David Baldassin

Ludovic Roux

Guillaume Urvoy-Keller

Dino Martin

Lopez Pacheco

Assessing the Interplay Between WebRTC and QUIC Congestion Control Algorithms

come L'archive ouverte pluridisciplinaire

Abstract-In the last years, real-time media transport using QUIC has aroused general interest. QUIC now features a datagram mode (congestion control but no loss recovery) along the legacy stream mode. Ongoing research is studying protocol mechanisms to transport media with QUIC to build a new streaming protocol or to map existing ones like RTP onto QUIC. Our work focuses on the transport of RTP packets generated by WebRTC over QUIC and investigates the resulting interaction of the QUIC and WebRTC congestion control algorithms.

As QUIC is implemented in user space, we rely on an experimental approach to study various combinations of congestion control algorithms at the QUIC and WebRTC levels. We observed that in a low latency setup, e.g. FTTH, using the stream mode of QUIC pays o as it hides losses to WebRTC. For higher latency scenarios, the datagram mode with an appropriate QUIC level transport protocol o ers the best performance. Last, we observed di erences in the QUIC implementations that can have detrimental e ects on the WebRTC video stream.

Index Terms-WebRTC, QUIC, Congestion Control, RTP, Real-Time, WebTransport

I. I

WebRTC [] and QUIC [] are becoming key players in their own eld. The former as a real-time media transfer mechanism between many applications (Web browsers, Facebook Messenger, Discord. . .), and the latter as a fast and secure transport protocol for Web transfers. QUIC currently represents . % of the Internet tra c []. It is mainly used by Chrome to connect to Google services using HTTP/ , Meta to connect to its social media services, Facebook and Instagram, but other major companies have also started to implement their own version of QUIC (Microsoft, Amazon, Cloud are . . .). As QUIC protocol is implemented in user space, many implementations exist, exhibiting di erent performance [].

Recently, some e orts have been made to enable the delivery of real-time media and low latency streaming over the unreliable datagram extension of QUIC []. An IETF draft by J. Ott and M. Engelbart [] describes how to encapsulate RTP packets within QUIC. This draft speci es an API that should be supported by QUIC implementations in order to provide statistics to inform the congestion control (cc) of RTP, and disable the QUIC congestion controller if needed. The work by Ott et al. paves the way to port other protocols running over RTP such as WebRTC.

Our objective in this work is to assess the interplay between the cc mechanisms provided by WebRTC and QUIC. We rely on an experimental approach that enables us to perform fully controlled experiments with a variety of QUIC implementations. Our contributions are as follows:

) We designed an interface to map the RTP ow produced by WebRTC onto QUIC streams. Speci c care is needed for some control channel used by WebRTC.

) We developed and publicly released a WebRTC over QUIC testbed []-[] based on a tunneling approach where the RTP packets sent by a WebRTC media server over UDP are injected in a highly controllable QUIC tunnel, in terms of cc algorithm or QUIC implementation.

) Our results indicate that (i) in case of rapid change of path capacity, the WebRTC level cc algorithm somehow hides the QUIC level one as it directly controls the video source rate, (ii) any QUIC level algorithm can be used in datagram mode and (iii) the stream mode of QUIC (that recovers losses) can be interesting for small to medium latency (less than ms) scenarios especially when combined with a delay based cc algo like COPA.

) We uncovered some inconsistencies between and also inside the implementations, which can a detrimental impact on the WebRTC media ow.

II. B QUIC W RTC

A. WebRTC

WebRTC is a standard to establish a direct connection and transport audio and video in real-time between web browsers. It establishes a direct connection using the ICE (Interactive Connectivity Establishments) protocol [] to traverse NATs. WebRTC uses the Real-Time Transport (RTP) protocol [] to transport its media. For security, it uses the Datagram Transport Layer Security (DTLS) [] to encrypt the RTP payload.

To save bandwidth, and do -to-n instead of an nto-n architecture one uses a WebRTC media server. This server processes and forwards WebRTC media packets from one sender to all the viewers in the session.

B. QUIC

QUIC is a general purpose transport protocol on top of UDP that provides ow-controlled streams and low-latency connection establishment. Like TCP, QUIC is reliable, retransmits lost packets and features a cc algorithm. The cc algorithm is not speci ed by the standard and thus depends on the implementation choice.

An extension for unrealiable datagram transfers [] allows to make QUIC behave similarly to UDP by not retransmitting packets when they are lost. However, a cc algorithm (loss, delay or rate based) that regulates the ow rate can still be used.

QUIC is implemented in user space. We considered two implementations in this study: () Mvfst [] is the C++ QUIC implementation of Meta platforms. We chose to use it because it is well optimized and supports the QUIC datagrams extension and features several congestion algorithms out of the box : NewReno, Cubic, Copa, BBR or none and) Quic-go (v . .) [] is a QUIC implementation written in pure go. We chose this implementation because it was used in previous experiments for cc for RTP over QUIC []. It uses NewReno as cc algorithm and supports the QUIC datagram extension. III. A QUIC/W RTC QUIC is a relatively new standard and there is no legacy implementation that could be used as unique reference point to perform experiments. We thus adopted an experimental approach based on a testbed, to assess the interplay between the cc at the application layer (WebRTC) and the transport layer (QUIC). WebRTC is emitting video packets in the form of RTP packets that are encapsulated into UDP packets.

A. High level design

commit ea e a aaa abb f c cb f f

We intercept the RTP ow and inject it into a QUIC tunnel, see Figure . The Webapp controls each QUIC tunnel endpoint using websocket (right red links in Figure) and a custom protocol using JSON messages. It provides the ability to con gure the test session with the cc algorithm, the QUIC implementation, whether to use streams or datagrams and set the link capacity.

B. Network emulation

Network emulation is done at the QUIC server tunnel endpoint using the C library libnl. This library provides an API to the con guration interfaces of the NETLINK_ROUTE family including network interfaces, routes, addresses, neighbours, and tra c control. This enables us to control the network tra c similarly to the tc command line tool but directly into the QUIC tunnel code. This allows to set the link capacity and other QoS parameters remotely, using our WebApp. The default parameters for the network are the following: (i) netem qdisc: ms of propagation delay, (ii) tbf qdisc: ms of latency, KB of burst, rate depending on the experiment. We can change these settings dynamically from the Webapp using the websocket connection.

C. WebRTC over QUIC

As the RTP over QUIC draft suggests [], we encapsulate one RTP packet per QUIC datagram. In case we are using QUIC streams, we open a unidirectional stream from the QUIC server towards the QUIC client for each RTP packet. Once the packet has been transmitted to the other end, we close the stream. The reason behind this approach is to avoid any head of line blocking where the transmission of one RTP packet would block its successor.

When running WebRTC over QUIC, we must manage other protocols than just RTP, e.g. STUN for NAT traversal and DTLS for secure connection establishment. If we con gure the tunnel to use datagrams, we come accross an issue: some packets are too big for QUIC datagrams. Indeed, QUIC datagrams have a maximum payload size that is not con gurable depending on the implementation. For instance, in mvfst, the Meta implementation of QUIC, it is limited to bytes. If the packet size exceeds this value, the QUIC datagram is just dropped, which prevents the establishment of the RTC peerconnection. For example, the DTLS server hello is + bytes and could block the RTP connection establishment. In order to address this issue, we open a unidirectional QUIC stream to send the packets which cannot be sent over QUIC datagram due to the size limitation. We further tuned the media server to issue RTP packets of at most bytes.

IV. A T L C C A
In this section, we provide details on the cc protocol of Medooze. Indeed, while WebRTC provides a cc algorithm that directly tunes the target bitrate of the video encoder, the choice of the algorithm is out of the scope of the standard. We also provide information on the cc algorithms available in the QUIC implementations o ered in the testbed. the target encoding+probing rate given to the video encoding algorithm. The value is computed out of the bandwidthEstimation, using a smoothing approach, and adjusted based on the state of the WebRTC cc algorithm, e.g. initial, increase or congestion. ; and (iii) availableBitrate which is the targetBitrate taking into account how much bitrate will be used for retransmission (rtx). Indeed, Medooze not only adjusts the bitrate of the encoder according to what is available in the network. It also aims at compensating lost frames.

B. QUIC CC Algorithms

The QUIC implementations we considered feature the following algorithms: NewReno [], Cubic [],

BBR [] and COPA []. Mvfst implements all these algorithms while Quic-go only features NewReno.

NewReno and Cubic are two emblematic representatives of loss based algorithms. As such, they are not well suited for multimedia transfers but will serve as reference. BBR and COPA, on the other hand, are clearly targeting time sensitive communications. They monitor the delay to avoid bu erbloat and adjust a target emission rate. COPA is a pure delay-based cc algorithm. There exists three versions of BBR that are either pure delay-based or also monitor loss events. Inspection of the mvfst BBR code shows that the version in our testbed relies both on the delay and loss signals.

V. E We use the same video for all experiments. The video sequence is chosen in such a manner that the video encoder will encode it in Constant Bit Rate (CBR) manner, whatever the encoding bit rate picked by the WebRTC cc algorithm. Its nominal bit rate is kbps, meaning that if more banwidth is available, the encoding rate will remain at kbps. The encoder is encoding a reference (key) frame every seconds followed by deferentially encoded frames (w.r.t. the key frame), the latter being ten times smaller than the former. Hence, while the video ow is CBR, all frames are not equal and losing a key frame can lead to way higher retransmission rates as we will see and explain it later in §V-C. To investigate the interplay between the two levels of cc, WebRTC and QUIC, we performed the following experiments: (i) Link capacity limitation. The channel capacity varies over time. ; (ii) Random losses. As the video signal is relatively immune to random losses, we expect to trigger a response from the QUIC cc and not necessarily from WebRTC and (iii) Latency. As the WebRTC cc responds to latency variation and some of the QUIC cc algorithms to random losses, this scenario enables to explore the interplay between the two cc levels.

There is almost no sources of randomness in our controlled environment. As a consequence, even if ve experiments have been performed each time, we report only a single representative trajectory.

A. Link Capacity

In this experiment, the capacity of the link varies over time between and kbps by periods of seconds, see the blue line (labelled as link) of Figure . The di erence is partly due to the QUIC overhead (we can see clearly that overhead when comparing with UDP when the link is at . mbps). It is also due to the media server overhead. Indeed, the media server introduces some overhead when in RTX mode and also when sending probe packets on top of the media stream. Probing packets are used to estimate the bandwidth in order to possibly increase the target bitrate if no losses are observed. RTX packets are retransmissions of lost data that are required to decode frames. It can also be used to signal the media server to send a new key frame. In the latter case, it will reset the stream by breaking the dependencies with the old frames.

Another key observations from As suggested earlier in this section, in this rst scenario, the application level cc algorithm dominates the transport level one. This is because WebRTC cc algorithm directly controls the source by adjusting the encoding rate, while the transport layer cc does it indirectly through its congestion window.

To validate this hypothesis, let us rst look at the WebRTC internal metrics reported in Figure a. We can observe that at time seconds, when the link is reduced from mbps to kbps, the feedback delay starts increasing due to the new network limit. The WebRTC cc algorithm enters in congestion phase and sets the target bitrate to the current total received bitrate.

Let us illustrate the behavior of the transport layer with the case of NewReno with Mvfst in Figure b: the congestion window is way higher than the bytes in ight before time seconds . Then at second , when we change the link capacity, a loss is detected and the congestion window is divided by two. However, it does not a ect the video stream since the congestion window is still way higher than the bytes in ight.

B. Random losses

To see how both congestion controllers react to random losses, we set a constant link limit to . mbps, i.e. higher than the maximum encoding rate. We increase the random loss percentage each seconds with the following steps: %, . %, %, %, %. As we can see on Figure , the bitrate decreases over time for QUIC in datagram modes (both mvfst and quic-go) and UDP as in these cases, the RTX mode is triggered and part of the available bandwidth is reserved for retransmissions. In contrast, the stream mode retransmits lost packets within a round trip time so the media server does not detect any loss, whatever the cc algorithm is, including 'none'. This is illustrated by Figure that reports QUIC and WebRTC detected losses, averaged over the full set of loss rates considered.

When moving to the transport layer, we notice that the QUIC bitrate increases with an increasing loss rate, it is in fact caped before second to the maximum set in the mvfst parameters, which is MSS As the loss rate increases, the sent bitrate also increases over time.

as can be seen in Figure . This is primarily because of retransmissions that can occur at the transport or application layer (RTX mode). Variations can be explained by the nature of the lost frame, key or reference.

To sum up, in this scenario, the stream mode of QUIC algorithms is bene cial as it hides the losses to the application layer. However, this results hold for low RTTs -to ms in our experiments. We investigate more challenging scenarios in the next section.

C. Latency

In this section, we investigate the impact of latency, with four scenarios: ms, ms, ms and ms. We used a xed loss rate of . % that corresponds to a typical value observed in our Medooze production deployments.

For a latency below ms, we observed no losses at the WebRTC level when QUIC is in stream mode, irrespectively of the exact cc algorithm. This means that the losses are compensated by QUIC. The picture is completely di erent above ms of latency, as exempli ed with Figure that reports the loss rate for all scenarios and a ms latency .

These results can be explained as follows. First note that to ms is a typical bu er lenght in WebRTC. Hence, if the network latency is smaller than this value, the stream mode is e cient and hides the losses to WebRTC as seen in section V-B. Above ms, the recovery mode of the stream mode can be detrimental on the video ow. This is a typically what we observe in Figure for the NewReno, BBR and Cubic cases: the media server enters in RTX mode and sends new key frames to reset the stream. Key frames are way larger than di erential ones (by a factor of approximately), which explains the rate increase (to about mbps) that overshoots the channel capacity of . mbps and completely breaks the video ow.

However, the Quick-go implementation in stream mode with New Reno does not impact the video ow. This is also the case for Mvfst in stream mode with COPA, which we believe is caused by the latency increase that COPA perfectly detects and limits its transmission rate. Since there is a very complex interaction resulting from the mapping and adaptation of WebRTC onto QUIC, it is very hard to decide which one, Mvfst or Quick-go, provides the normal behavior. Hence, we conclude that for clients with a good network latency, typically G or FTTH, using the stream mode of QUIC is a good solution. For larger latencies, the datagram mode is a better choice, if coupled with the appropriate cc algorithm. We also uncovered some internal inconsistencies in mvfst implementation and discrepancies between mvfst and QUIC-go.

As

Figure

 Figure provides a high level overview of our testbed. A WebApp is used to control the experimental set up and receive the media streams over a WebRTC peerconnection. The Webapp is either running in a Chrome browser or a native client implementation using libwebrtc. The latter simpli es the capture of the H bitstream to calculate QoE metrics. The video stream is sent by a Medooze server [], an open source WebRTC media server that the Webapp contacts through a websocket (left red link in Figure) .WebRTC is emitting video packets in the form of RTP packets that are encapsulated into UDP packets.

Figure :

 : Figure : Overview webapp setup with Medooze

 A. Medooze (v . .) bandwidth estimation Several cc algorithms have been proposed for WebRTC, SCReAM [], NADA [] and GCC []. Medooze cc algorithm borrows characteristics from COPA []. It uses twcc [] (Transport Wide Congestion Control) feedback packets (sent everyms) to calculate a number of metrics: (i) A minimum RTT over a s period based on the emission time of the last RTP packet included in a twcc packet and the reception time of this twcc packet ; (ii) A feedback delay which is the average of the deltas between the timestamps of the RTP packets in the twcc packet and the reception time of the twcc packet ; (iii) Sent and received bitrate and packet loss stats. The output of the algorithm consists of three values: (i) bandwidthEstimation: the estimation of the bitrate available in the network; (ii) targetBitrate:

Figure :

 : Figure : Screenshot of the test video

Figure :

 : Figure : Received media bitrate on the WebRTC client

 Figure and Figure is that we have no di erence whatever the set-up is at the transport layer, ranging from a raw UDP transport layer with no safety mechanism to con gurations with QUIC in datagram mode using a video friendly cc protocol like COPA or BBR. This is hinting towards the dominance of the WebRTC cc algorithm over the transport layer one.Before investigating in details the reaction of the two cc algorithms, let us have a look at the video level performance metrics. Figurereportsthe FPS metric and we see no clear deviation from the frames per second target (observed variations are measurement artifacts and the FPS constantly stays at value). The SSIM score, which re ects the video distorsion during transmission,is very good for all con gurations, in the range between and (being the best value).

Figure

 Figure : Received number of frame per second

Figure :

 : Figure : WebRTC and QUIC signals

Figure :

 : Figure : Received media bitrate by the WebRTC client. The stream mode o ers a constant rate while the datagrams bitrate decreases with increasing losses.

Figure :

 : Figure : Packets loss detected at the QUIC and We-bRTC layers. QUIC streams hide the lost packets by retransmitting them before being detected as lost by WebRTC whereas, in datagram mode, losses are detected by WebRTC which decreases the bitrate avoid new losses.

Figure :

 : Figure : QUIC bitrate coming out of the QUIC server.As the loss rate increases, the sent bitrate also increases over time.

Figure :

 : Figure : Packet loss and sent analysis at . % loss rate and ms latency using mvfst.

 Assessing the Interplay between WebRTC and QUIC congestion control algorithms

	David Baldassin	Ludovic Roux	Guillaume Urvoy-Keller, Dino Martin Lopez Pacheco
	CoSMoSoftware	CoSMoSoftware	Université Côte d'Azur
	Université Côte d'Azur		

 future work, we would like to test other implementations of QUIC to our tesbed and do experiments in the wild. /github.com/dbaldassi/quic-tunnel-webclient [] --, "Quic Tunnel Native Client, " . [Online]. Available: https://github.com/dbaldassi/quic-tunnel-native-client [] A. Keränen et al., "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal, " RFC , . [] H. Schulzrinne et al., "RTP: A Transport Protocol for Real-Time Applications, " RFC , . [] E. Rescorla et al., "The Datagram Transport Layer Security (DTLS) Protocol Version . , " RFC , . [] T. Pauly et al., "An Unreliable Datagram Extension to QUIC, " RFC , . [] Facebook, "mvfst: An implementation of the QUIC transport protocol, " https://github.com/facebookincubator/mvfst, . [] M. Seemann et al., "A QUIC implementation in pure go, " https: //github.com/lucas-clemente/quic-go, . [] M. Engelbart et al., "Congestion control for real-time media over quic, " in EPIQ, . [] S. G. Murillo, "Medooze media server, " https://github.com/ medooze/media-server, . [] I. Johansson et al., "Self-Clocked Rate Adaptation for Multimedia, " RFC , . [] X. Zhu et al., "Network-Assisted Dynamic Adaptation (NADA): A Uni ed Congestion Control Scheme for Real-Time Media, " RFC , . [] S. Holmer et al., "A google congestion control algorithm for real-time communication draft-ietf-rmcat-gcc-, " https:// datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc, . [] V. Arun et al., "Copa: Practical Delay-Based congestion control for the internet, " in NSDI, . [] H. S. et al., "Rtp extensions for transport-wide congestion control, " https://datatracker.ietf.org/doc/html/ draft-holmer-rmcat-transport-wide-cc-extensions-, . [] A. Gurtov et al., "The NewReno Modi cation to TCP's Fast Recovery Algorithm, " RFC , . [] I. Rhee et al., "CUBIC for Fast Long-Distance Networks, " RFC , . [] N. Cardwell et al., "Bbr: Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propagation time, " vol. , no. , p. -, . [] Z. Wang et al., "Image quality assessment: from error visibility to structural similarity, " IEEE Transactions on Image Processing, vol. , no. , .

		R	
	[] W C, "WebRTC . : Real-time communication between
	browsers, " https://www.w .org/TR/webrtc/,	.
	[] J. Iyengar and M. Thomson, "QUIC: A UDP-Based Multiplexed
	and Secure Transport, " RFC	,	.
	[] w techs, "Quic usage, " https://w techs.com/technologies/
	details/ce-quic,	.	
	[] B. Jaeger et al., "Quic on the highway: Evaluating performance
	on high-rate links, " in IFIP Networking,	.
	[] C. Perkins et al., "Real-time audio-visual media transport over
	quic, " in EPIQ,	.	
	[] J. Ott et al., "Rtp over quic (roq), " https://datatracker.ietf.org/
	doc/html/draft-ietf-avtcore-rtp-over-quic,	.
	[] D. Baldassin, "Quic Tunnel, "		. [Online]. Available: https:
	//github.com/dbaldassi/quic-tunnel
	[] --, "Quic Tunnel Web Client, "	. [Online]. Available:
	https:/		

We grouped the Mvfst datagram con gurations as they are similar