps were obtained using a pretrained
DeepLabV3 [11] model. This segmentation model is used in
the encoding task of our framework. In order to further reduce
the bitrate and redundancy, the segmentation maps are then
downsampled. We show that downsampling the segmentation
map up to 16 times does not affect the quality of the generation
of images in 512× 512, see Fig. 4. The network extrapolates
outside the given boundaries to generate more realistic sam-
ples. The image is encoded using lossless compression on the
downsampled 32×32 segmentation map. At decoder side, the
segmentation map is upsampled to fit the input of the model,
only smaller area of labels are lost in the process.

B. Discussion

Following the formulation in (1), we evaluate our methods
on image quality and semantic similarity. Results of our
method are showcased in Fig. 5 along with evaluation metrics
in Table I(↑ higher is better, ↓ lower is better). Frechet
Inception Distance (FID) evaluation of the chosen architecture
are available along more details on LDMs in the original
article [10]. We compare our results to VVC, for which we
use the latest version of the intra coder(v1.6) with Vvenc
implementation [18]. Other learned codecs [5], [7], [19] were

1https://github.com/CompVis/latent-diffusion

TABLE I
EVALUATION OF SGC

IQA metrics ↑ Ψ Φ R

DBCNN MUSIQ HYPERIQA CLIP-IQA BCE ↓ CLIP ↑ bpp ↑
[20] [21] [22] [23] [24]

Input 62.2 67.5 0.58 0.56 - - -
VVC(qp 55) 19.8 24.2 0.23 0.32 0.93 0.62 0.0229
SGC(Ours) 49.8 60.6 0.54 0.47 0.40 0.80 0.0209

not trained for such bitrates. They would require retraining to
target similar bitrates for comparison.

Images showcased from our method show a good visual
quality and preservation of the semantic. The visual results are
backed by the corresponding metrics. The perceptual quality
Ψ of the image is evaluated using several image quality
assessment metrics. We measure the quality over the dataset
Landscape, and we systematically achieve better quality than
VVC and score closely to images of the dataset on two
of those metrics. The semantic similarity Φ is evaluated on
two criteria. Firstly, on the labels and their position, using
a binary cross entropy between estimated segmentation maps
on decoded images and input images. We see from this metric
that the segmentation model is not able to predict correctly
the classes for the images encoded using VVC. Our method
has a better preservation of the semantic when measured on
the 182 possible labels. For the second criteria, we use a CLIP
alignment metric. CLIP is a model originally used to measure
alignment between text and images, however it can also be
used to compare two images. Projecting the input and decoded
images into CLIP latent using the image encoder, the angle
between the two normalized vectors gives an alignment score.
We present the measures as the scalar product between the
two vectors, with values ranging from 0 for no alignment to
1 for a perfect match. We use the ViT-L/14 version of CLIP.
Note that this metric is different from CLIP-IQA which relies
on text and image alignment to assess the quality. We notice
that even though our method was not trained to optimize these
criteria, we still score really close to the input and higher than
the VVC encoded image. SGC thus propose an alternative
to the distortion optimization, offering quality and semantic
preservation at extremely low bitrates.

A significant improvement lies in the absence of compres-
sion artifacts when using our method. The reduction in bitrate
comes at the cost of a loss of information rather than a loss in
image visual quality. Metrics shows that the loss of semantic
for classical coding is more important than our methods.
With an important constraint on the rate, the precision of the
semantic description limits the fidelity we can get. Indeed,
using a higher number of labels dedicated to the description
of landscapes would bring decoded images closer to originals.
This is noticeable in the last two rows of images in Fig.
5, where semantic has been preserved, but resemblance is
somewhat lacking, even though both semantic metrics still
advantages SGC on those particular examples.

https://project.inria.fr/dare/publications/sgc
https://github.com/CompVis/latent-diffusion


Fig. 5. Illustration of our methods compared to VVC. jpeg2000 [17] does not manage to satisfyingly reach similar bitrates. Our methods yield better image
quality while conserving the transmitted semantic.



IV. CONCLUSION

We proposed a new framework for image compression
based on a semantic representation. We proposed to guide
the generation using color maps on a model trained model
using segmentation maps as input. The decoding relies on a
conditional diffusion process to generate images faithful to
the semantic. We showed that using a semantic description of
the image is enough to produce samples close to the image
with high visual quality. Comparing to recent codecs, decoded
image are highly detailed through synthetic information. This
method could further be applied by doing selective generation,
synthesizing only unnecessary information.

An interesting improvement for future work would be to
have a fine grain semantic representation to navigate into. This
would allow a control on the distribution of the semantic over
the image and a better control on the bitrate.
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