
HAL Id: hal-04231337
https://hal.science/hal-04231337

Submitted on 6 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demeter: An Architecture for Long-Term Monitoring of
Software Power Consumption

Lylian Siffre, Gabriel Breuil, Adel Noureddine, Renaud Pawlak

To cite this version:
Lylian Siffre, Gabriel Breuil, Adel Noureddine, Renaud Pawlak. Demeter: An Architecture for Long-
Term Monitoring of Software Power Consumption. 17th European Conference on Software Architec-
ture, Sep 2023, Istanbul, Turkey. �hal-04231337�

https://hal.science/hal-04231337
https://hal.archives-ouvertes.fr


Demeter: An Architecture for Long-Term
Monitoring of Software Power Consumption

Lylian Siffre1, Gabriel Breuil1, Adel Noureddine2[0000−0002−8585−574X], and
Renaud Pawlak3

1 Constellation, France
lylian.siffre@impakt.io, gabriel.breuil@constellation.fr

2 Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA, Pau, France
adel.noureddine@univ-pau.fr

3 Cinchéo, Paris, France
renaud.pawlak@gmail.com

Abstract. Quantifying and long-term monitoring the energy consump-
tion of software in end-user computers is a complex task. It brings multi-
ple technical and sociological challenges. End users need to visualize their
energy consumption and get a per-software feedback about their energy
impact to adapt their software usage towards a greener approach. In this
paper, we present our monitoring and feedback architecture: Demeter.
Our distributed approach monitors energy consumption per application
on runtime, provides end users with immediate feedback through a graph-
ical user interface, and delayed feedback through an analysis email no-
tification. We illustrate our approach with a two-week study of software
usage of three different user profiles in a corporate environment.

Keywords: Power Monitoring · Measurement · Energy Consumption ·
Long-term monitoring · Distributed Architecture · Software Engineering

1 Introduction

Information and Communications Technology (ICT) has both direct and indirect
impacts. The direct impacts are the production, use, and disposal of hardware
while the indirect impacts are the effects of use (induction and obsolescence)
and the extended effects (rebound and emerging risks) [5]. The indirect impacts
are due to the abstract representation of software, API, browsers, networks,
virtualization, and the offshoring of the manifold data centers over the world
[1, 6]. Thus, one has to evaluate how much is ICT energy consuming and what
are the solutions to reduce its energy consumption. The impact of ICT is already
at 4% of the total worldwide energy consumption, more than civil aviation [4].
It is expected that in 2030 the energy consumption of ICT will triple [10].

Energy consumption monitoring software already exists with basic ones such
as the task manager, available on modern OS, informs qualitatively on the soft-
ware energy consumption. Unfortunately, the given data are not always accurate
nor specific. In the past ten years, scientists and practitioners have focused on



2 L. Siffre et al.

developing more elaborate energy-probing software. Johann et al. [9] discussed
the importance of using a generic metric to quantify energy consumption. They
suggest two methods: 1) a white-box method consists in measuring the energy
consumption of the source code and 2) a black-box method consists in measur-
ing the energy consumption of the whole software. Thus the latter allows one
to perform benchmark and individual measurements on computers. Two major
issues arise from the existing energy probing software: 1) they only quantify the
energy consumption of a specific group of software [3, 8, 12] or of the general
energy consumption of a computer without software specification, and 2) the
probing software is not hardware specific. Even though the CPU is well known
to be energy consuming, it is essential to consider the energy consumption of
every hardware component [2, 8, 12].

Most recent monitoring software at the component and application levels,
such as Jolinar and PowerJoular [7, 11], are capable of monitoring hardware
components for a limited number of applications (typically one application or
process), and are primarily available on server environments or Linux systems.
In particular, existing monitoring solutions are either limited in capabilities (i.e.,
only monitoring specific hardware components or a particular software), or can-
not scale up for multi-days or weeks of monitoring (i.e., huge data collected,
high CPU or energy impact of the monitoring tool, invasive monitoring inter-
face, etc.). Moreover, end users tend to be less savvy and more reluctant to install
monitoring software on their computers. The difficulty is in convincing users and
administrators alike to deploy a monitoring software. Our goal is summarized
in two main objectives: 1) provide a long-term monitoring software (days and
weeks measurements), and 2) provide energy feedback to users with fine gran-
ularity (per application and per hardware component). Our presented software
architecture, Demeter, implements these two objectives and allows practitioners,
researchers, and industrial managers to study the energy impact of devices and
users, and encourage eco-friendly software usage behavior.

In this article, we first present Demeter’s architecture and its energy con-
sumption models in Section 2. Then we present, in Section 3, a use case scenario
using Demeter and aiming towards studying the energy impact of users’ software
usage in a corporate environment. Finally, we conclude in Section 4.

2 Architecture of Demeter

In this section, we present Demeter’s architecture in figure 1. The intended pur-
pose is to develop a probing software as global as possible regarding the energy
consumption of applications.Demeter interacts with the end user (who can view
its power consumption and get immediate or delayed feedback), and with appli-
cations and the OS to collect data for usage and energy monitoring. We decided
to focus our attention on four criteria: simplicity in installation, programming,
and usage, energy efficiency as Demeter must have the lowest energy consump-
tion in regards to other applications, adaptability is the possibility to choose the



Title Suppressed Due to Excessive Length 3

probing frequency and change the conversion values, and lightness to have a low
number of external libraries and light-weighted output files.

Figure 1 presents the container diagram of Demeter with its three main parts:

– Monitoring Application (MA): responsible for the usage and power moni-
toring of every application and hardware component. It collects data from
running applications and the OS. Provides the results to the graphical user
interface and to the reporting server.

– Graphical User Interface (GUI): a graphical interface software allowing per-
application visualization to end users, aggregated statistics, and historical
power usages.

– Reporting Server (RS): responsible for analyzing long-term power data, pro-
viding weekly summaries and notifications to end users about their energy
usage and impacts.

Fig. 1: Container diagram of Demeter architecture

Figure 2 presents the component diagram of the Monitoring Application.
Each hardware component has a dedicated software component implementing
the relevant sensors to collect usage or power data, and its associated power
formulas and models to estimate its power consumption. An additional compo-
nent is also implemented to collect processes and applications information and
usage, and a utility component manages the input/output of the application and
communications with the Remote Server. Demeter’s architecture is OS-agnostic,
but our initial implementation only targets Microsoft Windows as it is the most
used desktop OS in corporate environments.

To satisfy the simplicity criterion, we decided to develop a one-agent probing
software. Thus a non-Object-Oriented Programming (OOP) approach seems to
be more suitable, reducing the memory footprint of Demeter and the cost of
object creation and management. Motivated by making Demeter’s energy foot-
print as low as possible, for the energy efficiency criterion, we programmed in
C++ since it is ranked among the most efficient programming languages [13].
Each data source is handled in an independent file, thus no side effect on the
software can be expected when adding or removing a data source. The behavior
of Demeter is based on a unique periodic while loop for which the time between



4 L. Siffre et al.

Fig. 2: Component diagram of Demeter’s Monitoring Application

two iterations of this loop is at least an interval long. It will sequentially collect
data from all activated sources (i.e., calls to a function). Gathering memory and
disk data is done through calls to the Windows Win32 API 4.

CPU: In Demeter, the energy consumption is collected through Running Aver-
age Power Limit (RAPL) and Intel Power Gadget (IPG). They are model-based
software and are precise enough to rely on [14]. We define the CPU percentage
usage of a process as in Equation 1.

U = (
tuser + tkernel

ttotal
)/ncores (1)

Where ncores is the CPU’s core amount, tuser is the duration during which the
process runs in user mode, tkernel is the duration during which the process runs
in kernel mode and ttotal is the duration during which the CPU is active and
idle. These values are retrieved from PSAPI 5. In Equation 1, the sum between
tkernel and tuser corresponds to the invested CPU time for a process. To avoid
having values above 100%, it is required to divide by ncores.

Hard Drive: We use the read and write performance power ratio to calculate
the disk energy consumption, in addition to the idle power consumption. This
ratio is usually provided by manufacturers of modern disk drives. In addition,
if the sequential read and write performance power ratio is also given, we take
this ratio into consideration as it is more aligned with disk operations.

Network: Our aim is to probe the energy consumed by the network interface
controller as Demeter will only estimate the energy consumed by the computer
and its components. Gathering the bandwidth for every process is done using
the Npcap library 6. Npcap sniffs and reads the content of every packet passing
through a network interface. Every available network interface of the computer
is then opened and sniffed. For each process, the upstream and downstream
bandwidths are gathered by our packet parser, using Npcap. The network energy

4 https://learn.microsoft.com/en-us/windows/win32/api/
5 https://learn.microsoft.com/en-US/windows/win32/psapi/psapi-functions
6 https://npcap.com



Title Suppressed Due to Excessive Length 5

consumption of a given software is the sum of its processes’ energy consumption.
We base our model on data from manufacturers’ Ethernet transceiver’s data
sheet.In particular, most transceiver can negotiate multiple bitrates, such as
10/100/1000 Mb · s−1, each with its own energy consumption.

WatchDog: Demeter has to control its CPU usage to have the smallest impact
on the system. Our CPU consumption regulator is called WatchDog (WD), which
can be activated or deactivated by the user. It will pause Demeter’s activity if it
becomes too CPU-consuming. The calibration of the WD is based on the CPU
average consumption of Demeter over the first hour. It pauses the software for
one minute if it detects an over-consumption (i.e. if its energy consumption is
higher than three times the energy mean value during the calibration hour).

Immediate Feedback through a Graphical User Interface (GUI): The
GUI (shown in Figure 3) aims to give immediate feedback to users as Demeter
is also meant to be used by non-technical end users. The GUI allows the user
to create their own dashboard by adding, moving, and removing graphics. The
graphics can be configured with two main parameters: the program to plot and
the resource to plot. The user has the possibility to display its real-time energy
consumption, the cumulative energy consumption of an hour of the day, and the
cumulative energy per day of the current week.

Fig. 3: Screenshot of Demeter’s GUI

The GUI allows end users to monitor the power consumption of all applications.
For each application, users can monitor real-time power consumption, the his-
torical power evolution (through time), and aggregated statistics about power
usage. The flexibility of the GUI (per-application and system-wide measure-
ments and statistics), allows end users to customize the interface according to
their desires and needs, thus allowing a personalized approach with the tool and
in regards to power consumption. We argue that such a relationship where the
user feels empowered in freely and easily choosing what to follow might lead to
better engagement with power efficiency software usage best practices, and thus
to an overall reduction of power consumption.



6 L. Siffre et al.

Delayed Feedback through Cloud Notifications: The third part of Deme-
ter is the Remote Server (RS). The server component is responsible for: 1) storing
all power data sent by the Monitoring Application for all related users (for in-
stance, one RS can handle all users in an office, a company, or a building), 2)
analyzing per-user and cross-user power consumption patterns and trends and
providing an overview of a population’s power profiles (for example, through
a dashboard), and 3) sending recurrent notifications to users with a summary
of their power consumption along with trends and power evolution, and with
recommendations for power reductions. For instance, an email notification could
be sent to users in a corporate environment with the power analysis of their
consumption of the prior week.

In the next section, we present a real-world experiment scenario using Deme-
ter to monitor users software and energy usage in a corporate environment.

3 Long-Term Monitoring Preliminary Study of Software
Energy Consumption in a Corporate Environment

We present in this section the effect of the usage on the energy consumption
of applications. We first determine good practices on the energy consumption
of applications, then we examine their impacts during a two-week experiment
on the overall energy consumption and on user behavior. For our study, we
implement the Monitoring Application and the GUI, but we did not implement
the Remote Server.

3.1 Green Good Practices

To determine precise energy consumption good practices, we measure the energy
consumption of specific application usages on a laptop7. We evaluate the energy
savings that can be made when reducing the quality of a YouTube video, reducing
the quality of music streaming on Spotify, having the lowest possible number of
opened tabs on Google Chrome, and deactivating the camera on Teams.

Watching YouTube videos: All running applications were closed except Demeter
and a YouTube web page on Chrome. We launched the first 30 minutes of the
following YouTube video 8. We measured the energy consumption of Chrome for
three video resolutions: 160p (E = 27.445mWh), 480p (E = 28.425mWh), and
4K (E = 211.773mWh). We observe that the energy consumption related to the
video resolution at 160p and 480p are in the same order of magnitude while the
energy consumption at 4K is 7.7 and 7.45 times higher, respectively. Since we do
not measure the energy consumption of the GPU, we underestimate the overall
energy consumption.We conclude that reducing the video resolution from 4K to
480p helps in reducing energy consumption.

7 Dell Latitude 5420
8 youtube.com/watch?v=XVkADAwOXnU, accessed 04/26/2023



Title Suppressed Due to Excessive Length 7

Music streaming: All applications have been closed except for Demeter and
Spotify. We played each of these two tracks once for 30 minutes 9, 10. We mea-
sured the energy consumption of Spotify for two different audio quality: low
(24Kbits.s−1, E = 7.563mWh) and very high (320Kbits.s−1, E = 12.141mWh).
We conclude that decreasing the quality helps in reducing the overall energy con-
sumption of Spotify of 4, 578mWh.

Browsing webpages on Chrome: We measured and compared the energy con-
sumption of two different scenarios: 1) every minute we refresh one tab, in a
round-robin cycle, while the 14 others are idle; and 2) every five minutes we
open the tab of Wikipedia’s random page 11 and close the previously browsed
ones. We did both measurements during 30 minutes each. We observe that sce-
nario 1 consumes E = 30.649mWh, and scenario 2 consumes E = 17.993mWh.
Therefore, we saved 12, 656mWh thanks to the scenario 2.

Videoconferencing on Teams: We started two 30-minute meetings on Teams, one
with the cameras of both users on, and the one with cameras off. The experiment
during which the cameras were activated had an overall energy consumption of
E = 1 123.405mWh while the latter consumed E = 164.059mWh. Therefore,
the deactivation of both cameras allowed a decrease in energy consumption by
a factor 6.8 and we saved ∆E = 959.346mWh.

3.2 Impact of the Good Practices During a Two-Week Experiment

We showcase the importance of our approach in a two-week experiment, studying
the impact of the recommended good practices on the energy consumption and
sustainability awareness of 3 corporate users. We run Demeter for two weeks
on three laptops (Dell Latitude 5420) for 3 different user profiles: user 1 is a
project leader in digital marketing, user 2 is a help desk technician, and user 3
is a researcher in Green IT. The three users performed their day-to-day tasks at
work as usual. During the first week, no specific instructions have been given to
the users. Then, users were briefed about sustainability software good practices
before the second week. Users finally had to report how they used Teams, Spotify,
and Chrome during the two weeks.

In Figure 4, we gather the energy consumption per day and per component
for users 1, 2, and 3, and for Chrome and Teams. We observe that the CPU
consumption embodies the total energy consumption. The CPU energy is higher
than 99.998% of the total energy for both applications. The upload and download
stream is lower than 0.068% of the total energy. The reading and writing phase
of the hard disk is the least consuming part of the laptop since their energy
consumption is lower than 0.002%.

9 open.spotify.com/track/2QJx8IgKSFfbMQDKxMUioZ?si=13b3e7896d82491e
10 open.spotify.com/track/3KtsRijwp8KunCRYlOdWEi?si=373f58f7accb47ba
11 https://en.wikipedia.org/wiki/Special:Random



8 L. Siffre et al.

Reading HD
Writing HD
CPU

.Upload Net
.Download Net

E
n
er

g
y 

[W
h
]

E
n
er

g
y 

[W
h
]

1st week

CHROME TEAMS

E
n
er

g
y 

[W
h
]

User 2

User 1

2nd week

User 3

1st week 2nd week

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

Fig. 4: Energy consumption [Wh] per component (the reading phase of the hard
disk is yellow, the writing phase of the hard disk is orange, the CPU is blue, the
upload stream is green, and the download stream is red) of Chrome (on the left)
and Teams (on the right) during two weeks for users 1, 2, and 3.

1st week

User 2User 1

2nd week

User 3

E
n
er

g
y 

[W
h
]

E
n
er

g
y 

[W
h
]

Date [dd/mm] Date [dd/mm] Date [dd/mm]

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

Fig. 5: Energy consumption [Wh] per application (Explorer is yellow, Teams is
purple, Chrome is blue, and the total energy consumption of the computer is
gray) during two weeks for users 1, 2, and 3.

Total: Figure 5 shows the energy consumption of users 1, 2, and 3 during two
weeks, with the total energy of all applications (in gray), of Chrome (in blue),
of Teams (in purple), and of the Windows Explorer (in yellow, a file manager in
Windows). Teams and Chrome represent a significant part of the overall energy
consumption of a computer for these three users. In the first week, the sum of
both applications is 57% (User 1), 48% (User 2), and 90% (User 3) of the overall
energy consumption while in the second week, they represent 40% (User 1), 57%
(User 2), and 37% (User 3) of the overall energy. Since Teams was less solicited for
User 1 (no camera) during the second week, a reduction of energy is detected.



Title Suppressed Due to Excessive Length 9

During the first week, Teams represent 24% of the total energy consumption
while it represents 12% in the second week. Users 2 and 3 used Teams more
during the second week which lead to an increase in energy consumption. It
represents 30% (User 2) and 35% (User 3) of the overall energy in the first
week while it represents 43% (User 2) and 25% (User 3) in the second. Finally,
we see for users 1 and 3 that on 28/11 there is an energy consumption peak,
Etot = 12.35Wh (User 1) and Etot = 21.76Wh. (User 3). This is due to the
usage of Windows Explorer, while its energy consumption is very low during the
other days. As we didn’t collect specific and detailed software usage (through
our tool or the questionnaire), it is difficult to analyze why we have this peak
for a specific application on 28/11. However, Demeter allows users and system
administrators to get an insight into software energy consumption for multiple
days and weeks, and therefore identify energy leaks or abnormal energy behavior.

3.3 Discussions and limitations

We recommended good practices for users to modify their software behavior
in order to evaluate their impact on the application’s energy consumption. All
of the recommendations were simple to follow for all three users and did not
require significant changes in their workflows. However, some actions were more
bothering for users, such as closing the browser’s tabs. Since users are not used
to frequently close their tabs, they had to constantly be aware and remember
they have to close unused tabs. This constant awareness might either fade and
users stop applying the recommendations, or it might turn into a habit. A similar
conclusion is brought on the deactivation of the camera which is not a systematic
habit for users. Moreover, this action involves other users who would like to keep
their camera activated or wish to see the face of the speaker. We also found that
the two easiest recommendations to follow were reducing the music and the video
quality. Both recommendations required some actions at the beginning (such as
changing YouTube’s parameters). A longer experiment might give us a wider
overview of the impact of good practices recommendations on the software’s
energy consumption and on user behavior.

Our study and our approach have a few limitations: 1) our study only con-
sisted of three users. Although different in their user profile and role in the office,
they all worked for the same company, 2) the experiment lasted for two weeks,
with the first week serving as a control study, and the second aimed to study the
impact of the green recommendations. Although we monitored software energy
constantly for two weeks, we argue that a complete study needs to analyze us-
age for longer times, and 3) our study is the first essay into understanding user
software usage in an office environment, and therefore we did not follow field
studies protocol (no control group, no randomization of groups, low number of
participants, etc.). However, we tried to control the experiment with a week of
normal usage, and we aimed for three different user profiles.



10 L. Siffre et al.

4 Conclusion and Perspectives

We presented Demeter, a software architecture capable of energy consumption
long-term monitoring of software. We conducted a real world experiment with
three users in a corporate environment for two weeks. We observed a significant
difference in energy consumption after providing users with green software good
practices. We aim to conduct a multi-month study of multiple users in a large
corporate environment using Demeter, with a goal to provide insights into their
energy patterns, impact, and acceptance of green recommendations and actions.

References

1. Bieser, J.C.T., Hilty, L.M.: Assessing indirect environmental effects of information
and communication technology (ict): A systematic literature review. Sustainability
10(8) (2018)

2. Chen, H., Wang, S., Shi, W.: Where does the power go in a computer system:
Experimental analysis and implications. In: 2011 International green computing
conference and workshops. pp. 1–6. IEEE (2011)

3. Dick, M., Kern, E., Drangmeister, J., Naumann, S., Johann, T.: Measurement
and rating of software-induced energy consumption of desktop pcs and servers. In:
EnviroInfo. pp. 290–299 (2011)

4. Efoui-Hess, M.: Climate crisis: The unsustainable use of online video. The Shift
Project pp. 1–36 (2019)

5. Hankel, A., Heimeriks, G., Lago, P.: A systematic literature review of the factors
of influence on the environmental impact of ict. Technologies 6(3), 85 (2018)

6. Horner, N.C., Shehabi, A., Azevedo, I.L.: Known unknowns: indirect energy effects
of information and communication technology. Environmental Research Letters
11(10), 103001 (oct 2016)

7. Islam, S., Noureddine, A., Bashroush, R.: Measuring energy footprint of software
features. In: 2016 IEEE 24th International Conference on Program Comprehension
(ICPC). pp. 1–4. IEEE (2016)

8. Jagroep, E., van der Werf, J.M.E., Jansen, S., Ferreira, M., Visser, J.: Profiling
energy profilers. In: Proceedings of the 30th annual ACM symposium on applied
computing. pp. 2198–2203 (2015)

9. Johann, T., Dick, M., Naumann, S., Kern, E.: How to measure energy-efficiency of
software: Metrics and measurement results. In: 2012 First International Workshop
on Green and Sustainable Software (GREENS). pp. 51–54. IEEE (2012)

10. Jones, N.: The Information Factories. Nature 561, 163–166 (2019)
11. Noureddine, A.: Powerjoular and joularjx: Multi-platform software power monitor-

ing tools. In: 18th International Conference on Intelligent Environments (2022)
12. Ournani, Z.: Software eco-design: investigating and reducing the energy consump-

tion of software. Ph.D. thesis, University of Lille (2021)
13. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva,

J.: Ranking programming languages by energy efficiency. Science of Computer
Programming 205, 102609 (2021)

14. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-
management architecture of the intel microarchitecture code-named sandy bridge.
IEEE Micro 32(2), 20–27 (2012)


	Demeter: An Architecture for Long-Term Monitoring of Software Power Consumption

