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Abstract 

Autism Spectrum Disorder is a neurodevelopmental trouble for which no objective biomarker 

has yet been discovered. The search for an accessible biomarker aims, in particular, for early 

autism screening, in order to optimize tailored intervention when necessary. In this context, 

eye-tracking has been now used for numerous years in the field of research on autism as it 

allows for non-intrusive, no-contact recordings even in very young children. However, 

individual oculometric parameters, while showing significant differences between groups of 

autistic and non-autistic individuals, are not discriminative enough for individual screening. In 

this study, we combined oculometric measures with pupillary parameters obtained 

simultaneously by the eye-tracker, and used a machine-learning approach to estimate the 

discriminative performance of such combinations of parameters. Data were obtained in 72 

autistic and 93 neurotypical 2-13 years old children observing objects and faces during less than 

a minute. We used the Weka datamining software, testing 36 machine-learning algorithms 

without any a priori, in order to describe robust and convergent performance. Moreover, we 

chose to report only performance associated with high sensitivity, specificity and accuracy. We 

showed that oculo-pupillometric combinations of parameters allowed to reach outstanding 

discriminative performance in young children, paving the way for a clinical use. 

  



1. Introduction 
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder affecting around 1% of the 

population and characterized by atypical social interaction and communication, repetitive 

behaviors and focused interests1. Although inclusion of autistic individuals within society has 

notably improved, an effort is still necessary to optimize individual support, with targeted 

approach, in order to promote their quality of life while respecting their specificities. As a 

consequence, improving screening for autism, especially in young children, remains a major 

objective in research nowadays. Indeed, the younger difficulties linked to autism are revealed, 

the more can be expected from tailored intervention for positive personal evolution, familial 

balance, and societal inclusion2. 

To help for early screening, an objective biomarker would be necessary. Indeed, until now, only 

expert clinicians can make a diagnosis based on extensive evaluations including detailed 

developmental history, psychiatric assessment and pediatric, psychological and neurological 

examinations. Several scientific domains have tried to identify biomarkers, like genetics, 

metabolomics, neuroimaging or neurophysiology2,3. However, while promising results have 

been uncovered, a clear and easily tested biomarker still remains elusive. One parameter 

compromising the identification of such a biomarker is the heterogeneity within the autism 

spectrum. Moreover, autism reveals itself during infancy or childhood, periods of huge 

biological, physiological and behavioral maturation. One of the autistic trait robust to 

heterogeneity and maturation is social interaction atypicality, which is also a hindrance to social 

inclusion. On the other hand, social adjustment disturbance, via its external manifestations, can 

be quantified without intrusive, costly or time-consuming methodologies. Indeed, social 

reciprocity can be measured behaviorally and physiologically, for example with eye-tracking. 

Eye-tracking is a very interesting technique in the field of research on autism, as it is non-

invasive, without direct contact with the participant, suited for young children, and relatively 

low-cost. Consequently, the number of studies on ASD using eye-tracking has exploded since 

the seminal publication of Klin et al. in 20024. This technique gives access to a quantification 

of ocular exploration, and has been mostly used during the observation of social scenes or 

stimuli like faces. Human faces are salient social stimuli in our environment, spontaneously 

capturing our visual attention from early age, and especially the region of the eyes5. Faces 

involve specific brain processing6,7, with a maturation during childhood, from local featural 

processing to holistic expert processing8, this expertise being progressively acquired around 7 

to 10 years of age9. All these aspects are disturbed in ASD, with social difficulties associated 



with atypical exploration of the faces and especially of the eyes10,11. Less time spent on 

biological motion, faces and eyes have indeed been classically reported (e.g.4,5,12, but see13), 

with a less systematical visual exploration pattern14. Moreover, when social and non-social 

contents are presented simultaneously, autistic participants show a preference for non-social 

stimuli15,16. 

These significant differences between ASD and typically-developing (TD) participants have 

been described at the group level and for several oculometric parameters, like time spent on a 

defined region, fixation time, or number of fixations for example. However, with the objective 

of autism screening, this group approach does not allow to characterize each individual. To this 

end, it is necessary to evaluate the discriminative power of eye-tracking parameters thanks to a 

classifying approach, i.e. to evaluate if individual diagnosis is correctly predicted by 

oculometric indices. Methods like ROC (Receiver Operating Curve) analysis can estimate the 

discriminative power according to sensitivity, specificity and AUC (Area Under the Curve) of 

these oculometric parameters using machine-learning algorithms. In the last five to ten years, a 

growing number of studies have tested these approaches with mitigated results17. Using ROC  

analysis, discriminant scores (AUC, between 0 and 1) using oculometric parameters can reach 

from 0.45 till 0.86, depending on the type of stimuli (static vs. dynamic, social vs. non-social), 

the age and number of participants (e.g. 15,18,19). Several kinds of algorithms have also been 

used, like SVM (Support Vector Machine) or CNN (Convolutional Neural Networks), with 

heterogeneous performances and heterogeneous testing conditions (stimuli, age, clinical 

populations, number of participants, and duration of data acquisition; e.g.20–24, for reviews see 
17,25,26). These performances can reach up to 0.92 27,28 in a specific age group (8-years old), 

suggesting a high potential for possible clinical application if these scores can be generalized 

to younger autistic children. Overall, there is a tendency for better discriminative performances 

in young children and for social stimuli17,19. However, high discriminative scores are usually 

obtained for restricted number of participants and age groups, questioning the feasibility of 

generalization with both high specificity and sensitivity. Another recent and promising trend is 

the combination of several oculometric parameters to increase discriminative and generalizable 

performance29–31, or the combination with other kinds of functional evaluation (e.g. 

electroencephalography32). 

Interestingly, eye-trackers provide another measure, recorded simultaneously with gaze 

position, the pupil diameter. This parameter can reflect many processes33, in particular 

adjustment of the quantity of light reaching the retina34. If illumination and fixation depth are 



controlled, pupil dilates in relation with physiological arousal increase and cognitive processes 

engagement (e.g.35–37). We have recently shown that, in TD children, the pupil was more dilated 

when they observed faces compared to objects38, and even more if the faces were dynamic 

(videos) compared to static (images)39. In contrast, in ASD children, dilation of the pupil was 

reduced compared to their TD peers and was not different as a function of the stimulus 

category38,39. This result could reflect a reduced physiological arousal in response to face 

observation in autistic children. Using ROC analysis, we showed that pupillometric parameters 

could discriminate according to the diagnosis group with a performance (AUC) around 0.75-

0.839. 

In the present study, our goal was to evaluate if the combination of pupillometric and 

oculometric parameters, never explored until now, could improve discrimination performances, 

paving the way for a useful clinical tool. In order to explore systematically the feasibility of 

such an approach, we chose not to select a priori either particular eye-tracking parameters or 

machine learning algorithms. Moreover, to include autistic children whatever their cognitive 

abilities and from a young age (3-years old), we focused on a very short paradigm (less than 1 

min) with presentations of faces and objects and no explicit instructions. We showed that the 

combination of pupillometric and oculometric parameters was very efficient for data acquired 

during the observation of faces in young children (under 7-years old), with performances (AUC, 

sensitivity, specificity and accuracy) above 0.9 for several combinations of parameters and 

several machine learning algorithms. 

 

2. Results 
A total of 72 children with autism spectrum disorders (ASD) and 93 typically developing (TD) 

children, aged 2 to 13 years-old, were recorded with an eye-tracker while looking at a 52s 

sequence of visual stimuli (Figure 1). This sequence started with a black and a white screen to 

evaluate the pupil light reflex, and then randomly alternated objects and faces pictures. Several 

parameters were extracted from this recording (see Methods): pupillometric parameters linked 

to the pupil light reflex (evaluated during the black and white slides), pupillometric parameters 

linked to the object and face presentations, and oculometric parameters linked to the exploration 

of the screen, the object, the face and the regions of interest of the eyes and the mouth.  

 

 



 

 

a. Discriminant analysis of individual parameters 

We first evaluated how each individual oculometric or pupillometric parameter could 

discriminate between ASD and TD children. For each parameter, individual parameters 

performances were evaluated with the ROC analysis. Three scores were calculated: AUC, 

specificity (true negative rate), and sensitivity (true positive rate). These scores vary from 0 to 

1 and are qualified as good if between 0.7 and 0.8, and excellent if between 0.8 and 0.9. In order 

for a parameter to have a good discriminative power (i.e. correctly classifying ASD and TD 

children in their own diagnosis group, without too many false positive or false negative), these 

three scores have to be above 0.7. 

Figure 2 shows these scores for the Object stimuli. As can be observed in the top panel, no 

individual parameter exhibited scores above 0.7 for AUC, specificity and sensitivity. We split 

the population in two age groups, 2-7 years old and 8-13 years old children. Only one parameter, 

the total time tracked (TTT) was discriminant for the 8-13 years old group (Figure 2 lower 

panel). 

Figure 1: Experimental paradigm. A. Stimuli. A total of four different faces and four different 
objects were presented, equated in size, luminance and color. B. Paradigm. The sequence started 
with a 2s black and a 2s white slide, then each stimulus was presented for 4s and preceded by a 
2s interstimulus. The interstimulus gray slide was equated in luminance and color to all the faces 
and objects. 



 

Figure 3 shows these scores for the Face stimuli, with more regions of interest (ROIs) as the 

exploration of the eyes and mouth has been described as affected in ASD participants in some 

studies (e.g. 4,5). Even with more parameters, only the total time tracked (TTT) for the 8-13 

years old group was again exhibiting AUC, specificity and sensitivity scores above 0.7. 

Figure 2: Discriminant analysis scores 
for the Object stimuli. Area Under the 
Curve (AUC), specificity (Sp) and 
sensitivity (Se) scores for each 
pupillometric and oculometric parameter 
are represented for the complete 
population (top panel), the 2-7 years old 
group (middle panel) and the 8-13 years 
old group (lower panel). PRA: pupil light 
reflex amplitude, PRD: pupil light reflex 
duration, PRV: pupil light reflex velocity, 
PBas: pupil baseline, PDV: pupil diameter 
variation, TTT: total time tracked, TSS: 
time spent on screen, FTS: fixation time 
on screen, NbFS: number of fixations on 
screen, TSO: time spent on object, FTO: 
fixation time on object, NbFO: number of 
fixations on object, LatO: latency of first 
entry on object. 



 

 

 

 

Figure 3: Discriminant 
analysis scores for the 
Face stimuli. Area Under 
the Curve (AUC), 
specificity (Sp) and 
sensitivity (Se) scores for 
each pupillometric and 
oculometric parameter are 
represented for the 
complete population (top 
panel), the 2-7 years old 
group (middle panel) and 
the 8-13 years old group 
(lower panel). Parameters 
for the Face/Eyes/Mouth 
ROIs: time spent on ROI 
(TSF/TSE/TSM), fixation 
time on ROI 
(FTF/FTE/FTM), number 
of fixations on ROI 
(NbFF/NbFE/NbFM), 
LatO: latency of first 
entry on ROI 
(LatF/LatE/LatM). See 
Figure 2 for other 
abbreviations. 



b. Combinations of parameters with machine-learning classification 

Even if individual parameters were not discriminant enough to distinguish ASD and TD groups, 

some had high specificity and other had high sensitivity scores. Therefore, a discriminant 

analysis based on their combination could prove very effective. Machine learning approaches 

provide the possibility to test the discriminant performance of such combinations of parameters. 

We chose to test combinations without selecting any given parameters based on their individual 

performances. But to limit the number of possible combinations, we first grouped the 

parameters according to their nature. We thus obtained 11 new parameters: one based on the 

pupil light reflex (L); for the Object stimuli: one based on the pupil variation (P), the total time 

tracked (T), one based on the oculometric measures for the screen exploration (S), and one for 

the object exploration (O); for the Face stimuli: P, T and S for this category of images, then 

parameters based on the oculometric exploration of the head (H), eyes (E), and mouth (M). 

We analyzed separately these new parameters for the Object and Face stimuli, adding the pupil 

light reflex to both analyses. It thus resulted in combining 5 parameters for the Object stimuli, 

and 7 parameters for the Face stimuli. We considered each new parameter individually, then all 

the combinations of 2 parameters, 3 parameters, etc. In total, 31 combinations were thus tested 

for the Object stimuli, and 127 for the Face stimuli. 

With the same will of exploring discrimination performance without any a priori, we decided 

not to select any precise machine-learning algorithm. We used the Weka datamining software40 

that regroups 36 algorithms of different kinds (e.g. logistic regression, random forest, multilayer 

perceptron). For each of these classifiers, for each combination, we calculated an AUC score, a 

sensitivity (Se) score, a specificity (Sp) score, and an accuracy (Ac) score (5-fold cross-

validation). As for the individual parameters, we looked for combinations that obtained a 

minimum of 0.7 for each of these four scores. 

For the Object stimuli, when considering the whole population (2-13 years old), only one 

combination (L/P/T/O) passed this threshold (AUC 0.73, Se 0.73, Sp 0.73, Ac 0.74, for one 

algorithm only). We then analyzed separately the 2-7 and 8-13 years old age groups. Figure 4A 

represents these results, each point being the mean of the four scores (performance index) for 

one given algorithm, and colored if the four scores are above the threshold. The combinations 

are organized along the x-axis, depending first of the number of children for each combination 

(bottom gray line) and then as the number of parameters within the combination (more 

parameters towards the left). In total, the combinations on the left are the one with the most 



parameters but with the less children, due to missing data especially for the pupillary measures; 

combinations on the right are those with the less parameters, in particular oculometric 

acquisitions only, for which data could be acquired for all or nearly all participants.  

 

 

 

 

 

 

As can be observed, several combinations of parameters yielded good performances between 

0.7 and 0.8. For the 2-7 years old group, these combinations were mostly ones including both 

pupillometric and oculometric parameters (located on the left of the graph). The pupillometric 

parameters alone did not discriminate correctly between ASD and TD children, but the pupil 

light reflex (L) parameter combined with any oculometric parameter or combination of 

parameters allowed for a good discrimination. For the 8-13 years old group, the combinations 

Figure 4: Performance index for all combinations of parameters and all machine-learning 
algorithms for the Object stimuli (A) and the Face stimuli (B). Each point is the mean of 
AUC, Se, Sp and Ac. The point is colored if the four scores are above 0.9 (red), 0.8 (orange) or 
0.7 (yellow). The combinations of parameters are organized along plateaus of number of 
children within the data, with less children towards the left and more children towards the right 
(gray line at the bottom of each panel). Within a plateau, the combinations with the most 
parameters are towards the left, those with the less parameters towards the right. The plateaus 
are defined by the presence of the pupillometric parameters (L: pupil light reflex, P: pupil 
variation) within the combinations. 



producing good performances contained mainly oculometric parameters (on the right of the 

graph). These combinations could contain 2, 3 or 4 parameters, mainly oculometric but also 

sometimes the pupil variation (P). Overall, for the Object stimuli, the strategy of combining 

parameters did not produce better results than analyzing only the total time tracked (TTT, 

Figure 2). 

For the Face stimuli, analyzing the whole population produced a few combinations with good 

scores (between 0.71 and 0.74 for the four scores). However, separating the younger and older 

children (2-7 and 8-13 years old groups) yielded many excellent (scores > 0.8) or outstanding 

(scores > 0.9) performances. As can been observed in Figure 4B, the best performances were 

obtained for the 2-7 years old group. Many combinations of parameters were identified by 

multiple classifiers, leading to scores above 0.7 (even if many classifiers did not lead to a good 

ASD/TD discrimination). The two parameters both present in most of the combinations with 

excellent or outstanding performances are pupil light reflex (L) and oculometric exploration of 

the mouth (M). The two pupil parameters (L and P), alone or together, could not produce a good 

performance without the combination with oculometric data. Conversely, oculometric data (T, 

S, E and M, alone or in combinations) could not yield scores above 0.8 without the presence of 

at least one pupillometric parameter. The results are completely different for the 8-13 years old 

group. First, no combination reached scores of 0.9. Only 10 combinations reached 0.8 for the 

four scores (AUC, Se, Sp and Ac), and among them 7 contained the two parameters P (pupil 

variation) and T (total time tracked). In conclusion, combining T with other parameters only 

slightly improved the individual performance observed in Figure 3 for the 8-13 years old. 

 

c. Algorithms of classification 

The multiplicity of classifiers identifying the same combinations of parameters as excellent or 

outstanding is reassuring from a clinical point of view: this suggests that the ASD/TD 

classification is reliable and does not depend on one specific algorithm. However, it would be 

interesting to know if one or several algorithms are more suited to our clinical data. We thus 

analyzed the patterns of classification, for the Face stimuli, focusing on the identity of the 

classifiers. Figure 5 shows the same results as Figure 4B, but bringing out classifiers for which 

scores of 0.8 or above were obtained (AUC, Se, Sp and Ac) for the 2-7 and 8-13 years old 

groups. 
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A few classifiers never provided any good discrimination whatever the parameter or 

combination of parameters. For the 2-7 years old group, many combinations of parameters were 

identified as discriminant by many classifiers but no classifier identified all these combinations. 

The five algorithms identifying the most combinations as discriminant were LogitBoost (30 

combinations), J48 (29), Multilayer Perceptron (27), Hoeffding Tree (26), and Locally 

Weighted Learning (25). The pattern was different for the 8-13 years old group, with less 

common combinations identified and less algorithms picking up several combinations. The best 

algorithms for this age group were OneR (15 combinations), Locally Weighted Learning (10), 

and Random forest (8). Some classifiers were specific for one age group (e.g. J48 and 

Multilayer Perceptron for the 2-7 years old group, and OneR and Decision Stump for the 8-13 

years old group), but others worked for both groups. Only two individual classifier x 

combination cases allowed for an excellent discrimination of both the 2-7 and 8-13 years old 

(Locally Weighted Learning x LPTSM and Stochastic Gradient Descent x LPHM). 

 

d. Loss of data and clinical implications 

For young children (2-7 years old group), the machine-learning classification could 

discriminate ASD and TD children with a performance up to 0.964 (AUC ~1, Se 0.95, Sp 0.95, 

Ac 0.96). However, these good performances were obtained only for combinations in which 

pupillometric parameters were present, and for many children these data could not be acquired. 

If these children could not be recorded because of their age or clinical characteristics, it would 

diminish the possible clinical use of our discrimination approach. We thus explored how age 

and clinical scores could affect data acquisition. 

First we considered the oculometric data. For TD children, only 2 out of 93 children could not 

be recorded, and these children were among the youngest (3 and 3.9 years old). For ASD 

children, 7 out of 72 children could not be recorded. Their age was not significantly different 

from the age of the recorded children (mean ± std: 6.7 ± 2.6 vs. 7.8 ± 2.7 years old, t-test p>0.1). 

The CARS scores, reflecting the severity of autism41, were not different between the non-

recorded and recorded ASD children (mean ± std: 33.7 ± 5.2 vs. 31.2 ± 6.2, t-test p>0.3), while 

there was a tendency for a lower developmental quotient (DQ) in non-recorded ASD children 

(mean ± std: 52 ± 16 vs. 78 ± 26, t-test p=0.061 uncorrected). 

For the pupillometric data, we considered separately the recording of the pupil light reflex, and 

the pupil variation elicited by face or object observation. The pupil light reflex was the part of 



the experiment for which we had the most data loss. In TD children, 58 out of 93 children could 

not be recorded and were younger than the children recorded (mean ± std: 6.9 ± 2.6 vs. 8.4 ± 

2.4 years old, t-test p=0.003). In ASD children, 51 out of 72 children could not be recorded. 

They were not different from the recorded children with respect to age (mean ± std: 7.6 ± 2.5 

vs. 7.8 ± 3.1 years old, t-test p>0.3) or CARS scores (mean ± std: 31.4 ± 6 vs. 31.7 ± 6.5, t-test 

p>0.8). However, there was a tendency for a lower DQ in non-recorded children (mean ± std: 

70.4 ± 27.1 vs. 88.9 ± 19.2, t-test p=0.046 uncorrected). For the pupil variation, 39 out 93 TD 

children could not be recorded and were younger than the children recorded (mean ± std: 6.9 ± 

2.6 vs. 7.9 ± 2.5 years old, t-test p=0.040). 33 out of 72 ASD children could not be recorded 

but were not significantly different form the recorded children (mean ± std: age 7.7 ± 2.7 vs. 

7.6 ± 2.7 years old, t-test p>0.4; CARS 30.9 ± 5.3 vs. 32 ± 6.7, t-test p>0.4; DQ 71.4 ± 29.4 vs. 

79.3 ± 23.3, t-test p>0.3). 

To summarize, in TD children loss of data was observed in young children. However, for ASD 

children, loss of data was not linked to age or autism severity, but there was a tendency for an 

effect of developmental quotient.  

 

3. Discussion 
This study was the first to combine oculometric and pupillometric parameters with the goal of 

discriminating ASD and TD children with a non-invasive and short paradigm. Our main result 

was that combining these two kinds of recordings indeed improved discriminative performance, 

especially for young children and for social stimuli. 

Processing of social information is evolving with maturation and exposure. It is now well 

documented that face processing involves specialized circuits and mechanisms6,7 that become 

efficient from 8 years old9, when children start being considered as face experts. Intuitively we 

could have expected that discrimination between ASD and TD children would have been easier 

after 8 years old due to this expertise especially developed in TD children. On the contrary, our 

best performances were obtained for children below 8 years old, suggesting that machine-

learning algorithms picked on characteristics of non-expert face processing.  

However, considering age in our analyses led to a decrease in the number of participants in each 

groups. Outstanding performances obtained in our analyses should thus be interpreted with 

caution, as they reflect the ability of machine-learning algorithms to categorize 2-7 years old 

children within two small diagnostic groups (10-12 TD children vs 10 ASD children). A larger 



number of participants will be needed to confirm this classification, before a generalization and 

application to describe autistic characteristics. In particular, the small number of participants in 

our analysis prevented us to analyze if wrongly classified autistic children would correspond to 

a specific clinical profile. However, two aspects were really encouraging about the 

performances we obtained. First, we only reported results for which AUC, specificity, 

sensitivity and accuracy (based on 5-fold cross-validation) were all above 0.7, 0.8 or 0.9 

thresholds, so without bias towards false positive or negative classification. Second, although 

the machine-learning algorithms we tested had very heterogeneous approaches, models and/or 

processing, a majority converged towards the identification of the same combinations of 

parameters with excellent or outstanding performances. 

Very interestingly, only combinations of pupillometric and oculometric parameters led to better 

performances than the ones obtained with single parameters in our protocol (Figures 2 and 3). 

The combinations of pupillometric parameters with each other, or of oculometric parameters 

with each other, did not produce an interesting gain of performance. This result suggests that 

the type of information picked up by the algorithms is of different nature, and previous studies 

combining different kinds of signal already suggested that such a combinatory approach could 

be successful 31,32. However, for oculometric and pupillometric parameters it could be less 

expected than for the combination of oculometric parameters and EEG or kinematics 

parameters for example31,32. Indeed gaze and pupil diameter could partially reflect similar 

cerebral mechanisms, as eye movements are guided by attentional factors42, pupil dilation is 

correlated to attentional engagement33,43, and pupil diameter is sensitive to eye movements44. 

On the other hand, we already showed, in a previous study reporting part of the same data, that 

there was no correlation between oculometric and pupillometric parameters39. This oculo-

pupillometric combination is optimal for practical use as the recordings rely on only one eye-

tracker, facilitating the acquisition especially in ASD children. 

It should be noted, however, that for children above 8 years old, the combination approach led 

to a very small gain in performance compared to the discrimination based only on the total time 

tracked by the eye-tracker. This parameter reflects the ability of the children to stay calm and 

oriented towards the screen (and thus the eye-tracker). This ability increases with age in 

neurotypical children45, but not as much in autistic children (in our sample, linear coefficient 

for TTT between 0 and 4s as a function of age in years: 0.18 and 0.15 for Objects and Faces 

respectively in TD children, with a R2 of 0.26 and 0.21 respectively; 0.13 and 0.09, with R2 of 

0.08 and 0.04, for ASD children). Yet, this parameter may not be specific to autism. 



Our results are the first step to consider using the oculo-pupillometric combination approach in 

a clinical context. We obtained outstanding performances, with very high sensitivity and 

specificity exigence, which are necessary criteria for potential autism screening. Other critical 

expectations for clinical transfer are met by our protocol: first we used a unique non-invasive 

and non-intrusive material; second our paradigm was very short (less than one minute) and 

could be even shorter as only the social stimuli proved to be useful for discriminative 

performance; the protocol can be standardized, contrary to real life situations29. One aspect 

could be improved however, as our performances rely on good quality of both gaze and pupil 

acquisition: indeed, we observed a significant loss of pupil data in our study. The absence of 

correlation between this loss of data and ASD severity suggests that this approach is compatible 

with the heterogeneity of autistic population and points rather towards a material failure. 

Indeed, we used a rather old eye-tracker system which was not yet optimized for pupil detection, 

contrary to modern material relying on both dark and light pupil detection. We could thus expect 

shortly a clinical transfer for autism screening in young children based on up-to-date eye-

tracking acquisition during face observation. 

 

4. Methods 
a. Participants 

This study included 93 typically developing (TD) children (50 boys and 43 girls, mean age 7.5 

years) and 72 children with autism spectrum disorders (ASD) (64 boys and 8 girls, mean age 

7.4 years), aged 2 to 13 years-old (see details in Table S1). The children with ASD were 

recruited in the Child Psychiatry Centre of the University Hospital of Tours, in the Centre-Val 

de Loire regional Autism Resource Center, and in the Pediatric Centre of Paris Nord (CPPN). 

All the children gave verbal consent and the parents provided written informed consent 

according to institutional guidelines. The experiment conformed to the Code of Ethics of the 

World Medical Association (Declaration of Helsinki, 2008) and was approved by the local 

ethics committee before it started (n°2012-A00520-43).  

Exclusion criteria were neurological disorders (including seizures), neurologic impairment in 

motor or sensory function, or genetically defined disorders. The diagnosis of ASD was made 

by clinicians according to ICD10 criteria and using the Autism Diagnostic Observation 

Schedule-Generic (ADOS-G46) and/or the Autism Diagnostic Interview-Revised (ADI-R47), 

and the Childhood Autism Rating Scale (CARS41). Developmental quotient (DQ) was assessed 



by the Echelles Différentielles d’Efficiences Intellectuelles (EDEI-R48) or the Wechsler 

Intelligence Scale for Children49 (WISC III and WISC IV). Due to the multi-sites recruitment, 

CARS and DQ scores were only assessed respectively in 64 and 40 out 72 ASD children (Table 

1). 

 

b. Stimuli 

The two categories of stimuli consisted in objects (4 photos) and faces (4 photos; Figure 1A). 

The chosen objects were toys, with an overall vertical symmetry in order to match some 

characteristics of faces. The faces were of two men and two women with a neutral expression. 

The overall size (19.2 x 13.2°) of the objects and faces were matched, as well as their luminance 

(10 lux), and color (Red, Green, Blue values =212, 233, 250).  Each image was associated with 

an inter-stimuli gray image with a fixation cross, presented before the image of interest, and 

matched in luminance. The mean luminance of the images was around 10 lux in order to 

optimize the pupil diameter recordings (see SI of 39). 

Black and white slides were also used in order to test for the pupil light reflex. 

 

c. Material and protocol 

The children were seated comfortably in an armchair in front of a computer screen at a distance 

of about 90 cm. When necessary, a child booster seat was fitted in the armchair in order to 

support the child. The screen was coupled with a head-free binocular eye-tracking system 

(FaceLAB®) with a 60Hz data acquisition frequency. GazeTracker® software was used to 

present the stimuli and acquire the data. The reliability of oculometric and pupillometric 

measurements was tested beforehand (see SI of 39). A calibration procedure of the eye-tracker 

was performed at the beginning of each acquisition. 

The protocol started with the presentation of a 2s black screen, followed by a 2s white screen 

in order to measure a pupil light reflex. Then a succession of gray slides (2s) followed by a 

stimulus (4s, object or face) was presented (Figure 1B). Each stimulus was presented only once, 

in a randomized order. 

 



d. Data extraction, pre-processing and parameters 

For each stimulus, Regions of Interest (ROIs) were defined: the whole computer screen (as the 

tracking allows to follow the eyes a little bit beyond the screen borders), the object, the face, 

and the eyes and mouth regions. GazeTracker® provided both the raw oculometric and 

pupillometric data, as well as parameters like tracking time and fixation time applied or not to 

the different ROIs. 

Data pre-processing was performed in Excel and Matlab as described previously39,45. For the 

pupil recordings, pre-processing aimed at suppressing artefacts and blinks, thanks to median 

filtering and interpolation of small times windows corresponding to data loss, artefacts or 

blinks. 

Several parameters were calculated for the pupil recordings. For the pupil light reflex (measured 

during the black and white slides), three parameters were extracted, thanks to a logistic curve 

fitting, inflexion points and “plateau” detection: the amplitude (PRA for Pupil light Reflex 

Amplitude), duration (PRD) and velocity (PRV). The pupil baseline (PBas) parameter was 

recorded during the gray slides presented before each object or face stimulus. It was estimated 

as the median value of the last “plateau” of at least 200ms before the stimulus presentation 

(“plateau” defined as successive pupil diameter values < 0.01 mm). If no “plateau” was found, 

then the baseline value was estimated as the median value of the last second before the stimulus 

presentation. Lastly, the pupil diameter variation (PDV) was estimated for each stimulus 

presentation as the median value, recorded from 2s to 4s, minus the baseline for the previous 

gray slide. 

A list of parameters was also extracted for the oculometric recordings: the total time tracked 

(TTT, corresponding to the duration of the tracking of the eyes by the eye-tracker); for the 

Screen ROI: time spent (STS), fixation time (FTS) and number of fixations (NbFS); for the 

Object/Face/Eyes/Mouth ROIs: time spent (STO/STF/STE/STM), fixation time 

(FTO/FTF/FTE/FTM), number of fixations (NbFO/NbFF/NbFE/NbFM) and latency of the first 

entry (LatO/LatF/LatE/LatM) in the ROI. 

 

e. Discriminant analysis and datamining 

For each participant, all the previously described parameters were extracted and calculated for 

4 objects and 4 faces. Among these 4 values for each parameter, outliers were removed (>1.5 

interquartile range). The total time tracked (TTT) was a value between 0s (no tracking possible) 



and 4s (tracking during the whole stimulus presentation). But only stimuli for which the TTT 

exceeded 2s were kept for the other parameters in order to have enough time for a proper 

evaluation. All the oculometric parameters (except latency) were pondered by the TTT. Finally, 

each parameter was averaged for the 4 objects and for the 4 faces so that only one set of 

parameters was considered by category and by participant.    

ROC (Receiver Operating Curve) analysis was conducted on the whole population or in 

subgroups based on the age (separating 2-7 and 8-13 years old). The separation in two age 

groups was conducted to obtain groups with approximatively the same number of participants 

(Table 1), while at the same time reflecting the transition in face processing expertise9. Area 

under the curve (AUC), sensitivity (Se) and specificity (Sp) were estimated for individual 

parameters.  

Datamining and machine learning was performed using Weka software40 (Waikato 

environment for knowledge analysis, https://www.cs.waikato.ac.nz/ml/weka/). It allowed to 

test for the discriminant power of combination of parameters. All the combinations between 

oculometric and pupillometric parameters were tested separately for the object stimuli and the 

face stimuli (with the pupil light reflex parameters added to each category). For each 

combination, AUC, Se, Sp and accuracy (Ac) based on 5-fold cross-validation were calculated 

to evaluate the discrimination performances for all classifiers (n=36) proposed by Weka 

software. For purpose of representation, a performance index was calculated as the mean of 

AUC, Se, Sp and Ac. 

 

f. Statistics 

The effect of age, CARS and DQ scores on loss of data were tested by t-tests, corrected for the 

number of tests by subgroups of children. 
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Figures legends 

Figure 1: Experimental paradigm. A. Stimuli. A total of four different faces and four different 

objects were presented, equated in size, luminance and color. B. Paradigm. The sequence started 

with a 2s black and a 2s white slide, then each stimulus was presented for 4s and preceded by 

a 2s interstimulus. The interstimulus gray slide was equated in luminance and color to all the 

faces and objects. 

 

Figure 2: Discriminant analysis scores for the Object stimuli. Area Under the Curve (AUC), 

specificity (Sp) and sensitivity (Se) scores for each pupillometric and oculometric parameter 

are represented for the complete population (top panel), the 2-7 years old group (middle panel) 

and the 8-13 years old group (lower panel). PRA: pupil light reflex amplitude, PRD: pupil light 

reflex duration, PRV: pupil light reflex velocity, PBas: pupil baseline, PDV: pupil diameter 

variation, TTT: total time tracked, TSS: time spent on screen, FTS: fixation time on screen, 

NbFS: number of fixations on screen, TSO: time spent on object, FTO: fixation time on object, 

NbFO: number of fixations on object, LatO: latency of first entry on object. 

 

Figure 3: Discriminant analysis scores for the Face stimuli. Area Under the Curve (AUC), 

specificity (Sp) and sensitivity (Se) scores for each pupillometric and oculometric parameter 

are represented for the complete population (top panel), the 2-7 years old group (middle panel) 

and the 8-13 years old group (lower panel). Parameters for the Face/Eyes/Mouth ROIs: time 

spent on ROI (TSF/TSE/TSM), fixation time on ROI (FTF/FTE/FTM), number of fixations on 

ROI (NbFF/NbFE/NbFM), LatO: latency of first entry on ROI (LatF/LatE/LatM). See Figure 

2 for other abbreviations. 

 

Figure 4: Performance index for all combinations of parameters and all machine-learning 

algorithms for the Object stimuli (A) and the Face stimuli (B). Each point is the mean of 

AUC, Se, Sp and Ac. The point is colored if the four scores are above 0.9 (red), 0.8 (orange) or 

0.7 (yellow). The combinations of parameters are organized along plateaus of number of 

children within the data, with less children towards the left and more children towards the right 

(gray line at the bottom of each panel). Within a plateau, the combinations with the most 

parameters are towards the left, those with the less parameters towards the right. The plateaus 



are defined by the presence of the pupillometric parameters (L: pupil light reflex, P: pupil 

variation) within the combinations. 

 

Figure 5: Classifiers with AUC, sensitivity, specificity and accuracy scores above 0.8 as a 

function of combinations of parameters for 2-7 years old (cyan), 8-13 years old (yellow) 

or both groups (red). Pupillometric parameters: pupil light reflex (L) and pupil variation (P) ; 

oculometric parameters: total time tracked (T), exploration of the screen (S), head (H), eyes 

(E), and mouth (M). IBk: K-nearest neighbours, LMT: Logistic Model Tree, LWL: Locally 

Weighted Learning, OneR: One Rule, SGD: Stochastic Gradient Descent, SMO: Sequential 

minimal optimization. 

 

Table 

 
2-7 years old 8-13 years old ALL 

♀ ♂ All ♀ ♂ All ♀ ♂ All 

TD 

n 21 29 50 22 21 43 43 50 93 

Age range 
(years) 

2.8 - 7.7 2.7 - 7.4 2.7 - 7.7 8.5 - 13 8 - 12.1 8 - 13 2.8 - 13 2.7 - 12.1 2.8 - 13 

Mean age ± 
SD 

5.6 ± 1.4 5.3 ± 1.3 5.4 ± 1.3 10.2 ± 1.3 9.5 ± 1.1 9.8 ± 1.2 7.9 ± 2.7 7 ± 2.4 7.5 ± 2.6 

ASD 

n 4 37 41 4 27 31 8 64 72 

Age range 
(years) 

2.7 - 4.6 3.3 - 7.9 2.7 - 7.9 8.3 - 13.1 8.3 - 13.1 8.3 - 13.1 2.7 - 13.1 3.3 - 13.1 2.7 - 13.1 

Mean age ± 
SD 

3.9 ± 0.9 5.9 ± 1.2 5.7 ± 1.3 10.3 ± 2.1 10.3 ± 1.6 10.3 ± 1.6 7.1 ± 3.7 7.7 ± 2.6 7.6 ± 2.7 

CARS score 
mean ± SD 

41 ± 4 
(n=3) 

32 ± 6 
(n=35) 

33 ± 6 
(n=38) 

27 ± 5 
(n=4) 

30 ± 4 
(n=22) 

29 ± 4 
(n=26) 

33 ± 8 
(n=7) 

31 ± 6 
(n=57) 

31 ± 6 
(n=64) 

DQ 
mean ± SD 

(n=0) 76 ± 33 
(n=20) 

76 ± 33 
(n=20) 

75 ± 14 
(n=4) 

75 ± 19 
(n=16) 

75 ± 18 
(n=20) 

75 ± 14 
(n=4) 

76 ± 27 
(n=36) 

76 ± 26 
(n=40) 

 

Table 1: Characteristics of the populations. ASD: Autism Spectrum Disorder, CARS: 

Childhood Autism Rating Scale, DQ: Developmental Quotient, SD: standard deviation, TD: 

typically-developping. 
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