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Abstract: The Doppler effect in radio systems has been widely explored by the radio communication
community. However, these studies have been limited to simple motion such as linear translation.
This paper presents a model for the Doppler modulation effect, i.e., the effect of complex movement
on the received signal, using a geometrical approach. Particularly, we focused on studying micro-
Doppler in radio communications produced by vibrations. Exploiting this phenomenon would allow
the performance of passive micro-Doppler effect sensing based on communication. In this paper, we
also propose signal processing techniques to detect the presence of the micro-Doppler effect and to
estimate its parameters. Then, we present some experiments which highlight the micro-Doppler effect
in a radio communication context. Finally, the end of the paper discusses some potential applications
that exploit this phenomenon.

Keywords: micro-Doppler; passive micro-Doppler sensing; communication signal cancellation;
signal detection; signal parameter estimation; RF fingerprinting

1. Introduction

From a wireless communications perspective, the Doppler effect is considered to
model movement effects in propagation environment [1]. It is used to model the effect of
a relative motion between a transmitter and a receiver. The general model for Doppler
effect is to consider a line-of-sight (LOS) configuration, i.e., a unique direct path between
the transmitter and the receiver. In this configuration, it is considered to produce a fre-
quency shift ej2π fdt of the baseband signal (with fd the Doppler shift). However, channel
propagation is usually more complex than a frequency shift due to the Doppler effect
and multipath configuration. Thus, some channel models rely on both aspects, such as
multipath under differential Doppler [2] or statistical channel models [3] using Doppler
fading [4]. In some situations, the Doppler effect is considered to dilate or compress the
received signal when the speed of the wave is of the same order of magnitude as the trans-
mitter speed. This dilation/compression phenomenon is particularly present in acoustic
communications [5,6].

There are many other applications of the Doppler effect in the present day, particularly
in the field of remote sensing techniques. Its exploitation was historically used in astronomy
to measure the radial speed [7] or temperature of a star. However, radar is one of the fields
that most exploits the Doppler effect. Indeed, it is classically used in the field of radar
to measure the speed of a target, for example for a road radar or for a heading direction
estimation. However, there are several other uses of Doppler effect in radar, such as micro-
Doppler [8,9]. Micro-Doppler are generated by micro-motions, such as vibrations, on the
returned signal and can be used for several applications such as drone detection [10] and
motion sensing [11]. Other domains also take advantage of the Doppler effect for remote
sensing purposes, for example, for laser vibrometry [12] or for medical applications such
as echoDoppler.
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Conversely, there are few references where the Doppler effect is used for remote
sensing purposes in radio communication systems such as, for example, [13] on drone
detection and [14] on Doppler-assisted wireless communication. Active RF sensing tech-
niques have also been studied for drone detection exploiting micro-Doppler signatures in
non-cooperative scheme with an RF single tone as an illuminator [15]. Similar techniques
are referred to in the literature as passive radar and exploit communication signals from
an illuminator such as a base station [16]. Particularly, several approaches in passive radar
have focused on micro-Doppler effect extraction and analysis from backscattering signal
using communication signals such as GNSS [17] or OFDM [18]. Conversely, our approach
exploits the micro-Doppler effect produced by vibrations at the antenna of the transmitter
instead of exploiting an illuminator. It can be noted that both micro-Doppler signatures
provide complementary information to characterize a target.

We will model the effect of complex movement on the received signal for wireless
communication systems from the perspectives of performing remote sensing tasks based on
communication itself. Specifically, this work presents the Doppler modulation phenomenon
in radio communications both theoretically and experimentally and explains how to extract
and exploit it for future applications. The contributions of this paper are the following:
(1) modeling the effect of a complex movement on the received signal; (2) provision of
tools for extracting Doppler modulation from communication signals and detecting and
estimating the micro-Doppler effect; and (3) illustration of the phenomenon using real-
world experiments.

Section 2 is about modeling of the Doppler modulation effect. Section 3 deals with
communication signal cancellation for Doppler modulation extraction. Section 4 describes
the signal model of Doppler modulation and the detection and estimation algorithms
of the Doppler modulation effect. Finally, Section 5 demonstrates potential use cases of
the phenomenon among simulation, vibrating object detection, RF fingerprinting, and
vibration analysis.

2. Modeling of the Doppler Modulation Effect

We will model the Doppler modulation effect using a geometrical model for com-
munication systems. Particularly, we will focus on studying the micro-Doppler effect
(the modulation of micro-movement such as vibration) on the received baseband signal.
Furthermore, we also present a testbed and an experiment that highlight the micro-Doppler
effect on a simple transmitted signal, i.e., a signal tone.

2.1. Reminders

Classically, the Doppler effect is represented by:

fRX =
c− vRX
c− vTX

fTX (1)

=
1− vRX

c
1− vTX

c
fTX (2)

with:

• c the speed of light;
• fTX the source frequency;
• fRX the received frequency;
• vTX the source speed;
• vRX the receiver speed.

In radio communications, the Doppler effect can also produce a dilation/compression
of the emitted signal bandwidth called Doppler spread. However, this bandwidth dila-
tion/compression is usually neglected because the Doppler spread is small in comparison
to the bandwidth [1]. Thus, the Doppler effect is considered to simply produce a frequency
shift of the emitted signal.
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In this paper, we consider the case of narrowband communication signals. The nar-
rowband signal conditions required that signal bandwidth B is negligible in comparison to
a central frequency fc and the corresponding model is described as follows [19,20] :

s(t) = a(t) cos(2π fct + φ(t)) (3)

with:

• a(t) an amplitude modulation;
• φ(t) a phase modulation.

Its baseband representation:
s̃(t) = a(t)ejφ(t) (4)

and its analytic signal:
sa(t) = s̃(t)e2π fct (5)

In this article, we consider E(|s̃(t)|2) = 1, i.e. the baseband signal power is uni-
tary. However, the transmitted power Pt can be different from 1, reflecting the signal
amplification process of the emitter.

2.2. Geometrical Modeling

This demonstration use a geometrical model of the movement between the transmitter
and the receiver presented in Figure 1 (inspired by the work of Lyonnet [5]). This method is
based on the ray tracing theory, i.e., a modeling theory widely used in radio communication
for far-field propagation (see [1]). The rays are the trajectories, which are orthogonal to
the wavefronts (constant phase surface) and thus corresponding to the direction of the
wave propagation. The ray tracing theory is a good approximation of a far-field wave
propagation in the space. We will make the assumption of a unique direct path, but the
demonstration can be extended to multipath configurations using virtual sources [5].

We will introduce the angle α, which is the angle between the two vectors~li(0) and
~x(t). Furthermore, we will suppose the vector ~x(t) = x(t)~x, where x(t) is a real function
(that can be either positive or negative depending on time) and ~x a unitary vector oriented
as in Figure 1.

TX

RX

O

Figure 1. Geometrical model.

The signal is sent by the transmitter (TX) using an isotropic antenna and is also
received by the receiver (RX) using an isotropic antenna, so the received signal expression
is the following:

r(t) = A(t− τi(t))s(t− τi(t)) (6)

with:

• τi(t): the signal delay depending on time with τi(t) =
‖~li(t)‖

c ;
• A(t): a loss term due to propagation depending on ‖~li(t)‖.

To demonstrate the effect of movement ~x(t) on the received signal s(t), we make
following hypothesis:

• Hypothesis 1: ‖~x(t)‖ << ‖~li(0)‖, i.e., the transmitter movement ‖~x(t)‖ is negligible
compared to the initial distance ‖~li(0)‖ between the transmitter and receiver during
signal observation time T.
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• Hypothesis 2:
∥∥∥~li(t)∥∥∥ ≈ ∥∥∥~li(t− τi(t))

∥∥∥, i.e., the distance between the transmitter and
receiver at time t− τi(t) is approximately the same as at time t.

• Hypothesis 3: Depending of the movement ~x(t), one of the two following sub-
hypotheses should be chosen:

– Hypothesis 3a: In case of an arbitrary movement ~x(t), the loss term A(t) is con-
sidered constant, i.e., the loss term is considered independent of ‖~li(t)‖ (stronger
hypothesis but more general);

– Hypothesis 3b: In case of a small movement ~x(t) (k‖~x(t)‖ << 1), k‖~li(0)‖ >> 1,
i.e., the product of the wavenumber k = 2π

λ and the initial distance ‖~li(0)‖ is
much greater than 1 (weaker hypothesis but less general).

Considering the hypotheses previously introduced, we obtain the following expression
for received signal (Appendix A):

r(t) = Aa(t− τ0 +
〈~x(t), ~li0〉

c
)

cos(2π fct + k〈~x(t), ~li0〉+ φ(t− τ0 +
〈~x(t), ~li0〉

c
)− φ0) (7)

with:

• A = A(0): a constant loss term due to propagation;

• τ0 = ‖~li(0)‖
c : the initial delay;

• ~li0 =
~li(0)
‖~li(0)‖

: the unitary vector of ~li0;

• φ0 = 2π fcτ0: the initial phase.

Furthermore, its corresponding baseband signal:

r̃(t) = Aa(t− τ0 +
〈~x(t), ~li0〉

c
)ej(k〈~x(t),~li0〉+φ(t−τ0+

〈~x(t), ~li0〉
c )) (8)

= As̃(t− τ0 +
〈~x(t), ~li0〉

c
)e−jφ0 ejk〈~x(t),~li0〉 (9)

For the rest of the article, we will consider that we can decompose the movement
~x(t) = ~vt+ ~m(t) as sum of a linear translation depending of vector~v and a micro-movement
~m(t) due to vibration. It can be noted that, for simplicity, we consider both vectors de-
pending of the same direction, but it is possible to extend the demonstration to a sum
of movements ~x(t) = ∑N

i=1~xi(t) with different directions. Thus, we will then write
〈~x(t), ~li0〉 = (vt + m(t)) cos(α) and the received baseband signal will become:

r̃(t) = As̃(ξt− τ0 +
m(t)

c
cos(α))e−jφ0 ejk〈~x(t),~li0〉 (10)

with ξ = (1 + v
c cos(α)), the dilation/compression factor.

We can observe that the geometrical modeling allows for modeling of the Doppler
modulation term ejk〈~x(t),~li0〉 but also the effect of a complex movement ~x(t) on the trans-
mitted baseband signal. If we consider ~x(t) = ~vt + ~m(t), we can observe that the Doppler
modulation term can be decomposed of the product of a micro-Doppler term ejkm(t) cos(α)

and a Doppler shift term ej2π fdt with fd = v
c fc cos(α). Furthermore, the received baseband

signal is dilated/compressed by a factor ξ = 1 + v
c cos(α) due to the linear translation,

but it also undergoes a Doppler micro-jitter phenomenon m(t)
c cos(α) (similar to a phase

noise term) due to the micro-movement ~m(t). As Tse explained in their book [1], the dila-
tion/compression phenomenon due to the translation can be ignored in practice, because
the Doppler spread ( fd = v

c fc cos(α)) is small (of the order of tens to hundred of Hz in
radio communications) compared to the bandwidth B. On the one hand, if we consider that
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the maximum speed is 300 km/h, which is widely used for telecommunication standards
such as WiFi, LTE, and even GSM, we obtain a maximum Doppler offset fd ≈ 680 Hz for
2.45 GHz ISM band, which is equivalent to 0.28 ppm. On the other hand, the Doppler
micro-jitter effect due to the micro-movement m(t) can also be characterized. If we consider
that the micro-movement is periodic, the resulting phase noise term is a periodic jitter.

Indeed, in this paper, we consider the case of vibrations that are considered often
periodic, especially in rotating machines [21]. Usually, the micro-jitter is negligible in
comparison to the phase noise of an oscillator because the vibration magnitude is in the
order of a millimeter.

As a first approximation of the received signal, we will neglect the Doppler micro-jitter
on the signal:

r̃(t) ≈ As̃(ξt− τ0)e−jφ0 ejk〈~x(t),~li0〉 (11)

The dilation/compression can also be neglected [1]. For this reason, we can also
neglect the dilation/compression and the following signal:

r̃(t) ≈ As̃(t− τ0)e−jφ0 ejk〈~x(t),~li0〉 (12)

More generally, if we consider that 〈~x(t), ~li0〉 << c, the Doppler modulation effect on
the received baseband signal can be expressed similarly as in Equation (12).

It is important to note that the geometrical modeling can be used from a radar point of
view. Indeed, by redesigning Figure 1 to take into account a radar/target configuration (and

not a receiver/transmitter configuration) and by redefining the delay τi(t) =
2‖~li(t)‖

c to take
account the signal backscattering and not a direct propagation, we can obtain the modeling
of the movement’s effect of the target on the received signal. This type of modeling is
similar to the one proposed by V. Chen et al. in [8,9,11] for micro-Doppler effect in radar,
although our modeling allows for the expression of the Doppler dilation and the Doppler
micro-jitter phenomenon on baseband signal.

2.3. Testbed and Experiments
2.3.1. Testbed, Hypothesis and Formalization

We created a testbed (see Figure 2) to highlight the Doppler modulation phenomenon.
In this study, we considered only the micro-Doppler modulation (due to micro-movements
such as vibrations). This choice was justified by the decomposition of the movement
~x(t) = ~vt + ~m(t) and by the fact that the effect of linear translation has already been
explored and theorized by the radio communication community. In this section, we will
restrict the experiment to the simplest transmitted signal, i.e., a sinusoid (also called a
single tone). The configuration of our experiment is the following:

• Hypothesis:

– Isotropic antenna transmitting a sinusoid:
s(t) = cos(2π femt + Φem);

– The micro-movement is a sinusoid:
m(t) = Av sin(2π f0t + Φ0);

– Resulting baseband signal (Jacobi–Anger expansion):

r̃(t) = Aej(β sin(2π f0t+Φ0)+Φ) (β =
2πAv

λ
) (13)

= AejΦ
+∞

∑
n=−∞

(ejΦ0)n Jn(β)ej2πn f0t (14)

• Transmitting system:

– Sinusoid generator: ANRITSU MG3692B;
– Transmitting antenna: Ettus VERT 2450;
– Vibration generator: WOVELOT 037606, nominal voltage 1.5 V;
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– IMU (inertial measurement unit): SparkFun 9DoF Razor IMU M0.

• Receiving system:

– Signal recorder/signal analyzer: Signal Hound BB60C;
– Receiving antenna: Ettus VERT 2450.

• Testing parameters:

– Frequency: 2.45 GHz (affecting λ);
– Voltage of vibration generator: 1.5 V (affecting Av and f0);
– Distance: 2 m (affecting A).

Distance: 2 m
TX RX

x(t)

Figure 2. Experiment setup.

2.3.2. Results

Figure 3 presents the results of the previously described experiment. On the one hand,
Figure 3a corresponds to the spectrum of the synchronized received baseband signal, i.e.,
the frequency offset has been corrected. On the other hand, Figure 3b corresponds to the
spectrum of the IMU signal measuring the vibration at transmitting antenna. The theoretical
model predicts that the harmonics of the spectrum of a received baseband signal are equally
spaced with the value f0. We can observe that this spacing is present in the spectrum and
we can also observe that the spacing of the tones is the same as the vibration frequency
( f0 = 122 Hz) measured by the IMU (placed on the transmitting antenna). However, it can
be noted that the magnitudes are not the same as the model prediction, probably because the
antenna used is not isotropic (theoretical model) and the vibration (Figure 3) is not a pure
sinusoid but has several harmonics. Indeed, the vibration is probably closer than a squared
vibration shape due to the technology employed in the vibration generator (vibrator).
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Figure 3. (a) Spectral density of synchronized baseband signal. (b) Spectral density of IMU signal.
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3. Communication Signal Cancellation

In contrast to the radar domain where the emitted signal is known, in radio communi-
cations the received signal is unknown, except for the modulation scheme and protocol.
So, it is critical to suppress this source of randomness (transmitted data) to better exploit
micro-Doppler for providing useful information about an RF emitter. In this section, we
propose a pre-processing step allowing to remove communication signal designed for
M-ary phase-shift keying (MPSK) modulations. It allows the extraction of frequency offset
and/or Doppler modulation terms from received baseband signal. We present the theoreti-
cal point of view of this approach and illustrate it with practical experiment. In the rest of
the paper, to simplify the notations, we will consider 〈~x(t), ~li0〉 = x(t). We will also neglect
the propagation delay τ0 and initial phase φ0. Thus, the received baseband signal with
additive white Gaussian noise ñ(t) can be written as follows:

r̃(t) = As̃(t)ejkx(t) + ñ(t) (15)

3.1. Theoretical Explanations

In the previous section, we saw that it is possible to model the Doppler modulation
effect on a received baseband signal using Equation (12). The main problem is that for
very small movement, particularly for micro-movement such as vibration, it is difficult
to measure directly the Doppler modulation on received baseband signal, either in the
time or frequency domains. On the one hand, the Doppler modulation is similar to phase
modulation, and due to the small amplitude of the micro-movement, analyzing it from the
received baseband signal in the time domain it is extremely complex. On the other hand,
the effect of the micro-movement on the received spectrum is completely hidden by the
communication signal because both are convolved in the frequency domain.

The idea developed in this section is to perform some pre-processing on the received
baseband signal to suppress the communication signal s̃(t) and thus to facilitate the study of
the Doppler modulation term. In this paper, we will consider the case of phase modulation
(M-PSK). Thus, the following signal model can be expressed as follows:

r̃(t) = As̃(t)ejkx(t) + ñ(t) (16)

with:

• A: the amplitude of the signal;
• s̃(t) = ∑+∞

k=−∞ akπ( t−kT0
T0

) the MPSK signal;

• ak = (ej 2iπ
M )i∼U(J0 ; M−1K);

• M: the modulation order;
• π(t): the rectangular function;
• T0: the symbol period;
• ñ(t) ∼ CN (0, 1): an additive white Gaussian complex noise.

A well-known method for the synchronization of M-PSK modulations (with rectan-
gular function as pulse shaping filter) is the suppression of the modulation on a received
signal by powering the received signal by a factor M (see Glavieux [22]):

s̃(t)M = (
+∞

∑
k=−∞

akπ(
t− kT0

T0
))M (17)

=
+∞

∑
k=−∞

aM
k π(

t− kT0

T0
) (18)

=
+∞

∑
k=−∞

π(
t− kT0

T0
) (19)

= 1 (20)
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This processing usually allows for the suppression of the modulation to estimate the
frequency offset between the transmitter and the receiver. Our method of communication
signal cancellation will be based on this pre-processing step, allowing suppression of the
modulation while maintaining a term linked to the Doppler modulation effect (ejkx(t) →
ejkMx(t)). This pre-processing hence gives the following signal:

r̃(t)M = (s̃(t)ejkx(t) + ñ(t))M (21)

Using Newton’s binomial theorem, we can decompose the signal similar to a sum of
different terms:

r̃(t)M =
M

∑
m=0

(
M
m

)
Am s̃(t)mejkmx(t)ñ(t)M−m (22)

If the SNR is relatively high, it is possible to keep only the first main terms of the
previous expression (see Appendix B):

r̃(t)M ≈ AMejkMx(t) + MAM−1 s̃(t)(M−1)ejk(M−1)x(t)ñ(t) (23)

≈ AMejkMx(t) + ñ1(t) (24)

Equation (24) contains two terms, the first corresponds to the modified Doppler
modulation term AMejkMx(t) and the second one ñ1(t) can be assumed as an additive
complex white noise (see Appendix B).

In summary, this pre-processing consists of powering the received signal by a factor
M corresponding to the modulation order and allowing the suppression of the modulation
(s̃(t)M = 1) while keeping the Doppler modulation term (modified by the power term M). It
is important to note that this processing is robust to a potential frequency offset ∆ f between
the transmitter and the receiver, because the resulting processed signal will contain the
modified Doppler modulation term multiplied by a term function of the modified Doppler
shift ej2π∆ f t → ej2πM∆ f t.

3.2. Testbed and Experiment
3.2.1. Testbed, Hypothesis and Formalization

We used a configuration inspired from the previous testbed (see Figure 2) to highlight
our method of canceling communication signal. Specifically, we confined ourselves to the
study of micro-Doppler (due to micro-movement such as vibration). This choice has been
justified in the previous section. Furthermore, we will restrict the present experiment to the
2-PSK communication signal. The configuration of our experiment is the following:

• Hypothesis:

– Isotropic antenna transmitting a 2-PSK:
s̃(t) = ∑+∞

k=−∞ akπ( t−kT0
T0

)

– The micro-movement is a sinusoid:
m(t) = Av sin(2π f0t + Φ0)

– Resulting baseband signal:

r̃(t) = A2 s̃(t)2ej 4πAv sin(wvt)
λ + ñ1(t) (25)

• Transmitting system:

– Signal generator: ANRITSU MS2830A;
– Transmitting antenna: Ettus VERT 2450;
– Vibration generator: WOVELOT 178037606, nominal voltage 1.5V.

• Receiving system:

– Signal recorder/Signal Analyzer: Signal Hound BB60C;
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– Receiving antenna: Ettus VERT 2450.

• Testing parameters:

– Frequency: 2.45 GHz;
– Voltage of vibration generator: 1.5 V;
– Distance: 2 m;
– Modulation: BPSK (rectangular pulse shaping).

3.2.2. Results

An example of the obtained signal is shown in Figure 4 for a BPSK (2-PSK) modulation
with a rectangular function as pulse shaping filter. We can see in the upper subfigures
(Figure 4a,b) the spectra obtained with a reference signal (i.e., a single tone). Contrarily,
the lower subfigures (Figure 4c,d) show the spectra obtained with the pre-processing on
BPSK . In parallel, the left subfigures (Figure 4a,c) correspond to configurations where the
vibrator is off, and the right subfigures (Figure 4b,d) correspond to configurations where
the vibrator is on. In the right subfigures, we can observe the presence of the micro-Doppler
effect on the spectra (Figure 4b,d), contrasting Figure 4a,c and indicating the presence of
vibration for both the single tone and pre-processed BPSK signal.

(a) (b)

(c) (d)
Figure 4. (a) Spectral density of single tone without Doppler. (b) Spectral density of single tone
with Doppler. (c) Spectral density of BPSK without Doppler (x2). (d) Spectral density of BPSK with
Doppler (x2).

4. Signal Model, Detection and Estimation

In this section, we propose a signal model derived from the decomposition of the
movement ~x(t) = ~vt + ~m(t) used in the previous sections. Furthermore, we propose a
binary hypothesis testing approach based on cyclostationary properties of the signal and
an algorithm that allows for the estimation of different parameters of the signal. We also
present simulation results for the detection and estimation.
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4.1. Signal Model of Doppler Modulation

In signal processing, a signal model is a mathematical modeling of signals of interest
such as the harmonics model for the MUSIC algorithm [23]. The proposed signal model
aims to describe the Doppler modulation term ejkx(t). This term corresponds either to a
received signal if the transmitted signal is a sinusoid or to a processed received signal
in the case of M-PSK modulation using technique present in Section 3. Furthermore, we
also model a frequency offset ∆ f corresponding to the frequency difference between the
transmitter and the receiver and an additive white Gaussian complex noise. In this part,
we consider the amplitude term A as unitary. It can be interpret as a normalization of the
received signal by a factor A. The corresponding signal model is as follows:

ỹ(t) = ejkx(t)ej2π∆ f t + ñ(t) (26)

= ejkm(t)ej2π f1t + ñ(t) (27)

with:

• x(t) = vt + m(t),
• f1 = ∆ f + fd: the total frequency offset taking into account the Doppler shift fd = v

c fc
and the frequency offset ∆ f between transmitter and receiver;

• ñ(t) ∼ CN (0, σ2): an additive white Gaussian complex noise.

We consider the micro-movement m(t) as periodic of frequency f0, as it is common to
consider a vibration as periodic in the literature [21]. We can decompose the micro-Doppler
term using the Fourier series as follows:

ejkm(t) =
+∞

∑
n=−∞

anej2π f0t (28)

with:

• an =
∫ +∞
−∞ ejkm(t)e−j2πn f0tdt: a Fourier series coefficient.

We obtain the following expression, the so-called theoretical model:

ỹ(t) = (
+∞

∑
n=−∞

anej2πn f0t)ej2π f1t + ñ(t) (29)

=
+∞

∑
n=−∞

anej2π(n f0+ f1)t + ñ(t) (30)

The associated spectrum:

Ỹ( f ) =
+∞

∑
n=−∞

an δ( f − (n f0 + f1)) + Ñ( f ) (31)

with:

• Ñ( f ): the spectrum of the additive white Gaussian complex noise.

It can be noted that a subcase of this signal model has been already explained in [8]
for sinusoidal vibration in a radar context.

4.2. Detection Method
4.2.1. Theoretical Explanations

In this work, we aim to detect micro-movement using a hypothesis test. As we can
see in Figure 4, when the vibrator is off (subfigures Figure 4a,c), we obtain an exponential
term similar to the frequency offset (H0) between the transmitter and the receiver; however,
when the vibrator is on (subfigures Figure 4b,d), we obtain the modulation term (H1)
described by the theoretical model.
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We can then define two hypotheses for binary detection test:

H0 : aej2π f1t + ñ(t)

H1 :
+∞

∑
n=−∞

anej2π(n f0+ f1)t + ñ(t)
(32)

The micro-Doppler term ejkm(t) can be decomposed using Fourier series due to periodic
properties. So, it has also cyclostationary properties because periodic signals are part of a
cyclostationary process [21]. We will then define a binary hypothesis testing approach (see
Figure 5) that exploits the cyclostationary properties of the signal to detect the presence
of micro-Doppler.

Figure 5. Detection process including transformation step.

Our detection test is based on a modified version of the binary hypothesis test [24]
used for modulation detection in additive white Gaussian complex noise (see Appendix C).
Note that [25] seems to extend this detection test for cyclostationary signals. Similar to them,
our binary hypothesis testing approach use the cyclic frequency domain profile (CDP):

I(α) = max f |Cα
x( f )| (33)

with:

• Cα
x( f ): the spectral coherence;

• α: the cyclic frequency (here equivalent to f0).

The alternative hypothesis H1 (Equation (32)) is not cyclostationary due to the fre-
quency offset term ej2π f1t. Before performing the hypothesis test, we apply a transformation
h(ỹ) called synchronization on the incoming signal and presented in Equation (34). The as-
sociated hypotheses derived from this transformation are presented in Equation (35). Note
that the resulting alternative hypothesis H

′
1 now has cyclostationary properties.

The transformation h(ỹ) is:

h(ỹ) = ỹ(t)e−j2π f̂1t (34)

with:

• f̂1: the estimated frequency offset using Fourier transform as mentioned by [26].

The associated hypotheses:

H0
h(ỹ)→ H

′
0 : a + ñ

′
(t)

H1
h(ỹ)→ H

′
1 :

+∞

∑
n=−∞

anej2πn f0t + ñ
′
(t)

(35)

with:

• n′(t) = n(t)e−j2π f̂1t assumed to be an additive white Gaussian complex noise.

Our modified test is based on the following statistic:

CI =
I(α)√

1
N ∑αmax

α=αmin
I(α)2

(36)
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Furthermore, a specific threshold computed for the null hypothesis:

CTH =
max(I(α))√

1
N ∑αmax

α=αmin
I(α)2

(37)

As mentioned in [24,25], CTH is a random variable due to random noise. The false
alarm rate can be obtained by probability function estimation (see Appendix C).

The binary hypothesis testing is performed as follows:

CI ≤ CTH : Declare H0

CI > CTH : Declare H1
(38)

4.2.2. Results

One hundred simulations have been realized to compare performances over different
observation times T and different SNR values with sampling frequency Fs = 1000 Hz (see
Figure 6). The signal used to model the micro-Doppler is a sinusoidal frequency-modulated
(SFM) signal with a frequency offset component and an additive white Gaussian complex
noise. The motivation to use an SFM signal is mainly because it is part of the signal
model described by Equation (30). Furthermore, throughout this study we have considered
a sinusoidal vibration for micro-movement. Finally, we used simulation because it is
more convenient for the experimental data and makes the experiment controllable and
reproducible. Thus, the signal used for simulation is the following:

s̃(t) = ejβ sin(2π f0t)ej2π f1t + ñ(t) (39)

with:

• β = 0.1: the modulation index;
• f0 ∈ [30, 150] Hz: the periodic frequency;
• f1 ∈ [−50, 50] Hz: the frequency offset;
• ñ(t): the additive white Gaussian complex noise.

Figure 6. Detection probability curve with 10% False Alarm.
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The performance of the detection test improves with increasing observation time T as
it was mentioned by [24,25]. Concerning the simulations of detection procedure, we used
the Matlab implementation of CDP provided by Jerome Antoni [27,28]. All the technical
aspects of CDP implementation, such as complexity, are presented in [27].

4.3. Estimation Algorithm

The theoretical model of signal previously introduced has several a priori properties
that can be exploited: (1) the signal has line spectrum properties, i.e., it is sparse on the
Fourier domain; (2) the micro-Doppler is periodic and cyclostationary, and thus, it can
be decomposed in Fourier series; and (3) the fundamental a0 has more energy than the
harmonics as can be seen in Figures 3 and 4.

4.3.1. Spectral Estimation Techniques

There are many spectral estimation techniques that can be used to estimate the different
components of our signal, i.e., the central frequency f1, the periodic frequency f0, and the
amplitudes of the line (an)n∈Z [23,29]:

• Classical spectral estimation: these methods are called non-parametric methods be-
cause they do not require a priori information on the studied signal. One of the most
famous methods is the periodogram based on the discrete Fourier transform.

• High-resolution methods: these methods are based on line spectrum (multiple tones)
with additive white Gaussian noise. The main methods are: AR, Capon, and sub-space
methods (MUSIC, ESPRIT.). The sub-space methods are particularly robust to noise.

• Sparse approximation: the sparsity consists of a signal to decompose it as a small
number of atoms. These atoms can be part of a Fourier basis, wavelet basis, or other
dictionaries (k-SVD, etc.). There exist many methods for estimating the different
components such as basis pursuit, matching pursuit or thresholding techniques.

• Specific estimation techniques: it is possible to use an estimation technique that
consists of the estimation of the parameters of a signal. For example, Niu et al. [30] pro-
posed an estimation technique for sinusoidal frequency-modulated (SFM) signal. Note
that SFM is a special case of our signal model where f1 = 0 and m(t) = Av sin(w0t).

4.3.2. Proposed Algorithm

The signal’s structure described in Equation (30) can be reformulated as follows:

X = Dα + N (40)

with:

• X = [x(0) . . . x(L− 1)]T : the vector containing the signal (L× 1);
• D = [V−N . . . V0 . . . VN ]: the dictionary (L× (2N + 1)) containing the different tones

Vn;
• Vn = [1 e2π( f1+n f0)Ts . . . e2π( f1+n f0)(L−1)Ts ]T : a vector containing the nth tone signal,
• Ts the sampling time;
• α = [a−N . . . a0 . . . aN ]

T : the amplitude vector containing the tones amplitude;
• N = [n(0) . . . n(L− 1)]T : the vector containing the additive white Gaussian complex

noise.

The methods presented previously are either too general (spectral estimation meth-
ods) or too specific (parameter estimation methods). Here, we introduce the Parameters
Estimation Algorithm Using Structured Dictionary (PEA-SD) technique that exploits all the
a priori information known on the signal without being too limiting. It exploits: (1) the fun-
damental ( f1), which has an amplitude greater than the harmonics; (2) the micro-Doppler
term, which is periodic ( f0); (3) the line spectrum has a specific structure ( f1 + n f0 with
n ∈ Z). One important step of the algorithm exploits the structure of the signal using
a dictionary to estimate the amplitudes. This type of approach has been developed by
Mototolea et al. [31] for drone detection purposes using a priori information on the signal



Remote Sens. 2022, 14, 6310 14 of 25

structure. Furthermore, the maximum likelihood technique used for amplitudes estimation
in high-resolution methods (MUSIC, ESPRIT, etc.) is also based on this type of structured
dictionary as explained by Badeau in [32]. Our proposal is the following (see Algorithm 1):

Algorithm 1: Proposed algorithm

Result: The periodic frequency f̂0, the central frequency f̂1 and the amplitudes α̂

Estimate f1;
Estimate f0;
Construct the dictionary D;
Estimate α.

For each parameter’s estimation, it is possible to use several methods:

• Estimate f1: Maximum likelihood method [26], high-resolution methods (MUSIC,
ESPRIT), etc.

• Estimate f0: Autocorrelation function (AF), Cyclic Autocorrelation Function [30], etc.
• Estimate α:

– Maximum likelihood [32]: α̂ = (DH D)−1DHX
– Maximum a posteriori (Derived from the associated loss function: ‖Dα− X‖2 +

γ ∑N
n=−N cna2

n = (Dα− X)H(Dα− X) + (γαHCα): α̂ = (DH D + γC)−1DHX.

As previously mentioned, in the last step of the proposed algorithm, it is possible
to use a maximum a posteriori estimation procedure to estimate the amplitudes α using
supplementary a priori knowledge. Indeed, the fundamental a0 is usually greater than
the harmonics amplitude (an)n∈J−N;NK∗ (see Figure 3). It is then possible to use a con-
straint matrix C to impose the constraints during the amplitudes estimation. The ma-
trix C = diag([c−N . . . c0 . . . cN ]

T) is diagonal and is equivalent to the following con-
straint ∑N

n=−N cna2
n. This constraint method is a generalization of the ridge regularization

∑N
n=−N a2

n (a case where C is an identity matrix), which is widely used in machine learning
to reduce the parameter amplitudes of a linear model. From a statistical point of view,
enforcing the constraint matrix C to estimate the amplitude is equivalent to modeling the
amplitude α as a random variable depending on a multivariate normal complex distri-
bution with mean vector µ = [0 . . . 0]T and a covariance matrix Σ = (γC)−1. Note that
the parameter γ is a hyperparameter that makes a trade-off between reconstruction error
‖Dα̂− X‖2 and amplitude constraints ∑N

n=−N cna2
n.

It is also possible to estimate the noise variance σ2 as follows [32]:

σ̂2 =
1
L
‖Dα̂− X‖2 (41)

Note that the proposed algorithm corresponds to a family of algorithms. Indeed, each
step (except dictionary construction) is not dependent on a particular method. For example,
the estimation of f1 can be done using either Fourier transformation or high-resolution
methods such as MUSIC. This allows for the creation of an algorithm highly adapted for a
particular situation.

4.3.3. Results

As previously mentioned, one hundred simulations were realized to compare per-
formances over different observations times T and different SNR values with sampling
frequency Fs = 1000 Hz. The signal used for the simulations is, as previously explained,
a sinusoidal frequency-modulated (SFM) signal with a frequency offset component and
additive white Gaussian complex noise:

s̃(t) = ejβ sin(2π f0t)ej2π f1t + ñ(t) (42)
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with:

• β = 0.1: the modulation index;
• f0 ∈ [30, 150]: the periodic frequency;
• f1 ∈ [−50, 50]: the frequency offset;
• ñ(t): the additive white Gaussian complex noise.

In this section, we compare several estimation methods corresponding with our
signal model:

• Matching pursuit: a sparse approximation algorithm using a greedy approach [33].
The dictionary used for sparse approximation is a Fourier redundant dictionary with
frequency spacing of 0.1 Hz.

• Root-MUSIC: a high-resolution algorithm using noise subspace properties [32]. We
use the “rootmusic” Matlab function to estimate the different frequency components.

• Proposed algorithm: the estimation algorithm we proposed that exploits all the a priori
information derived from the signal model using Equations (43) and (44). The fre-
quency precision used to estimate f1 is 0.01 Hz.

The estimation of f1 is performed using [26]:

f̂1 = arg max f |Ỹ( f )|2 (43)

The estimation of f0 is performed using [24]:

f̂0 = arg maxα∈[αmin ,αmax ] I(α) (44)

The metric used to compared the different methods is mean square reconstruction
error (MSRE) (also called reconstruction MSE):

MSRE =
‖S̃− Dα̂‖2

L
(45)

with:

• L: the signal length;
• S̃ = [s̃(0), . . . , s̃(L− 1)]T : the signal s̃(t);
• D: the dictionary used for estimation (depending of the method);
• α̂: the estimated weight.

Our proposed algorithm gives better results than matching pursuit or Root-MUSIC
for different time durations T and even for low SNR values (see Figure 7a,b). One can
argue that the better performance of our method over matching pursuit is due to the
relative higher precision of the Fourier transform. However, we tried to build a dictionary
using a frequency precision of 0.01 Hz, but the memory required was too high to perform
matching pursuit because for T = 10 s the dictionary size is (105 ∗ 104). Note that all
studied estimation techniques estimate the atoms/components of a dictionary then perform
amplitude estimation. So, the amplitude estimation method used for all estimation methods
is the maximum likelihood.

4.4. Hybrid Detection/Estimation Procedure

As we can see, the statistical detection test and the estimation procedure require
the same tools. Indeed, the estimation of f1 is based on the Fourier transform, which is
computed at the first step of a detection test to synchronize the signal and the hypothesis
test detects the cyclic frequency f0 present on the signal using a cyclic frequency domain
profile (CDP). So, for practical uses, it can be beneficial to use a hybrid detection/estimation
procedure, as described in Figure 8.
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(a) (b)
Figure 7. (a) Mean square reconstruction error against SNR for T = 1 s. (b) Mean square reconstruction
error against SNR for T = 10 s.

Detection Estimation
Signal

Presence:
Yes/No

Figure 8. Hybrid detection/estimation procedure.

5. Future Use Cases

In this section, we present future use cases exploiting the Doppler modulation effect
especially for micro-Doppler in a radio communications context.

The previous sections were widely theoretical, trying to formalize the physical phe-
nomenon and the signal processing problems (signal cancellation, detection, and estimation)
allowing exploitation of this phenomenon. The following subsection presents several use
cases of the Doppler modulation specifically micro-Doppler modulation, i.e., x(t) = m(t),
a micro-movement such as vibration. Four different use cases are presented in this section.

5.1. Simulation

The Doppler modulation effect can be used to simulate multipath channel configura-
tions under complex movement. The presented geometrical model is restricted to a unique
direct path, but as previously mentioned, it is possible to model a multipath configuration
using virtual sources [5]. This modeling approach can be another perspective different
from classical models such as multipath under differential Doppler [2] or statistical channel
models [3] based on Clarke model [4]. Note that a common characteristic of these models,
including ours, is that all are based on ray tracing theory.

5.2. Vibration Object Detection

The micro-Doppler can be used for detection of vibrating objects such as drones. Using
the proposed binary hypothesis test, it is possible to detect vibrating objects. Furthermore,
our estimation algorithm can be used to estimate the properties of the signal, i.e., the
vibration frequency f0 and the amplitude α. For example, as mentioned in Matthan [13],
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the vibration frequency f0 can be used to estimate the size of a drone. The amplitude α
can be used to differentiate drones of the same model or to classify specific movements
(hovering, etc.).

5.3. RF Fingerprinting

RF fingerprinting, or radio fingerprinting, is a set of techniques allowing for the
identification of a transmitter by the imperfection of its components. These techniques are
used to secure communications as a non-cryptographic authentication method or to detect
intrusions/wireless attacks. The estimated parameters f̂0 and α̂ can be used as a set of new
features for RF fingerprinting method. Furthermore, these features can be associated with
classical features for RF fingerprinting approaches, such as those proposed in [34] (I/Q
offset, etc.).

5.4. Vibration Analysis

The micro-Doppler effect can be used for vibration analysis allowing, for example,
the detection of mechanical gear bearing vibration or similar default problems [21]. To
perform this analysis, a transmitter is fixed on a monitored machine and the micro-Doppler
parameters are extracted from the communication at the receiver side. This approach would
allow for a cheaper and simpler monitoring method than other classical methods based
on sensors.

6. Conclusions

The Doppler modulation effect corresponds to the effect of complex movement on
received signal. Particularly, in this paper, we focused on the micro-Doppler effect pro-
duced by vibration. To the best of our knowledge, this study is the first attempt to model
it for radio communication systems. Moreover, we also have proposed signal process-
ing techniques to exploit this phenomenon among communication signal cancellation,
detection, and estimation. The communication signal cancellation step allows for the
removal of communication signal (M-PSK) from the received signal to facilitate analysis
of Doppler modulation. Then, the detection step allows for the detection of the presence
of micro-Doppler in the communication. Finally, we proposed an estimation algorithm,
called PEA-SD, designed to estimate micro-Doppler parameters, and it was demonstrated
that it outperforms classic spectral estimation algorithms. These tools would allow for the
development of RF sensing applications based on communication itself at the physical
layer. Finally, this work can also make some connections with other domains such as the
micro-Doppler effect in radar, especially in passive radar.

Concerning further works, we intend to explore new signal processing techniques
such as signal cancellation techniques for other modulations. Moreover, the exploration
of new methods to make micro-Doppler effect detection and estimation less sensitive to
observation time is also another important topic. Finally, developing use cases is paramount
to prove that the Doppler modulation effect in radio communications is not just a theoretical
problem but can afford real-world applications.
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Appendix A. Doppler Modulation: Geometrical Modeling Simplifications

The goal of this appendix is to formulate the received signal dependence on transmitter
movement ~x(t) using the previously introduced relation r(t) = A(t − τi(t))s(t − τi(t)).
To do so, we proceed in three steps to obtain Equation (7).

Appendix A.1. Step 1: Geometrical Simplification

The vector ~li(t) = ~li(0) − ~x(t) is the distance between the transmitter and the re-
ceiver and depends on time. Firstly, to simplify ‖~li(t)‖, the expression of ‖~li(t)‖2 needs to
be simplified:

‖~li(t)‖2 = ‖~li(0)−~x(t)‖2 (A1)

= ‖~li(0)‖2 − 2〈~x(t),~li(0)〉+ ‖~x(t)‖2 (A2)

= ‖~li(0)‖2 − 2‖~li(0)‖〈~x(t), ~li0〉+ ‖~x(t)‖2 (A3)

where~li(0) = ‖~li(0)‖~li0.
Considering hypothesis 1 (‖~x(t)‖ << ‖~li(0)‖), the following approximation can

be done:

‖~li(t)‖2 ≈ ‖~li(0)‖2(1− 2
〈~x(t), ~li0〉
‖~li(0)‖

) (A4)

‖~li(t)‖’s dependence on ‖~li(t)‖2 can then be determined using a first-order Taylor approxi-
mation of the square root function and hypothesis 1:

‖~li(t)‖ =
√
‖~li(t)‖2 (A5)

≈

√
‖~li(0)‖2(1− 2

〈~x(t), ~li0〉
‖~li(0)‖

) (A6)

≈ ‖~li(0)‖(1−
〈~x(t), ~li0〉
‖~li(0)‖

) (A7)

≈ ‖~li(0)‖ − 〈~x(t), ~li0〉 (A8)

Appendix A.2. Step 2: Signal Simplification

The Friis equation is used to expressed received power Pr for direct path propagation:

Pr(t) = PtGtGr(
λ

4π‖~li(t)‖
)2 (A9)

with:

• Pr(t): the received power;
• Pt: the transmitted power;
• Gt: the transmitter antenna gain;
• Gr: the receiver antenna gain.
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So, the propagation loss term A(t) becomes:

A(t) =
√

Pr(t) (A10)

=

√
PtGtGr(

λ

4π‖~li(t)‖
)2 (A11)

=

√
PtGtGr(

λ

4π
)2 1

‖~li(t)‖
(A12)

Using hypothesis 2 (
∥∥∥~li(t)∥∥∥ ≈ ∥∥∥~li(t− τi(t))

∥∥∥) and Equation (A12), the received signal
will be:

r(t) = A(t− τi(t))s(t− τi(t)) (A13)

≈ A(t)s(t− τi(t)) (A14)

Note that received signal formulation is equivalent to the formulation presented in [1]
in direct path propagation configuration.

Using the result from step 1 (‖~li(t)‖ ≈ ‖~li(0)‖ − 〈~x(t), ~li0〉), the received signal becomes:

r(t) = A(t)s(t− ‖
~li(0)‖

c
+
〈~x(t), ~li0〉

c
) (A15)

= A(t)s(t− τ0 +
〈~x(t), ~li0〉

c
) (A16)

with τ0 = ‖~li(0)‖
c as the initial delay.

A(t) can also be approximate as follows:

A(t) =

√
PtGtGr(

λ

4π
)2 1

‖~li(t)‖
(A17)

≈
√

PtGtGr(
λ

4π
)2 1

‖~li(0)‖ − 〈~x(t), ~li0〉
(A18)

≈
√

PtGtGr(
λ

4π‖~li(0)‖
)2 1

1− 〈~x(t),~li0〉
‖~li(0)‖

(A19)

≈ A
1

1− 〈~x(t),~li0〉
‖~li(0)‖

(A20)

with A =
√

PtGtGr(
λ

4π‖~li(0)‖
)2.

Furthermore, we obtain the following received signal formulation:

r(t) = A
1

1− 〈~x(t),~li0〉
‖~li(0)‖

a(t− τ0 +
〈~x(t), ~li0〉

c
)

cos(2π fct + k〈~x(t), ~li0〉+ φ(t− τ0 +
〈~x(t), ~li0〉

c
)− φ0) (A21)

with φ0 = 2π fcτ0 as the initial phase.
Furthermore, its corresponding analytic signal is:

ra(t) = A
1

1− 〈~x(t),~li0〉
‖~li(0)‖

s̃(t− τ0 +
〈~x(t), ~li0〉

c
)e−jφ0 ejk〈~x(t),~li0〉ej2π fct (A22)
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Appendix A.3. Step 3: Neglecting the Amplitude Modulation Due to Motion

The goal of this step of the demonstration is to neglect the amplitude modulation
due to motion. Using the analytic signal, we can observe two forms of modulation due to
movement ~x(t):

• 1

1− 〈~x(t),
~li0〉

‖~li(0)‖

: an amplitude modulation

• ejk〈~x(t),~li0〉: a phase modulation.

In two different ways, depending on type of movement~x(t), the amplitude modulation
can be neglected in front of the received signal. On the one hand, for an arbitrary movement
~x(t), using hypothesis 3a, the amplitude A(t) is considered as constant: A(t) ≈ A. This
hypothesis is more general than hypothesis 3b and can be considered to be a stronger
hypothesis. One the other hand, for a small movement ~x(t) (k‖~x(t)‖ << 1), the amplitude
modulation can be neglectable compared to phase modulation. To do so, we can compare
the first-order Taylor series of both terms:

• 1

1− 〈~x(t),
~li0〉

‖~li(0)‖

≈ 1 + 〈~x(t),~li0〉
‖~li(0)‖

• ejk〈~x(t),~li0〉 ≈ 1 + j〈~x(t), ~li0〉.

Considering hypothesis 3b (k‖~li(0)‖ >> 1), the term 〈~x(t),~li0〉
‖~li(0)‖

is negligible in terms of

magnitude compared to j〈~x(t), ~li0〉. Thus, the amplitude modulation can be neglected in
front of the phase modulation (micro-Doppler): A(t) ≈ A. This hypothesis is considered as
less general because it is restricted to small motions. It can be noted that β mentioned in
signal used for simulations described in Equations (39) and (42) is equal to maxtk‖~x(t)‖.

Finally, considering all these analytical developments, the received signal can be
formulated as follows:

r(t) = Aa(t− τ0 +
〈~x(t), ~li0〉

c
)

cos(2π fct + k〈~x(t), ~li0〉+ φ(t− τ0 +
〈~x(t), ~li0〉

c
)− φ0) (A23)

Appendix B. Noise Modeling for Signal Cancellation Method

In this appendix, we demonstrate the following approximation resulting from signal
cancellation method (Equation (24)):

r̃(t) = (As̃(t)ejkx(t) + ñ(t))M (A24)

≈ AMejkMx(t) + MAM−1 s̃(t)M−1ñ(t)ejk(M−1)x(t) (A25)

≈ AMejkMx(t) + ñ1(t) (A26)

The demonstration will be divided in two parts:

• Proof showing that the term MAM−1 s̃(t)M−1ñ(t)ejk(M−1)x(t) is a white Gaussian com-
plex noise;

• Proof showing that the term ∑M
m=2 s̃(t)kejkmx(t)ñ(t)M−k is negligible compared to ñ1(t).

Note that s̃′(t) = s̃(t)M−1 is a cyclostationary signal corresponding to the complex
conjugate of s̃(t) with the following properties: E(s̃′(t)) = 0, E(s̃′(t)s̃′(t)∗) = 1, and
E(s̃′(t)s̃′(t− τ)∗) = ∑+∞

k=−∞ π( t−kT0
T0

)∗π( t−τ−kT0
T0

).

Appendix B.1. Properties of the First Term of the Noise

The term ñ1(t) is the product between different terms: a Gaussian noise ñ(t), a
cyclostationary signal s̃′(t), a deterministic signal ejk(M−1)x(t), and a factor AM−1M.
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The expected value of ñ1(t) is:

E(ñ1(t)) = 0 (A27)

The instantaneous energy of ñ1(t) is:

E(ñ1(t)ñ1(t)∗) = |MAM−1|2 (A28)

The autocorrelation of ñ1(t) is:

E(ñ1(t)ñ1(t− τ)∗) = |MAM−1|2δ(τ) (A29)

The resulting noise expression can be considered as wide sense stationary process.
To prove that the resulting noise has Gaussian properties, we study their modulus

and their phase independently. Note that a Gaussian complex white noise ñ(t) ∼ CN (0, 1)
implies the following properties: the modulus depends on a Rayleigh distribution (|ñ(t)| ∼
Rayleigh(1/

√
2)) and phase depends on a uniform distribution (arg(ñ(t)) ∼ U([0, 2π])).

The modulus of the resulting noise is:

|ñ1(t)| = |MAM−1||ñ(t)| (A30)

Note that the factor MAM−1 has no impact on this demonstration because it influences
the modulus, and the resulting modulus is a random variable following a Rayleigh distribution.

Demonstration: we will consider Y = cX with a constant c > 0 and X a random
variable following a Rayleigh distribution with a scale parameter σ, a probability density
function f , and a cumulative distribution function F.

P(Y < y) = P(cX < y) (A31)

= P(X <
y
c
) (A32)

= F(
y
c
) (A33)

To compute the resulting probability density function g, we derive the term:

g(y) =
1
c

f (
y
c
) (A34)

=
1
c

y/c
σ2 e(−

(y/c)2

2σ2 ) (A35)

=
y

(cσ)2 e
(− y2

2(cσ)2
)

(A36)

Now, the resulting random variable Y follows a Rayleigh distribution with the scale
parameter σ′ = cσ (here c = |MAM−1|).

The phase of the resulting noise is:

arg(ñ1(t)) = arg(ñ(t)) + arg(s̃(t)) + k(M− 1)x(t) (A37)

The modulus of the resulting noise follows a Rayleigh distribution, and the phase
follows a uniform distribution between 0 and 2π. Indeed, arg(s̃(t) is stationary in part
which means arg(ñ1(t)) ∼ U([arg(s̃(t)) + k(M− 1)x(t), 2π + arg(s̃(t)) + k(M− 1)x(t)]);
however, due to modulo property of the complex exponential, is similar to arg(ñ1(t)) ∼
U([0, 2π]).

We have proven that the resulting noise is wide-sense stationary and has Gaussian
complex properties. So, we can consider the resulting noise ñ1(t) as a white Gaussian
complex noise.
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Appendix B.2. Neglecting the Second Part of the Noise

This proof will be performed in two steps: (1) comparison of the noise ñ1(t) and the
term ñ2(t) = AM−2 M(M−1)

2 s̃(t)M−2ejk(M−2)x(t)ñ(t)2, which that can be considered as the
predominant term (from a power point-of-view); (2) determination of the threshold, which
depends of the SNR, to allow us to neglect the second part of the noise.

We calculate the expected value of the instantaneous amplitude for ñ1(t):

E(|ñ1(t)|) = AM−1ME(|ñ(t)|) (A38)

= AM−1M
√

π

4
(A39)

Furthermore, we calculate the expected value of the instantaneous amplitude for ñ2(t):

E(|ñ2(t)|) = AM−2 M(M− 1)
2

E(|ñ(t)|2) (A40)

= AM−2M(M− 1) (A41)

Note that |ñ(t)| ∼ Rayleigh(1/
√

2) and |ñ(t)|2 ∼ Exponential(1).
The ratio between the two term is the following:

E(|ñ1(t)|)
E(|ñ2(t)|)

=
A
√

π/4
M− 1

(A42)

The associated power ratio is the following:

E(|ñ1(t)|)2

E(|ñ2(t)|)2 =
A2π

4(M− 1)2 (A43)

It is possible to define a specific threshold Cn which allows us to neglect ñ2(t) in front
of ñ1(t):

A2 >
4
π
(M− 1)2Cn (A44)

The SNR[dB], i.e., signal-to-noise ratio (SNR) for the signal presented in Equation (16),
corresponds to 10log10(A2) because the noise ñ(t) has unitary power and similarly for s̃(t)
and ejkx(t). For example, if we consider a BPSK with Cn = 10, the corresponding SNR[dB]
is approximately 11 dB. If we omit the second term of the noise after the communication
signal cancellation, the resulting SNR corresponds to 10 log10(

A4

4A2 ) = SNR[dB] − 6 dB. The
power of each harmonic also increases because the Doppler modulation term is powered
by M. For example, in the case of an SFM (s̃(t) = As̃(t)ejβ sin(w0t + ñ(t)), the power of
first-order harmonic will increase by 6 dB because J1(2β) ≈ 2J1(β).

Appendix C. Modified Binary Hypothesis Test

This appendix will explain the modified version of the binary hypothesis test used for
micro-Doppler detection.

Appendix C.1. Initial Binary Hypothesis Test

Our detection method is based on the work of Kim et al. [24] for detection of modu-
lation under additive white Gaussian noise. In [25], Chen et al. extended this statistical
test to cyclostationary signals. This test is based on the so-called cyclic frequency domain
profile (CDP) (Equation (33)):

I(α) = max f |Cα
x( f )| (A45)

with:

• Cα
x( f ) the spectral coherence,



Remote Sens. 2022, 14, 6310 23 of 25

• α the cyclic frequency (here equivalent to f0).

The hypotheses required by their method are:

H0 : n(t)

H1 : s(t) + n(t)
(A46)

with:

• s(t): A modulation among DSB-SC AM, BPSK, b-FSK, MSK and QPSK (or cyclosta-
tionary signals [25]);

• n(t): An additive white Gaussian complex noise (AWGN).

The authors proposed a binary hypothesis test based on the following statistic:

CI =
I(α)√

1
N ∑N

α=0 I(α)2
(A47)

Furthermore, they proposed a specific threshold computed for the null hypothesis:

CTH =
max(I(α))√
1
N ∑N

α=0 I(α)2
(A48)

Binary hypothesis testing is performed as follows:

CI ≤ CTH : Declare H0 (A49)

CI > CTH : Declare H1 (A50)

In [24], the output of the hypothesis testing procedure was a vector where all the CDP
values greater than CTH are encoded as one and the others are null. The authors used
this vector for classification purposes in a cognitive radio context. In our case, the output
vector corresponds to zero for all the values lower or equal to CTH and CI for the values
greater than CTH . For hybrid detection estimation procedure, the periodic frequency f0 is
estimated by taking the argument corresponding to the maximum value of this vector.

Appendix C.2. Modified Hypothesis Test

The initial hypotheses used are presented in Equation (32) and the resulting hypotheses
obtained after transformation step h(ỹ) (Equation (34)) are presented in Equation (35).

In our case, we know that the cyclic frequency is contained between a certain interval
[αmin, αmax]. For example, for drone detection purposes, Nguyen et al. [13] shows that
the vibration frequencies of drones are between 35 and 140 Hz. So, using expert domain
knowledge, it is possible to restrict the research space. In the simulations, we restrict the
research space α ∈ [30, 150].

We know that the null hypothesis does not have cyclic frequency in [αmin, αmax], even
if there is still a frequency offset component due to frequency estimation error.

We set CTH using a Neyman–Pearson procedure. First of all, we estimate the probabil-
ity density function (PDF) and the cumulative distribution function (CDF) by a frequentist
approach. It consists of the simulation of many realizations (here, one thousand) to estimate
the PDF and CDF based on the law of large numbers. Figure A1a,b correspond, respec-
tively, to the empirical CDF for T = 1 s and T = 10 s. Note that we take the worst-case
SNR = −10 dB that gives the lowest CTH values compared to a higher SNR. Using the
estimated cumulative density function, we find the threshold to obtain the specific false
alarm rate (here 10%).
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(a) (b)
Figure A1. (a) Empirical CDF for T = 1 s. (b) Empirical CDF for T = 10 s.
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