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Abstract. Dynamic recrystallization can have a strong impact on texture development during the deforma-
tion of polycrystalline materials at high temperature, in particular for materials with strong viscoplastic
anisotropy such as ice. Owing to this anisotropy, recrystallization is essential for ensuring strain compatibility
and development of textures leads to anisotropic softening. Accurate prediction of the effect of recrystalliza-
tion on the texture evolution of ice is therefore crucial to account adequately for texture-induced mechanical
anisotropy in large-scale models of glacial ice flow. Yet this prediction remains a challenge.

We propose a new formulation for modelling texture evolution due to dynamic recrystallization based
on observations of the evolution of the microstructure and texture of ice deforming by dislocation creep and
dynamic recrystallization. This formulation relies on an orientation attractor which maximizes the resolved
shear stress on the easiest slip system in the crystal. It is implemented in the equation describing the evolution
of the crystal orientation with deformation and coupled with an anisotropic viscoplastic law that provides
the mechanical response of the ice crystal. This set of equations, which is the core of the R3iCe model is
solved by a finite-element method with a semi implicit scheme coded using the Rheolef library. The resulting
open-source software R3iCe is validated by comparison with laboratory creep data for ice polycrystals under
uniaxial compression, simple shear and uniaxial tension. It correctly reproduces the texture evolution and the
mechanical softening observed in the experiment during tertiary creep. Although the present formulation
is too time-costly for a direct implementation in large-scale ice flow models, R3iCe can be used to adjust
the parameterisation used to implement texture-induced anisotropy in these models. The validation was
performed for ice, but the R3iCe implementation is generic and applies for any material whose behavior may
be adequately described using a anisotropic flow law.
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Notation

a Scalar

a Vector

A Tensor

AD Deviatoric part of A AD = A− 1
di m(A) Tr (A) AD

i j = Ai j −
δi j

di m(A) Tr (A)

⊗ Tensorial (dyadic) product A = b⊗c Ai j = bi c j

Tr () Trace of a tensor Tr (A) Ai i

di m() dimension of a tensor di m(A)

∇ ∇ operator
(
∂
∂x , ∂

∂y , ∂
∂z

)
∂
∂xi

. Scalar product a.b ai bi

: Double contracted product A : B Ai j Bi j

∥.∥ Norm ∥a∥ a2
i

An matrix product n times A×A...×A︸ ︷︷ ︸
n

Table 1. Mathematical notations

1. Introduction

Dynamic recrystallization (DRX) is a mechanism by which local stress incompatibilities and local
strain heterogeneities are relaxed [1–3]. By local, we mean the scale of the grains that constitute
crystalline materials such as ice, metals or most rocks. Dynamic recrystallization occurs in plasti-
cally deforming materials at high temperature. It is characterized by the nucleation of new grains
and grain boundary migration and can lead to the complete re-organisation of the microstructure
(grains shape and size), and to a drastic modification of the texture (crystallographic orientations
of grains) [2, 4–7]. These changes in the microstructure and texture may lead to modification of
the rheological behavior, that is, the response of the material to imposed stresses or strains.

Ice is a hexagonal crystalline material (figure 1) that deforms, on Earth, at temperatures very
close to its melting point. In the ductile regime, its deformation is characterized by a strong
viscoplastic anisotropy, with dislocations gliding almost solely on the basal plane [8, 9]. The
orientation of an ice crystal relative to the direction of solicitation has therefore a strong control
on its viscosity. Consequently, the distribution of crystallographic orientations in polycrystalline
ice impacts the mechanical response in the form of a texture-induced viscoplastic anisotropy
[10].

Microstructural evidence for recrystallization is systematically observed along deep ice cores,
where it is supposed to contribute variably to the measured texture, depending on the deforma-
tion conditions (temperature, impurities). To interpret the texture evolution along ice cores, a
model has been proposed by De la Chapelle et al. 1998 [11]. This model states that DRX may ei-
ther slow down the strain-induced texture evolution (the so-called "continuous" dynamic recrys-
tallization regime) or drastically modify the texture, a final texture controlled by the stress state
(the "discontinuous" dynamic recrystallization regime). Whether continuous or discontinuous
DRX predominate depends on the temperature and strain conditions along the ice core [12, 13].
In deep sections of ice sheets, along ice streams, and in glacier areas where temperature and
strain are high, DRX leads to highly anisotropic textures, in particular when simple shear is dom-
inant (see e.g. [14–17]). These textures result in strong viscoplastic anisotropy, which can either
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enhance or slow down strain rates. For instance, the vertical cluster of c-axes usually observed
along ice cores will accelerate horizontal shearing but slow down vertical compaction [18–23]. To
model the deformation of an ice sheet, it is therefore essential to consider the effect of DRX on
the texture evolution.

Dynamic recrystallization in ice has been extensively studied in the laboratory. These studies
allowed to characterize the basic mechanisms at play, nucleation and grain-boundary migration,
and the impact of strain heterogeneities on their kinetics (see e.g. [3,24–31]). Kamb (1972) [4] was
a pioneer in performing a large number of creep experiments in simple shear and compression to
characterize the effect of DRX on both texture evolution and macroscopic mechanical behavior.
He proposed that the strain rate acceleration, characteristic of the tertiary creep stage could
result from development of DRX textures favorable to the activation of basal slip. This study
is likely at the origin of the widely established belief that DRX favors "well-oriented" grains
relative to the imposed stress. Since then, work by Grennerat et al. 2012 [32] has revealed that
the strain field during deformation in polycrystalline ice is highly heterogeneous, with no simple
relation between intensity of the local strain and the Schmid factor, a parameter that quantifies
the orientation relation between a crystal and the imposed macroscopic stress. More recently,
direct measures of the evolution of the strain field with DRX by Chauve et al. 2017 [33] have
illustrated the heterogeneity of the mechanical behavior at the grain scale and its impact on DRX.
They showed that DRX tends to homogenize the strain field in relation with local microstructure
changes.

Although this recent data show that DRX textures result from a complex interplay between
the imposed stress or strain states, the local microstructure and the resulting redistribution of
stresses, it also corroborates that development of DRX textures is systematically associated with
the marked strain softening that signs the onset of tertiary creep [22, 25, 27]. Further texture
evolution during tertiary creep results in a quasi-constant strain rate for bulk strains higher
than 10%; this "stationary" strain rate is independent on the initial texture and controlled by the
imposed stress [34–37]. This contrasts with the minimum strain rate observed at the onset of
secondary creep, which depends on the initial texture and that can be described by the classical
Glen’s law (a Norton-Hoff type law), which relates non-linearly the strain rate to the applied
stress (through an exponent of 3 and an Arhenius type of dependence to the temperature) [9,38].
This law does not hold in tertiary creep but it has been adapted by modifying the stress exponent
to a value slightly higher than 3 and adding a strain-rate enhancement factor (the ratio between
the strain rate measured at tertiary creep and the minimum strain rate at secondary creep). This
enhancement factor, between 4 in compression and 8 in simple shear [22, 37] accounts for the
impact of the DRX texture on the strain softening during tertiary creep.

Textures that develop in ice during DRX are well characterized. Under uniaxial compression,
the textures measured at tertiary creep are characterized by c-axes oriented within a girdle at an
angle between 30◦ and 50◦ to the compression axis depending on the experimental temperature
T and stress. These textures are stable, that is, they evolve very slowly for strains higher than
10% [4, 24, 27, 29, 30, 37, 39]. During simple shear, tertiary creep textures seem to evolve with
increasing strain from a two-maxima pattern, which is symmetric relative to the principal finite
stretching direction, toward a strongly clustered texture, characterized by c-axes aligned in a
direction perpendicular to the shear plane [25, 26, 31, 40, 41].

Texture development in ice deforming by dislocation creep has been successfully simulated
using approaches of variable complexity [18, 19, 42, 43]. However, these approaches fail to repro-
duce the tertiary creep experimental textures and the rare models simulating the effect of dy-
namic recrystallization are rather unsatisfactory, in terms of either texture patterns or kinetics of
texture evolution [44–48]. The discrepancies between models and observations result from the
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use of a simplified, mean-field approach that does not enable DRX mechanisms to be properly
represented [44, 45], or from limitations in the deformation modeling frame despite considering
high complexity in the microstructure evolution [46]. In [47, 48], the simulated textures are very
close to the observed ones, but the kinetics of evolution is not. This discrepancy may result from
the use of a Sachs approximation for modeling the mechanical response of the polycrystal, which
results in a too soft mechanical response and incoherence in the grain rotation calculation [49].

In the present work, we propose a new formulation to predict the impact of DRX on the
texture evolution of polycrystalline materials, like ice. This formulation couples a continuous
transverse isotropic (CTI) law, which models the anisotropic response of the ice crystal, to a
crystal orientation evolution equation that accounts for DRX. The contribution of DRX to the
texture evolution is modeled by a physically-based orientation attractor that maximizes the
resolved shear stress on the easiest slip system in the crystal (basal slip for ice). This set of
equations, named CTI-RX, is solved in a full-field model using the finite-elements method (FEM).

In section 2, we present the CTI-RX model: its equations for the CTI law (section 2.1) and
the proposed formulation for the evolution of the c-axis (section 2.2). The numerical scheme
designed to solve these equations is described in section 3. Section 4 presents the calibration
and validation for cases without dynamic recrystallization. Section 5 evaluates the capability of
the model to reproduce the evolution of the texture and the mechanical response by comparing
the predictions with experimental data for tertiary creep of ice polycrystals subjected to uniaxial
compression, uniaxial tension and simple shear.

2. CTI-RX- a model for the ice single crystal behavior

2.1. The Continuous Transverse Isotropic behavior

Following [50–54], we account for the viscoplastic anisotropy of the ice single crystal by modelling
its mechanical behavior using the continuous transverse isotropic (CTI) law. In this framework,
the viscoplastic response of the ice single crystal depends only on the orientation of the c-axis,
being isotopic in the basal plane (see Figure 1). This formulation is based on theoretical work by
Boehler (1987) [55], which has shown, through geometrical arguments, that the relation between
the deviatoric stress S and the deviatoric strain rate D in a transverse isotropic symmetry may be
described by a potential φS :

D =
(
∂φS

∂S

)D

(1)

where φS is expressed on the BC T I base, which is built out of a combination of the following four
invariants:

BC T I =
[
Tr (S2),Tr (S3),Tr (MS),Tr (MS2)

]
, (2)

with M = e3 ⊗e3 where e3 is the direction of the plane of isotropy (figure 1). The potential φS is
described below in the linear (φ(1)

S ) and non linear (φ(n)
S ) cases.

2.1.1. The linear CTI formulation

To obtain a linear CTI formulation, the potential, φ(1)
S , must be quadratic. It is therefore

constructed from the quadratic invariants taken from the BC T I base as:

φ(1)
S = δ1Tr (S2)+δ2Tr (MS)2 +δ3Tr (MS2). (3)

Considering the following derivation rules,

∂Tr (MS)

∂S
= M,

∂Tr (S2)

∂S
= 2S,

∂Tr (MS2)

∂S
= MS+SM, (4)
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e3

Figure 1. The transverse isotropic geometry is fully described by one direction, e3, that
defines the plane of isotropy. For an ice single crystal, this direction corresponds to that of
the c-axis (i.e. the normal to the basal (0001) plane).

the constitutive relation is given by

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D . (5)

The three independent parameters δi in equation (5) can be fitted from experimental data as
detailed below.

In the present implementation of the model, the anisotropy of the ice single crystal (or grain)
behavior is described using the following parameters, where g X indicates a tensor expressed in
the grain reference frame:

• ψ1 is the fluidity of the ice crystal subjected to shear on the basal plane:

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23, (6)

• β is the ratio between the fluidity for shear parallel to the basal plane and that for shear
normal to the basal plane:

g D12 =βψ1

2
g S12, (7)

• γ is the ratio between the viscosity for compression (or traction) along the c-axis ηc and
for compression (or traction) in any direction g er within the basal plane:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r (8)

For solicitations of similar amplitude in different directions, for instance along e3 or
perpendicular to e3 (i.e. along er) S = g S33 = g Sr r , in the linear case the strain rates are
related by:

g Dr r = γg D33 (9)

Using the above constraints on the single crystal behavior, identification gives (see appendix A
for details):

δ1 = ψ1β

4
, δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)
, δ3 = ψ1

2

(
1−β)

(10)

The constitutive equation (5) can also be expressed in an inverse manner as

S = 2α1D+2α2MD Tr (MD)+α3(MD+DM)D (11)

and in terms of the potential

φ(1)
D =α1Tr (D2)+α2Tr (MD)2 +α3Tr (MD2) (12)
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with : α1 = η1
β , α2 = 2η1

(
γ
β −1

)
, α3 = 2η1

(
1− 1

β

)
and η1 = 1

ψ1
(see [19] and appendix A for

details).

2.1.2. The non-linear CTI formulation

A non-linear potential φ(n)
D linking S to D

1
n is obtained by taking the linear potential φ̃(1)

D =
1

2η1
φ(1)

D to a higher order, k :

φ(n)
D = 1

k

(
φ̃(1)

D

)k
. (13)

This hypothesis limits the number of independent parameters to 3 instead of 7 in the general
case. A similar hypothesis was made in previous studies [19, 48, 56]. Using the chain rule for
deriving φn

D gives:

S = ∂φ(n)
D

∂D
=

(
φ̃(1)

D

)k−1 ∂φ̃(1)
D

∂D
(14)

k is further obtained by identification of the power exponent on equation (14) in order to have
S ∼ D

1
n :

2(k −1)+2 = 1

n
=⇒ k = n +1

2n
(15)

Therefore, a non-linear CTI law can be written as:

φ(n)
D = 4n

n +1

(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) n+1
2n , (16)

leading to the following constitutive equation:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

, (17)

with the effective viscosity

η⋆n = 2ηn
(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) 1−n
2n (18)

and αi parameters:

α1 = 1

2β
, α2 =

(
γ

β
−1

)
, α3 =

(
1− 1

β

)
. (19)

It is worth noting that β links g D12 to g S12 through:

g D12 = ψn

2
β

n+1
2 g Sn

12. (20)

Therefore, β depends on the non-linearity, i.e. on the value of n. A similar enhancement will
be obtained for a linear behavior n = 1 and a non-linear behavior with n = 3 by setting βn=3 =√
βn=1.

2.2. Evolution of the crystal rotation in response to deformation and recrystallization

Deformation resulting from dislocation glide in the different slip planes results into a rotation of
the crystal whose rate is described as in [57, 58], by:

∂c

∂t
= Wc−λ[

Dc− (
cT Dc

)
c
]

, (21)

where W(u) = ∇(u)−∇T (u)
2 and D(u) = ∇(u)+∇T (u)

2 are the spin- and strain-rate tensors. According to
equation (21), the rotation of the c-axis is due to the bulk spin, Wc, and to the viscoplastic spin
expressed by λ

[
Dc− (

cT Dc
)

c
]
. λ is a parameter that depends on the plasticity model chosen

for the ice crystal. In the present frame we will assume that deformation is only due to the
contribution of dislocations gliding on the basal place, λ is set to 1. A value of λ < 1 is required
to match a plasticity model that include prismatic and pyramidal slip [57,58]. This assumption is
well funded for ice and has been ofen made in previous studies [45, 59–62].
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To account for the impact of dynamic recrystallization on the evolution of the c-axis orienta-
tion, we add a new term to this equation based on the assumption that dynamic recrystallization
induces a local re-orientation of the c-axis, either through nucleation of a grain with a new orien-
tation, or by migration of a grain boundary, and that this re-orientation leads to local softening.
This continuous description of the impact of DRX on the evolution of the c-axis orientation is
supported by experimental observations of DRX nucleation in ice. These observations show that
nucleation by bulging and polygonisation results in progressive misorientation of the recrystal-
lized volumes relative to the parent grains, with misorientations most ofen < 20◦ [33].

With addition of the dynamic recrystallization term, the c-axis rotation is described by:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (22)

where ΓR X is a parameter controlling the rate of rotation of the c-axis toward an attractor,
c0, which represents the "ideal" orientation produced by recrystallization and whose formula-
tion is described in section 2.3. The evolution of the c-axis orientation is therefore controlled
by the balance between (i) the deformation-induced rotation and (ii) the rotation toward a
recrystallization-driven attractor, c0.

The meaning of ΓR X can be illustrated by considering the artificial case where only dynamic
recrystallization contributes to the c-axis rotation. In this case, equation (22) becomes

∂c

∂t
= 1

ΓR X
(c0 −c) , (23)

The norm of ∂c
∂t can be interpreted as the rotation rate due to dynamic recrystallization only. This

rate increases as ||c0 −c||. Considering a constant c0, the solution for the c-axis rotation is:

c(t ) = (c(0)−c0)e
− t
ΓR X +c(0). (24)

In this case, c rotates towards c0 at a rate following an exponential decay with a characteristic time
ΓR X , such that 95% (99%) of the rotation is obtained after 4ΓR X (5ΓR X ). In the CTI-RX model, c0

is not constant but depends on the local deviatoric stress tensor, S.

2.3. Formulation of the recrystallization attractor c0

The formulation of c0 stems from the assumption that a grain (or part of a grain) rotates
towards, or/and nucleates in, an orientation that facilitates the local viscoplastic deformation
(dislocation glide). This assumption is supported by experimental observations which show
that nucleation and grain boundary migration occur in areas of high strain incompatibility and
produce orientations that tend to reduce this incompatibility [3, 33, 63]. Considering that the
ice single crystal deforms mainly by dislocation glide on the basal plane, the recrystallization-
induced rotation should maximize the resolved shear stress (RSS) on the basal plane. The RSS
for a dislocation with a Burgers vector ai (figure 1) gliding on the basal plane c in response to a
deviatoric stress S is given by

RSS(ai,c,S) = S :µ, (25)

with µ= 1
2

c⊗ai+ai⊗c
∥c∥.∥ai∥ .

In the CTI formulation, the orientation for the maximum RSS is the orientation where the
shear stress is maximum in the basal plane and the behavior is isotropic in this plane. Considering
s1 > s2 > s3 the eigenvalues and vi (i = 1− 3) the corresponding eigenvectors of the deviatoric
stress tensor S, the maximum resolved shear stress is |s1 − s3| and the associated orientations
are [64]:

c0 = 1

2
(v1 ±v3) (26)
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Degenerated cases exit if at least two eigenvalues are equal:

• s1 = s2, the possible attractors c0 are the orientations at 45◦ from v3.
• s2 = s3, the possible attractors c0 are the orientations at 45◦ form v1.
• s1 = s2 = s3 = 0, the possible attractors c0 are all the orientations.

In all other cases, there are two possible orientations for the attractor c0. To solve equation (22)
we define c0 as which of the two solutions is closer to the actual c axis, in order to minimize the
path between c and c0. In practice, c0 is chosen so that the scalar product between c0 and c is
maximal.

2.4. Interpretation of the orientation evolution equation

Equation (22) can be interpreted in terms of the relative impact of deformation versus recrystalli-
sation on the orientation of the c-axis. In the following, we describe three end-member cases.

For uniaxial compression along the y-axis (figure 2a), the stable solution for the deformation
term

(
Wc−λ[

Dc− (
cTDc

)
c
])

corresponds to c aligned with y (red dot, figure 2a) [19]. For recrys-

tallization
(

1
ΓR X

(c0 −c)
)
, the stable solutions are the orientations at 45◦ to the y-axis (blue line,

figure 2a). When both deformation and recrystallization are active, the stable orientations of the
c-axis are located on a girdle between these two end-members (black line, figure 2a). The position
of this girdle depends on the value of ΓR X (black arrows, figure 2a). The higher is ΓR X the closer
is the girdle to the compression axis.

For uniaxial tension along y, the stable solutions for the deformation term are all the orienta-
tions located in the xOz plane (red line, figure 2b) [19]. When both deformation and recrystal-
lization are active, the stable orientations (black circle, figure 2b) form a girdle between 45◦ and
90◦ to the y-axis depending on the value of ΓR X .

For simple shear parallel to the xOz plane (with ∂ux
∂y < 0, figure 2c), there are four stable

solutions of the recrystallization term that are ±y and ±x (figure 2c, blue dots), and two for the
deformation term, ±y (figure 2c, red dot). The resulting stable orientations of the c-axis when
both deformation and recrystallization are active are located at ±y and between x and x+y (and
the symmetrical equivalent) (black dashed line dots, figure 2c). This latter stable orientation,
whose exact position depends on the value of ΓR X , only exists for low ΓR X and vanishes for large
ΓR X (ΓR X →+∞).

2.5. CTI-RX flow model description

The system of equations constituting the CTI-RX model is based on the approximation of an
incompressible fluid behavior to which we added equations accounting for the single-crystal
anisotropic behavior and the effect of recrystallization on the evolution of the crystal orientation.
It is composed of:

(1) The momentum equation under the Stokes assumption:

−∇.S+∇p = 0 (27)

(2) The non-linear CTI law:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

η⋆n = 2ηn
(
α1tr (D2)+α2tr (MD)2 +α3tr (MD2)

) 1−n
2n

(28)

(3) The equation for the evolution of the c-axis:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (29)

with c0 = v1±v3
2 where vi are the eigenvectors of S and |c.c0| is maximum.
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Figure 2. Pole figure schematic representation of the stable orientations for the evolution
equation (eq. 22) for various stress configurations S: (a) uniaxial compression along y, (b)
uniaxial tension along y and (c) simple shear in the xOz plane, ∂ux

∂y < 0 (upper hemisphere).

3. Numerical scheme and implementation

The CTI-RX equations (section 2.5) are solved on a cuboid of polycrystalline ice deformed in
creep (stress boundary conditions) in either uniaxial compression, uniaxial tension, or simple
shear (Figure 3). A full-field approach using FEM is chosen to describe the field of orientations c
at the element size. This implementation results in the R3iCe model (Rheology, Recrystallization,
Rheolef, in Continous Transverse Isotropic material). This design allows direct comparisons
of texture evolution and macroscopic mechanical behavior with data from laboratory creep
experiments [29–31].

bottom

top

left_bottom_back

left_bottom_front
x

y z

Fy

Fx

L

Figure 3. Schematic representation of the rectangular cubic simulation domain, with sur-
face and point boundaries labeled.
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3.1. Numerical experiments setups

3.1.1. Uniaxial creep tests

In uniaxial creep, a zero vertical velocity (uy (bot tom) = 0) condition is applied at the bottom
surface to simulate a fixed plateau, as in laboratory creep tests. To avoid translation of the sam-
ple, the position of one bottom summit is fully fixed (u(le f t_bot tom_back) = (0,0,0)). To avoid
rotation around the y-axis, a zero-velocity condition along the x-axis is also applied on a second
summit (ux (le f t_bot tom_ f r ont ) = 0). The sample is deformed in uniaxial compression (or ten-
sion) by applying a constant normal stress on the top surface (Fy (top) = F ). By convention, F < 0
(F > 0) corresponds to compression (tension). This Neumann condition leads to a non-uniform
displacement over the surface as weaker elements may deform faster. This may hinder the direct
comparisons with laboratory experiments or other numerical models, in which homogeneous
displacement conditions are imposed on the surface to which the compression is applied. This
issue is addressed in section 4.1.

3.1.2. Simple shear creep tests

In the simple shear tests, the forcing is applied as a constant tangential stress on the top
boundary (Fx (top) = F ) of the sample. Other boundary conditions are:

• u(bot tom) = 0,
• uy = uz = 0 for the lateral surfaces (left, right, front, back) to avoid solid rotation,
• uy (top) = uz (top) = 0.

3.2. Characteristic numbers and time

When adimensionalizied with respect to the material viscosity ηn in Pa s
1
n , the vertical extent

of the cuboid L in meter (Figure 3) and the applied macroscopic stress Σ (in Pa), the system of
equations becomes:

−∇̃S̃+∇̃p̃ = 0 (30)

S̃ = η̃⋆n
(
2α1D̃+2α2MD Tr (MD̃)+α3(MD̃+ D̃M)D)

η̃⋆n = 2
(
α1Tr (D̃2)+α2Tr (MD̃)2 +α3Tr (MD̃2)

) 1−n
2n

(31)

∂c

∂t̃
= W̃(ũ).c−λ[

D̃(ũ).c− (cT .D̃(ũ).c).c
]+Mo(c0 −c) (32)

where the superscript (̃.) is used for all non-dimensional variables and operators.
The dimensionless number that arises when scaling the c-axis evolution equation is Mo:

Mo =
(ηn

Σ

)n 1

ΓR X
(33)

Mo is the ratio between a deformation characteristic time τ= (ηn
Σ

)n
and the recrystallization

characteristic time ΓR X , which controls the rate of rotation of c toward the attractor c0. This
dimensionless number quantifies the relative weight of the contributions of recrystallization
versus deformation to the rotation of the c-axis.

3.3. Numerical algorithm

As the evolution of the c-axis orientation depends on the strain rate (D̃(ũ)) and the effective
viscosity η⋆ depends on both the strain rate and the orientation of the c-axis, the system of
coupled equations (31) and (32) is non-linear. To solve it, we linearize the equation describing
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the evolution of the c-axis using a second order backward differentiation formula (BDF2). The
time discretization of the CTI-RX model results in the following system of equations:

−∇̃S̃t+1 +∇̃p̃ t+1 = 0 (34)

S̃t+1 = η̃⋆ t+1
n

(
2α1D̃t+1 +2α2Mt+1D

Tr (Mt+1D̃t+1)+α3(Mt+1D̃t+1 + D̃t+1Mt+1)D
)

η̃⋆ t+1
n = 2

(
α1Tr ((D̃t+1)2)+α2Tr (Mt+1D̃t+1)2 +α3Tr (Mt+1(D̃t+1)2)

) 1−n
2n

(35)

3

2∆t̃

(
ct+1 − 4

3
ct + 1

3
ct−1

)
= W̃(ũt+1).ct+1 −λ

[
D̃(ũt+1).ct+1 − (ct+1T

.D̃(ũt+1).ct+1).ct+1
]

+Mo(c0
t+1 −ct+1)

(36)

Finite elements and variational methods are used to solve the time-discretized problem on
a Lagrangian grid within the C++ environment Rheolef [65]. The domain is spatially discretized
using hexahedral finite elements (unless otherwise mentioned) and an initial c-axis orientation
is prescribed for each element. The FE approximation for the tensorial mechanical parameter
M and the scalar mechanical parameter c is computed with polynomes of order 0 (P0). The FE
approximation for the tensorial strain rate D̃, spin rate W̃ and stress S̃ fields is computed with
polynomes of order 1 (P1). The FE approximation for the displacement field is computed with
polynomes of order 2 (P2).

The Rheolef problem_mixed solver is used to solve the displacement field ũ and the pressure
field p̃ under the incompressibility hypothesis for the linearized version of equation (35), which
is obtained by fixing the apparent viscosity η⋆. A first fix loop is used to solve the non-linearity
associated with η⋆. This loop is nested in a second fix loop that solves the temporal evolution of
the c-axis orientation using equation (36). In practice, it is recommended for numerical efficiency
to flatten the two nested fix loops.

Algorithm 1 presents the numerical algorithm of two nested fix points implemented in R3iCe.
This algorithm is a semi-implicit solver for the coupled equations (31) and (32). The simulated

orientation field c is thus consistent with the displacement field ũ and therefore with the devia-
toric strain rate D̃ and the deviatoric stress S̃. This implementation of CTI-RX model is distributed
as the R3iCe code.

3.4. CTI parameters values for the ice single crystal

As stated in section 2, the values for the CTI parameters, γ, ηn ,n and β (equations (17) and (19))
are defined based on experimental data.

γ corresponds to the ratio of viscosities measured in compression and in tension for an ice
single crystal that is well-oriented for basal slip. Laboratory experiments have shown that this
ratio is very close to one. Therefore in the present numerical simulations, we set γ= 1, as previous
studies [50, 51].

Following Duval et al. (1983) [9] and previous modeling work based on the CTI law [20, 48, 51],
we set n = 3. While experiments in ice single crystals that are well-oriented for basal slip are best
fitted by n = 2, experiments on crystals that are poorly-oriented for basal slip result in n = 3 [9].
Moreover, a value of 3 must be imposed in the CTI formulation in order to recover n = 3 for the
polycrystal response.

β is linked to the ratio between basal and non-basal shearing viscosities. The strong viscoplas-
tic anisotropy of ice is mostly carried by this parameter. In creep experiments at 1 MPa [9], the
ratio between basal and non-basal shear viscosities is on the order of 104. This ratio is related to
β through equation (20), β

n+1
2 = 104. For n = 3, β= 10−2 is a value coherent with those considered

in previous studies using the non-linear CTI formulation [20, 48, 51].
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1: Inputs:
ci ni t

2: Initialize:
c−1 ← ci ni t

c0 ← ci ni t

u0 ← 0
3: for t from 0 to N do ▷ Time evolution loop
4: kc ← 0
5: r esc ←+∞
6: ut+1,kc=0,knl=0 ← ut

7: ct+1,kc=0 ← ct

8: while r esc > tolc do ▷ Fix loop to solved (equation (36))
9: knl ← 0

10: r esnl ←+∞
11: ut+1,kc ,knl=0 ← ut+1,kc

12: while r esnl > tolnl do ▷ Fix loop to solve non linear CTI (equation (31))
13: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc ) ▷ equation (31)
14: find ut+1,kc ,knl+1 ← ut+1,kc ,knl+1(H⋆

n ,ct+1,kc ) ▷ problem_mixed solver on equation (31)
15: r esnl ←||S(η⋆n (ut+1,kc ,knl+1,ct+1,kc ),ut+1,kc ,knl+1,ct+1,kc )−S(H⋆

n ,ut+1,kc ,knl+1,ct+1,kc )||
16: knl ← knl +1
17: end while
18: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc )
19: compute S ← S(H⋆

n ,ut+1,kc ,knl ) ▷ equation (31)
20: find c0 ← c0(S) ▷ equation (26)
21: compute ct+1,kc+1 ← ct+1,kc+1(c0,ut+1,kc ,knl ) ▷ equation (36)
22: r esc ←||S(η⋆n (ut+1,kc ,knl ,ct+1,kc+1),ut+1,kc ,knl+1,ct+1,kc+1)−S(H⋆

n ,ut+1,kc ,knl ,ct+1,kc )||
23: kc ← kc +1
24: end while
25: ut+1 ← ut+1,kc ,knl

26: ct+1 ← ct+1,kc

27: end for

Algorithm 1: Numerical algorithm, based on two nested fix loops: one for solving the viscosity,
η⋆n , nested in a second one solving the temporal evolution of the orientation of c-axis.

n γ β ηn

3 1 10−2 7.5 MPa.s1/3

Table 2. Parameters of the CTI law for the ice single crystal.

The viscosity ηn can be adjusted by comparison with either the experimental response of
the single crystal or that of isotropic polycrystals. Solving the CTI law for uniaxial compression
creep of a single crystal oriented at 45◦ from the compression axis and of a polycrystal with
random orientations picked from a uniform texture results in macroscopic strain rate of D̃ si m

sc =
1.7×10−2

(ηn
Σ

)n
for the single crystal and D̃ si m

px = 5.3×10−5
(ηn
Σ

)n
for the polycrystal. The viscosity

ηn is obtained by comparing the simulated values to the experimental data at 1 MPa [9] (Dexp
sc =(

2×10−5,2×10−4
)

s−1 for the single crystal, Dexp
px = (

9×10−8,3×10−7
)

s−1 for the polycrystal).
ηsc

3 = (4.4,9.4) MPa s1/3 for the single crystal and η
px
3 = (5.6,8.4) MPa s1/3 for the polycrystal are

obtained. The value of 7.5 MPa s1/3 is taken for η3 in order to reproduce the experiment duration
as observed during uniaxial compression tests that are taken, here, as a reference (see section 5.2).
The parameters of the CTI law for the ice single crystal are summarized in table 2.
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4. Validation of the CTI-based implementation for the prediction of the viscoplastic
response

In this section, we verify that the CTI law implemented in R3iCe correctly reproduces the mechan-
ical response of an ice polycrystal deforming by dislocation creep only (no DRX). This is a prereq-
uisite before improving the CTI formulation with a representation of DRX. The ice mechanical
response of the polycrystalline ice is known to be characterized by strong strain and stress het-
erogeneities, which are very likely precursors of dynamic recrystallization [32]. We first compare
the R3iCe predictions to that of the CraFT-EVP model [32], which has been shown to adequately
reproduce these heterogeneous strain fields observed in experiments [32, 66]. Then we investi-
gate the reliability of a simplified mesh configuration for simulating the evolution of the texture
and its impact on the macroscopic mechanical response in a numerically efficient way.

4.1. Stress and strain field predictions: comparison with CraFT-EVP

CraFT-EVP has been used to provide full-field predictions of the mechanical response of ice dur-
ing primary and secondary creep [32]. It is based on an elasto-viscoplastic formulation proposed
by Suquet et al. 2012 [67] and solved using the CraFT software. The predictions of CraFT-EVP for
the mechanical response as well as strain fields were validated by direct comparisons with me-
chanical tests on ice polycrystals that included strain fields measurements by Digital Image Cor-
relation [32, 67]. The macroscopic strain fields predicted by CraFT-EVP were in good agreement
with the experimental observations at 1% strain (secondary creep, prior to any texture evolution
owing to DRX). With no texture evolution, CraFT-EVP and R3iCe both simulate a stationary sec-
ondary creep.

Reproducing accurate stress fields in R3iCe is key since the recrystallization attractor c0

depends on the deviatoric stress S at the element scale (section 2.3). Note that the Elasto-
ViscoPlastic (EVP) law implementd in CraFT-EVP [67] is based on a full description of the crystal
plasticity, in which all possible slip systems contribute to the deformation as a function of
their critical resolved shear stress and the crystal orientation, whereas the CTI law in R3iCe is
a simplified parameterization of the viscoplastic anisotropy, which has been calibrated directly
for experimental data (section 3.4). The objective of the comparison performed below is to verify
that the stress field predicted by R3iCe is, at minimum statistically, representative of a realistic
stress field. Since stress fields have never been measured in polycrystalline ice, the stress field
predicted by CraFT-EVP is here considered as a reference. R3iCe parameters were, of course, not
fitted to the CraFT-EVP viscoplastic response so that the two predictions can be considered as
independent.

Figure 4(a-b) show the polycrystal microstructure generated by a grain growth algorithm using
Neper [68] used for both CraFT-EVP and R3iCe simulations. In this configuration, grains are
defined as a group of connected elements that share the same initial orientation. CraFT-EVP
requires a regular cubic mesh, while the R3iCe polycrystalline microstructure used here was
meshed with a tetrahedral geometry. The resolution of CraFT-EVP simulations were reduced to
match the R3iCe one. Figure 5 shows the component εy y of the strain field and the component
σy y of the stress field on a x y section at z = 0, for a uniaxial compression creep test and after 1%
of macroscopic strain. The simulated strain fields do not compare perfectly between CraFT-EVP
and R3iCe predictions although the overall patterns do not show strong mismatch. Location of
areas in compression (blue) and in extension (red) are similarly prescribed (Figure 5a). Significant
differences between the responses of the models CraFT-EVP and R3iCe are restricted to the first
layers of grains close to the top surface. These differences result from the different boundary
conditions applied in the two models. In R3iCe, the Neumann boundary condition on the top
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surface results on a constant force applied on each element that can lead to heterogeneous
displacement on this surface. As a result, some "weaker" grains deform faster, as represented
by the dark blue areas on Figure 5a. In CraFT-EVP, periodic boundary conditions are imposed
owing to the fact that equations are solved with a Fast Fourier Transform-based method. The
simulated stress fields (Figure 5b) compare satisfactorily in terms of amplitude and global pattern
although the precise stress localisation shows more scattering. Some of this mismatch may also
be explained by the differences in boundary conditions between the two models.

Similarly, the distributions of predicted Von Mises equivalent stress and strain by the two
models show some discrepancies (figure 6). These discrepancies are stronger between the two
configuration in which grains are described by multiple elements (figure 6) and where the impact
of boundary conditions just mentioned is the stronger. Distributions for all components of both
tensors

(
εi j ,σi j

)
are given in appendix B.

In R3iCe, the stress tensor at the element scale is used to predict the recrystallization attrac-
tor c0. This latter is based on the principal direction of the stress tensor v1 and v3 (section 2.3).
Figure 7 shows the distribution of v1 and v3 orientations predicted using both CraFT-EVP (fig-
ure 7a), and R3iCe with a configuration with several elements per grain (figure 7b) and for one
orientation per element (figure 7c). All three configurations predict similar v1 and v3 orientation
distributions and therefore similar c0 orientation distributions are expected.

To summarize, if CraFT-EVP simulations are taken as a reference, the strain and stress fields at
secondary creep, prior to DRX activation, are qualitatively and statistically well predicted by the
CTI constitutive law implemented in R3iCe. In particular, the principal stress tensor directions,
used in R3iCe to simulate dynamic recrystallization impact on orientation evolution is similarly
predicted by the two models.

Figure 4. Microstructure generated via a grain growth using Neper meshed for (a) CraFT-
EVP microstructure with 265302 grid points (b) R3iCe with 262688 tetrahedral elements.
(c) Simplified microstructure in which orientations are defined at the element scale with
hexahedral mesh of 2740 elements.
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Figure 5. Comparison of predicted (a) strain (εy y ) (b) stress (σy y = Sy y + p) fields for the
"grain" microstructure using CraFT-EVP and R3iCe.

4.2. Stress and strain field prediction in a simplified mesh configuration

Resolving CTI-RX with sub-grain scale meshes is numerically very costly. In the following, we
test a microstructure representation composed of one orientation (or grain) per mesh element
(figure 4c) in order to keep a statistically reasonable number of orientations on a mesh size
(∼ 2700 elements).

The distributions of the Von Mises equivalent stress and strain in this one-orientation-per-
mesh-element simulations are compared to those of the simulations with meshes at sub-grain
scale using both the CraFT-EVP and R3iCe models (figure 6). The distributions obtained in this
simplified microstructure representation compare well with those predicted using the CraFT-EVP
model, here considered as a reference. The fact that the CTI-RX fields predictions obtained with a
sub-grain scale mesh departs slightly from the Craft-EVP predictions is attributed, as mentioned
before, to the discrepancy in applied boundary conditions (periodic versus Neumann applied
on the top surface). Please note that this discrepancy is reduced by a larger number of grains
(orientations) in contact with the top surface in the case of the simplified microstructure.

Figure 7 compares the distribution of the principal stress tensor directions v1 and v3 that are
used in the calculation of the dynamic recrystallization attractor in R3iCe. Their is a very good
correspondence between the distributions predicted by CraFT-EVP and by R3iCe with the simpli-
fied microstructure. In the following, all simulations were performed using one independent ori-
entation per element in order to have a large enough number of orientations while keeping rea-
sonable computation times. We assume that this choice has a limited impact on the simulated
stress fields and therefore on the evaluation of the attractor c0 at the scale of the sample.

5. Texture evolution: comparison with experimental data

The aim of this section is to test the ability of the R3iCe model to predict the evolution of the
c-axes orientation with and without dynamic recrystallization (equation (32)). As mentioned in
the introduction, deformation experiments with no or very limited DRX are not possible due to
the fast strain rates and high temperature conditions required. Deformation-only textures may
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Figure 6. Kernel Density Estimation of the Von Mises equivalent strain (a) and stress (b)
fields simulated with CraFT-EVP (EVP, black line) and R3iCe (CTI, cyan line). The dashed
lines show results obtained for simulations where grains are defined by multiple mesh
elements (grains microstructure) (figure 4 a-b). The full line shows a R3iCe simulation
where a single orientation is attributed per element (figure 4 c)

only be sampled in deep ice cores from the central parts of Greenland or Antarctica [11]. These
textures were well reproduced by uniaxial compression simulations performed using the mean-
field ViscoPlastic Self Consistent model [13, 43]. R3iCe prediction for texture evolution without
recrystallization are therefore compared to those of VPSC simulations extracted from [13]. In
contrast, there is a large experimental dataset in which texture evolved in response to both
deformation and DRX. We use this dataset to constrain the predictions of R3iCe for the effect of
DRX on the texture evolution and mechanical behavior in uniaxial compression, uniaxial tension
and simple shear.

The laboratory creep experiments selected to validate the model are:

• Uniaxial compression experiments from Montagnat et al. 2015 [29] (Σ∼ 0.7 MPa, T=-5◦C )
• Uniaxial tension experiments from Jacka and Maccagnan 1984 [27] (Σ∼ 0.4 MPa, T=-3◦C )
• Torsion experiments from Journaux et al. 2019 [31] (Σmax ∼ 0.5 MPa, T=-7◦C ),

where Σ stands for the macroscopic applied stress and Σmax corresponds to the maximum stress
resulting from the applied torque.

The model predictions are also compared with strain-controlled uniaxial compression tests
under confining pressure performed by Qi et al. 2017 [30]. These conditions enabled to reach
higher flow stresses without failure (Σ∼ (1.3,4.3) MPa, T=-10◦C ).

For each configuration, simulations using a configuration with one independent orientation
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Figure 7. Distributions of the principal stress tensor directions v1 and v3 for uniaxial com-
pression on (a) CraFT-EVP simulation (b) R3iCe simulation with grains (c) R3iCe simulation
with one orientation per mesh element.

References Model inputs Physical values

Stress Mo Σ (MPa) ΓR X (d ay s) T (◦C )

without recrystallization Compression 0 1 +∞
Montagnat et al. 2015 [29] Compression 1.03×10−3 0.7 13.8 −5

Jacka et al. 1984 [27] Tension 1.86×10−2 0.4 4.1 −3

Journaux et al. 2019 [31] Simple Shear 1.06×10−3 0.5 36.8 −7

Qi et al. 2017 [30] Compression (1.34,20.8)×10−5 (1.3, 4.3) 4.6 −10

Table 3. Values of the numerical and physical parameters used in the model R3iCe.

per element are performed, starting with initial orientations randomly picked in a uniform
texture. The parameters for all simulations are given in table 3. For all configurations, the
simulated texture evolution is represented by (1) the evolution of the eigenvalues ai of the second
order orientation tensor a(2) (a(2) = 1

N Σ
N
i=0ci ⊗ ci, with N the number of orientations), (2) pole

figures representing the c-axes distribution at various strains, and (3) the evolution with strain of
the texture in a section extracted from the pole figure. These outputs are compared with the pole
figures obtained during the experiments at three selected strain values.

The second order orientation tensor a(2) is a statistical representation of the texture anisotropy
[69]. The c-axes distribution lies within an ellipsoid whose axes are the eigenvalues of a(2) with
1 ≥ a1 ≥ a2 ≥ a3 > 0.
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The simulated strain-rate evolution provides an evaluation of the evolution of the enhance-
ment factor, which is the ratio between the maximum strain rate measured at the onset of DRX,
and the minimum strain rate measured at secondary creep in the experiments, which is the start-
ing point of the simulations. In the simulation this strain-rate enhancement results solely from
the evolution of the texture, whereas in the experiments, changes in the microstructure might
also contribute to it.

5.1. Texture evolution in absence of recrystallization

To test the capability of R3iCe to predict texture evolution, we simulated unixial compression
under a 1 MPa deviatoric stress using one orientation per mesh element with initial orientations
randomly picked from a uniform texture.

Figure 8(a-c) present the evolution with strain (i.e. time) of the eigenvalues (ai , i = 1,3) of the
second order orientation tensor a(2), the strain rate and the texture in the Z plane (perpendicular
to the compression direction). Figure 8(d) shows textures predicted at 22%, 40% and 60% total
strain. The strain-rate curve discontinuities (figure 8b) are technical artefacts imposed by the
operating rules of GRICAD clusters. The shared access restricts simulation duration to 48 hours
which means that the code has to be relaunched every 48 hours. In order to reduce the calculation
time, the convergence criterion is set tougher for the first step and relaxed for the following ones.
The steps observed at each restart reveal the convergence error during the simulation, which
appears to have a limited impact.

A strong cluster (single maximum of c-axes) texture develops as strain increases. This texture
evolution induces geometrical hardening of the polycrystal, expressed by a decrease of the strain-
rate by a factor ∼ 1.5 between 20% and 60% total strain, when the texture is highly clustered
(a1 ≈ 0.71).

Similar cluster textures are observed along deep cold ice cores, for instance along the Talos
Dome ice core [13] where a clustered texture with a1 ≈ 0.7 was measured at about 650 m depth,
where an accumulated strain of 60% is estimated. The simulated texture evolution with strain is
also in good agreement (although slightly weaker) with the one predicted by Montagnat et al. [13]
using the VPSC model, when departing from an isotropic texture (see red dots in figure 8a).

5.2. Uniaxial compression

The evolution with strain (i.e. time) of the eigenvalues (ai , i = 1,3) of the second order orientation
tensor a(2), the strain rate, and the texture in the Z plane (perpendicular to the conpression
direction) predicted for uniaxial compression with DRX under an imposed compressive stress of
0.7 MPa is shown in figure 9. It is compared with experimental measurements from Montagnat et
al. 2015 [29]. These latter were obtained from initially isotropic granular ice compressed at −5◦C
under a constant load with initial stresses of 0.7 and 0.8 MPa, and up to various strains (from 2 to
17.8% bulk shortening).

Comparison of the c-axis pole figures shows a good qualitative agreement between the sim-
ulated and the experimental textures (figure 9(d-e)). Both are girdle textures that become more
concentrated and show an evolution of the cone angle to the compression axis from 45◦ to 35◦

up to ∼ 20% macroscopic strain and remain nearly constant thereafter (figure 9(d)). There is also
a good agreement between the predicted evolution of the eigenvalues of the texture and those
measured at 7%, 12% and 17.8% (figure 9(a)). This good agreement between experimental and
simulated textures was obtained for a value of ΓR X = 13.8 days. During the experiments, 17.8%
strain was reached in 144 hours (∼ 6 days). In the model simulations, this strain is reached in a
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Figure 8. Simulation of uniaxial compression along Y with no recrystallization ΓR X =+∞,
Mo = 0. a) Evolution with strain of the eigenvalues of the second order orientation tensor
(a1 > a2 > a3). Red dots are predictions from the VPSC model taken from [13]; b) evolution
with strain of the macroscopic strain rate; c) evolution of the intensity of the texture with
the colatitude θ over a section defined on the Z plane (dashed blue lines in d)). Data at 22%,
40% and 60% macro strain are shown. The white dashed lines define the angle at ±45◦ from
the compression axis Y ; d) textures presented as pole figures for 22% (i ), 40% (i i ), and 60%
(i i i ) macroscopic strain. All figures presenting texture data are color-coded using the same
colorbar, which is displayed on the right (scales in multiples of a uniform distribution).

shorter time (∼ 130 hours) but the tertiary creep (maximum strain-rate) regime is reached be-
tween 10 to 20% strain, similarly to the experimental observations (see also [27, 37]).

The macroscopic response predicted by R3iCe shows a clear softening associated with the
development of the texture. A maximum enhancement factor (EF) of 4.7 is obtained at ∼ 19%
strain (black arrow, figure 9), which corresponds to a girdle texture with the cone angle at around
∼ 45◦ to the compression axis. This softening is followed by a slight hardening as the girdle texture
slowly evolves towards a cone angle at ∼ 35◦ to the compression axis.

The bulk strain associated with the maximum strain rate and the simulated enhancement
factor cannot be directly compared to that measured in Montagnat et al. 2015 [29] because these
experiments were performed under constant load and the area of the sample section evolved
during the tests, whereas the model simulations are performed in a constant stress configuration.
The simulated strain rate may be corrected by assuming a constant sample volume during the



20Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau and Andréa Tommasi

experiment, what leads to ε̇cor r
si m = ε̇si m × (1+ε)3. This corrected strain rate is plotted in blue

in figure 9(b). It brings the maximum strain rate to ∼ 10% and the enhancement factor to 3.0.
These values are closer to the macroscopic response measured by Montagnat et al. [29], which is
characterized by an enhancement factor between 3.3 to 3.8.

Figure 9. Simulations for uniaxial compression creep along the Y direction with param-
eters from table 3 and comparison with experimental data. a) Evolution with strain of the
eigenvalues of the second order orientation tensor (a1 > a2 > a3). The blue dots correspond
to experimental values from [29]; b) simulated macroscopic strain rate (black) and cor-
rected simulated macroscopic strain rate (blue) to match a constant force boundary condi-
tions instead of the constant stress one used in the simulation. EF stands for Enhancement
Factor; c) evolution with strain of the intensity of the texture with the colatitude θ over a
section defined on the Z plane (dashed blue lines in (d)). Data at 7%, 12% and 17.8% macro
strain are shown. The white dashed lines define the angle at ±45◦ from the compression
axis Y ; d) simulated textures (pole figures) for 7% (i ), 12% (i i ), and 17.8% (i i i ) macroscopic
strain; e) measured textures for the same macroscopic strains [29]. All figures presenting
texture data are color-coded using the same colorbar (scales in multiples of a uniform dis-
tribution).

5.3. Uniaxial tension

Experimental creep tests performed in uniaxial tension are scarce. Jacka et al. 1984 [27] presented
one experiment performed at −3◦ C, up to 9.3% octahedral shear strain that corresponds, follow-
ing the definition given in Jacka et al. 1984 [70], to 13.1% axial strain. At this strain level, they
did not attain the quasi-constant strain rate typical of tertiary creep. The texture obtained, mea-
sured by the classical manual Rigsby stage technique with one orientation per grain, is presented
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in figure 10. The texture is characterized by a small circle girdle with a mean half angle of 50.4◦

and a standard deviation of 15.3◦. Although tertiary creep was not reached in this experiment, an
enhancement factor of ∼ 3, similar to that observed in compression in the same conditions, is
measured.

The texture evolution and macroscopic response predicted by a simulation under uniaxial
tension creep are shown in figure 11. The texture evolves with increasing strain towards a girdle
texture with a cone angle slightly around 45◦ to the extension direction. This texture seems to
stabilize at ∼ 5% axial strain. The distribution of the c-axis angle from the tension axis is given in
figure 12 for the simulated texture at 13% strain. It is similar to the one measured by Jacka et al.
1984 [27] (figure 10). An enhancement factor of about 10 is simulated at 10% axial strain.

Figure 10. Texture obtained after 9% of octahedral tension strain (about 13% axial strain)
performed at −3◦C with an octahedral stress of 0.4 MPa. The star⋆ in the centre of the pole
figure shows the direction of the tension axis. From Jacka et al. 1984 [27].

5.4. Simple shear

The simulated texture evolution in simple shear is compared with observations made by Jour-
naux et al. [31] for torsion experiments on isotropic granular ice performed at −7◦C, under a con-
stant torque corresponding to a maximum shear stress between 0.4 and 0.6 MPa.

The experimental textures are characterized by two sub-maxima, one almost perpendicular
to the shear plane, called M1 and the second one, M2, initially at low angle to the shear plane.
Similar evolution was also observed in simple shear in [26, 41, 71]. As the shear strain increases,
M2 merges with M1 to form a highly concentrated cluster texture characterized by a single
maximum of c-axes normal to the shear plane. The simple shear simulations performed here
reproduce this evolution relatively well, as shown in figure 13.

By accounting for dynamic recrystallization, the R3iCe model is able to reproduce the evolu-
tion of both M1 and M2 maxima with strain. At low shear strains (γ∼ 0.2), M1 concentrates nor-
mal to the shear plane while M2 follows the principal extension direction (white dashed line, fig-
ure 13(c) bottom and figure 13(d)). As strain increases, M2 rotates towards M1. At a shear strain
of 2, the texture is characterized by a slightly elongated single cluster normal to the shear plane
as M1 and M2 merge. The evolution of the eigenvalues of the second order orientation tensor, as
observed in the experiments are also well reproduced (figure 13(a)).

In both experiments and simulations, the strain rate increases rapidly up to γ = 0.3 while the
double-maxima texture develops (figure 13(d)). It continues to increase, but at a progressively
slowing rate as the texture evolves towards a single maximum normal to the shear plane, up to
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Figure 11. Simulations for uniaxial tension creep along the Y direction with parameters
from table 3 and comparison with experimental data. a) Evolution with strain of the
eigenvalues of the second order orientation tensor (a1 > a2 > a3); b) simulated macroscopic
strain rate. EF stands for Enhancement Factor; c) evolution with strain of the intensity of
the texture with the colatitude θ over a section defined on the plane normal to Z (dashed
blue lines in d)). Data at 5%, 13% and 15% axial macroscopic strain are shown. The white
dashed lines define the angle at ±45◦ from the compression axis Y ; d) simulated textures
(represented as pole figures) for 5% (i ), 13% (i i ), and 15% (i i i ) axial macro strain. All figures
presenting texture data are color-coded using the same colorbar (scales in multiples of a
uniform distribution).

γ∼ 3 where is reaches a quasi-steady state. As explained in section 5.2, the discontinuities in the
strain-rate curve (figure 13(b)) are technical artefacts imposed by the operating rules of GRICAD
clusters.

In phase with Treverrow et al. 2012 [37], we define an enhancement factor for simple shear as
the ratio between the strain rate during secondary creep (here it corresponds to the beginning of
the run) and that obtained when the strongest simulated texture is reached. Using this definition,
we obtain an enhancement factor (EF ) of 6.7 that matches Treverrow et al. 2012 [37] data for a
similar applied shear stress.
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Figure 12. Distribution of the angle between the c-axis and the y-axis (tension axis) corre-
sponding to the pole figure (ii) in figure 11d.

5.5. Testing the relative effects of deformation and recrystallization on texture evolution
under higher stresses

The work of Qi et al. [30] provides some of the rare existing highly resolved textures obtained
for temperatures and type of samples similar to those of the experiments simulated above, but
under imposed displacement rates that induce higher stress conditions (see table 3). The stress
values reported in table 3 correspond to the flow stress, i.e. the nearly constant stress reached
after peak stress, at about 20% strain. To reach deviatoric stresses higher than 1 MPa without
failure a confining pressure of 10 MPa was applied.

To test the sensitivity of the dynamic recrystallization formulation to the level of stress, we
performed simulations under creep conditions with the stress values from Qi et al. 2017 [30]
experiments. As CTI-RX equations are relating the deviatoric stress to the deviatoric strain and are
solved under Stokes hypothesis (incompressibility), it is not necessary to numerically apply the
confining pressure. Although boundary conditions differ between the simulations (macroscopic
constant stress) and experiments (macroscopic constant displacement rate), we assumed the
quasi-steady state behavior sampled by the flow stress measurements in the experiments to be
equivalent to the quasi-steady state part of the tertiary creep in the creep simulations [72]. Stable
textures expected at both stages can therefore be compared.

The comparison between simulated and observed textures at different compressive flow
stresses is shown in figure 14. The experimental observations are well reproduced. Both measured
and simulated textures show a transition from a girdle texture to a weak single maximum with
increasing flow stress for a macroscopic strain of ∼ 20%. To correctly fit the experimental data,
a value of ΓR X of 4.6 days is used, which is lower than that used to reproduce the unconfined
compression creep tests of Montagnat et al. 2015 [29] (table 3). This implies a higher contribution
of recrystallization compared to deformation at higher stresses.

6. Discussion

The CTI-RX model presented here enables the simulation of texture evolution in polycrystalline
ice, as shown in the simulations in compression, simple shear and tension, including or not
dynamic recrystallization. Without recrystallization, the texture evolution predicted by the model
reproduces correctly the textures observed along deep ice cores where dynamic recrystallization
is supposed to have a low impact.
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Figure 13. Simulations for simple shear creep test (shear plane normal to the Y -axis and
shear direction parallel to X , ∂ux

∂y < 0) with parameters from table 3 and comparison with
experimental data from [31]. a) Evolution with strain of the eigenvalues of the second order
orientation tensor (a1 > a2 > a3). The blue dots correspond to experimental values from
Journaux et al. 2019 [31]; b) simulated macroscopic strain rate. EF stands for Enhancement
Factor; c) evolution with strain of the intensity of the texture with the colatitude θ over a
section defined on the Z plane (dashed blue lines in d)). Data at γ = 0.2, 0.42 and 1.96
are shown. The white dashed line follows the orientation of the principal extension axis;
d) simulated textures (pole figures, upper hemisphere) at γ = 0.2 (i ), γ = 0.42 (i i ) and
γ= 1.96 (i i i ); e) measured textures for the same macroscopic shear strains [31]. All figures
presenting texture data are color-coded using the same colorbar (scales in multiples of a
uniform distribution).

The novelty of the present model, and its implementation, stands on the simulation of the evo-
lution of the texture (orientations of c-axes) based on a new formulation that (i) introduces an at-
tractor controlled by the local stress field to reproduce the impact of DRX mechanisms (ii) is cou-
pled with the continuous transverse isotropic (CTI) law to account for strain and stress field het-
erogeneities at the crystal scale arising from the crystal viscoplastic anisotropy, (iii) solves these
coupled equations using a semi-implicit numerical scheme in a full-field implementation using
FEM, ensuring consistency between texture evolution and mechanical behavior. The first two in-
gredients derive from experimentally-based knowledge of dynamic recrystallization processes.
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Figure 14. Simulation of uniaxial compression creep test along Y at various stresses.
Comparison between R3iCe predictions and experiments by Qi et al. [30]. (a) Textures
from [30] obtained by EBSD for various strain rates leading to different quasi-steady state
compressive flow stresses at macroscopic strains of ∼ 0.2% (exact strain is indicated at
the top left of each pole figure). (b) Simulated textures obtained by creep under the same
compressive stresses and up to the same macroscopic strains as in (a).

Indeed, recent experimental observations have (i) clearly documented the role of the crys-
tal viscoplastic anisotropy in generating local stresses and strains markedly different from the
macroscopic ones [3, 32, 66] and (ii) revealed that the formation of new orientations (nucleation)
during dynamic recrystallization occurs through bulging (heterogeneous grain boundary migra-
tion) and polygonization (formation of new grains boundaries by organization of dislocations
within a grain) [3, 33, 63, 66, 73]. These two processes are controlled by the local strain and stress
fields and result in recrystallized orientations that are strongly related to, but slightly different
from, the parent grains orientations. The last important experimental observation is that the de-
velopment of recrystallization textures leads to the weakening of the polycrystal mechanical re-
sponse. All these observations justify the choice of a continuous formulation for the c-axis ori-
entation evolution (equation (22)), with a targeted recrystallized orientation that is calculated so
that to maximize the local basal resolved shear stress (equation (26)).

Comparison with tertiary creep experiments made in compression [29,37,39], in simple shear
[31, 37, 41] and in tension [27] supports the fact that the R3iCe model is able to reproduce texture
evolution in conditions similar to those of laboratory experiments (T =−5 to −10◦C, S ∼ 1 MPa).
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For that, a single parameter is adjusted: the recrystallization parameter ΓR X , which weights
the relative contribution of deformation and recrystallization to the rotation of the c-axes. As
expected, at e.g. similar stress conditions, a lower temperature requires a higher ΓR X value (and
therefore a lower weight of dynamic recrystallization) to correctly reproduce the experimental
texture evolution. A noticeable result is that the two-maxima texture measured in simple shear (in
natural and laboratory ice) is correctly reproduced here, together with the kinetics of its evolution
with strain toward a single-maximum cluster.

For all conditions simulated with R3iCe, we show that the CTI-RX model reproduces accurately
the softening at the transition from secondary to tertiary creep. The kinetics of the transition
and the resulting enhancement factors, when departing from an isotropic texture, are correctly
simulated as well, if compared with experimental results performed in similar conditions [22, 27,
29, 36, 37]. Since the present model does not consider any softening mechanism associated with
dislocation interactions or grain boundary migration, this comparison seems to confirm that
texture-induced viscoplastic anisotropy explains most of the mechanical softening measured
during tertiary creep. Therefore, the softening associated with dislocations annihilation and grain
boundary migration during dynamic recrystallization seems to play a secondary role.

Simulations at higher uni-axial compressive stresses (from 1 to 4 MPa) have been performed
to compare with the experiments of Qi et al. 2017 [30]. Contrary to previously mentioned exper-
iments, these latter were performed under a range of imposed strain-rate conditions, which re-
sulted in different flow stresses. A confining pressure of 10 MPa was applied to prevent from fail-
ure at the relatively high strain rates considered. The observation of more clustered textures at
higher flow stress implies that higher strain rates result in a larger impact of deformation relative
to DRX on the texture evolution. R3iCe run under imposed stress without confining pressure is
able to correctly represent this texture clustering with stress. Indeed, experimental textures mea-
sured at 20% strain are satisfyingly reproduced by R3iCe providing that ΓR X is given a relatively
low value (4.6 days for T = −10◦C ) compared to the one determined for unconfined creep com-
pression experiments (13.8 days for T = −5◦C). This low value of ΓR X indicates that, in the sim-
ulations, a high amount of recrystallization is necessary to reproduce the experimental textures
and to counterbalance the impact of deformation on the c-axes rotation. We interpret this ap-
parent contradiction as due to activation of brittle-ductile processes in the experiments. This as-
sumption is based on observations by Kalifa et al. [74], which performed triaxial tests under the
same range of strain rate (∼ 10−5 −104 s−1) than Qi et al. 2017 [30], but under variable confining
pressure from 0 to 10 MPa. By careful observations made right after the peak stress, they esti-
mated the density of cracks in the microstructure and revealed that micro-cracks were visible up
to 10 MPa confining pressure. Micro-cracking is therefore also expected to have occurred in Qi
et al. 2017 [30] experiments. Strong stress concentration happens at crack tips and Chauve et al.
2017 [73] have recently shown that, for ice, this stress concentration can be released through DRX.
The R3iCe formulation does not account for neither micro-cracking nor an effect of the confining
pressure. The enhancement of recrystallization due to plastic energy available around crack tips
needs therefore to be reproduced by increasing the recrystallization rate (ΓR X ).

Recent models of texture evolution during dynamic recrystallization have been proposed by
Rathmann et al. 2021 [54] and Richard et al. 2021,2022 [47, 75], aiming to account for texture-
induced anisotropy of ice in large-scale models. Their formulation is based on an orientation
distribution function (ODF) evolution equation in which dynamic recrystallization is represented
by two terms: one term that accounts for the production of orientations based on a given
parameter, the deformability, that is calculated using the Sachs constant stress assumption, and
a second term that accounts for the diffusion of orientations. This approach is not intended to
predict the mechanical response evolution due to texture development, but the texture evolution
equation can be compared to that in the CTI-RX formulation. The deformability term can be
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obtained from equation (22) by assuming homogeneous stresses (Sachs model). The diffusive
term, which is necessary to reproduce the texture dispersion effect owing to recrystallization
is spontaneously obtained in full-field approaches such as R3iCe, due to the heterogeneous
stress field. Although these models accurately predict steady-state textures for different strain
geometries, the predictions for transient textures evolution are less accurate than that from R3iCe.
This highlights the fundamental role of stress heterogeneities in texture evolution during the
transition between secondary and tertiary creep (from 1 to ∼ 15% strain).

The major strength of [47,54,75] formulations is the numerical efficiency that makes it suitable
for large-scale modelling (glaciers, ice sheets), providing that transient behaviors are not of
concern. In such context, the R3iCe model could be a good candidate to provide constraints to
formulate parameterizations for the temporal evolution, destined to less costly formulations.

The CTI-RX model is not limited to the loading conditions prescribed here or to polycrystalline
ice. Its formulation is generic and can be extended to other polycrystalline materials, provided
that their single crystal viscoplastic behavior can be adequately described using the continuous
transverse isotropic law as defined in equation (17). For instance, the versatility of the CTI-RX
model could enable analyzing the mechanical behavior of materials such as e.g. magnesium and
quartz, which also show a strong viscoplastic anisotropy with hexagonal symmetry.

7. Conclusions

In this paper, we present a new formulation, CTI-RX, to model the effect of dynamic recrystal-
lization on the texture evolution of polycrystalline materials, provided their viscoplastic behavior
can be described using a continuous transverse isotropic (CTI) law. This formulation is validated
in the context of polycrystalline ice.

The integration of an orientation attractor, denoted as c0 along with an anisotropic flow law in
a full-field resolution, allows for the accurate replication of texture evolution during dynamic re-
crystallization in tertiary creep under various stress conditions that are compression, tension and
simple shear. For the latter, an accurate reproduction of the two-maxima texture and its evolution
with strain is obtained. This is made possible by defining c0 such as to maximize the local resolved
shear stress, therefore providing a physically-based formulation for recrystallization-induced c-
axes rotation. This formulation is as simple as possible, given our knowledge of the mechanisms
involved.

The R3iCe model is the result of the implementation of the CTI-RX formulation in a Finite
Element framework. In the model, the texture results from a balance between c-axis rotation due
to viscoplastic deformation and to dynamic recrystallization, which is controlled by ΓR X , the only
tuning parameter of the model. The R3iCe model can therefore be used to constrain the impact
of experimental conditions, such as pressure and temperature, on the recrystallization kinetics.

The accurate reproduction of the textures in the R3iCe model leads to a good prediction of the
mechanical softening associated with dynamic recrystallization. It confirms that texture-induced
viscoplastic anisotropy may explain most of the mechanical softening observed during tertiary
creep and suggests that recovery and grain boundary migration play a secondary role in this
softening.

In conditions of high stresses, where confining pressure is requested in the laboratory to
prevent failure, we propose that the local fracturing at the crystal scale likely enhances dynamic
recrystallization processes and fasten texture evolution with strain. This is consistent with the
lowerΓR X required to fit the texture measured during the confined compression experiments [30]
relative to that used to fit the low stress unconfined compression creep experiments [29], despite
the higher experimental temperature of the latter (−5◦C vs. −10◦C , cf. table 3). These results are
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an additional illustration of the ability of the R3iCe model to help resolve open questions about
ice deformation behavior.

The computational cost of the R3iCe full-field model is not adapted to a direct implementation
in large-scale flow modeling frameworks. The model is nonetheless highly valuable to constrain
the parameterization required to properly account for the texture evolution and its impact on
the mechanical response in complex or changing boundary conditions as those prevailing in the
bottom of deep ice cores, ice streams, and glaciers.
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Appendix A. Demonstration of δi identification

A.1. Constitutive equation CTI and single crystal behavior

The constitutive equation is:

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D (37)

The single crystal anisotropy can be described by three parameters derived for experimental
data :

- ψ1 is the fluidity for parallel shearing to the basal plane :

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23 (38)

- β is the viscosity ratio between shear parallel to the basal plane η and the viscosity for shear
within the basal plane :

g D12 =βψ1

2
g S12 (39)

- γ is the viscosity ratio between compression (or traction) along the c axis ηc and compression
(or traction) in one direction g er within the basal plane:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r (40)

The same compressive (or extensive) stress parallel and normal to the c-axis S = g S33 = g Sr r

results therefore in different strain rates:

g Dr r = γg D33 (41)

A.2. δi identification

To identify the parameters (δ1,δ2,δ3) in the constitutive equation (37), we developed it and
compared to the single crystal behavior.

Using c = (0,0,1)

https://gricad-gitlab.univ-grenoble-alpes.fr/mecaiceige/tools/ice-polycrystal-models/rheolef_cti
https://gricad-gitlab.univ-grenoble-alpes.fr/mecaiceige/tools/ice-polycrystal-models/rheolef_cti
https://mecaiceige.gricad-pages.univ-grenoble-alpes.fr/tools/ice-polycrystal-models/ipms_documentation/Intro.html
https://mecaiceige.gricad-pages.univ-grenoble-alpes.fr/tools/ice-polycrystal-models/ipms_documentation/Intro.html
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M =


0 0 0

0 0 0

0 0 1

 , MD = 1

3


−1 0 0

0 −1 0

0 0 2

 , Tr (Mg D) = g D33 (42)

(1) δ1 is given by applying a stress g S =


0 g S12 0

g S12 0 0

0 0 0


Then

Tr (MS) = 0, (MS+SM)D = 0 (43)

The constitutive equation gives :

g D12 = 2δ1
g S12 (44)

Therefore :

δ1 = ψ1β

4
(45)

(2) δ3 is given by applying a stress g S =


0 0 g S13

0 0 0
g S13 0 0

 :

Then

Tr (MS) = 0, (MS+SM)D = S (46)

The constitutive equation gives :

g D13 = (2δ1 +δ3)g S13 (47)

Therefore

δ3 = ψ1

2

(
1−β)

(48)

(3) δ2 identification is less trivial and presented in more details.

• First, a uniaxial stress σ̃ is applied along the c-axis. The stress tensor is gσ=


0 0 0

0 0 0

0 0 σ̃


and the associated deviatoric stress tensor is g S =


− 1

3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 2
3 σ̃


– Tr (Mg S) = 2σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 4
3 σ̃


D

=


− 4

9 σ̃ 0 0

0 − 4
9 σ̃ 0

0 0 8
9 σ̃


– using the constitutive equation, we obtain for g D33 :

g D33 = δ1
4

3
σ̃+δ2

8

9
σ̃+δ3

8

9
σ̃
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• Then a uniaxial stress σ̃ is applied normal to the c-axis, for instance in the direction

1. The stress tensor is gσ=


σ̃ 0 0

0 0 0

0 0 0

 and the associated deviatoric stress tensor is

g S =


2
3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 − 1
3 σ̃


– Tr (Mg S) =− σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 − 2
3 σ̃


D

=


2
9 σ̃ 0 0

0 2
9 σ̃ 0

0 0 4
9 σ̃


– using the constitutive equation, we obtain for g D11 :

g D11 = δ1
4

3
σ̃+δ2

2

9
σ̃+δ3

2

9
σ̃

• Finally from the grain behavior we can write that γg D33 = g D11 :

γ

(
4

3
δ1 + 8

9
δ2 + 8

9
δ3

)
= 4

3
δ1 + 2

9
δ2 + 2

9
δ3

• This gives :

δ2 = 6δ1
1−γ

4γ−1
−δ3

• and using δ1 and δ3 as defined above:

δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)

Appendix B. Strain and stress field comparison

The figures 15 and 16 show the probability distribution functions for all components of the strain
and stress tensors during uniaxial creep with c-axis evolution (section 4.1).
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Figure 15. Kernel Density Estimation of all components of the strain tensor predicted
by an elasto-viscoplastic (EVP) simulation using CraFT and the Continous Transverse
Isotropic (CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show results for
simulations where grains are well discretized. The full line shows result for the simulation
with one orientation per element.

Figure 16. Kernel Density Estimation of all components of the stress tensor predicted
by an elasto-viscoplastic (EVP) simulation using CraFT and the Continous Transverse
Isotropic (CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show results for
simulations where grains are well discretized. The full line shows result for the simulation
with one orientation per element.
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