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Abstract. The Minimum Description Length principle (MDL) is a for-
malization of Occam’s razor for model selection, which states that a good
model is one that can losslessly compress the data while including the
cost of describing the model itself. While MDL can naturally express the
behavior of certain models such as autoencoders (that inherently com-
press data) most representation learning techniques do not rely on such
models. Instead, they learn representations by training on general or, for
self-supervised learning, pretext tasks. In this paper, we propose a new
formulation of the MDL principle that relies on the concept of signal and
noise, which are implicitly defined by the learning task at hand. Addi-
tionally, we introduce ways to empirically measure the complexity of the
learned representations by analyzing the spectra of the point Jacobians.
Under certain assumptions, we show that the singular values of the point
Jacobians of Neural Networks driven by the MDL principle should fol-
low either a power law or a lognormal distribution. Finally, we conduct
experiments to evaluate the behavior of the proposed measure applied
to deep neural networks on different datasets, with respect to several
types of noise. We observe that the experimental spectral distribution is
in agreement with the spectral distribution predicted by our MDL prin-
ciple, which suggests that neural networks trained with gradient descent
on noisy data implicitly abide the MDL principle.
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1 Introduction

New data often traces out regularities found in past observations, an idea known
as generalization: finding regularities that are consistent with available data
which also apply to data that we are yet to encounter. In the context of super-
vised machine learning we measure it by learning the rules on observations by
minimizing some loss function, and evaluating it on observed and unobserved
data. The difference between risk in the training data and new observations is
known as the generalization gap. When it is small, the model generalizes well.

In the context of empirical risk minimization the generalization gap can be
estimated in terms of model complexity, which increases with its number of pa-
rameters. We thus expect to reduce the generalization gap through a form of reg-
ularization, either by explicitely reducing the number of parameters, controlling
a norm [27,51], or e.g. using dropout [43,21] or batch normalization [24,29,41].

Surprisingly, neural networks (NN) trained by stochastic gradient descent
(SGD) generalize well despite possessing a higher number of parameters than
training data, even without explicit regularization[14]. An elegant explanation
for this phenomenon is that SGD implicitly controls model complexity during
learning [35,19], resulting in networks that are significantly simpler than their
number of parameters suggests, as shown by several metrics to assess effective
capacity, e.g. the model’s number of degrees of freedom[12], which is related to
generalization gap, or its intrinsic dimension[28]. It is thus puzzling that, in spite
of their implicit simplicity, NN classifiers trained by SGD are able to perfectly fit
pure random noise [53], even while explicitly using regularization. In pure ran-
dom noise, there is no signal to learn a rule from, and to reduce the generaliza-
tion gap we must reduce the training performance. Since common regularization
methods are unable to achieve this, using them to control model expressiveness
does not address generalization: we need to "rethink generalization".

To do so we offer the following insight. To learn, from noisy observations,
regularities that apply to data that we are yet to encounter, we must do so in
a noise insensitive way: we must learn from signal rather than from noise. If we
do so, there is no generalization gap when learning from pure noise: since there
is no signal, the model would simply not learn at all!

In this paper, we shall give a formulation of this insight in terms of a minimum
description length principle (MDL), [37,38] a principle of model selection which
can be seen as a formalization of Occam’s Razor. MDL states the problem of
learning from data in terms of finding regularities that we can use to compress
it: choose the model that provides the shortest description of data, comprising
the model itself 4. This idea was formulated in different ways since it was first
advanced in [37], to respond to technical difficulties in application[15]. In the
original, two-part form, restricting the model class to finite sets, application of
this principle turns into Kolmogorov’s minimal sufficient statistic [48].

4 This formulation is known as two-part MDL, which depending on the author can
be seen as "traditional" (in opposition to "modern" MDL which uses a one-step
encoding using universal encodings [15]) or "pure [48]".
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MDL expresses the ability to generalize in terms of compressibility, which
can be motivated using three main facts: (i) regularities in a random variable X
can be used to losslessly compress it (ii) the minimum achievable code length
is the entropy (iii) it is very unlikely that data that has no regularities can be
compressed. Taken together, these imply a model’s ability to compress data is
likely due to finding a regularity, which will likely be found in new data as well. It
is this intuitive appeal that motivates the use of MDL in spite of some conceptual
difficulties, namely in selecting the encoding used to measure the length of the
description of the model, which depends on the choice of encoding.

To address this difficulty, we propose an approach that uses both the signal
and the noise in the data to implicitly define model complexity unambiguously:
Choose the model whose representation of the data can be used to compress the
signal, but not the noise.

Formalizing this statement requires a perspective of signal and noise that is
particularly adjusted to classification problems, where the signal is task-defined
[15], and everything else can be considered as noise. As we shall see, our MDL
statement has a significant impact on the distribution of the singular values of
the point Jacobian matrices of a NN. Networks that learn from noise (where their
output can be used to compress the noise) tend to maximize singular values in
arbitrary directions to capture the fake "signal" in local directions. As a result the
spectrum is uniformly distributed. On the other hand, NN that learn from signal
but not from noise (where their output can be used to compress the signal but not
the noise) tend to capture local regularities in the signal by maximizing singular
values in directions aligned with the data. These directions are, by definition of
signal, not arbitrary. Since the network also tends to ignore everything that is
not signal, by minimizing singular values in arbitrary directions, in the limit of
infinite epochs, this results in a spectrum distributed according to a power law,
with a large proportion of small singular values and a fat tail.

Our contributions Our main contributions in this paper are 3-fold: (i) we pro-
vide a formulation of the MDL principle that is generally applicable to learned
representations (ii) we provide a capacity measure based upon this principle (iii)
we show experimentally that neural networks are driven by the MDL principle.

Paper organization This paper is organized as follows: Sec. 2 contextualizes of
our work, focusing on the sensitivity measure provided in [2]. We then provide a
few information theoretic results in Sec. 3.1 to contextualize the our definition
of signal and noise in Sec. 3.2. Section 4 is the core of our contribution: we define
our MDL objective in Sec. 4.1, and provide the local approximation in Sec. 4.2
that allows us to predict the spectral distribution in Sec. 4.2. In Sec. 5 we present
experimental results5 which allow us to conclude in Sec. 6 that neural networks
are driven by the MDL principle, and discuss future work.

5 Repository: https://anonymous.4open.science/r/ismymodeldrivenbymdl-96BA/.

https://anonymous.4open.science/r/ismymodeldrivenbymdl-96BA/
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2 Related work

MDL has traditionally been used for model selection [40,18,15,3,34], but its
intuitive appeal has led to applications in other areas such as pattern mining
[11,23]. In supervised learning, MDL was used in NN as early as [22], in which
the authors added Gaussian noise to the weights of the network to control their
description length, and thus the amount of information required to communicate
the NN. In classification, existing approaches are inspired in MDL for density
estimation[15], and most can be reduced to the same approach based on the 0/1
loss, which, while not making probabilistic assumptions about noise, was shown
to behave suboptimally [16]. Existing modifications to address this[4,50] do not
have, unlike our approach, a natural coding interpretation. Finding a formulation
of MDL for classification that can be applied in general and realistic settings is
thus an open problem, and this paper aims to contribute in this direction.

The relationship between noise, compressibility and generalization has been
explored in [6], for example, to derive PAC-Bayes generalization bounds, or in the
information bottleneck framework[46]. Closer to our approach [33] studies the
stability of the output of NN with respect to the injection of Gaussian noise at
the nodes, experiments showing that networks trained on random labels are more
sensitive to random noise. In [2], the notion of stability of outputs is extended to
layer-wise stability, improving network compressibility and generalization. The
authors define layer sensitivity with respect to noise (essentially the expected
stable rank with respect to the distribution of the noise), and show that stable
layers tend to attenuate Gaussian noise. A compression scheme is provided for
the layer weights that acts on layer outputs as Gaussian noise, which subsequent
stable layers will thus tend to attenuate. This, since the output of the network
is unchanged, shows that a network composed of stable layers is losslessly com-
pressible. A generalization bound for the compressed network is then derived in
terms of the empirical loss of the original network and the complexity of the
compressed network. This work shows a clear connection between compressibil-
ity of the model and generalization, but the connection to MDL is less evident.
We will show that enforcing our MDL principle leads to a measure that can
be seen as an average of local sensitivities, which are similar to those defined
in [2], but with crucial differences. In our approach, sensitivity is logarithmic,
direction-dependent, and importantly combines sensitivity to signal and to noise.

3 MDL principle, signal, and noise

We begin this section by recalling a few fundamental results in information
theory, which will be used to define signal and noise as used in this paper.

3.1 Information theory primer

MDL rests on three fundamental results: (i) regularities in a random variable X
can be used to losslessly compress it using a non-singular code for X; (ii) the
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minimum achievable codelength is the entropy; and (iii) it is extremely unlikely
that data that has no regularities can be compressed. In this section, we provide
proof sketches for (ii) and (iii) in 8.6(see e.g. [8] or [30] for detailed proofs) and
motivate (i) in 3.1 with a toy example. A similar argument can be used to prove
a finite-precision version of the Theorem 1 in [52], which provides a necessary
condition for a 2-Layer ReLU network to be able to perfectly fit the training
data. A straightforward application of this original result allows us to show 8.1,
for example, that a two-layer network that can be losslessly compressed to less
than about 125 kB cannot perfectly overfit cifar-10[26].

Preliminaries and notation A source code C(X) (C when there is no risk of
ambiguity) for a random variable X is a function from X the range of X to
D∗ the set of finite strings of a d-ary alphabet D, associating x ∈ X to a code-
word C(x). The length of the codeword l(x) is the number of elements in C(x),
and the expected code length is L(X) := EX [l(x)]. A code is said to be non-
singular if every x ∈ X maps to an unique element of D∗. An extension C∗

of code C codes sequences x1x2 · · ·xnof elements of X as the concatenation of
C(x1)C(x2) · · ·C(xn). A code is said to be uniquely encoded if its extension is
non-singular. Since every element in X is unambiguously encoded with a unique
string, non-singular codes allow us to losslessly compress data.

Optimal codelength and incompressible data The Kraft-Macmillan inequality 2,
which provides a condition for the existence of a uniquely decodable code with
given word lengths proves (ii):

Theorem 1 (Optimal code length). The expected length for any uniquely
decodable code C of a random variable X over an alphabet of size D is greater
than or equal to HD(X) the entropy calculated in base D, with equality holding
iff D−li = pi

An optimal prefix code always exists (e.g. Huffman code), but for our purposes,
the Shannon-Fano code, which sets codeword lengths l(x) = ⌈− log p(x)⌉6 suf-
fices. To give an informal argument for (iii), consider data X with no regularities
(maximal entropy). By Thm. 3, the expected codelength of any prefix code of a
discrete random variable X over an alphabet of size D is at least HD(X), with
equality iff the li = − logD pi. Since all n events have probability 1

n , the expected

code length per symbol is L ≥ −
n∑

i=1

pi logD pi = logD n. The lower bound can

be achieved by assigning each codeword to the leaves of a D-nary tree: the best
code and worst code coincide, and so data cannot be compressed.

Using regularities to compress To motivate (i), consider an object of mass m
falling freely from a height h0 on Earth (acceleration of gravity g), and a ta-
ble recording heights {h1, h2, . . .} at times {t1, t2, . . .}. which are known to obey

6 The Shannon-Fano code is competitive, meaning that the probability that the ex-
pected length exceeds another code’s by c bits does not exceed 21−c [8]
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h(t) = h0 − 1
2mgt2 since Galileo. This regularity can be used to losslessly com-

press the height-times table by replacing heights by ∆hi = hi − h(ti), as we
expect it to predict the first significant digits of the height with high confidence,
and measurements are performed and stored with finite precision. We can thus
store the same data (in expectation) using less digits, which amounts to lossless
compression. The more regularities we are able to find in data, the more we
can compress it. A better model, taking e.g. drag into account, increases con-
fidence in the first significant digits of the predictions, reducing in expectation
the number of significant digits of the deviations, allowing better compression.

Crucially, we did not take into account the size of the "data" that is the
law itself. In the first case, we stored m and g, whereas in the second case we
would need to store other quantities as well. There is a trade-off between the
description lengths of the data and the model, as a better model takes longer to
describe . In the limit, a very large model can decrease the description length of
finite data simply by memorizing it. Notably, two-layer ReLU feed forward NN
can do this with surprising ease[52] but, as predicted in the MDL framework, at
the expense of an increase in complexity[5].

3.2 Signal and noise

This paper introduces an MDL principle that specifies the encoding scheme in
which to measure the description length implicitly in terms of the signal and the
noise in noisy data. To define signal and noise, we rely on [39] which defines noise
as the part of the data that cannot be compressed with the models considered,
the rest defining the information bearing signal. This idea is used in the paper in
the context of Gaussian models arising in linear-quadratic regression problems to
derive a decomposition of data that is similar to Kolmogorov’s sufficient statistics
[8]. In our case, we shall assume that the signal is implicitly provided by a given
classification task, and define noise to be everything else.

Definition 1. We define noise as "noise relative to a signal": given random
variables X (signal) and ∆ (noise) such that X +∆ is well-defined, we say that
∆ is noise relative to X if for every Ci ∈ C non-singular code of X, we have
L(Ci(∆)) ≥ H(∆) + α, with α > 0.

Note that if Cj ∈ C were optimal for ∆, then L(Ci(∆)) = H(∆) ≥ H(∆)+α,
which with α > 0 is a contradiction. The definition is thus equivalent to stating
that there is no code of X in C ( which may include the optimal code for X) that
is optimal for ∆. Also note that the noise ∆ is not particularly "disordered".
Going back to 3.1, the physical laws that compress height vs. time data are
unable to compress the effect of hitting the object with a baseball bat. Even if
a model provides a simple description of some data, adding noise as defined in 1
destroys its ability to compress it. It is implicit in the MDL principle that not
only do we learn the regularities in data, but also the "irregularities"!
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4 Learning with the MDL principle

We now provide an MDL principle that eliminates the need for defining the model
encoding, as in two-step MDL or a universal coding such as one-step MDL[17].
Instead, we utilize the signal and the noise in the training data to implicitly define
the encoding. We then establish a lower bound of this maximization objective in
terms of the minimal description lengths of signal and noise(cf. 3). We further
simplify the problem by expressing it locally, which enables us to provide an
interpretation in terms of sensitivities to the signal and noise. Finally, we combine
these local problems to express a global MDL objective in terms of the spectra of
the local Jacobians, and that the spectral distribution of models that maximize
MDL is either power law or lognormal.

4.1 MDL objective

The MDL paradigm quantifies learning based on the ability to compress: if f(X+
∆) contains information about X it can compress it and conversely, if it does
not contain information about the ∆, it cannot be used to compress it. This
formulation implicitly defines the complexity of the model f in terms of unknown
X and ∆ present in training data. It is therefore applicable in a classification
context, where these are defined with respect to a task. Formally:

Definition 2 (MDL principle). Let X̃ = X +∆ be noisy data, comprised of
unknown signal X and a noise ∆ parts in the sense of 1, and a model fθ trained
on X̃ according to some (e.g. classification) objective. Let L(X|f(X̃) = y) and
L(∆|f(X̃) = y) be, respectively, the expected description length of X and ∆ given
knowledge fθ(X̃) = y. Then with γ > 0 a hyperparameter, fθ follows the MDL
principle if it maximizes

max
θ

{∫
pfθ(X̃)(y)L(∆|fθ(X̃) = y)dy − γ

∫
pfθ(X̃)(y)L(X|fθ(X̃) = y)dy

}
(1)

The idea is to minimize the mean L(X|f(X̃) = y) and maximize L(∆|f(X̃) = y)
seen as functions of y7, with γ controlling the relative strength of these objectives.

A lower bound in terms of minimal description length Using Theorem 3 we can
express the length of the description of noise knowing fθ(X̃) = y as a multiple
α(y) ≥ 1 of the length of the minimum length description for each y:∫

pfθ(X̃)(y)L(∆|fθ(X̃) = y)dy =

∫
pfθ(X̃)(y)α(y)H(∆|fθ(X̃) = y)dy

≥
(
inf
y
α(y)

)∫
pfθ(X̃)(y)H(∆|fθ(X̃) = y)dy

=

(
inf
y
α(y)

)
H(∆|fθ(X̃))

7 For classification, we work on an intermediate representation, which explains the use
of integrals in calculating the expectation.
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Proceeding similarly for the signal term we obtain∫
pfθ(X̃)(y)L(X|fθ(X̃) = y)dy ≤

(
sup
y

β(y)

)
H(X|fθ(X̃))

Denoting infy α(y) := α and supy β(y) := β the minimum and maximum ex-
pected description lengths of codes of noise and of signal, respectively, knowing
fθ(X̃) = y, we combine the two desiderata and maximize a lower bound of 1:

max
θ

{
αH(∆|fθ(X̃))− γβH(X|fθ(X̃))

}
Since H(∆|fθ(X̃)) = H(∆, fθ(X̃))−H(fθ(X̃)) and similarly for the second term,

H(∆|fθ(X̃))− γβH(X|fθ(X̃)) = αH(fθ(X̃)|∆)− γβH(fθ(X̃)|X)

+ αH(∆)− γβH(X) + (βγ − α)H(fθ((̃X)))

Ignoring terms independent of θ, since α > 0, we obtain a lower bound of 1:

Proposition 1 (MDL objective lower bound). Given noisy data X̃ = X +
∆ comprised of a signal X and a noise ∆ parts, a model fθ trained on X̃ accord-
ing to MDL, λ := γ β

α , the following is a lower bound of the the MDL objective:

max
θ

{
H(fθ(X̃)|∆)− λH(fθ(X̃)|X) + (λ− 1)H(fθ(X̃))

}
(2)

In this lower bound, λ has the role of γ modulated by the ratio between the worst
case expected signal description length knowing the model output and the best
case description length of the noise knowing the model output in units of entropy.
EB : Note that to minimize the description length of the noisy data H(fθ(X̃))
we must have λ− 1 < 0 and hence objective 2 is MDL with a constraint on the
conditional entropies. Since λ < 1 ⇒ α > γβ the implications depend on the
model class {fθ}: if for the given model class ∆ is more difficult to compress
than X, then α > β and so γ < 1. This corresponds to, in 2, focusing relatively
more on ignoring the noise. Conversely, if {fθ} is such that X is mode difficult
to compress, then γ > 1 and we focus relatively more on learning the signal.

4.2 Local formulation

We now simplify the problem in 2 by expressing it locally and then ultimately
in terms of the spectrum of the point Jacobian matrix ∇fθ|xk

.

Local objective Let f : A ⊆ Rn → B ⊆ Rm be analytical, A compact and
x1, . . . , xN ⊆ A and {Vk}k=1···N a set of balls centered at xk and with radius
rk such that A ⊆ V1 ∪ · · · ∪ VN , chosen such that the Jacobian matrix of f is
constant in each Vk in the sense of Prop. 5. Then to first order in δxk, δ:

f(x̃) = f(x̃k + δxk + δk)

≈ f(x̃k) +∇f |x̃k
δxk +∇f |x̃k

δk

:= f(x̃k) + Jkδxk + Jkδk
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with the approximation error controlled by the principal singular value of the
Hessian (cf. app. 8.3 for a proof). Since the choice of Vk determines f(x̃k), as-
suming local independence of signal and noise EB : implies locally H(f(X)|X) =
0, H(X|∆) = H(X); we can thus apply this approximation to 2 to obtain a local
MDL objective:

Proposition 2 (Local MDL objective). In the conditions and notation above,
locally in Vk the MDL objective 2 can be expressed approximately as

max
Jk

λH(JkδXk)−H(Jk∆k) (3)

where δXk, ∆k denote the signal and the noise in Vk with respect to its center,
and the approximation error is controlled by Prop. 5.

Interpretation in terms of sensitivity measure in [2] In [2] the authors de-
fine sensitivity of a mapping f with respect to noise ∆ at x as Eδ∼∆

[
∥f(x+δ)−f(x)∥2

∥f(x)∥2

]
,

which becomes ∥Jk(δ)|2
∥f(x)∥2 to first order in δ, in a region of constant Jacobian Jk,

using the arguments in 4.2. In expectation, up to a scale, this is the variance of
Jk∆k which is a measure of its complexity like the entropy above, (for a Gaus-
sian distribution, up to a logarithm and a constant, the two coincide). H(Jk∆k)
in prop. 2 thus corresponds to sensitivity with respect to noise and, by a similar
argument, H(JkδXk) to sensitivity with respect to signal. Our MDL objective
thus selects the model that locally maximizes sensitivity with respect to signal
and minimizes sensitivity with respect to noise. Although similar to [2], in our
formulation sensitivity is logarithmic, direction-dependent (cf.4.2), and crucially
combines sensitivity to signal and sensitivity to noise.

Finally, since λ < 1, if H(JkδXk) > H(Jk∆k) then 3 is upper bounded by
zero, where λ = H(Jk∆k)

H(JkδXk)
. Maximizing 3 thus corresponds to getting closer to a

model that locally produces the same balance between sensitivity to signal and
to noise, determined by the global parameter λ. This problem cannot always be
solved. Consider f a one layer ReLU network of width N ; the local {Jk} are
given by deleting a certain number of rows in the pre-ReLU Jacobian, which
is the weight matrix of f . Since f can have at most 2N different {Jk}, the
conjunction of local problems can only be solved if the number of Vk where
the balance between sensitivities needs to be adjusted differently is smaller that
2N . The case of deeper networks is similar, each new ReLU layer of width Mi

multiplying the number of possible Jacobians by 2Mi .

Local objective: spectral formulation To provide a spectral version of 2,
we express Jk in terms of its singular value decomposition (SVD), and the signal
and noise in terms of local PCA representations. We work in Vk but omit the
label k for simplicity. Jacobian, signal, and noise refer to the local versions.
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Proposition 3. (Local objective spectral formulation) In the conditions of prop. 2,
the following is its lower bound:

max
σ

λ
(
max

i

{
log σi +H(δXi

pca)
})

−
∑
j

(
H(∆j

pca) + log σj

) (4)

Proof. Let J = UΣV ⊤ be the singular value decomposition of J ∈ Rn×m. The
signal δX can be expressed as the transform to local coordinates of δXpca, the
signal in local PCA coordinates δX = W⊤

signalδXpca, and similarly for noise:
∆ = W⊤

noise∆pca, where Wsignal,Wnoise are, respectively, the PCA coordinate
transformation for signal and for noise. EB : Noting that U has determinant one
everywhere we thus have

λH(JδX)−H(J∆) = λH(ΣVW⊤
signalδXpca)−H(ΣVW⊤

noise∆pca)

The VW⊤ are contractions measuring the alignment between the singular vec-
tors of the Jacobian and the principal components of the signal (for Wsignal)
and noise (for Wnoise). We thus maximize the RHS of this expression by:

– aligning J with δX and then maximizing the logarithm of the singular values
in the non-zero dimensions: if δX is locally low-dimensional, the singular
values that get maximized are few.

– aligning J with ∆ and then minimizing the logarithm of the singular values
in the non-zero dimensions: since ∆ tends to be relatively high-dimensional,
all singular values of J tend to be minimized.8

The overall effect is to maximize a few neighborhood-dependent singular values of
J , and minimize all the rest – consistently with the experimental observations 1.
Since δX and J are unknown, so are the "selected" directions. The full entropy
of the local signal is at least as great as that of its components. Replacing it with
the entropy of the singular direction i for which the entropy of the transformed
signal is maximal, we obtain a lower bound of the local objective.

4.3 Combining local objectives to obtain a spectral distribution

We combine local objectives by maximizing their sum over all local patches
Vk. This is essentially assuming cross-patch independence. For it to hold, (i) the
network should be able to produce sufficiently many local Jacobians as explained
in 4.2 and (ii) Vi∩Vj should be small for all i, j. Assumption (i) holds in practice
since we work in the overparameterized regime and (ii) holds for ReLU networks.
Both assumptions are thus expected to hold as a first approximation, although
[20] suggests more complex behavior and will be considered in future work.

Recalling that we do not know which singular value gets "selected" and as-
suming that the signal is locally low-dimensional (which is known as "the mani-
fold hypothesis"[7,10] ), which we take for simplicity to mean that maxik H(δXik

k ) ≈
8 A similar argument can be found in [2] in the discussion of noise sensitivity.
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H(δXk) we obtain, summing over the M patches of rank-Nk Jacobian

M∑
k=1

λ

(
max
ik

{
log σik +H(δXik

k )
})

−
Nk∑
j=1

(
H(∆j

k) + log σj

)
Simplifying and maximizing over the singular values of all the Jk leads to

max
σ

{
λME [log σ] + λH(X)−H(∆)− N̄ME [log σ]

}
where expectations of both log singular values and Jacobian rank are over the
patches, the latter denoted N̄ for readability. As the sum of lower bounds of
non-positive quantities is non-positive, its maximum value is zero, where

E [log σ] =
H(∆)− λH(X)

M(λ− N̄)
(5)

Expectation as a model-dataset measure of complexity For this expectation to be
positive the entropy of the noise must be sufficiently smaller than the entropy of
the signal, since λ− N̄ < 0 because 0 < λ < 1. If 1 holds, E [log σ] thus decreases
with the number of patches of constant Jacobian and the mean Jacobian rank.
It is thus a measure of model complexity which increases with the weighted
difference between the entropy of noise and the entropy of signal, it depends
on the signal and noise. All things being equal, for the same E [log σ] models
trained with more noise will have smaller M and Ñ . Adding noise is a form of
regularization. If on the other hand, entropy of noise is greater than the entropy
of signal, the reverse effect is produced. On very noisy data (relative to signal!),
models trained with more noise need to become more complex.

4.4 The MDL spectral distributions

We now show that the predicted distribution that is compatible with 6 is a power
law or, for NN trained with SGD, a lognormal distribution. The true spectral dis-
tribution contains information on, e.g. architecture and training process whereas
in the maxent formalism [25] we use, the prediction is maximally non-committal:
it contains no information on the MDL-trained network beyond its adherence to
the MDL principle and the signal-to-noise entropies of the training data.

Incorporating knowledge of the expectation of the log spectrum and SGD The
distribution that incorporates knowledge of the expectation of the spectrum6
and nothing else is the maximum entropy distribution for which the constraint
on the spectrum 6 holds[25]. Specifically, the power law distribution p(σ) =
α−1
α

(
σ
b

)−α, where α = 1 + 1
E[log σ]−log b and b is a cutoff parameter. Power laws

model scale-free phenomena9, but can emerge when aggregating data over many
9 Since p(kσ) = a (kσ)α = akασα. Since the constant is a normalization factor, we

must have p(kσ) = p(σ).
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scales [54,13], as we did in 4.3 to obtain eq. 6. For a ReLU NN trained by
SGD, there is also a constraint on the variance of log σ: the spectrum depends
continuously on the network weights (cf. sec. 4.2), which are SGD-updated using
a finite number of steps. The corresponding maxent distribution is the lognormal,
which is the Gaussian distribution with given mean and variance in log-scale.

5 Experimental results

Our experiments show that spectral distribution matches theoretical predictions
in 4.4, suggesting that NN are driven by the MDL principle. We study the
effect of noise in the point Jacobian spectral distribution of three groups of
models of increasing complexity, ReLU MLPs, Alexnet, and Inception trained
on MNIST [9] and cifar-10 [26], using the experimental setup in [52]. See app. 8.5
for details. The section is organized as follows: (i) we present two different types
of noise and discuss expected consequences with respect to spectral distribution,
and (ii) we present and discuss the experimental results.

5.1 Experimental Noise

We study two forms of "natural" noise: label noise, used in [52] and dataset noise,
which consists in adding a lossy compressed version of a similar dataset.

Label noise We focus on instance-independent symmetric label noise[42], which
randomly assigns labels to training and test examples unconditionally on ex-
ample and training label with probability p. Label noise can be modelled re-
alistically using human annotators[49], but the former choice is closer to the
MDL sense 1. In this setting, the entropy of the introduced noise can be es-
timated as p · H(X0), since incorrectly labelled examples become noise with
respect to the classification task. This allows us to express the numerator of 6
for the noised dataset in terms of the entropy and noise of the original dataset
as H(∆p)− λH(Xp) = H(X0)− λH(X0) + p(1 + λ)H(X) > H(X0)− λH(X0).
All things being equal, for NN following MDL, the log Jacobian point spectrum
increases with the probability of label noise p.

Dataset noise We add to the original dataset D0 a similar dataset Dsim lossy
compressed at rate r. Symbolically Dr = D0+rDsim. We choose Dsim commonly
used in place of D0 in ML practice: cifar-100 for cifar-10, and Fashion-MNIST for
MNIST. To compress D̃ we reconstruct it using only a certain number of PCA
components. This causes less bias in setting r, compared to compressing with
e.g. jpeg [36] or an autoencoder, in which the architecture introduces an element
of arbitrarily, but we lose the ability to set the compression rate at will. Since
for the noised dataset Xr +∆r the numerator in 6 can be written as H(∆r) −
λH(Xr) = H(∆0)−λH(X0)+r(H(Xsim)+H(∆sim). All things being equal, for
NN that follow MDL, the average log Jacobian point spectrum decreases with
r. Interestingly, assuming the entropies of the similar dataset are approximately
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Fig. 1: Point Jacobian spectral distribution for model | label noise | cifar-10,
from first epoch to overfit. "Left" and "right" distributions (cf. 8.7) are rep-
resented separately for each triplet for clarity. The best fit lognormal plot is
superimposed on each histogram, with the corresponding probability plot on the
right, with the line of best fit (R2 displayed on top). Legend elements, in order:
epoch, training and validation accuracy, and the mean log spectrum.

the same as that of the original dataset, we obtain H(∆r) − λH(Xr) = (1 +
r)H(∆0)−(λ−r)H(X0), which corresponds to the same maximization objective
with a rescaled λr = λ−r

1+r < λ0 corresponding to less sensitivity to signal.

5.2 Discussion

As Figs. 1 and 2 show, NN trained using SGD are driven by the MDL principle:
(i) their spectra is remarkably well-fit by a lognormal distribution, as predicted
in 4.4, and experimental spectra become globally more lognormal with training
epoch (cf. fit overlay on the histograms, and inset probability plots); also, as pre-
dicted in the discussion following 6 (ii) for each model E[log σ] tends to increase
with noise (iii) and with model complexity, which also influences the quality
of lognormal fit10, Inception being the overall best and MLP the overall worst.
Remarkably, these observations hold for both label noise and dataset noise. In
the early stages of the training process, though, representation-building takes

10 The number of training epochs being relatively small, we did not find a power-law
behavior.
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Fig. 2: Point Jacobian spectral distribution for model | nbr. pca comp. | cifar-
10, from first epoch to overfit where possible. "Left" and "right" distributions
(cf. 8.7) are represented separately for each triplet for clarity. The best fit lognor-
mal plot is superimposed on each histogram, with the corresponding probability
plot on the right, with the line of best fit (R2 displayed on top). Legend elements,
in order: epoch, training and validation accuracy, and the mean log spectrum.

precedence. This can be inferred by observing that experimental distributions
are typically bimodal (see Sec. 8.7, for figures and discussion), and noting that
at the last linear layer of a classification-induced representation, one of the di-
rections should leave the output relatively more unchanged than the others: the
direction assigned to the class of the training point (see 14 for a visual expla-
nation). Representation building occurs early, as can be seen in Figs. 8.7 or in
Figs. 1 and 2, dominating MDL in early epochs. To handle this asymmetry, we
divide the spectrum in each of its two modalities (cf. 8.5). The statements above
apply to each of the two parts of the spectrum, corresponding to the two rep-
resentations. The observations above hold for MNIST as well, exception being
where the initial spectrum is multi-modal (suggesting a great degeneracy of the
directions in which the classification prediction does not change — i.e. MNIST
is very simple). In this case our splitting method is ineffective, as we would need
to split the spectral distribution into each of the several modalities.
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6 Conclusion and future work

In this work, we propose an MDL principle that implicitly defines model com-
plexity in terms of signal and noise: choose the model whose representation of the
data can be used to compress the signal, but not the noise. We show that models
driven by this principle locally maximize sensitivity to the signal and minimize
the sensitivity to noise, and predict that the point Jacobian spectrum of NN
trained by gradient descent follow either a power law or a lognormal distribu-
tion. We provide experimental evidence supporting this prediction, hinting that
neural networks trained by gradient descent are driven by the MDL principle.

As for future work we plan, aiming at a generalization bound, to extend the
connection established in 4.2, by making the MDL objective layer wise as in [2].
Another possible extension is to use our findings to explain the power law behav-
ior of the spectra of the layer weight matrices and connection to generalization
gap found in [31,32], by noting that each point Jacobian of ReLU networks is
a sub-matrix of the product of the network weight matrices, which can beex-
pressed in terms of the singular values of the point Jacobian submatrix via an
interlacing inequality[45].

7 Ethical statement

This paper presents a contribution that is essentially fundamental, theoretical
and methodological. We do not see any immediate ethical or societal issues.
Our experimental evaluation considers classic benchmarks of the literature and
our analysis focuses on particular mathematical properties of point Jacobians
spectra of trained neural networks. Our work follows ethical guidelines in modern
machine learning research in general and in representation learning in particular.
The application of the methodology presented in this paper should consider
ethical implications that can arise from the datasets used of the applications
targeted.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for
deep nets via a compression approach. CoRR (2018), http://arxiv.org/abs/
1802.05296v4

3. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in
coding and modeling. IEEE transactions on information theory 44(6), 2743–2760
(1998)

https://www.tensorflow.org/
http://arxiv.org/abs/1802.05296v4
http://arxiv.org/abs/1802.05296v4


16 E. Brandao et al.

4. Barron, A.R.: Complexity regularization with application to artificial neural net-
works. Nonparametric functional estimation and related topics pp. 561–576 (1991)

5. Blier, L., Ollivier, Y.: The description length of deep learning models. Advances in
Neural Information Processing Systems 31 (2018)

6. Blum, A., Langford, J.: Pac-mdl bounds. In: Learning Theory and Kernel Ma-
chines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings. pp.
344–357. Springer (2003)

7. Cayton, L.: Algorithms for manifold learning. Univ. of California at San Diego
Tech. Rep 12(1-17), 1 (2005)

8. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons
(2012)

9. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

10. Fefferman, C., Mitter, S., Narayanan, H.: Testing the manifold hypothesis. Journal
of the American Mathematical Society 29(4), 983–1049 (2016)

11. Galbrun, E.: The minimum description length principle for pattern mining: a sur-
vey. Data mining and knowledge discovery 36(5), 1679–1727 (2022)

12. Gao, T., Jojic, V.: Degrees of freedom in deep neural networks. In: Proceedings
of the Thirty-Second Conference on Uncertainty in Artificial Intelligence. pp. 232–
241. UAI’16, AUAI Press, Arlington, Virginia, USA (2016)

13. Gheorghiu, S., Coppens, M.O.: Heterogeneity explains features of "anomalous"
thermodynamics and statistics. Proceedings of the National Academy of Sciences
101(45), 15852–15856 (2004)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

15. Grünwald, P.: Minimum description length tutorial. Advances in minimum descrip-
tion length: Theory and applications 5, 1–80 (2005)

16. Grünwald, P., Langford, J.: Suboptimal behavior of bayes and mdl in classification
under misspecification. Machine Learning 66, 119–149 (2007)

17. Grünwald, P., Roos, T.: Minimum description length revisited. Inter-
national Journal of Mathematics for Industry 11(01), 1930001 (2019).
https://doi.org/10.1142/S2661335219300018, https://doi.org/10.1142/
S2661335219300018

18. Hansen, M.H., Yu, B.: Minimum description length model selection criteria for
generalized linear models. Lecture Notes-Monograph Series pp. 145–163 (2003)

19. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: Stability of stochas-
tic gradient descent. In: International conference on machine learning. pp. 1225–
1234. PMLR (2016)

20. He, H., Su, W.J.: The local elasticity of neural networks. arXiv preprint
arXiv:1910.06943 (2019)

21. Helmbold, D.P., Long, P.M.: On the inductive bias of dropout. The Journal of
Machine Learning Research 16(1), 3403–3454 (2015)

22. Hinton, G.E., Van Camp, D.: Keeping the neural networks simple by minimizing
the description length of the weights. In: Proceedings of the sixth annual conference
on Computational learning theory. pp. 5–13 (1993)

23. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Using the
minimum description length to discover the intrinsic cardinality and dimensionality
of time series. Data Mining and Knowledge Discovery 29, 358–399 (2015)

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1142/S2661335219300018
https://doi.org/10.1142/S2661335219300018
https://doi.org/10.1142/S2661335219300018


Is my Neural Net driven by the MDL Principle? 17

24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015)

25. Jaynes, E.: Where do we stand on maximum entropy? The Maximum Entropy
Formalism pp. 15–118 (1978)

26. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

27. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in neural information processing systems. pp. 950–957 (1992)

28. Li, C., Farkhoor, H., Liu, R., Yosinski, J.: Measuring the intrinsic dimension of
objective landscapes. In: International Conference on Learning Representations

29. Luo, P., Wang, X., Shao, W., Peng, Z.: Towards understanding regularization in
batch normalization. arXiv preprint arXiv:1809.00846 (2018)

30. MacKay, D.J., Mac Kay, D.J.: Information theory, inference and learning algo-
rithms. Cambridge university press (2003)

31. Martin, C.H., Mahoney, M.W.: Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. arXiv preprint
arXiv:1810.01075 (2018)

32. Martin, C.H., Mahoney, M.W.: Heavy-tailed universality predicts trends in test
accuracies for very large pre-trained deep neural networks. In: Proceedings of the
2020 SIAM International Conference on Data Mining. pp. 505–513. SIAM (2020)

33. Morcos, A.S., Barrett, D.G.T., Rabinowitz, N.C., Botvinick, M.: On the impor-
tance of single directions for generalization. CoRR (2018), http://arxiv.org/
abs/1803.06959v4

34. Myung, J.I., Navarro, D.J., Pitt, M.A.: Model selection by normalized maximum
likelihood. Journal of Mathematical Psychology 50(2), 167–179 (2006)

35. Neyshabur, B., Tomioka, R., Srebro, N.: In search of the real inductive bias: on
the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614
(2014)

36. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still image data compression standard.
Springer Science & Business Media (1992)

37. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

38. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. The Annals of statistics 11(2), 416–431 (1983)

39. Rissanen, J.: MDL denoising. IEEE Transactions on Information Theory 46(7),
2537–2543 (2000)

40. Rissanen, J.: Strong optimality of the normalized ml models as universal codes and
information in data. IEEE Transactions on Information Theory 47(5), 1712–1717
(2001)

41. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help
optimization? arXiv preprint arXiv:1805.11604 (2018)

42. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with
deep neural networks: a survey. IEEE Transactions on Neural Networks and Learn-
ing Systems (2022)

43. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014)

44. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Proceedings of the AAAI
conference on artificial intelligence. vol. 31 (2017)

http://arxiv.org/abs/1803.06959v4
http://arxiv.org/abs/1803.06959v4


18 E. Brandao et al.

45. Thompson, R.C.: Principal submatrices ix: Interlacing inequalities for singular val-
ues of submatrices. Linear Algebra and its Applications 5(1), 1–12 (1972)

46. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle.
In: 2015 ieee information theory workshop (itw). pp. 1–5. IEEE (2015)

47. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods 17(3),
261–272 (2020)

48. Vitányi, P.M., Li, M.: Minimum description length induction, bayesianism, and
kolmogorov complexity. IEEE Transactions on information theory 46(2), 446–464
(2000)

49. Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., Liu, Y.: Learning with noisy la-
bels revisited: A study using real-world human annotations. In: International Con-
ference on Learning Representations (2022), https://openreview.net/forum?id=
TBWA6PLJZQm

50. Yamanishi, K.: A decision-theoretic extension of stochastic complexity and its ap-
plications to learning. IEEE Transactions on Information Theory 44(4), 1424–1439
(1998)

51. Yoshida, Y., Miyato, T.: Spectral norm regularization for improving the generaliz-
ability of deep learning. arXiv preprint arXiv:1705.10941 (2017)

52. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations (2017), https://openreview.net/forum?id=Sy8gdB9xx

53. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM
64(3), 107–115 (2021)

54. Zhao, K., Musolesi, M., Hui, P., Rao, W., Tarkoma, S.: Explaining the power-
law distribution of human mobility through transportationmodality decomposition.
Scientific reports 5(1), 1–7 (2015)

https://openreview.net/forum?id=TBWA6PLJZQm
https://openreview.net/forum?id=TBWA6PLJZQm
https://openreview.net/forum?id=Sy8gdB9xx


Is my Neural Net driven by the MDL Principle? 19

8 Appendixes

8.1 Finding a finite precision network that overfits

Memorizing data with Neural Networks Two-layer ReLU feed forward neural
networks can do this for given, arbitrary sample size n, data in arbitrary dimen-
sion d with surprising ease: as stated in [52], Theorem 1, within the set of such
networks N with at least 2n + d parameters, there is at least one N ∈ N that
will be able to compress y perfectly, by expressing it in terms of x. This is not at
odds with the MDL principle (i) since MDL states that compressibility of data
without a rule is unlikely, rather than impossible (ii) the description lenght of
the network is not taken into account (see[33]).

The proof of theorem 1 in [52], implicitly assumes infinite precision in the
weights of the network, which would take up infinite, and thus unavailable, space.
For completeness, we briefly describe the gist of the proof in [52], before adapting
it to the finite precision case.

The proof rests on a Lemma that constructs a matrix A that is lower-
triangular and has non-zero and distinct real diagonal elements: the first dif-
ferences of an increasing sequence. A is hence non-singular, since the diagonal
elements of a triangular matrix are its singular values. The authors then proceed
to stating the overfitting problem, for a 2-layer ReLU network, as the solution of
linear system in a matrix B. This matrix can be made of type A via a judicious
choice of network parameters a and b. Precisely, one needs to chose a, b such
that for every sample xj we have a⊤xj < a⊤xj+1. This can always be done for
distinct xi, by the Archimedian property of the reals. It remains to select bj
such that a⊤xj < bj < a⊤xj+1, which can be done because R is complete. The
remaining parameters of the network w are precisely the solutions of the system
in B.

Memorizing data with finite-precision Neural Networks In finite precision, this
cannot be done in general. The number of significant figures of a⊤xj is at most
that of xj . The problem of finding constants a and b such that we can place
a b between every two a⊤xj can be done surely by picking b with one more
significant figure than xj . The number of significant figures in w, on the other
hand, depends on that of y as well: it is the minimum between the number of
significant figures of x plus one, and the number of significant figures of y.

We thus have the following proposition:

Proposition 4. In order to be able to overfit data x, y with sx, sy significant
figures, it suffices a neural network with n parameters with one more significant
digit than x, d parameters with the same number of significant digits as x, and
n parameters with the same precision as y for an expected number of bits of
(n(sx + 1) + dsx + nsy) log2 10.

Memorizing cifar-10 Typically, the number of significant figures in ML pipelines
is fixed, and it is the same for data and for weights (a 32 bit float). In the unlikely
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event that data is too closely packed (some data only differs by one in the last
significant digit), then there is no guaranteed overfit.

Incidentally, this precisely gives a lower bound to the parametric complexity
of the model "2-layer ReLU networks": they will be able to perfectly fit data
with precision sx, sy if the number of parameters satisfies the constraints above.

Note that the number of significant digits in 8 bit images is 3, and the num-
ber of significant digits in 10 classification choices is 1. If the model can be com-
pressed to less than

(
6× 104 × (3 + 1) + 322 × 3 + 6× 104 × 1

)
log2 10, which

amounts to about 125 kB, it cannot thus be expected to overfit.

8.2 Deriving the local approximation, alternative derivation

Within each local patch the Jacobian J has a singular vector decomposition
J = UΣV ⊤. Assume without loss of generality that J ∈ Rn×m. Then U ∈ Rm×m

is orthogonal, Σ ∈ Rm×n is a diagonal matrix and V ∈ Rn×n is orthogonal as
well. The entropy H(V ⊤δX) = H(δX) since V T has determinant one every-
where. In the same way, H(JδX) = H(U⊤JδX) = H(ΣV ⊤δX). In the case of
an embedding, the matrix Σ has a number of zero components along its diago-
nal, which will, upon multiplying by V ⊤δX produce a vector that has a number
of zero components independently of the other components. Hence, the entropy
of the zero part and the nonzero part is the same as the entropy of the nonzero
part. So the entropy above is just the entropy of the non-zero components
after acting on data with V ⊤. Explicitly, H(σ1v

⊤
1 δX, . . . , σkv

⊤
k δX, 0, . . . , 0) =

H(σ1v
⊤
1 δX, . . . , σkv

⊤
k δX). Plugging into our objective we obtain

max
J

λH(JδX)−H(J∆) = max
σ

λH(σ1v
⊤
1 δX, . . . , σkv

⊤
k δX)−H(σ1v

⊤
1 ∆, . . . , σkv

⊤
k ∆)

≥ max
σ

{
max

i
λH(σiv

⊤
i δX)−H(σ1v

⊤
1 ∆, . . . , σkv

⊤
k ∆)

}
Noting that

H(σ1v
⊤
1 ∆, . . . , σkv

⊤
k ∆) ≤

∑
i

H(σiv
⊤
i ∆)

=
∑
i

H(∆i) + log σi

where we called v⊤i ∆ := ∆i. Doing the same for δX and plugging in our objective
above, we obtain

max
J

λH(JδX)−H(J∆) ≥ max
σ

{
max

i
λH(σiv

⊤
i δX)−H(σ1v

⊤
1 ∆, . . . , σkv

⊤
k ∆)

}
= max

σ

{
λmax

i
{log σi +H(δXi)} −H(σ1v

⊤
1 ∆, . . . , σkv

⊤
k ∆)

}
≥ max

σ

{
λmax

i
{log σi +H(δXi)} −

(∑
i

H(∆i) + log σi

)}
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Note now that we can do three things to maximize this local lower bound:
imagine that we start training and there is one component of the data that
happens to have an image with larger entropy; assuming that the singular values
at start are the same, then this is because we are more aligned with the data.
And so we will promote this alignment by increasing both the singular value
along that direction and rotating it in order to improve the alignment.

The last terms are interesting as well: in order to reduce them and thus
increase the lower bound, we can do two things: reduce the mean entropy of
the projections of noise onto the singular directions and reduce the mean log-
arithm of the singular values of the Jacobian. Although the latter can be done
without restriction, the former depends on the local shape of noise. Without
further assumptions, the only sure way to reduce the mean entropy is to remove
dimensions altogether.

But note that since the logarithm can be very negative, it’s even better to
keep the dimensions and just focus on decreasing the singular values to as close
to zero as possible.

8.3 Controlling the approximation error of the local objective

We now show that a given x1, . . . , xN and an error budget E, a set of radii can
be chosen such that the maximum linear approximation error does not exceed it,
and these radii are inversely proportional to the largest principal singular value
of the point Hessian matrices. Conversely, for a compact domain, a set of radii
can be chosen such that every point is inside one of the neighborhoods of the
x1, . . . , xN that minimizes the total approximation error.

Intuitively, since the Hessian matrix at a point controls the curvature, the
curvature along the maximum curvature direction controls how far we are able
to go away from the point while not changing the Jacobian too much.

Proposition 5. Let f : A ⊆ Rn → B ⊆ Rm be analytical, with A compact and
x1, . . . , xN ⊆ A. Then given Ek > 0, a set of balls {Vk}k=1···N centered at xk

and with radius rk can be chosen such that the approximation error is upper
bounded by

∀k=1···N , sup
w∈Vk
i=1···m

1

2
σ1(∇2f i|w) · ∥rk∥2 = Ek

where σ1(∇2f i|w) is the first singular value of the Hessian matrix of the compo-
nent f i calculated at w ∈ Vk.

Proof. For each component f i of f , Taylor’s theorem states that the approxima-
tion error of f i(xk+rk)−f i(xk) ≈

(
∇f i|xk

)
rk, along a radius rk, in Lagrangean

form, is 1
2rk

⊤ (∇2f i|w
)
rk, where w is a point between xk, xk + rk. The approx-
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imation error is thus

1

2
rk

⊤ (∇2f i|w
)
rk =

1

2

rk
⊤ (∇2f i|w

)
rk

rk⊤rk
· ∥rk∥2

≤ 1

2
σ1(∇2f i|w) · ∥rk∥2

sup
w∈Vk
i=1···m

1

2
σ1(∇2f i|w) · ∥rk∥2

, where we used the definition of the first singular value in terms of the Rayleigh
quotient to establish this result on the sup norm. A result that holds for other
norms follows from convexity of the norms and the bound on each of the com-
ponents of the vector of the Hessian matrices.

To see the converse, consider that given a compact set and a point, there is
always a ball that contains it. Hence so would a union of such balls. Since
each of the radii sets an upper bound for the local approximation error, with
sup w∈Vk

i=1···m

1
2σ1(∇2f i|w) := σk

1 , we can write the total error as

min
rk

N∑
k=1

σk
1 · r2k

with the constraint that A ⊆ V1 ∪ · · · ∪ VN .

8.4 Combining local objectives

In order to maximize the combined local objective

max
σ

{
λME [log σ] + λH(X)−H(∆)− N̄ME [log σ]

}
and aiming at an expression for the spectral distribution, we follow the strategy
highlighted in 4.2, which we repeat below for completeness, for the combined
objective

– aligning J with δX and then maximizing the logarithm of the singular values
in the non-zero dimensions: if δX is locally low-dimensional, the singular
values that get maximized are few.

– aligning J with ∆ and then minimizing the logarithm of the singular values
in the non-zero dimensions: since ∆ tends to be relatively high-dimensional,
all singular values of J tend to be minimized.

Aligning the Jacobian and δX implies that the entropy H(δXik) is maximal.
Using the manifold hypothesis, we assume that the maximal entropy component
accounts for most of the entropy, that is maxik H(δXik

k ) ≈ H(δXk). As explained
in 4.2, the maximal entropy component does not necessarily correspond to the
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maximal singular value: during training, singular spaces corresponding to higher-
order singular values will also be "selected". Taking this "selection" as a one-
sample estimate of the mean justifies replacing the maximization over ik in
the expression above with E[log σk] +H(δXk). Under the assumption of cross-
patch independence, we have

∑M
i=1 H(δXk) = H(X) and similarly for ∆. The

expression below follows from linearity of expectation:

max
σ

{
λME [log σ] + λH(X)−H(∆)− N̄ME [log σ]

}
Since each of the terms in the sum above is negative, this expression is non-
positive. At the maximum, we thus have

E [log σ] =
H(∆)− λH(X)

M(λ− N̄)
(6)

8.5 Experimental setup

The experimental setup follows [52] closely. We investigate two image classifi-
cation datasets, namely the MNIST dataset [?] and the CIFAR10 dataset [26].
Both datasets are composed of 50,000 training and 10,000 validation images,
distributed across 10 different classes. In CIFAR10, each image in the dataset
has dimensions of 32x32, with 3 color channels. To scale the pixel values into the
range of [0, 1], we normalize them by dividing each value by 255. Additionally,
we center crop the images to obtain a size of 28x28, and normalize them by sub-
tracting the mean and dividing the adjusted standard deviation independently
for each image, adapting the per_image_whitening function in Tensorflow [1],
as presented in[52]. The same procedure adapted to one channel, except center
cropping which is unnecessary since MNIST images are 28x28, is performed on
MNIST.

On both datasets, we use two common deep architectures, which were adapted
to smaller image sizes/single-channel images: a simplified Inception model [44]
and Alexnet [26]. As in [52], the simplified Inception model uses a combination of
1x1 and 3x3 convolution pathways, while the simplified Alexnet is constructed
using two (convolution 5x5 → max-pool 3x3 → local-response-normalization)
modules followed by two fully connected layers with 384 and 192 hidden units,
respectively. We utilize a 10-unit linear layer for prediction, and to calculate the
point Jacobians. All architectures employ the standard rectified linear activation
functions (ReLU).

We also study two fully connected multi-layer perceptrons (MLPs): one hav-
ing a hidden layer with 512 units, the other having three hidden layers of the
same size.

For all experiments, we train the models using SGD with a momentum of
0.9, using an initial learning rate of 0.01. We apply a decay factor of 0.95 per
epoch to adjust the learning rate, and train the models without weight decay,
dropout, or any other explicit regularization techniques.
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In all experiments, we calculate the Jacobian at the linear layer, using auto-
matic differentiation with Pytorch’s torch.autograd.functional.jacobian method.
The point Jacobian spectrum is calculated at all training and test examples using
Pytorch’s torch.linalg.svdvals, which is a port of Numpy’s.

The experimental spectral distributions were split at the first deepest trough.
The lognormal fit of each modality, the probabilty plots and line of best fit were
calculated using scipy [47].

8.6 A few fundamental results in Information theory

We repeat a few results in the main paper for readability, while extending some
of the arguments.

Preliminaries and notation source code C(X) (simply "code" from now, and
often denoted C when there is no risk of ambiguity) for a random variable X is
a function from X the range of X to D∗ the set of finite strings of a d-ary alphabet
D, associating x ∈ X to a codeword C(x). The length of the codeword l(x) is the
number of elements in C(x), and the expected code length is L(X) := EX [l(x)].
A code is said to be non-singular if every x ∈ X maps to an unique element of
D∗. An extension C∗of code C codes sequences x1x2 · · ·xnof elements of X as the
concatenation of C(x1)C(x2) · · ·C(xn). A code is said to be uniquely encoded
if its extension is non-singular. Since it every element in X is unambiguously
encoded with a unique string, non-singular codes allow us to losslessly compress
data.

Optimal codelength and irregular data Results (ii) and (iii) crucially rest on the
Kraft-Macmillan inequality:

Theorem 2 (Kraft-Macmillan inequality). For any uniquely decodable code
C over an alphabet of size D, the codeword lengths l1, l2, . . . , lm must satisfy the
inequality ∑

i

D−li ≤ 1 (7)

Conversely, given a set of codeword lengths that satisfy 7, there exists a uniquely
decodable code with these word lengths.

The idea of the proof for prefix codes (known as the Kraft inequality) is that
prefix codes from a D - adic alphabet can be seen as the childless nodes on
a rooted tree. No prefix code can then be among the descendants of another.
Hence, the sum of the descendants of prefix codes cannot exceed the number of
leaves of the tree:

∑
i D

lmax−li ≤ Dlmax . The converse is established simply by
noting that lengths that satisfy 7 can be placed on rooted tree. If they couldn’t
there would be more words of length li than descendants of non-used codes; but
since the total mass at every level is constant, this cannot happen.



Is my Neural Net driven by the MDL Principle? 25

Theorem 3 (Optimal code length). The expected code length for any uniquely
decodable code C of a random variable X over an alphabet of size D is greater
than or equal to HD() the entropy calculated in base D, with equality holding iff
D−li = pi

To establish this, consider the difference between the entropy and the ex-
pected length. The result then follows from theorem 2 and non-negativity of
relative entropy, which is a consequence of the concavity of logarithm (Jensen
inequality). An optimal prefix code always exists (e.g. Huffman code), but for our
purposes, it suffices that the Shannon-Fano code, which sets codeword lengths
l(x) = ⌈− log p(x)⌉ is competitive in the sense that the probability that the
expected length exceeds another code’s by c bits does not exceed 21−c.

Finally, we give an informal argument to justify the statement that it is
extremely unlikely that data with no regularities (with maximal entropy) can
be compressed. By the Kraft-Macmillan inequality 2, for every prefix code of a
random variable X over an alphabet of size D, the expected codeword length is
no greater than the entropy, with equality iff the li = − logD pi. Assuming X
is discrete, all n events have the same probability 1

n . Hence, the expected code

length (per symbol) is L ≥ −
n∑

i=1

pi logD pi = logD n. The lower bound is what

we can achieve simply by assigning each codeword to the leaves of a D-nary
tree: the best code coincides with the worst possible code, and so data cannot
be compressed.

8.7 Additional figures

Point Jacobian spectrum, full spectra For the figures detailing the full spectrum,
i.e. figs. 5 through 13, note that train and test distributions are the same, since
the underlying distributions are the same for this relatively simple dataset. We
also note that the overall shape of each distribution does not change significantly
with the addition of noise. As discussed in the main text, we note the clear
bimodality in all spectral distributions, comparatively higher "lognormality" of
Inception, and that the addition of noise increases the mean spectrum.

Finally, note that at the beginning of training, MLP and Alexnet’s predictions
are very local, since there is a great number of relatively small singular values
(high peak), and more so with the addition of noise. This effect is also observed
in Inception, but to much less extent. Using fig. 14 as illustration, MLP and
Alexnet are more conservative than Inception, keeping close to the image of
the training examples for small perturbations. This is similar to the strategies of
generalization that we commonly use (e.g. maxent). Inception, on the other hand,
which generalizes better, while not being conservative at all, which suggests that
it does so by focusing on the signal.

Point Jacobian spectrum MNIST Figures 3 and 4 parallel those in the main
text for the MNIST dataset.
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Dataset noise illustration Figure 14 provides a graphical illustration of the
representation building leading to bimodality. The example is for a classifier
f : R3 → R2 and an autoencder g for visualization, but the overall idea extends
to higher dimensions.

Fig. 3: Point Jacobian spectral distribution for model | label noise | MNIST,
from first epoch to overfit. "Left" and "right" distributions (cf. 8.7) are rep-
resented separately for each triplet for clarity. The best fit lognormal plot is
superimposed on each histogram, with the corresponding probability plot on the
right, with the line of best fit (R2 displayed on top). Legend elements, in order:
epoch, training and validation accuracy, and the mean log spectrum.
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Fig. 4: Point Jacobian spectral distribution for model | nbr. pca comp. |
MNIST, from first epoch to overfit. "Left" and "right" distributions (cf. 8.7)
are represented separately for each triplet for clarity. The best fit lognormal plot
is superimposed on each histogram, with the corresponding probability plot on
the right, with the line of best fit (R2 displayed on top). Legend elements, in
order: epoch, training and validation accuracy, and the mean log spectrum.
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Fig. 5: Full point train (left) and validation (right) Jacobian spectrum for MLP
trained on cifar-10, from first epoch to overfit, with no label noise. Horizontal
scale is the same across all plot in the same column. Epochs and performance
are indicated on top of each graph.
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Fig. 6: Full point train (left) and validation (right) Jacobian spectrum for MLP
trained on cifar-10, from first epoch to overfit, with label noise p = 0.5. Horizon-
tal scale is the same across all plot in the same column. Epochs and performance
are indicated on top of each graph.
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Fig. 7: Full point train (left) and validation (right) Jacobian spectrum for MLP
trained on cifar-10, from first epoch to overfit, with label noise p = 1.0. Horizon-
tal scale is the same across all plot in the same column. Epochs and performance
are indicated on top of each graph.
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Fig. 8: Full point train (left) and validation (right) Jacobian spectrum for Alexnet
trained on cifar-10, from first epoch to overfit, with label noise p = 0.0. Horizon-
tal scale is the same across all plot in the same column. Epochs and performance
are indicated on top of each graph.
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Fig. 9: Full point train (left) and validation (right) Jacobian spectrum for Alexnet
trained on cifar-10, from first epoch to overfit, with label noise p = 0.5. Horizon-
tal scale is the same across all plot in the same column. Epochs and performance
are indicated on top of each graph.
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Fig. 10: Full point train (left) and validation (right) Jacobian spectrum for
Alexnet trained on cifar-10, from first epoch to overfit, with label noise p = 1.0.
Horizontal scale is the same across all plot in the same column. Epochs and
performance are indicated on top of each graph.
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Fig. 11: Full point train (left) and validation (right) Jacobian spectrum for In-
ception trained on cifar-10, from first epoch to overfit, with label noise p = 0.0.
Horizontal scale is the same across all plot in the same column. Epochs and
performance are indicated on top of each graph.
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Fig. 12: Full point train (left) and validation (right) Jacobian spectrum for In-
ception trained on cifar-10, from first epoch to overfit, with label noise p = 0.5.
Horizontal scale is the same across all plot in the same column. Epochs and
performance are indicated on top of each graph.
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Fig. 13: Full point train (left) and validation (right) Jacobian spectrum for In-
ception trained on cifar-10, from first epoch to overfit, with label noise p = 1.0.
Horizontal scale is the same across all plot in the same column. Epochs and
performance are indicated on top of each graph.
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Fig. 14: Principal directions of the point Jacobian for a classifier f and an au-
toencoder g for three-pixel pictures of cats and dogs on the neighborhood of a
given point. By definition, the norm of the change of the image through f for
perturbations in first singular direction σ1 is maximal among all directions, and
similarly for the second direction in the orthogonal space to the first. Note that
since the destination space is in R2, there are only two singular directions in the
original R3. For each point P the two directions are the directions of respectively
maximum and minimum change with respect to "cat-dog". As for the autoen-
coder, reconstruction is much more sensitive to perturbations along σ1 than σ2:
changes along the latter are reconstructed as being the same image, which means
that the model considers them as being noise.
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