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Abstract. Dynamic recrystallization can have a strong impact on texture development during the defor-
mation of polycrystalline materials at high temperature, in particular for those with strong viscoplastic
anisotropy such as ice. Owing to this anisotropy, recrystallization is essential for ensuring strain compatibil-
ity. The development of recrystallization textures leads to significant mechanical softening. Accurately pre-
dicting ice texture evolution due to recrystallization during tertiary creep remains a challenge, yet is crucial
to account adequately for texture-induced anisotropy in large-scale models of glacial ice flow.

We propose a new formulation for texture evolution due to dynamic recrystallization. This formulation
is physically-based on an orientation attractor which maximizes the Resolved Shear Stress on the easiest slip
system in the crystal. The attractor is implemented in an equation of evolution of the crystal orientation
with deformation, which is coupled to an anisotropic viscoplastic law that provides the mechanical response
of the ice crystal. The set of equations, which is the core of the R3iCe open source model is solved using
Finite Elements Method with a semi implicit scheme coded using the Rheolef library. R3iCe is validated by
comparison with laboratory creep data for ice polycrystals under simple shear, uniaxial compression and
tension. It correctly reproduces the texture evolution and the mechanical softening observed during tertiary
creep. R3iCe therefore allows predicting enhancement factors that may be implemented in large-scale flow
models. Although the validation was performed for ice, the R3iCe implementation is generic and applies for
any material adequately described using a anisotropic law.
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a Scalar

a Vector

A Tensor

AD Deviatoric part of A AD = A− 1
di m(A) Tr (A) AD

i j = Ai j −
δi j

di m(A) Tr (A)

⊗ Tensorial (dyadic) product A = b⊗c Ai j = bi c j

Tr () Trace of a tensor Tr (A) Ai i

di m() dimension of a tensor di m(A)

∇ ∇ operator
(
∂
∂x , ∂

∂y , ∂
∂z

)
∂
∂xi

. Scalar product a.b ai bi

: Double contracted product A : B Ai j Bi j

Table 1. Mathematical notations

Notation

1. Introduction

Dynamic recrystallization (DRX) is a mechanism by which local stress incompatibilities and
local strain heterogeneities are relaxed. By local, we mean the scale of the grains that constitute
crystalline materials such as ice, metals or most rocks [1]. Dynamic recrystallization occurs in
plastically deforming materials at high temperature. It is characterized by the nucleation of
new grains and grain boundary migration and can lead to the complete re-organisation of the
microstructure, i.e., the grain shape and size, and to a drastic modification of the texture, i.e., the
crystallographic orientations of grains [2–6]. Theses changes in the microstructure and texture
may lead to modification of the rheological behavior, that is, the response of the material to
imposed stresses or strains.

Ice is a hexagonal crystalline material (figure 1) that deforms, on Earth, at a temperature very
close to its melting point. In the ductile regime, its deformation is controlled by a strong vis-
coplastic anisotropy, with dislocations gliding almost solely on the basal plane [7, 8]. The orien-
tation of an ice crystal therefore has a strong control on its viscosity. Consequently, the distribu-
tion of crystallographic orientations in polycrystalline ice impacts the mechanical response in
the form of a texture-induced viscoplastic anisotropy [9].

Microstructural evidence for recrystallization is systematically observed along deep ice cores,
where it is supposed to contribute variably to the measured texture, depending on the defor-
mation conditions (temperature, impurities). To interpret the texture evolution along ice cores, a
model has been proposed by De la Chapelle et al. 1998 [10]. This model states that DRX may either
slow down the strain-induced texture evolution (the so-called "continuous" dynamic recrystal-
lization regime) or drastically modify the texture, with the final texture controlled by the stress
state (the "discontinuous" dynamic recrystallization regime). Whether both DRX regimes are
more or less active depends on the temperature and strain conditions along the ice core [11, 12].
In deep section of ice sheet, along ice streams, and in glacier areas where temperature and strain
are high, DRX leads to highly anisotropic textures, in particular when simple shear is dominant
(see e.g. [13–16]). These textures result in strong viscoplastic anisotropy, which can either en-
hance strain rates or slow down the deformation. For instance, the vertical cluster of c-axes ob-
served along ice cores will produce acceleration of horizontal shearing but slows down compres-
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sion [17–22]. To model the deformation of an ice sheet, it is therefore essential to consider the
effect of DRX on the texture evolution.

Dynamic recrystallization in ice has been extensively studied in the laboratory. The studies
allowed to characterize the basic mechanisms at play, nucleation and grain-boundary migration,
and the impact of strain heterogeneities on their kinetics (see e.g. [23–31]). [2] was a pioneer
in performing a large number of experiments in simple shear and compression to characterize
the effect of DRX on texture evolution and macroscopic mechanical behavior. He proposed
that the creep rate accelerations characteristic of the tertiary creep stage could result from the
development of DRX textures favorable to the activation of basal slip. This study is likely at
the origin of the widely established belief that DRX favors "well-oriented" grains relative to the
imposed stress. Since then, work by Grennerat et al. 2012 [32] revealed that the strain field during
deformation in polycrystalline ice is highly heterogeneous, with no simple relation between
intensity of the local strain and the Schmid factor, a parameter that quantifies the orientation
relation between a crystal and the imposed macroscopic stress. More recently, direct measures of
the evolution of the strain field with DRX by Chauve et al. 2017 [33] have further illustrated the
heterogeneity of the mechanical behavior at the grain scale and its impact on DRX. They showed
that DRX tends to homogenize the strain field in relation with local microstructure changes.

Altogether these data show that although resulting from a complex interplay between the
imposed stress and strain states, the local microstructure and the resulting redistribution of
stresses, the experimentally-measured DRX textures favor macroscopic flow, what is reflected
by a marked strain softening at the onset of tertiary creep [21, 24, 26]. Further texture evolution
during tertiary creep results in a quasi constant strain-rate for bulk strain higher than about
10%; this "stationary" strain rate is independent on the initial texture and is controlled by the
imposed stress [34–37]. This contrasts with the minimum strain rate observed at the onset of
secondary creep, which depends on the initial texture. At secondary creep, the classical Glen’s
law relates the strain rate to the applied stress non-linearly (through an exponent of 3 and an
Arhenius type of dependence to the temperature) [8, 38]. This law does not hold in tertiary creep
but it has been adapted by modifying the stress exponent to a value slightly higher than 3 and
adding a strain-rate enhancement factor (the ratio between the strain rate measured at tertiary
creep and the minimum strain rate at secondary creep). This enhancement factor, of between 4
in compression and 8 in simple shear [21, 37] accounts for the impact of the DRX texture on the
strain softening at tertiary creep.

Textures that develop during DRX in ice are well constrained. Under uniaxial compression,
the textures measured at tertiary creep are characterized by the c-axes being oriented within a
girdle characterized by a cone angle between 30◦ and 50◦ from the compression axis depending
on the conditions (temperature T , stress). These textures are stable, that is evolve very slowly
at strains higher than 10% [2, 23, 26, 28, 30, 37, 39]. During simple shear, tertiary creep textures
seem to evolve with increasing strain from a two-maxima pattern, that is symmetric relative to
the extension direction, toward a strongly clustered texture, with c-axes aligned in a direction
perpendicular to the shear plane [24, 25, 31, 40, 41].

Although strain-induced texture development in ice has been successfully simulated using
various approaches of various complexity [17, 18, 42, 43], these approaches fail to reproduce
the tertiary creep experimental textures and the rare models simulating the effect of dynamic
recrystallization are rather unsatisfactory, either in terms of texture patterns or in terms of
kinetics of texture evolution [44–48]. The discrepancies between models and observations results
from the use of a simplified, mean-field approach that does not enable DRX mechanisms to be
properly represented [44, 45], or from limitations in the deformation modeling frame despite
considering a high complexity in the microstructure evolution [46]. In the case of Richard et al.
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2021 [47] and Rathmann et al. 2021 [48], the simulated textures are very close to the observed
ones, but the kinetics of evolution is not. This discrepancy may result from the use of a Sachs
approximation for modeling the mechanical response of the polycrystal (or similar in the case of
[47]). This hypothesis was shown by Castelnau et al. 1996 [49] to result into a too soft mechanical
response and incoherency in the grain rotation calculation.

In the present work, we propose a new formulation to predict the impact of dynamic recrys-
tallization on the texture evolution of polycrystalline materials, like ice. This formulation couples
the Continuous Transverse Isotropic (CTI) law, which represents the anisotropic response of the
ice crystal, to a crystal orientation evolution equation that accounts for DRX. The contribution
of DRX is modeled by a physically-based orientation attractor that maximizes the Resolved Shear
Stress on the easiest slip system in the crystal (basal slip for ice). This set of equations, named
CTI-RX , is solved in a full-field model using Finite Element Methods (FEM).

In section 2 we present the CTI-RX model: its equations for the CTI law (section 2.1) and
the proposed formulation for the evolution of the c-axis (section 2.2). The numerical scheme
designed to solve these equations is described in section 3. Section 4 presents the calibration and
the validation for a case without dynamic recrystallization. Section 5 evaluates the capability of
the model to reproduce the evolution of the texture and the mechanical response by comparing
with experimental data for tertiary creep of ice polycrystals subjected to axial compression, axial
extension and simple shear.

2. CTI-RX - a model for the ice single crystal behavior

2.1. The Continuous Transverse Isotropic behavior

Following [50–54], we account for the viscoplastic anisotropy of the ice single crystal by modelling
its mechanical behavior using the Continuous Transverse Isotropic (CTI) law. In the framework,
the viscoplastic response of the ice single crystal depends on the orientation of the c-axis and is
isotopic in the basal plane (see Figure 1). It builds on the theoretical work of Boehler [55] 1987,
which has shown, through geometrical arguments, that the relation between the deviatoric stress
S and the deviatoric strain rate D in a transverse isotrope symmetry derives from a potential φS

that is built out of a combination of the following four invariants:

BC T I =
[
Tr (S2),Tr (S3),Tr (MS),Tr (MS2)

]
, (1)

with M = e3 ⊗e3 where e3 is the direction of the isotropy plane (figure 1). Within this framework,
the constitutive equation relating the deviatoric strain rate to the deviatoric stress is given by:

D =
(
∂φS

∂S

)D

(2)

whereφS is a potential expressed on the BC T I base. This potential is described below in the linear
(φ(1)

S ) and non linear (φ(n)
S ) cases.

2.1.1. The linear CTI formulation

To obtain a linear CTI formulation, the potential, φ(1)
S , must be quadratic. It is therefore

constructed from the quadratic invariants taken from the BC T I base as:

φ(1)
S = δ1Tr (S2)+δ2Tr (MS)2 +δ3Tr (MS2). (3)

Considering the following derivation rules,

∂Tr (MS)

∂S
= M,

∂Tr (S2)

∂S
= 2S,

∂Tr (MS2)

∂S
= MS+SM, (4)
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e3

Figure 1. The transverse isotropic geometry is fully described by one direction, e3, that
defines the plane of isotropy. For an ice single crystal, this direction corresponds to that of
the c-axis (i.e. the normal to the basal (0001) plane).

the constitutive relation is given by

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D . (5)

In equation (5), the three independent parameters δi can be fitted from experimental data as
detailled below.

In the present implementation of the model, the anisotropy of the ice single crystal (or grain)
behavior is described using the following parameters:

• ψ1 is the fluidity of the ice in shear, parallel to the basal plane, such that:

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23,

• β is the ratio between the fluidity in shear parallel to the basal plane and the one for shear
within the basal plane, such that:

g D12 =βψ1

2
g S12,

where g X defined the tensor in the single crystal reference frame.
• γ is the ratio between the viscosity in compression (or traction) along the c-axis ηc and

compression (or traction) in one direction g er within the basal plane, such that:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r

For solicitations of similar amplitude in different directions, for instance along e3 or
perpendicular to e3 (i.e. along err) S = g S33 = g Sr r , the strain rates are related by:

g Dr r = γg D33

Using the above constraints on this single crystal behavior, identification gives (see appendix A
for details):

δ1 = ψ1β

4
, δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)
, δ3 = ψ1

2

(
1−β)

(6)

The constitutive equation (5) can also be expressed in an inverse manner as

S = 2α1D+2α2MD Tr (MD)+α3(MD+DM)D (7)



6 Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau and Andréa Tommasi

with : α1 = η1
β , α2 = 2η1

(
γ
β −1

)
, α3 = 2η1

(
1− 1

β

)
and η1 = 1

ψ1
and in terms of the potential

φ(1)
D =α1Tr (D2)+α2Tr (MD)2 +α3Tr (MD2) (8)

(see [18] and appendix A for details).

2.1.2. The non-linear CTI formulation

A non-linear potential φ(n)
D linking S to D

1
n is obtained by taking the linear potential φ̃(1)

D =
1

2η1
φ(1)

D to a higher order, k :

φ(n)
D = An

(
φ̃(1)

D

)k
. (9)

Using the chain rule for deriving φn
D gives:

S = ∂φ(n)
D

∂D
= Ank

(
φ̃(1)

D

)k−1 ∂φ̃(1)
D

∂D
(10)

k is further obtained by identification of the power exponent on equation (10) in order to have
S ∼ D

1
n :

2(k −1)+2 = 1

n
=⇒ k = n +1

2n
(11)

Therefore, a non-linear CTI law can be written:

φ(n)
D = 4n

n +1

(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) n+1
2n , (12)

leading to the following constitutive equation:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

, (13)

with the effective viscosity

η⋆n = 2ηn
(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) 1−n
2n (14)

and αi parameters:

α1 = 1

2β
, α2 =

(
γ

β
−1

)
, α3 =

(
1− 1

β

)
. (15)

It is worth noting that β links D12 to S12 through:

D12 = ψn

2
β

n+1
2 Sn

12. (16)

Therefore, β depends on the non-linearity, i.e. on the value of n. A similar enhancement will
be obtained for a linear behavior n = 1 and a non-linear behavior with n = 3 by setting βn=3 =√
βn=1.

2.2. Evolution of the crystal rotation in response to deformation and recrystallization

As in [56, 57], the CTI constitutive law in the present model is coupled to an equation describing
the rotation rate of the crystal orientation due to the deformation

∂c

∂t
= Wc−λ[

Dc− (
cT Dc

)
c
]

, (17)

where W(u) = ∇(u)−∇T (u)
2 and D(u) = ∇(u)+∇T (u)

2 are the spin- and strain-rate tensors. According to
equation (17), the rotation of the c-axis is due to the bulk spin, Wc, and to the viscoplastic spin
expressed by λ

[
Dc− (

cT Dc
)

c
]
. In the work of [56, 57], λ was set to 1. This value results from the

hypothesis that the viscoplastic spin is only due to the contribution of the glide of dislocations
on the basal plane, excluding any other glide planes (prismatic and pyramidal). This hypothesis
has been widely made in previous studies [45, 58–61] and it is also taken here.
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To take into account the impact of dynamic recrystallization on the evolution of the c-axis
orientation, we suggest adding a term to this equation, based on the assumption that dynamic
recrystallization induces a local re-orientation of the c-axis, either through the nucleation of a
grain with a new orientation, or by the migration of a grain boundary, and that this re-orientation
will lead to local softening.

We will express this dynamic recrystallization term together with the underlying assumption
in section 2.3. When this term is added, the c-axis rotation is described by:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (18)

where ΓR X is a parameter controlling the rate of rotation of the c-axis toward an attractor, c0,
which represents the "ideal" orientation produced by recrystallization and whose formulation
is described in section 2.3. The evolution of the orientation of the c-axis is therefore controlled
by the balance between (i) the deformation-induced rotation and (ii) a recrystallization-driven
attractor, c0.

The meaning of ΓR X can be illustrated by considering the artificial case where only dy-
namic recrystallization contributes to the c-axis rotation. In this case, equation (18) becomes
∂c
∂t = 1

ΓR X
(c0 −c). The norm of ∂c

∂t can be interpreted as the rotation rate due to dynamic recrystal-
lization only. This rate increases as ||c0 −c|| increases. Considering a constant c0, the solution for
the c-axis rotation is:

c(t ) = (c(0)−c0)e
− t
ΓR X +c(0). (19)

In this case, the velocity of the rotation of c towards c0 follows an exponential decay with a
characteristic time ΓR X , such that 95% (99%) of the rotation is obtained after 4ΓR X (5ΓR X ). In
the dynamic recrystallization model, c0 is not constant but depends on the local deviatoric stress
tensor, S.

2.3. Formulation of the recrystallization attractor c0

The formulation of c0 stems from the assumption that a grain (or part of a grain) rotates towards,
or/and nucleates in, an orientation that facilitates the local plastic deformation. In other words,
considering that the ice single crystal deforms mainly by dislocation glide on the basal plane, the
recrystallization-induced rotation should maximize the Resolved Shear Stress (RSS) on the basal
plane. The RSS for a dislocation with a Burgers vector ai (figure 1) gliding on the basal plane c in
response to a deviatoric stress S is given by

RSS(ai,c,S) = S :µ, (20)

with µ= 1
2 (c⊗ai +ai ⊗c).

In the CTI formulation, the behavior is isotropic in the basal plane, defined by the c-axis.
Therefore, defining the orientation for the maximum RSS means defining the orientation where
the shear stress is maximum in the basal plane. Considering s1 > s2 > s3 the eigenvalues and ei

the corresponding eigenvectors of the deviatoric stress tensor S, the maximum resolved shear
stress is |s1 − s3| and the associated orientations are [62]:

c0 = 1

2
(e1 ±e3) (21)

The attractor c0 not being unique for a given stress, an additional constraint must be formulated
and fed to equation (18). Between the two possible values of c0, we simply choose the one that
is the closest to the actual c axis in order to minimize the path between c and c0. Therefore, in
practice, c0 is chosen so that the scalar product between c0 and c is maximal.
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2.4. CTI-RX- Model summary

The system of equations constituting the CTI-RX model is composed of:

(1) The momentum equation under the Stokes assumption:

−∇.S+∇p = 0 (22)

(2) The non linear CTI law:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

η⋆n = 2ηn
(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) 1−n
2n

(23)

(3) The equation for the evolution of the c-axis:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (24)

with c0 = e1±e3
2 where ei are the eigenvectors of S and |c.c0| is maximum.

3. Numerical scheme and implementation

The CTI-RX equations (section 2.4) are solved on a cuboid of polycrystalline ice submitted to
uniaxial simple shear creep (section 3). A full field approach using FEM is chosen to describe
the field of orientations c at the element size. This implementation results in the R3iCe model
(Rheology, Recrystallization, Rheolef in Continous Transverse Isotropic material). This design
allows direct comparisons of texture evolution with existing laboratory creep experiments, in
particular the ones performed by [28, 30, 31].

bottom

top

left_bottom_back

left_bottom_front
x

y z

Fy

Fx

L

Figure 2. Schematic representation of the rectangular cubic simulation domain, with sur-
face and point boundaries labeled.

3.1. Numerical experiments setups

3.1.1. Uniaxial creep tests

In this case, a zero vertical velocity (uy (bot tom) = 0) condition is applied at the bottom
surface to simulate a fixed plateau, as in laboratory creep tests. To avoid translation of the
sample, the position of one bottom summit is also fixed (u(le f t_bot tom_back) = (0,0,0)). To
avoid rotation around the y-axis, a zero-velocity condition is also applied on a second summit
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(ux (le f t_bot tom_ f r ont ) = 0). The sample is deformed in uniaxial compression (or tension)
by applying a constant normal stress on the top surface (Fy (top) = F ). By convention, F < 0
(F > 0) corresponds to compression (tension). This Neumann condition leads to a non-uniform
displacement over the surface as weaker elements may deform faster. This may hinder the direct
comparisons with laboratory experiments or other numerical models. This issue is addressed in
section 4.1.

3.1.2. Simple shear creep tests

In the simple shear tests, the forcing is applied as a constant tangential stress on the top
boundary (Fx (top) = F ) of the ice sample. Other boundary conditions are:

• u(bot tom) = 0,
• uy = uz = 0 for the lateral surfaces (left, right, front, back) to avoid solid rotation,
• uy (top) = uz (top) = 0.

3.2. Characteristic numbers and time

Adimensionalizing with respect to the material viscosity ηn ∼ Pa.s
1
n , the vertical extent of the

cuboid L (section 3) and the applied macroscopic stress Σ ∼ Pa, the dynamical system of
equations reads:

−∇̃S̃+∇̃p̃ = 0 (25)

S̃ = η̃⋆n
(
2α1D̃+2α2MD Tr (MD̃)+α3(MD̃+ D̃M)D)

η̃⋆n = 2
(
α1Tr (D̃2)+α2Tr (MD̃)2 +α3Tr (MD̃2)

) 1−n
2n

(26)

∂c

∂t̃
= W̃(ũ).c−λ[

D̃(ũ).c− (cT .D̃(ũ).c).c
]+Mo(c0 −c) (27)

where the superscript (̃.) is used for all non-dimensional variables and operators.
The dimensionless number that arises when adimensionalizing the c-axis evolution equation

is Mo:

Mo =
(ηn

Σ

)n 1

ΓR X
(28)

It is the ratio between a deformation characteristic time τ = (ηn
Σ

)n
and the recrystallization

characteristic time ΓR X , which controls the rate of rotation of c toward the attractor c0. This
adimensional number quantifies the relative weight of the contributions of recrystallization
versus deformation to the rotation of the c-axis.

3.3. Numerical algorithm

As the c-axis evolution depends on the strain rate (D̃(ũ)) and the effective viscosity η⋆ depends
on both the strain rate and the c-axis, the coupled equations (26) and (27) show non-linearity.

In order to solve this non-linearity system, linearization is performed.
The equation describing the evolution of the c-axis is linearized using a second order back-

ward differentiation formula (BDF2). Therefore, the time discretization of CTI-RX model gives:

−∇̃S̃t+1 +∇̃p̃ t+1 = 0 (29)

S̃t+1 = η̃⋆ t+1
n

(
2α1D̃t+1 +2α2Mt+1D

Tr (Mt+1D̃t+1)+α3(Mt+1D̃t+1 + D̃t+1Mt+1)D
)

η̃⋆ t+1
n = 2

(
α1Tr ((D̃t+1)2)+α2Tr (Mt+1D̃t+1)2 +α3Tr (Mt+1(D̃t+1)2)

) 1−n
2n

(30)
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3

2∆t̃

(
ct+1 − 4

3
ct + 1

3
ct−1

)
= W̃(ũt+1).ct+1 −λ

[
D̃(ũt+1).ct+1 − (ct+1T

.D̃(ũt+1).ct+1).ct+1
]

+Mo(c0
t+1 −ct+1)

(31)

The domain is spatially discretized using hexahedral Finite Elements. An initial c-axis is
prescribed for each element.

Finite elements and variational methods are used to solve the time-discretized problem on a
Lagrangian grid within the C++ environment Rheolef [63]. The FE approximation for the tensorial
mechanical parameter M and the scalar mechanical parameter c is P0. The FE approximation for
the tensorial strain rate D̃, spin rate W̃ and stress S̃ fields is P1. Therefore, the FE approximation
for the displacement field needs to be P2.

Rheolef problem_mixed solver is used to solve the displacement field ũ and the pressure field p̃
under the incompressibility hypothesis for the linearized version of equation (30) that is obtained
by fixing the apparent viscosity η⋆. A first fix loop is used to solved the non-linearity associated
with η⋆.

This first fix loop is nested in a second fix loop that solve the temporal evolution with the
equation (31).

Algorithm 1 presents a pseudo code of the two nested fix points implemented in R3iCe. In
practice, it is recommended for numerical efficiency to flatten the two nested fix loops. This algo-
rithm is a semi implicit solver for the coupled equations (26) and (27). The simulated orientation
field c is thus consistent with the displacement field ũ and therefore with the deviatoric strain
rate D̃ and the deviatoric stress S̃.

This implementation of CTI-RX model is distributed under R3iCe code.

3.4. CTI parameters values for ice single crystal

In this section, the choice of values for the CTI parameters, γ, ηn ,n and β is explained (see
equations (13) and (15)).

First, γ corresponds to the ratio of viscosities measured in compression and in tension for
an ice single crystal that is well-oriented for basal slip. Laboratory experiments have shown that
this ratio is very close to one, hence in our numerical simulations, we set γ = 1, as in previous
studies [50, 51].

Following [8] and previous modeling works based on the CTI law [19, 48, 51], we set n = 3.
While experiments in ice single crystals that are well-oriented for basal slip are best fitted by
n = 2, experiments on crystals that are poorly-oriented for basal slip result in n = 3 [8] and a value
of 3 must be imposed in the CTI formulation in order to recover n = 3 for the polycrystal response.

β is linked to the ratio between basal and non-basal shearing viscosities. [8] measured about
four orders of magnitude (∼ 104 at 1 MPa) between the two values. This ratio is related to β

through equation (16) β
n+1

2 = 104. With n = 3, this leads to β = 10−2: a value that matches those
considered in previous studies based on the non-linear CTI formulation [19, 48, 51].

The viscosity ηn can be adjusted by comparison with the experimental response of the single
crystal or that of isotropic polycrystals. The CTI law alone as been solved for axial compression
creep of a single crystal oriented at 45◦ from the compression axis and of a polycrystal with ran-
dom orientations picked from a uniform texture. The macroscopic strain rate is given by D̃ si m

sc =
1.7×10−2

(ηn
Σ

)n
for the single crystal, and by D̃ si m

px = 4.2×10−5
(ηn
Σ

)n
for the polycrystal. The vis-

cosity ηn is obtained by comparing the simulated values to the experimental ones presented in [8]
at 1 MPa (Dexp

sc = [
2×10−5,2×10−4

]
s−1 for the single crystal, Dexp

px = [
9×10−8,2×10−7

]
s−1 for

the polycrystal). Thus ηsc
3 = [4.4,9.4] MPa.s1/3 for the single crystal and ηpx

3 = [5.9,7.7] MPa.s1/3

for the polycrystal are obtained. Both values have overlapping range. The value of 6.0 MPa.s1/3

for η3 is chosen in the following.
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1: Inputs:
ci ni t

2: Initialize:
c−1 ← ci ni t

c0 ← ci ni t

u0 ← 0
3: for t from 0 to N do ▷ Time evolution loop
4: kc ← 0
5: r esc ←+∞
6: ut+1,kc=0,knl=0 ← ut

7: ct+1,kc=0 ← ct

8: while r esc > tolc do ▷ Fix loop to solved (equation (31))
9: knl ← 0

10: r esnl ←+∞
11: ut+1,kc ,knl=0 ← ut+1,kc

12: while r esnl > tolnl do ▷ Fix loop to solved non linear CTI (equation (26))
13: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc ) ▷ equation (26)
14: find ut+1,kc ,knl+1 ← ut+1,kc ,knl+1(H⋆

n ,ct+1,kc ) ▷ problem_mixed solver on equation (26)
15: r esnl ←||S(η⋆n (ut+1,kc ,knl+1,ct+1,kc ),ut+1,kc ,knl+1,ct+1,kc )−S(H⋆

n ,ut+1,kc ,knl+1,ct+1,kc )||
16: knl ← knl +1
17: end while
18: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc )
19: compute S ← S(H⋆

n ,ut+1,kc ,knl ) ▷ equation (26)
20: find c0 ← c0(S) ▷ equation (21)
21: compute ct+1,kc+1 ← ct+1,kc+1(c0,ut+1,kc ,knl ) ▷ equation (31)
22: r esc ←||S(η⋆n (ut+1,kc ,knl ,ct+1,kc+1),ut+1,kc ,knl+1,ct+1,kc+1)−S(H⋆

n ,ut+1,kc ,knl ,ct+1,kc )||
23: kc ← kc +1
24: end while
25: ut+1 ← ut+1,kc ,knl

26: ct+1 ← ct+1,kc

27: end for

Algorithm 1: Numerical algorithm, based on two nested fix loop: one for solving the viscosity, η⋆n ,
nested in a second one for solving for the temporal evolution of the orientation, ċ.

n γ β ηn

3 1 10−2 6.0 MPa.s1/3

Table 2. Parameters of the CTI law for the ice single crystal.

The parameters of the CTI law for the ice single crystal are summarized in table 2.

4. Validation of the CTI-based formulation for the viscoplastic response

In this section, we verify that The CTI law implemented in R3iCe correctly reproduces the me-
chanical response of the ice polycrystal. This is indeed a prerequisite before further enhancing
the CTI formulation with a representation of DRX and its impact on texture evolution. This me-
chanical response is known to be characterized by strong strain and stress heterogeneities, which
are very likely precursors of dynamic recrystallization [32]. In a first time, we therefore compare
R3iCe predictions to that of the CraFT-EVP model [32], which is known to reproduce these stress-
strain heterogeneities adequately [32,64]. The R3iCe formulation should also correctly reproduce
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texture evolution in absence of recrystallization. Since there are no experimental data for such
evolution, as experimental conditions inevitably lead to dynamic recrystallization at bulk strains
> 1%, and to development of a DRX texture at strains > 10%. The comparaison will therefore be
made with the predictions of a VPSC model that correctly matches observations along deep ice
cores [12].

4.1. Stress and strain field predictions: a comparison with CraFT-EVP

The model CraFT-EVP (for CraFT-ElastoViscoPlastic) has been used to provide full-field predic-
tions of the mechanical response of ice during primary and secondary creep [32]. It is based on
a elasto-viscoplastic formulation proposed by Suquet et al. 2012 [65] and solved using the CraFT
software. The predictions of CraFT-EVP for the mechanical response as well as stress and strain
fields were validated by direct comparisons with mechanical tests on ice polycrystals that in-
cluded strain fields measurements by Digital Image Correlation [32, 65]. Stress and strain fields
predicted at secondary creep, prior to any texture evolution owing to DRX, were in good agree-
ment with experimental observations at 1% strain. With no texture evolution, CraFT-EVP and
R3iCe both simulate a stationary secondary creep.

The CraFT-EVP predictions will therefore be used in the following to evaluate the relevance of
the fields predicted by R3iCe prior to DRX-induced texture evolution. Reproducing accurate stress
fields in R3iCe is key since the recrystallization attractor c0 depends on the deviatoric stress S at
the element scale. Please note that the calibration for the CTI law in R3iCe is done independently
(section 3.4) and is not fitted to CraFT-EVP results.

Figure 3(a-b) shows the polycrystal microstructure generated by a Voronoi Tesselation using
Neper [66] used for both CraFT-EVP and R3iCe simulations. In this configuration, referred there-
after as grains microstructure, grains are defined as a group of connected elements that share the
same initial orientation. Figure 3 (c) shows a microstructure in which orientations are defined
at the mesh level. For this microstructure, there is no grain in the sense of a group of connected
elements that share the same orientation. Such configuration is refereed as no-grain thereafter.

Figure 4 shows the component εy y of the strain field and the component σy y of the stress field
for the three uniaxial creep tests along the y-axis after 1% of macroscopic compressive strain.
The simulated strain field compares reasonably well between CraFT-EVP and R3iCe. Location
of areas in compression (blue) and in extension (red) are similarly prescribed (figure 4 (b)). On
the grains microstructure significant differences between the responses of the models CraFT-
EVP and R3iCe are restricted to the first layers of grains close to the top surface and result
from the different boundary conditions applied in the two models. In R3iCe, the Neumann
boundary condition on the top surface results on a force applied on each elements that can
lead to heterogeneous displacement on this surface. As a result, some "weaker" grains are
deforming more, as represented by the dark blue areas on figure 4 (b). In CraFT-EVP, periodic
boundary conditions are imposed owing to the fact that equations are solved with a Fast Fourier
Transform-based method. The simulated stress fields (figure 4 (a)) compare satisfactorily in terms
of amplitude and global pattern although the precise stress localisations show more scattering.
Some of this mismatch may also be explained by the differences in boundary conditions between
the two models. Observed stronger stress and strain concentrations in CraFT-EVP results from the
higher mesh resolution (∼×8).

The distributions of the equivalent stress and the equivalent strain (figure 5) compare rela-
tively well when considering the impact of boundary conditions just mentioned for the grains
configuration. This discrepancy almost vanishes in the no-grain configuration, where the impact
of boundary conditions is reduced. Indeed, the Neumann boundary conditions has less of an im-
pact, as more different orientation-elements are in contact with the top surface. In particular, the
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stress-field distribution for the no-grain configuration is similar to the CraFT-EVP one simulated
with the grains microstructure. Distribution for all components of both tensors

(
εi j ,σi j

)
is given

in appendix B.
To summarize, CraFT-EVP taken as a reference, strain and stress fields seem correctly repro-

duced by R3iCe at secondary creep. In the following, all simulations are performed using the no-
grain configuration in order to use a larger number of orientations with reasonable computation
times. As stress and strain fields compare reasonably well between the grains and no-grain con-
figuration this choice should have a limited impact on the simulated stress fields and therefore
on the evaluation of the attractor c0.

Figure 3. (a) Microstructure generated via a Voronoi tessellation using Neper. It is used
in CraFT-EVP model (b) Same microstructure meshed for R3iCe with tetrahedral elements.
(c) Microstructure in which orientations are defined at the element scale on a hexahedral
mesh. The color are used to highlight the different grains and are not related to any physical
property.

4.2. Deformation textures

In R3iCe, the texture evolves by rotation of the c-axes due to deformation and recrystallization. By
setting Mo to 0 in equation (18), dynamic recrystallization is inhibited and the texture evolution,
defined by the rotation of the c-axes in the polycrystal is solely controlled by the viscoplastic
deformation. The predictions can then be compared with previous simulations of the texture
evolution in ice polycrystals performed using the mean-field VPSC approach [12, 67], which
correctly reproduce the textures measured along ice cores in the depth range where dynamic
recrystallization is supposed to be a second order process.

Uniaxial compression tests under a 1 MPa deviatoric stress were performed using the no-
grain configuration with initial orientations randomly picked from a uniform texture.

Figure 6(a) presents the evolution with strain (i.e. time) of the eigenvalues (ai , i = 1,3) of the
second order orientation tensor (a(2) = 1

N Σ
N
i=0ci⊗ci), the strain rate and the texture in the Z plane
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Figure 4. Comparison of predicted (a) stress (σ22 = S22 + p) and (b) strain (ε22) fields for
the "grain" microstructure using CraFT-EVP and R3iCe and for a "no-grain" microstructure
using R3iCe.

(perpendicular to the compression direction). Figure 6(d) shows textures predicted at 22%, 40%
and 60% total strain.

A strong cluster (single maximum of c-axes) texture develops as strain increases and this in-
duces geometrical hardening of the polycrystal. Strain-rate decrease of a factor ∼ 1.5 is predicted
between 20% and 60% total strain, when the texture is highly clustered (a1 ≈ 0.71).
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Figure 5. Kernel Density Estimation of the equivalent strain (a) and equivalent stress (b)
fields simulated with CraFT-EVP (EVP, black line) and R3iCe (CTI, cyan line). The dashed
lines show results obtained for simulations where grains are defined by multiple mesh
elements (grains microstructure) (figure 3 a-b). The full line shows a R3iCe simulation
where a single orientation is attributed per element (no-grain microstructure) (figure 3 c)

Similar cluster textures are observed along deep cold ice cores, for instance along the Talos
Dome ice core [12] where a clustered texture with a1 ≈ 0.7 was measured at about 650 m
depth, where an accumulated strain of 60% is estimated. A similar texture is predicted using
a ViscoPlastic Self Consistent (VPSC) model at 60% total shortening when departing from an
isotropic texture [12].

5. Texture evolution with recrystallization: comparison with experimental data

The aim of this section is to test the ability of the R3iCe model to predict the evolution of the c-axes
orientation due to both deformation and dynamic recrystallization (equation (27)) and, hence, to
predict the texture development under uniaxial compression, uniaxial tension and simple shear
by comparison with experiments performed under similar conditions.

The laboratory creep experiments selected to validate the model are:

• Uniaxial compression experiments from [28] (Σ∼ 0.7 MPa, T =−5◦C )
• Uniaxial tension experiments from [26] (Σ∼ 0.4 MPa, T =−3◦C )
• Torsion experiments from [31] (Σmax ∼ 0.5 MPa, T =−7◦C ),

where Σ stands for the macroscopic applied stress and Σmax corresponds to maximum stress
resulting from the applied torque.
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Figure 6. Simulation of uniaxial compression along Y with no recrystallization ΓR X =+∞,
Mo = 0. a) Evolution with strain of the eigenvalues of the second order orientation tensor
(a1 > a2 > a3); b) evolution with strain of the macroscopic strain rate; c) evolution of the
intensity of the texture with the colatitude θ over a section defined on the Z plane (dashed
blue lines in d)). Data at 22%, 40% and 60% macro strain are shown. The white dashed lines
define the angle at ±45◦ from the compression axis Y ; d) textures presented as pole figures
for 22% (i ), 40% (i i ), and 60% (i i i ) macro strain. All figures presenting texture data are
color-coded using the same colorbar, which is displayed on the right.

The model predictions are also compared with strain-controlled uniaxial compression tests
under confining pressure performed by [30]. These conditions enabled to reach higher flow
stresses without failure (Σ∼ [1.3,4.3] MPa, T =−10◦C ) and it will allow us to test the predictions
in a wider range of configurations.

For each stress configuration, simulations using the no-grain configuration are performed
starting with initial orientations randomly picked in a uniform texture. The parameters for
all simulations are given in table 3. For all configurations, the simulated texture evolution is
represented by (1) the evolution of the eigenvalues ai of the second order orientation tensor a(2)

as defined in section 4.2, (2) pole figures representing the c-axes distribution at various strains,
and (3) the evolution with strain of the texture in a section extracted from the pole figure. These
outputs are compared with the pole figures obtained during the experiments at three selected
strain values. The simulated strain-rate evolution is plotted to evaluate the enhancement factor
associated with the texture evolution.
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References Model inputs Physical values

Stress Mo Σ (MPa) ΓR X (d ay s) T (◦C )

Montagnat et al. 2015 [28] Compression 8.10×10−4 0.7 8.7 −5

Jacka et al. 1984 [26] Tension 2.96×10−5 0.4 3.4 −3

Journaux et al. 2019 [31] Simple Shear 8.33×10−4 0.5 24.0 −7

Qi et al. 2017 [30] Compression [37.9,1.05]×10−5 [1.3, 4.3] 3 −10

Table 3. Values of the numerical and physical parameters used in the model R3iCe.

5.1. Simulation of texture evolution in uniaxial compression

Results presented in figure 7 were obtained under an imposed compressive stress of 0.7 MPa
in the Y direction. They are compared with experimental measurements from Montagnat et al.
2015 [28] performed on isotropic granular ice at −5◦C , under a constant force with initial stresses
of 0.7 and 0.8 MPa up to various strains (from 2 to 17.8% bulk shortening).

Comparison of the c-axis pole figures shows a good qualitative agreement between the simu-
lated and the experimental textures (figure 7(d-e)). Both evolve from a girdle texture with a cone
angle at 45◦ to the compression axis to a more concentrated girdle with cone at 35◦ to the com-
pression axis. A nearly constant cone opening is reached at ∼ 20% strain (figure 7(d)) There is also
a good agreement between the predicted evolution of the eigenvalues of the texture and those
measured at 7%, 12% and 17.8% (figure 7(a)).

This good agreement between experimental and simulated textures was obtained for a value
of ΓR X = 8.7 days. During the experiments, 17.8% strain was reached after 144 hours (∼ 6 days).
In the model simulations, this strain is reached in a shorter time (∼ 100 hours)

The macroscopic response predicted by R3iCe shows a clear softening associated with the
development of the texture. A maximum enhancement factor (EF) of 4.8 is obtained at ∼ 19%
strain (black arrow, figure 7), which corresponds to a girdle texture with the cone angle at around
∼ 45◦ to the compression axis. This softening is followed by a slight hardening as the girdle texture
slowly evolves towards a cone angle at ∼ 35◦ to the compression axis.

The bulk strain associated with the maximum strain rate and the simulated enhancement
factor cannot be directly compared to that measured in Montagnat et al. 2015 [28] because these
experiments were performed under constant force and the area of the sample section evolved
during the tests, whereas the model simulations are performed in a constant stress configuration.
The simulated strain rate may be corrected by assuming a constant sample volume during the
experiment, what leads to ε̇cor r

si m = ε̇si m × (1+ε)3. This corrected strain rate is plotted in blue in
figure 7(b). It brings the maximum strain rate to ∼ 10% and the enhancement factor at a value
of 3.2. These values are closer to the macroscopic response measured by Montagnat et al. [28]
characterized by an enhancement factor between 3.3 to 3.8.

5.2. Simulation of texture evolution in uniaxial tension

Experimental creep tests performed in uniaxial tension are scarce. Jacka et al. 1984 [26] present
one experiment performed at −3◦ C, up to 9.3% octahedral shear strain that corresponds, follow-
ing the definition given in Jacka et al. 1984 [68], to 13.1% axial strain. At this strain level, they did
not attain the quasi-constant strain-rate typical of tertiary creep. The texture obtained, measured
by the classical Rigsby stage technique with one orientation per grain, is presented in figure 8.
The texture is characterized by a small circle girdle with a mean half angle of 50.4◦ and a standard
deviation of 15.3◦. Although tertiary creep was not reached in this experiment, an enhancement
factor of ∼ 3, similar to the one observed in compression in the same conditions, is measured.
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Figure 7. Simulations for the case of uniaxial compression creep along the Y direction
with parameters from table 3 and comparison with experimental data. a) Evolution with
strain of the eigenvalues of the second order orientation tensor (a1 > a2 > a3). The blue
dots correspond to experimental values from [28]; b) simulated macroscopic strain rate
(black) and corrected simulated macroscopic strain rate (blue) to match a constant force
boundary conditions instead of the constant stress one used in the simulation. EF stands
for Enhancement Factor; c) evolution with strain of the intensity of the texture with the
colatitude θ over a section defined on the Z plane (dashed blue lines in (d)). Data at 7%,
12% and 17.8% macro strain are shown. The white dashed lines define the angle at ±45◦

from the compression axis Y ; d) simulated textures (pole figures) for 7% (i ), 12% (i i ), and
17.8% (i i i ) macroscopic strain; e) measured textures for the same macroscopic strains [28].
All figures presenting texture data are color-coded using the same colorbar.

The texture evolution and macroscopic response predicted by a simulation under uniaxial
tension creep are shown in figure 9. The texture evolves with increasing strain towards a girdle
texture with a cone at an angle slightly larger than 45◦ to the extension direction. This texture
seems to stabilize at ∼ 10% axial strain. An enhancement factor of about 6.6 is simulated at 13%
axial strain.
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Figure 8. Texture obtained after 9% of octahedral tension strain (about 13% axial strain)
performed at −3◦C with an octahedral stress of 0.4 MPa. The star ⋆ in the centre of the
pole figure shows the direction of the tension axis. From Jacka et al. 1984 [26].

5.3. Simulation of texture evolution in simple shear.

The simulated texture evolution in simple shear is compared with observations made by Jour-
naux et al. [31] for torsion experiments on isotropic granular ice. Experiments were performed
at −7◦C, under a constant torque corresponding to a maximum shear stress between 0.4 and 0.6
MPa.

The experimental textures are characterized by two sub-maxima, one almost perpendicular
to the shear plane, called M1 and the second one, M2, initially at low angle to the shear plane.
Similar evolutions were also observed in simple shear by [25,41,69]. As shear strain increases, M2
merges with M1 to form a highly concentrated cluster texture characterized by a single maximum
of c-axes normal to the shear plane. The simple shear simulations performed here reproduce this
evolution relatively well, as shown in figure 10.

By accounting for dynamic recrystallization, the R3iCe model is able to reproduce the evolu-
tion of both M1 and M2 maxima with strain. At low shear strains (γ∼ 0.2), M1 concentrates nor-
mal to the shear plane while M2 follows the principal extension direction (white dashed line, fig-
ure 10(c) bottom and figure 10(d)). As strain increases, M2 rotates towards M1. At a shear strain of
2, the texture is characterized by an elongated single maximum of the c-axis normal to the shear
plane as M1 and M2 are merging. The evolution of the intensity of the eigenvalues of the second
order orientation tensor are also well reproduced (figure 10(a)).

The strain rate increases rapidly up to γ = 0.5 while the double-maxima texture develops
(figure 10(d)). It continues to increase, but at a progressively slowing rate as the texture evolves
towards a single maximum normal to the shear plane, up to γ ∼ 3.5 where is reaches a quasi-
steady state.

In phase with Treverrow et al. 2012 [37], we define an enhancement factor for simple shear
as being the ratio between the strain rate during secondary creep (here it corresponds to the
beginning of the run) and the one associated with the strongest simulated texture. The latter value
is conceptually similar to the secondary creep rate that should be measured for a similar simple
shear simulation with the strongest simulated texture as the initial texture. Doing so, we measure
an enhancement factor (EF ) of 7.1 that matches Treverrow et al. 2012 [37] measurements for an
equivalent applied shear stress.
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Figure 9. Simulations for the case of uniaxial tension creep along the Y direction with
parameters from table 3 and comparison with experimental data. a) Evolution with strain
of the eigenvalues of the second order orientation tensor (a1 > a2 > a3); b) simulated
macroscopic strain rate. EF stands for Enhancement Factor; c) evolution with strain of the
intensity of the texture with the colatitude θ over a section defined on the Z plane (dashed
blue lines in d)). Data at 13%, 50% and 100% axial macro strain are shown. The white dashed
lines define the angle at ±45◦ from the compression axis Y ; d) simulated textures (pole
figures) for 13% (i ), 50% (i i ), and 100% (i i i ) axial macro strain. All figures presenting texture
data are color-coded using the same colorbar.

5.4. Testing the relative effect of deformation and recrystallization under higher stresses

The work of Qi et al. [30] provides some highly resolved textures obtained in conditions (temper-
ature, type of samples) similar to the ones employed here, however under imposed displacement
rates that induce higher stress conditions (see table 3). The stress values reported in table 3 cor-
respond to the flow stress, i.e. the nearly constant stress reached after peak stress, at about 20%
strain. To reach deviatoric stresses higher than 1 MPa without faillure a confining pressure of 10
MPa was applied.

To test the sensitivity of the dynamic recrystallization formulation to the level of stress, we
performed simulations under creep conditions with the stress values from Qi et al. 2017 [30] ex-
periments. As CTI-RX equations are relating the deviatoric stress to the deviatoric strain and are
solved under Stokes hypothesis (incompressibility), it is not necessary to numerically apply the
confining pressure. Although both boundary conditions differ between the simulations (macro-
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Figure 10. Simulations for the case of simple shear creep test (shear plane normal to the
Y -axis and shear direction parallel to X ) with parameters from table 3 and comparison
with experimental data. a) Evolution with strain of the eigenvalues of the second order
orientation tensor (a1 > a2 > a3). The blue dots correspond to experimental values from
Journaux et al. 2019 [31]; b) simulated macroscopic strain rate. EF stands for Enhancement
Factor; c) evolution with strain of the intensity of the texture with the colatitude θ over a
section defined on the Z plane (dashed blue lines in d)). Data at γ = 0.2, 0.42 and 1.96 are
shown. The white dashed line follows the orientation of the principal extension axis; d)
simulated textures (pole figures) γ = 0.2 (i ), γ = 0.42 (i i ) and γ = 1.96 (i i i ); e) measured
textures for the same macroscopic shear strains [31]. All figures presenting texture data are
color-coded using the same colorbar.

scopic constant stress) and experiments (macroscopic constant displacement rate), we assumed
the quasi-steady state behavior sampled by the flow stress measurements in the experiments to
be equivalent to the quasi-steady state part of the tertiary creep in the creep simulations [70].
Stable textures expected at both stages can therefore be compared.

The comparison between simulated and observed textures at different compressive flow
stresses is shown in figure 11. The experimental observations are well reproduced. Both measured
and simulated textures show a transition from a girdle texture to a weak single maximum with
increasing flow stress for a macroscopic strain of ∼ 20%. To correctly fit the experimental data, a
value of ΓR X of 3 days is used, which is lower than the one used to reproduce the unconfined
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compression creep tests of Montagnat et al. 2015 [28] (table 3). This implies a higher relative
contribution of recrystallization compared to deformation at higher stresses.

Figure 11. Simulation of uniaxial compression creep test along Y . Comparison between
R3iCe predictions and experiments by Qi et al. [30]. (a) Textures from [30] obtained by EBSD
for various strain rates leading to different quasi-steady state compressive flow stress (top
right) at macroscopic strains of ∼ 0.2% (actual strains indicated at the top left of each pole
figure). (b) Simulated textures developed in creep simulation under the same compressive
stress at the same macroscopic strains.

6. Discussion

The CTI-RX model presented here enables the simulation of texture evolution in polycrystalline
ice, as shown in the simulations in compression, simple shear and tension, including or not dy-
namic recrystallization. Without recrystallization, the texture evolution predicted by the model
reproduces correctly natural textures observed along deep ice cores where dynamic recrystalliza-
tion is supposed to have a low impact.

The novelty of the present model, and its implementation, stands on the simulation of the
evolution of the orientation of c-axes based on a new formulation that (i) introduces an attractor
controlled by the local stress field to reproduce the impact of DRX mechanisms (ii) is coupled
with the CTI law in order to take into account the strain and stress field heterogeneities at the
crystal scale arising from the crystal viscoplastic anisotropy, (iii) solves these coupled equations



Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau and Andréa Tommasi23

using an semi-implicit numerical scheme in a full field implementation using FEM, ensuring
consistency between texture evolution and mechanical behavior. The first two ingredients derive
from experimentally-based knowledge of dynamic recrystallization processes.

Indeed, recent experimental observations have (i) clearly documented the role of the crys-
tal viscoplastic anisotropy in generating local stresses and strains markedly different from the
macroscopic ones [29, 32, 64] and (ii) revealed that the formation of new orientations (nucle-
ation) during dynamic recrystallization occurs through bulging (heterogeneous grain boundary
migration) and polygonization (formation of new grains boundaries by organization of disloca-
tions within a grain) [29, 33, 64, 71, 72]. These two processes are controlled by the local strain and
stress fields and result in recrystallized orientations that are strongly related to, but slightly dif-
ferent from, the parent grains orientations. The last important experimental observation is that
the development of recrystallization textures leads to the weakening of the polycrystal mechani-
cal response. All these observations justify the choice of a continuous formulation for the c-axis
orientation evolution (equation (18)), with a targeted recrystallized orientation that is calculated
so that to maximize the local basal resolved shear stress (equation (21)).

Comparison with tertiary creep experiments made in compression [28,37,39], in simple shear
[31, 37, 41] and in tension [26] supports the fact that the R3iCe model is able to reproduce texture
evolution in conditions similar to those of laboratory experiments (T =−5 to −10◦C , S ∼ 1 MPa).
For that, a single parameter is adjusted: the recrystallization parameter ΓR X , which weights
the relative contribution of deformation and recrystallization to the rotation of the c-axes. As
expected, at e.g. similar stress conditions, a lower temperature requires a higher ΓR X value (and
therefore a lower weight of dynamic recrystallization) to correctly reproduce the experimental
texture evolution. In particular, the two-maxima texture measured in simple shear (in natural
and laboratory ice) is correctly reproduced here, together with the kinetics of its evolution with
strain toward a single-maximum cluster.

Simulations at higher uni-axial compressive stresses (from 1 to 4 MPa) have been performed
to compare with the experiments of Qi et al. 2017 [30]. Contrary to previously mentioned exper-
iments, these latter were performed under a range of imposed strain-rate conditions resulting
in variable flow stresses. A confining pressure of 10 MPa was applied to prevent from failure at
the relatively high strain rates considered. A higher strain rate results in a greater relative impact
of deformation versus DRX on the texture. This leads to more clustered textures at higher flow
stress. From this perspective, R3iCe run under imposed stress without confining pressure is able
to correctly represent the texture clustering with stress. Indeed, experimental textures measured
at 20% strain are satisfyingly reproduced by R3iCe providing that ΓR X is given a relatively low
value (3 days for T = −10◦C ) compared to the one determined for unconfined creep compres-
sion experiments (8.7 days for T = −5◦C ). This low value of ΓR X indicates that, in the simula-
tions, a high amount of recrystallization is necessary to reproduce the experimental textures and
to counterbalance the impact of deformation on the c-axes rotation. We interpret this apparent
contradiction as follows. Kalifa et al. [73] performed triaxial tests under the same range of strain
rate (∼ 10−5 −104 s−1) than Qi et al. 2017 [30] and under a confining pressure varying from 0 to
10 MPa. By careful observations made right after the peak stress, they estimated the density of
cracks in the microstructure and revealed that micro-cracks were visible up to 10 MPa confining
pressure. Micro-cracking is therefore to be expected during Qi et al. 2017 [30] experiments. Strong
stress concentration happens at crack tips and Chauve et al. 2017 [72] have recently shown that,
for ice, it can be released through active recrystallization mechanisms taking place in the crack
area. R3iCe formulation is not able to take into account micro-cracking at high stress and strain-
rate conditions, neither the impact of a confining pressure. The account for the enhancement
of recrystallization due to plastic energy available around crack tips is made by increasing the
recrystallization rate (ΓR X ).
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For all conditions simulated with R3iCe, we show that the CTI-RX model reproduces accu-
rately the softening at the transition from secondary to tertiary creep. The kinetics of the tran-
sition and the resulting enhancement factors, when departing from an isotropic texture, are
correctly simulated as well, as compared with experimental results performed in similar con-
ditions [21, 26, 28, 36, 37]. Since the present model does not consider any softening mechanism
associated with dislocation interactions or grain boundary migration, this comparison seems to
confirm that texture-induced viscoplastic anisotropy explains most of the mechanical softening
measured during tertiary creep. Therefore, the softening associated with dislocations annihila-
tion and grain boundary migration during dynamic recrystallization seems to play a secondary
role.

Recent models of texture evolution during dynamic recrystallization have been proposed by
Rathmann et al. 2021 [54] and Richard et al. 2021,2022 [47, 74], aiming to account for texture-
induced anisotropy of ice in large-scale models. Their formulation is based on an Orientation Dis-
tribution Functions (ODF) in which dynamic recrystallization is represented by two terms: one
term that accounts for the production of orientations based on a given parameter, the deforma-
bility, that is calculated using the Sachs constant stress assumption, and a second term that ac-
counts for the diffusion of orientations. Although this approach is not intended to prescribe the
mechanical response evolution due to texture development, it can be compared to the CTI-RX
formulation. The deformability term can be obtained from equation (18) by assuming homoge-
neous stresses (Sachs model). The diffusive term is necessary to reproduce the texture dispersion
effect owing to recrystallization. This is spontaneously obtained in full-field approaches such as
R3iCe, due to the heterogeneous stress field. Although these models accurately predict steady-
state textures for different strain geometries, the predictions for transient textures evolution are
less accurate than that from R3iCe. This highlights the fundamental role of stress heterogeneities
in texture evolution during the transition between secondary and tertiary creep (from 1 to ∼ 15%
strain).

The major strength of [47,54,74] formulations is the numerical efficiency that makes it suitable
for large-scale modelling (glaciers, ice sheets), providing that transient behaviors are not of
concern. In such context, the R3iCe model could be a good candidate to provide constraints to
formulate parameterizations for the temporal evolution, destined to less costly formulations.

The CTI-RX model is not limited to the loading conditions prescribed here or to polycrystalline
ice. Its formulation is generic and can be extended to other polycrystalline materials, provided
that their single crystal viscoplastic behavior can be adequately described using the Continuous
Transverse Isotropic (CTI) law as defined in equation (13). For instance, the versatility of the CTI-
RX model could enable analyzing the mechanical behavior of materials such as e.g. magnesium
and quartz, which also show a strong viscoplastic anisotropy with hexagonal symmetry.

7. Conclusions

In this paper, we present a new formulation, CTI-RX , to model the effect of dynamic recrystal-
lization on the texture evolution of polycrystalline materials, provided their viscoplastic behav-
ior can be described using a Continuous Transverse Isotropic law. It is validated in the context of
polycrystalline ice.

The integration of an orientation attractor, denoted as c0 along with an anisotropic flow
law in a full-field resolution, allows for the accurate replication of texture evolution during
dynamic recrystallization in tertiary creep under various stress conditions. This is made possible
by defining c0 such as to maximize the local resolved shear stress, and therefore providing a



Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau and Andréa Tommasi25

physically-based formulation of recrystallization-induced c-axes rotation. This formulation is as
simple as possible, given our knowledge of the mechanisms involved.

The R3iCe model is the result of the implementation of the CTI-RX formulation in a Finite
Element framework. In the model, the texture results from a balance between c-axis rotation due
to viscoplastic deformation and to dynamic recrystallization, which is controlled by ΓR X , the only
tuning parameter of the model. The R3iCe model can therefore be used to constrain the impact
of experimental conditions, such as pressure and temperature, on the recrystallization kinetics.

The accurate reproduction of the textures in the R3iCe model leads to a good prediction of the
mechanical softening associated with dynamic recrystallization. It confirms that texture-induced
viscoplastic anisotropy may explain most of the mechanical softening observed during tertiary
creep and suggests that recovery and grain boundary migration play a secondary role in this
softening.

In conditions of high stresses, where confining pressure is request in the laboratory to prevent
failure, we show that the expected local fracturing at the crystal scale likely enhances dynamic
recrystallization processes and fasten texture evolution with strain. This is revealed by the lower
ΓR X required to fit the texture measured during the confined compression experiments [30]
relative to that used to fit the low stress unconfined compression creep experiments [28], despite
the higher experimental temperature of the latter (−5◦C vs. −10◦C , cf. table 3). It is an additional
illustration of the ability of the R3iCe model to help resolve open questions about ice deformation
behavior.

The computational cost of the R3iCe full-field model is not adapted to a direct implementation
in large-scale flow modeling frameworks. The model is nonetheless highly valuable to constrain
the parameterization required to properly account for the texture evolution and its impact on
the mechanical response in complex or changing boundary conditions as those prevailing in the
bottom of deep ice cores, ice streams, and glaciers.
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Appendix A. Demonstration of δi identification

A.1. Constitutive equation CTI and single crystal behavior

The constitutive equation is:

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D (32)

The single crystal anisotropy can be described by three parameters derived for experimental
data :

- ψ1 is the fluidity for parallel shearing to the basal plane :

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23

- β is the viscosity ratio between shear parallel to the basal plane η and the viscosity for shear
within the basal plane :

https://gricad-gitlab.univ-grenoble-alpes.fr/mecaiceige/tools/ice-polycrystal-models/rheolef_cti
https://gricad-gitlab.univ-grenoble-alpes.fr/mecaiceige/tools/ice-polycrystal-models/rheolef_cti
https://mecaiceige.gricad-pages.univ-grenoble-alpes.fr/tools/ice-polycrystal-models/ipms_documentation/Intro.html
https://mecaiceige.gricad-pages.univ-grenoble-alpes.fr/tools/ice-polycrystal-models/ipms_documentation/Intro.html
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g D12 =βψ1

2
g S12

- γ is the viscosity ratio between compression (or traction) along the c axis ηc and compression
(or traction) in one direction g er within the basal plane:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r

The same compressive (or extensive) stress parallel and normal to the c-axis S = g S33 = g Sr r

results therefore in different strain rates:

g Dr r = γg D33

A.2. δi identification

To identify the parameters (δ1,δ2,δ3) in the constitutive equation (32), we developed it and
compared to the single crystal behavior.

Using c = (0,0,1)

M =


0 0 0

0 0 0

0 0 1

 , MD = 1

3


−1 0 0

0 −1 0

0 0 2

 , Tr (Mg D) = g D33

(1) δ1 is given by applying a stress g S =


0 g S12 0

g S12 0 0

0 0 0


Then

Tr (MS) = 0, (MS+SM)D = 0

The constitutive equation gives :

g D12 = 2δ1
g S12

Therefore :

δ1 = ψ1β

4

(2) δ3 is given by applying a stress g S =


0 0 g S13

0 0 0
g S13 0 0

 :

Then

Tr (MS) = 0, (MS+SM)D = S

The constitutive equation gives :

g D13 = (2δ1 +δ3)g S13

Therefore

δ3 = ψ1

2

(
1−β)

(3) δ2 identification is less trivial and presented in more details.
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• First, a uniaxial stress σ̃ is applied along the c-axis. The stress tensor is gσ=


0 0 0

0 0 0

0 0 σ̃


and the associated deviatoric stress tensor is g S =


− 1

3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 2
3 σ̃


– Tr (Mg S) = 2σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 4
3 σ̃


D

=


− 4

9 σ̃ 0 0

0 − 4
9 σ̃ 0

0 0 8
9 σ̃


– using the constitutive equation, we obtain for g D33 :

g D33 = δ1
4

3
σ̃+δ2

8

9
σ̃+δ3

8

9
σ̃

• Then a uniaxial stress σ̃ is applied normal to the c-axis, for instance in the direction

1. The stress tensor is gσ=


σ̃ 0 0

0 0 0

0 0 0

 and the associated deviatoric stress tensor is

g S =


2
3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 − 1
3 σ̃


– Tr (Mg S) =− σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 − 2
3 σ̃


D

=


2
9 σ̃ 0 0

0 2
9 σ̃ 0

0 0 4
9 σ̃


– using the constitutive equation, we obtain for g D11 :

g D11 = δ1
4

3
σ̃+δ2

2

9
σ̃+δ3

2

9
σ̃

• Finally from the grain behavior we can write that γg D33 = g D11 :

γ

(
4

3
δ1 + 8

9
δ2 + 8

9
δ3

)
= 4

3
δ1 + 2

9
δ2 + 2

9
δ3

• This gives :

δ2 = 6δ1
1−γ

4γ−1
−δ3

• and using δ1 and δ3 as defined above:

δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)

Appendix B. Strain and stress field comparison

The figures 12 and 13 show the probability distribution functions for all components of the strain
and stress tensors during unixial creep with c-axis evolution (section 4.1).
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Figure 12. Kernel Density Estimation of all components of the strain tensor predicted
by an elasto-viscoplastic (EVP) simulation using CraFT and the Continous Transverse
Isotropic (CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show results for
simulations where grains are well discretized. The full line show results for the simulation
where a different orientaion is attributed to each element.

Figure 13. Kernel Density Estimation of all components of the stress tensor predicted
by an elasto-viscoplastic (EVP) simulation using CraFT and the Continous Transverse
Isotropic (CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show results for
simulations where grains are well discretized. The full line show results for the simulation
where a different orientaion is attributed to each element.
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