
HAL Id: hal-04231040
https://hal.science/hal-04231040

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A foundation for exact binarized morphological neural
networks

Theodore Aouad, Hugues Talbot

To cite this version:
Theodore Aouad, Hugues Talbot. A foundation for exact binarized morphological neural networks.
ICCV 2023 - International Conference on Computer Vision, workshop on Low Bit Quantized Neural
Networks, Oct 2023, Paris, France. �hal-04231040�

https://hal.science/hal-04231040
https://hal.archives-ouvertes.fr

A foundation for exact binarized morphological neural networks

Theodore Aouad
Universite Paris-Saclay, CentraleSupelec, Inria, CVN

3 rue Joliot Curie, Gif-sur-Yvette, France
theodore.aouad@centralesupelec.fr

Hugues Talbot
Universite Paris-Saclay, CentraleSupelec, Inria, CVN

3 rue Joliot Curie, Gif-sur-Yvette, France
hugues.tablot@centralesupelec.fr

Abstract

Training and running deep neural networks (NNs) often
demands a lot of computation and energy-intensive special-
ized hardware (e.g. GPU, TPU...). One way to reduce the
computation and power cost is to use binary weight NNs,
but these are hard to train because the sign function has a
non-smooth gradient. We present a model based on Math-
ematical Morphology (MM), which can binarize ConvNets
without losing performance under certain conditions, but
these conditions may not be easy to satisfy in real-world
scenarios. To solve this, we propose two new approxima-
tion methods and develop a robust theoretical framework
for ConvNets binarization using MM. We propose as well
regularization losses to improve the optimization. We em-
pirically show that our model can learn a complex morpho-
logical network, and explore its performance on a classifi-
cation task.

1. Introduction
Binary weight neural networks (BWNNs) are attractive

because they can provide powerful machine learning solu-
tions with much less storage, computation, and energy con-
sumption than conventional networks [21]. Several meth-
ods, such as BinaryConnect [5], DoReFa-Net [27], and
XNOR-Net [21], have shown good to excellent results in
a variety of applications. These networks usually use the
sign function to binarize the weights in the forward pass.
They must use a special gradient function, like the Straight-
Through Estimator (STE) [3], to overcome the zero gradi-
ent problem of the sign function during the backward pass.
However, this approach lacks a solid theoretical basis, sug-
gesting the need for a different approach. Some methods
avoid using the STE by first training a floating-point neural

network and then binarizing it afterwards [12, 8]. However,
this approach may lead to approximate binarization and a
drop in performance. In this paper, we present a new ap-
proach that uses the concepts of Mathematical Morphology
(MM) [23] to overcome the drawbacks of existing meth-
ods. MM, based on modern set theory and complete lat-
tices, offers a non-linear mathematical framework for im-
age processing. Its basic operators, erosion and dilation, are
equivalent to thresholded convolutions [14], creating a link
between MM and deep learning. Combining these fields
can improve the efficiency and results of morphological op-
erations while enhancing our knowledge of deep learning
[1]. Recent works on morphological neural networks have
explored learning operators and structuring elements using
various approaches, such as the max-plus definition [19, 6]
and differentiable approximations [24, 18, 9]. However,
these methods primarily focus on learning gray-scale MM
operators and have not focused on NN binarization.

The Binary Morphological Neural Network (BiMoNN)
[2] proposed a well-defined mathematical method that can
binarize NN weights without losing performance under cer-
tain conditions. However, it is limited to binary inputs and
can learn only one filter per layer, limiting the design of
modern architectures. In this paper, we improve the Bi-
MoNN framework to overcome these limitations and intro-
duce a new model that can learn any sequence of morpho-
logical operators while achieving complete binarization in
all cases. We also introduce novel regularization techniques
to encourage our model to become morphological. By com-
bining MM concepts with deep learning, our work estab-
lishes the basis for a more robust and theoretically sound
framework for NN binarization. Our contributions in this
work are as follows:

• In §2, we refine the BiMoNN theoretical framework and
generalize it to any kind of gray-scale / RGB inputs. We

introduce two new layers analogous to the dense and
convolutional layers, enabling the transposition of mod-
ern architectures.

• In §3, we present a well-defined mathematical binariza-
tion method based on MM that works seamlessly with
standard frameworks and tools. We also propose two
new approximate binarization techniques to deal with
the cases where exact binarization is not possible.

• In §4, we introduce three applicable regularization
losses, and a fourth one that is only theoretical due to
its long computation time.

• In §5, we evaluate the capacity of the binarized Bi-
MoNN to learn complex morphological pipelines with-
out performance loss. Additionally, we investigate its
behavior on the MNIST [16] classification task, and the
behavior of the introduced regularization techniques.
Our code is publicly available at https://github.

com/TheodoreAouad/LBQNN2023.

2. General Binary Morphological Neural Net-
work

We build on the BiMoNN framework [2] and propose a
new Binary Structuring Element (BiSE) neuron. We show
how it is morphologically equivalent to binary images by
using the notion of almost binary images. We also pro-
pose the BiSE Layer (BiSEL) that can learn multiple filters
per layer, which is similar to a convolutional layer; and the
DenseLUI, a dense layer that can be binarized. In §2.1 and
§2.2, we consider binary inputs only. We generalize to any
types of inputs in §2.3.

2.1. Binary Structuring Element neuron

Let D be the dimension of the image (usually D = 2 or
3). We denote ΩI ⊂ ZD the support of the images, and Ω
the support of the weights kernel. For the remainder of the
paper, we assume S ⊂ Ω and S ̸= ∅. For a set X ⊂ ZD,
we denote its indicator function 1X : ZD 7→ R such that
1X(i) = 1 if i ∈ X , else 1X(i) = 0. We denote the set
of its subsets P(X). We denote the convolution by ⊛. We
denote [·]+ := max(·, 0) and [·]− := min(·, 0).

Definition 2.1 (BiSE neuron). Let (W,B) be a set of
reparametrization functions and (ω, β, p) a set of learnable
parameters. Let ξ be a smooth threshold activation (e.g.
normalized tanh: 1

2 tanh(·) +
1
2). Then the Binary Struc-

turing Element neuron (BiSE) is:

χ : x ∈ [0, 1]ΩI 7→ ξ

(
p
[
x⊛W (ω)−B(β)

])
∈ [0, 1]ΩI

(1)

The reparametrization functions (W,B) are hyperpa-
rameters. The BiSE neuron is a convolution operator with
weights and biases that are reparametrized (see §2.4), a

smooth threshold activation and a scaling factor p that can
invert the output if negative. We introduce the following al-
most binary image representation, to handle images that are
not exactly binary and to be able to apply gradient descent
optimization.

Definition 2.2 (Almost Binary Image). The set of almost
binary images of parameter δ is denoted I(δ). We say an
image I ∈ [0, 1]ΩI is almost binary and define XI its asso-
ciated binary image if:

∃δ ∈
]
0,

1

2

]
, I(ΩI) ∩

]1
2
− δ,

1

2
+ δ
[
= ∅ (2)

XI :=
(
I >

1

2

)
(3)

2.2. Morphological Equivalence

We now express the conditions under which a BiSE neu-
ron can be seen as a morphological operator.

Theorem 2.3 (Dilation - Erosion Equivalence). For a given
structuring element (SE) S ⊂ Ω, and an almost binary pa-
rameter δ ∈]0, 12], a set of reparametrized weights W ∈ RΩ

and bias b ∈ R, we define:

L⊕(W, S) :=
∑
k∈Ω\S

[Wk]+ +
(1
2
− δ
)∑
k∈S

[Wk]+ (4)

U⊕(W, S) :=
(1
2
+ δ
)
min
k∈S

Wk +
∑
k∈Ω

[Wk]− (5)

U⊖(W, S) :=
∑
k∈Ω

Wk − L⊕(W, S) (6)

(7)

L⊖(W, S) :=
∑
k∈Ω

Wk − U⊕(W, S) (8)

Let ψ ∈ {⊕,⊖} be a dilation or erosion. Then:

∀I ∈ I(δ) , ψS
(
I >

1

2

)
=
(
I⊛W > b

)
⇔ Lψ(W, S) ≤ b < Uψ(W, S) (9)

In this case, ∀s ∈ S,Ws ≥ 0 and b ≥ 0 and we say
that a BiSE χ with weights W (ω) = W and B(β) = b
is activated. If ψ = ⊕, then B(β) ≤ 1

2

∑
k∈ΩW (ω)k. If

ψ = ⊖, then B(β) ≥ 1
2

∑
k∈ΩW (ω)k

For any almost binary image I ∈ I(δ), χ(I) ∈ I(δout)
is almost binary with known parameter δout. Finally

∀I ∈ I(δ),
(
χ(I) >

1

2

)
= ψS

(
I >

1

2

)
(10)

I χ(I)

XI Xχ(I)

χ

·> 1
2 ·> 1

2

ψS

https://github.com/TheodoreAouad/LBQNN2023
https://github.com/TheodoreAouad/LBQNN2023

This theorem states that if a BiSE is activated, it trans-
forms an almost binary inputs into an almost binary outputs
with known δout. Moreover, if we threshold the input and
output with respect to 1

2 , it is equivalent to applying the cor-
responding morphological operation, exhibiting an almost
commutativity property between thresholding and convolu-
tion. Further, equation (10) shows that if a BiSE is activated
for operation ψ, performing the BiSE operation in I(δ) is
equivalent to performing the binary morphological opera-
tion ψ in the binary space P(S). This presents a natural
framework for binarization (see §3).

2.3. Binary Morphological Neural Network

Our objective is to build a binarizable neural network.
We now define binarizable neural layers based on the BiSE
neuron. By combining these layers, we can create flexible
architectures tailored to the desired task.

As mentioned earlier, the BiSE neuron resembles a con-
volution operation. However, a single convolution is in-
sufficient to create a morphological layer. In this context,
we explain how we handle multiple channels. We observe
that the BiSE neuron can be used to define a layer that
learns the intersection or union of multiple binary images
x1, ...,xn ∈ I(δ). For example, their union can be ex-
pressed as the dilation of the 3D image x := (x1, ...,xn) ∈
I(δ) ⊂

(
[0, 1]ΩI

)n
with a tubular SE applied solely across

the dimension of depth. Therefore, we define the Layer
Union Intersection (LUI) as a special case of the BiSE layer,
with weights restricted to deep-wise shape. It is analogous
to a 1 × 1 convolution unit. A LUI layer can learn any in-
tersection or union of any number of almost binary inputs.
By combining BiSE neurons and LUI layers, we can learn
morphological operators and aggregate them as unions or
intersections.

Definition 2.4 (BiSEL). A BiSEL (BiSE Layer) is the com-
bination of multiple BiSE and multiple LUI. Let (χn,k)n,k
be N ∗K BiSE and (LUIk)k be K LUI. Then we define a
BiSEL as:

ϕ : x ∈
(
[0, 1]ΩI

)N 7→
(

LUIk
[(
χn,k(xn)

)
n

])
k

(11)

The BiSEL mimics a convolutional layer. In conven-
tional ConvNets, to process multiple input channels, a sep-
arate filter is applied to each channel, and their outputs are
summed to create one output channel. In the case of BiSEL,
instead of summing the results of each filter, we perform a
union or intersection operation (see Figure 1).

DenseLUI the LUI layer is similar to a 1 × 1 convolu-
tion, which is equivalent to a fully connected layer. Given
an input vector x ∈ Rn, we can apply the LUI layer to the

(a) Classical Convolutional
Layer (b) BiSEL

Figure 1: BiSEL vs Conv Layer. Input x with 3 channels.
Output ϕ(x) with 2 channels.

reshaped input x̂ ∈ Rn×1×1 treating it as a 2D image with
width and length of 1 and n channels, respectively. There-
fore, we can utilize the BiSEL to create binarizable fully
connected layers.

Gray-Scale / RGB Inputs Up until now, all inputs were
assumed binary. We extend these definitions to gray-scale
and RGB images. The main idea is to separate an input
channel Ic ∈ RΩI into its set of upper level-sets to come
back to binary inputs:

{(Ic ≥ τ) | τ ∈ R} (12)

Considering all possible values of τ from a continuous im-
age would result in an excessive number of level-sets to
process. Alternatively, we can define a finite set of values
for τ in advance. Subsequently, each channel of an image
I ∈ Rc×w×l is separated into its corresponding level-sets,
and these level-sets are provided as additional channels. If
we have N values for level-set, the resulting input is a bi-
nary image IB ∈ {0, 1}(N ·c)×w×l.

Figure 2: Gray to level-set for 5 different values, generating
5 input channels.

We have introduced two types of binarizable layers: the
DenseLUI, which is similar to a fully connected layer, and
the BiSEL, which resembles a convolutional layer. By com-
bining these layers, we can create a Binary Morphologi-
cal Neural Network (BiMoNN), which encompasses vari-
ous architectures suited for different tasks.

2.4. Training considerations

The BiMoNN (ΓR) is fully differentiable. If L is a differ-
entiable loss function, given a dataset of N labeled images
{(xi,yi)}, we minimize the error 1

N

∑N
i=1 L(ΓR(xi),yi)

using a gradient descent algorithm (like Adam [13]). The

gradients are computed with the backpropagation algorithm
[22]. The binarization scheme, which is defined in the next
section, is applied post-training or during training to mea-
sure the model’s evolution.

To facilitate the convergence of our networks towards
morphological operators, certain constraints are beneficial.
In order to avoid dealing with a multitude of constraints, we
reparametrize some variables to ensure that the constraints
are always satisfied. We introduce two reparametrization
functions for the weights, and three for the bias.

Positivity Our objective is to reach the set of activable
weights and bias. Theorem 2.3 indicates that we only have
to look at positive parameters. We can enforce them to be
positive by setting W and B as the softplus function:

Bpos(·) =Wpos(·) := f+(·) := log(1 + exp(·)) (13)

Dual reparametrization For the weights, we introduce
the dual reparametrization as follows:

Wdual(ω) :=
K · f+(ω)∑

W (ω) w
(14)

with K := 2 · ξ−1(0.95). We can show that this dual
reparametrization ensures that the training process is similar
for both erosion and dilation.

Other reparametrization for the bias can be defined to
keep it into coherent range values. If the bias is smaller
than min(W), then ∀X ⊂ Ω, χ(1X) < 0.5: no val-
ues will be close to 1. On the other side, if the bias is
higher than

∑
W w, then χ(1X) > 0.5. Therefore, we want

min(W) < B <
∑
W w. Let {W1 < ... < WK} be the

ordered values taken by the weights W . The previous in-
equality is ensured if B belongs to the closed convex set
Cb := [W1+W2

2 ,
∑
W w − W1

2] = [lc(W), uc(W)]. There
are two ways of ensuring that B ∈ Cb.

Projected First, we can project the bias after the gradi-
ent iteration: this comes down to a projected gradient algo-
rithm. We call this approach ”Projected” reparametrization.
We apply Bp(β) := f+(β), and we project Bp(β) onto Cb
after the gradient update iteration.

Projected Reparam The second way is to redefine B be-
fore the end of the iteration, instead of after. We call this
approach ”Projected Reparam” reparametrization:

Bpr(β) :=

 lc(W) if f+(β) < lc(W)
uc(W) if f+(β) > uc(W)
f+(β) else

(15)

Initialization The BiSE layer performs convolutions with
a smooth threshold function as the activation, resulting in
values in the range of [0, 1]. Since we have reparametrized
the weights to be positive, the classical initialization pro-
posed in [7], which is tailored for ReLU activation and in-
cludes negative weights, needs to be adapted. We ensure
that the gradients do not vanish during initialization, espe-
cially when stacking BiSE neurons in a deep network. In-
spired by [7], we sample uniform weights with an adjusted
distribution that maintains a constant variance. Additional
details can be found in Appendix A.

3. Binarization
Binarization of a neural network involves converting

the real-valued weights and activations, typically stored
as 32-bit floats, into binary variables represented as 1-bit
booleans. While the conventional approach results in vari-
ables in {−1, 1} [26], which is not suitable for learning
morphological operations, we instead utilize {0, 1}.

BiMoNNs inherently correspond to binarized networks,
making the BiSE neuron a natural framework for binariza-
tion when dealing with binary inputs. If a specialized hard-
ware tailored for morphological operations is available, it
can offer significant improvements in efficiency and per-
formance, facilitating the binarization process. Alterna-
tively, dilation and erosion can be expressed using binary-
weighted thresholded convolutions.

In our approach, binarization occurs after the training
phase. We present two types of binarization for the BiSE
neuron: the exact method (as introduced in [2]), when
the BiSE neuron is activated, and two novel approximated
methods. Then, we sequentially binarize the entire network.

3.1. Exact BiSE Binarization

The real-value operations performed by an activated Bi-
nary Structuring Element (BiSE) in the almost binary space
can be replaced with binary morphological operations on
the binary space after thresholding by 0.5, without sacrific-
ing performance (as per Theorem 2.3). To determine if a
BiSE is activated and which operation it corresponds to, we
introduce Proposition 3.1, which provides a linear complex-
ity method for extraction.

Proposition 3.1 (Linear Check). Let us assume the BiSE of
weights W (ω) and B(β) is activated for ψ with SE S ⊂ Ω
for almost binary images I(δ). Then S = (W (ω) > τψ)
with

τ⊕ :=
1

1
2 + δ

(
B(β)−

∑
w∈W (ω)

[w]−

)
(16)

τ⊖ :=
1

1
2 + δ

(∑
w∈W (ω)

[w]+ −B(β)
)

(17)

Given a BiSE neuron χ and an almost binary output
in I(δ), we check if χ is activated for S⊕ or S⊖, where
S⊕ = (W (ω) > τ⊕) and S⊖ = (W (ω) > τ⊖). If yes, we
binarize by replacing χ with the corresponding morpholog-
ical operator. If no, we use proposition 3.1 to confirm that χ
is not activated, and we approximate the binarization using
the methods in section 3.2. The exact method requires only
the computation of L⊕, U⊕, L⊖, U⊖ and at most O(|ΩS |)
operations.

3.2. Approximate BiSE Binarization

In practice, BiSE are rarely activated, necessitating
an approximate binarization method. Let (Ŵ, b̂, p̂) :=

(W(ω̂), B(β̂), p̂) be the learned reparametrized parameters.

3.2.1 Projection onto activable parameters

To find the closest morphological operation, we minimize
the Euclidean distance d for a given ψ ∈ {⊕,⊖} and the set
Aψ,S of activable parameters:

Aψ,S :=
{
(w, b) ∈ RΩ × R

∣∣ Lψ(w, S) < b < Uψ(w, S)
}

(18)

minimize
S⊂Ω,ψ∈{⊕,⊖}

d

(
(Ŵ, b̂), Aψ,S

)
(19)

For each set Aψ(S) corresponding to a possible mor-
phological operation, we find the smallest distance for each
(S, ψ) and apply complementation if p̂ < 0. The following
proposition allows linear search instead of exponential.

Proposition 3.2. If S∗, ψ∗ minimize d
(
(Ŵ, b̂), Aψ,S

)
,

then S∗ = (Ŵ ≥ minS∗ Ŵs)

Proposition 3.1 guarantees that the SE is a set of thresh-
olded weights when the weights are activated. Proposition
3.2 ensures that this property is preserved for the optimal
SE even when the weights are not activated. Thus, we only
need to compute the distance to all possible sets of thresh-
olded weights, denoted as Sk := (Ŵ ≥ Ŵk), and select
the smallest distance. To compute the distance for ψ and S
fixed, we solve the following optimization problem.

minimize
(w,b)∈RΩ

+×R

1

2

∑
i∈Ω

(Wi − Ŵi)
2 +

1

2
(b− b̂)2

subject to

{
Lψ(w, S)− b ≤ 0

b− Uψ(w, S) ≤ 0
(20)

When the initial weights Ŵ are positive, the projected
weights are also positive. Consequently, the constraints can

be rewritten for dilation and erosion as follows:

⊕

∑
k∈Ω\S

Wk − b ≤ 0 (21)

∀s ∈ S, b ≤Ws (22)
∀k ∈ Ω \ S,−Wk ≤ 0 (23)

⊖

b−

∑
s∈S

Ws ≤ 0 (24)

∀s ∈ S,
∑
i∈Ω

Wi −Ws ≤ b (25)

∀k ∈ Ω \ S,−Wk ≤ 0 (26)
These new constraints are then linear. By utilizing the

positive reparametrization technique (as described in §2.4),
we can compute the distance to any activable parameter set
Aψ,S by solving a QP problem, using the OSQP solver [25].
This needs to be done for all possible sets of thresholds Sk,
of which there are |Ω|. For a single layer with 4096 input
and output neurons, the computation would take up to 28
days (on a Intel(R) Xeon(R) W-2265 CPU, 3.50GHz). Fu-
ture work may involve finding an analytically computable
form for efficient distributed computing. Alternatively, we
introduce the following approximation technique.

3.2.2 Projection onto constant weights

We use a similar technique to [17]. First, we define
ÃS the set of constant weights over S, and replace
d
(
(Ŵ, b̂), Aψ,S

)
with d(Ŵ, ÃS).

ÃS := {θ · 1S | θ > 0} (27)

d(Ŵ, ÃS) =
∑
i∈Ω

Ŵ2
i −

1

|S|

(∑
s∈S

Ŵs

)2
(28)

Similarly to proposition 3.2, we can prove that the op-
timal S∗ is a set of thresholded weights. The analytical
form in 28 allows for efficient computation of S∗ in dis-
tributed systems, significantly faster than the first method.
For a layer with 500 input and output channels, this step
takes less than 3 seconds. Once S∗ is obtained, the bias
term helps determine ψ ∈ {⊕,⊖}, based on Theorem 2.3.
If b̂ >

∑
Ŵ
w/2, the operation is an erosion; otherwise, it

is a dilation.

3.3. BiMoNN binarization

The core of the successive binarization is Theorem 2.3.
To simplify, we suppose that a BiMoNN is a succession of
BiSE. If the first BiSE is activated, then with a binary input
(e.g. almost binary with δ0 = 1

2), the output is almost bi-
nary of known parameter δ1. If the next BiSE is activated
for the parameter δ1, its output is also activated for param-
eter δ2, and so on. Hence, every BiSE operation on the al-
most binary space is equivalent to the morphological oper-
ation on the binary space. In case one BiSE is not activated,

its output is not on the almost binary space, breaking the ex-
act equivalence between BiSE and morphology. We apply
an approximate method (projection §3.2.1 if small network,
otherwise fast projection §3.2.2), and suppose that the input
for the next BiSE is binary.

4. Morphological Regularization
The binarization schema, as described in §3, is sepa-

rate from the training process. During standard loss opti-
mization with classical gradient descent, there is no explicit
constraint that makes the network behave morphologically.
Consequently, the network may not tend to a morphologi-
cal operation: BiSE operators may not be activated and the
weights may stay far from their respective projection space,
resulting in potential errors in the approximate binarization
process compared to the floating-point operator. To encour-
age the network to exhibit a more morphological behavior,
we propose the inclusion of a regularization term in the loss,
denoted as Lmorpho. The loss function now becomes:

L = Ldata + c · Lmorpho (29)

Ldata represents the loss used for the data-driven task
(e.g. Cross-Entropy Loss for classification), and c is the hy-
perparameter controlling the strength of the regularization
term. To define the regularization term, we reuse the two
approximate binarization techniques defined in section 3.2.

4.1. Regularization onto activable parameters

A first idea is to reduce the distance to the closest set
Aψ,S defined in (18) for each BiSE neuron. Let (W, b) :=
(W (ω), B(β)) be the weights in a given iteration. Then:

Lmorpho = Lacti := min
S,ψ

d

(
(W, b), Aψ,S

)
(30)

To do this, we must compute this distance in a differen-
tiable fashion. We proceed in two steps: first, we compute
the optimal (S∗, ψ∗) as in §3.1, by checking all possible
thresholded set of weights and solving the corresponding
QP with OSQP, with the Lagrangian dual method. This
yields the best (W∗, b∗) as well as the Lagrangian dual val-
ues, from which we deduce the differentiable form of the
distance. If ψ∗ = ⊕, let λ∗ be the dual value for the con-
straint (21) and

T := {t ∈ S∗ |Wt ≤ b∗} (31)
K := {k ∈ Ω \ S∗ |Wk ≤ λ∗} (32)

K := (Ω \ S∗) \K (33)

D := |K|(|T|+ 1) + 1, (34)

then we can show that we obtain the following differentiable

expressions for (W∗, b∗).

b∗ =
1

D

(∑
j∈K

Wj + |K|
(∑
t∈T

Wt + b
))

(35)

∀j ∈ K,w∗
j =Wj +

1

D

(∑
t∈T

Wt + b− (|T|+ 1)
∑
i∈K

Wi

)
(36)

∀k ∈ K , W∗
k = 0 (37)

∀t ∈ T , W∗
t = b∗ (38)

∀s ∈ S∗\T , W∗
s = Ws. (39)

Then, we have a differentiable expression for the loss.

Lacti =
∑
i∈Ω

(Wi −w∗
i)

2 − (b− b∗)2 (40)

However, the computational burden described in §3.1
persists: the first step of computing S∗ is too long in prac-
tice.

4.2. Regularization onto constant set

Instead of trying to enforce a fully morphological net-
work, we can encourage the weights to stay in the set of
constant weights ÃS defined in (27). We proceed in two
steps: we find the best S∗ in the same way as in §3.2.2, i.e
by computing the distance d(ÃS ,W) defined in (28) for all
set of thresholded weights, and selecting the smallest dis-
tance. Then, a differentiable expression for the distance is:

Lmorpho = Lexact :=
∑
i∈Ω

Wi −
1

|S∗|

(∑
s∈S∗

Ws

)2
(41)

Computing the distance for all set of thresholded weights
still takes significant time, and in our experimentation, this
slows the training by up to 80×. Instead, we propose to
use the technique introduced in [17]. If we assume that the
weights follow a uniform or normal distribution, we can ap-
proximate the optimal S∗ ≃ (W > τ) with the following
thresholds:

Uniform τu :=
2

3

(1

|Ω|
∑
i∈Ω

Wi

)
Su := (W > τu) (42)

Normal τn :=
3

4

(1

|Ω|
∑
i∈Ω

Wi

)
Sn := (W > τn) (43)

From this, we can define two regularization loss which
can be computed without slowing the training down.

Lmorpho = Lunif :=
∑
i∈Ω

Wi −
1

Su

(∑
s∈Su

Ws

)2
(44)

Lmorpho = Lnormal :=
∑
i∈Ω

Wi −
1

Sn

(∑
s∈Sn

Ws

)2
(45)

5. Experiments
In this section, we empirically validate the capabilities of

BiMoNNs in learning a binarized morphological pipeline
through a denoising task, without the need for regulariza-
tion. We also evaluate the model and regularization tech-
niques on the MNIST classification task.

5.1. Binary Denoising

We generate a second dataset to evaluate the denoising
capacity of BiMoNNs. The target images in this dataset
consist of randomly-oriented segments with width h, with
added Bernoulli noise. To filter these images, an MM expert
would use a union of opening operations, where the SEs are
segments with width 1 and angle one of (0◦, 90◦,−45◦).
The SEs should be longer than the noise and shorter than
the smallest stick in the target image (usually a length of 5).
Examples are given in figure 3a.

Our architecture uses two consecutive BiSEL layer of
kernel size 5 and 3 hidden channels (see figure 3b). We op-
timize the MSE Loss, with an initial learning rate of 0.01.
We train over 6000 iterations and halve the learning rate af-
ter 700 iterations with non-diminishing loss. We stop once
the loss does not decrease after 2100 iterations. We em-
ploy a positive reparametrization for the bias and a dual
reparametrization for the weights, and binarize with the pro-
jection onto activable parameters.

The network achieves excellent denoising performance,
with a DICE score of 97.5%. The remaining 2.5% discrep-
ancy is due to artifacts between the sticks that cannot be de-
noised using an opening operation. The binarized network
(Figure 3b) accurately learns the intersection of three open-
ings (which remains an opening) the same way a human ex-
pert would combine such operators to achieve the denoising
task optimally. Additionally, 4 out of the 6 BiSE are ac-
tivated during the process. This experiment shows that our
network can learn accurate and interpretable composition of
morphological operators.

(a) Input-output example.

(b) Binarization of the network

5.2. Classification

We conduct classification experiments on the MNIST
dataset [16]. All images are thresholded at 128. Our Bi-
MoNN model comprises one hidden DenseLUI layer with
4096 neurons. To handle the large number of parameters,
we adopt the fast projection defined in §3.2. We compare
the classification accuracy of our float and binarized mod-
els against the SOTA and baseline models with fully con-
nected layers and 1D batch normalization [11], employing
1
2 (tanh(·) + 1) as the activation layer. The accuracy results
are summarized in Table 1.

In our framework, binarizing the weights also entails bi-
narizing the activations. Consequently, binarizing the last
layer would yield binary decision outputs for each output
neuron, possibly leading to multiple labels with a score of 1.
To overcome this issue, we refrain from binarizing the last
layer, thus retaining the real-valued activations. This deci-
sion affects a negligible proportion of parameters (≃0.1%).

In traditional classification neural networks, the softmax
activation is commonly used at the end of the last layer to
produce the final probability distribution over the classes.
However, in the BiMoNN architecture, we utilize the same
activation function as the hidden layers, which is the nor-
malized tanh. Additionally, we compare the performance
of our BiMoNN model when replacing the last normal-
ized tanh activation with a softmax layer. When using the
normalized tanh, Ldata is the Binary Cross-Entropy loss.
When using the softmax, we use the Cross-Entropy loss.

LBCE(ŷi,y∗
i) :=

10∑
c=1

y∗
i log(ŷi) + (1− y∗

i) log(1− ŷi)

(46)

LCE(ŷi,y∗
i) :=

10∑
c=1

y∗
i log(ŷi) (47)

We conduct a comprehensive random search to identify
the optimal hyperparameter configuration for the Binary
Morphological Neural Network (BiMoNN). The hyperpa-
rameters explored include the learning rate, last activa-
tion function (Softmax layer vs. normalized tanh), posi-
tive vs no reparametrization for weights, and several bias
reparametrization schemas (no reparametrization, positive,
positive reparam, and positive projected). Additionally, we
investigate regularization losses, such as no regularization,
Lexact, Luni, and Lnor. If regularization is applied, only
positive weight reparametrization is considered. We vary
the coefficient c in the regularization loss and explore dif-
ferent batch value starting time for when we start apply-
ing regularization during training. For each regularization
schema, we select the model with the best binary valida-
tion accuracy, and the corresponding results are displayed
in Table 1. Detailed hyperparameter configurations and hy-

perparameters study are provided in appendix B.

Table 1: Accuracy error on test set for MNIST classifica-
tion, with float error R and binarized error B.

Architecture Params R B

Ours

DLUI (W = Id) 3.3 M 2.2% 90.2%
DLUI (No Regu) 3.3 M 4.6% 10.1%
DLUI Lexact 3.3 M 4.0% 7.3%
DLUI Lunif 3.3 M 3.6% 4.5%
DLUI Lnormal 3.3 M 2.8% 4.6%

SOTA
EP 1fc [15] 3.3 M - 2.8%
BinConnect [5] 10 M - 1.3%
BNN [10] 10 M - 1.4%

Float FC (4096) 3.3 M 1.5 % -
FC (2048x3) [10] 10 M 1.3% -

Applying the softplus reparametrization to the weights
led to a slight increase in the floating-point error (2.2%
vs. 2.8%). Similar findings were observed in [20] for non-
negative neural networks in a different task. Generally, pos-
itive neural networks exhibit lower accuracy but offer en-
hanced robustness and interpretability [4]. In our case, it
significantly improved the binarized results, along with a
substantial increase in the rate of activated BiSE neurons,
rising from a median of 1.5% to 10% with softplus. With-
out imposing positivity, the binarized network performed
randomly.

We analyze the impact of regularization on the perfor-
mance of the binarized model, which improves as expected.
The float accuracy also increases, given that we select the
model with the best binary accuracy on validation. Sur-
prisingly, Lunif and Lnormal outperform Lexact, despite be-
ing designed as approximations. This discrepancy might be
due to the number of searches performed: Lexact performed
only 42 searches, while other configurations went through
100 searches. However, we have not yet achieved parity
with the baseline for the float model or reached the state-of-
the-art for the binarized model. With 4.5% error compared
to 2.8% for the same number of parameters, this empha-
sizes the need for improved architecture, better regulariza-
tion techniques, or exploration of alternative optimization
methods.

5.3. Discussion

The state-of-the-art BWNN methods commonly rely on
the XNOR operator to emulate multiplications. However,
this algebraic framework proves unsuitable for morpholog-
ical operators, as it contradicts the set-theoretical principles
of morphological operations. In our experiments, we ob-
served that the BNN operator [10] failed to learn even the
simplest dilation operator. Furthermore, the performance of
the state-of-the-art method on the denoising task was un-

satisfactory, with a DICE coefficient of only approximately
0.3, indicating the need for improved approaches in han-
dling morphological operations.

In contrast, our findings reveal that the float BiMoNN
exhibits enhanced binarization capabilities when trained to
closely approximate a set of morphological operators. As
a result, the float BiMoNN naturally acquires morpholog-
ical properties, leading to a more effective subsequent bi-
narization process. However, when applied to the classifi-
cation of the MNIST dataset, the resulting float BiMoNN
does not retain morphological characteristics, causing a no-
ticeable performance degradation after binarization. To ad-
dress this issue, we emphasize the importance of positive
reparametrization and applying morphological regulariza-
tion. By incorporating these techniques, we significantly
improved the model’s overall performance and mitigate the
accuracy loss upon binarization. This shows the potential of
our proposed BiMoNN framework in leveraging morpho-
logical properties and offers insights into the development
of more effective BiMoNN models for many and diverse
tasks.

6. Conclusion
In this paper, we have presented a novel, mathematically

justified approach to binarize neural networks using the Bi-
nary Morphological Neural Network (BiMoNN), achieved
by leveraging mathematical morphology. Our proposed
method establishes a direct link between deep learning and
mathematical morphology, enabling binarization of a wider
set of architectures, without performance loss under specific
activation conditions and providing an approximate solution
when these conditions are not met.

Through our experiments, we have demonstrated the ef-
fectiveness of our approach in learning morphological oper-
ations and achieving high accuracy in denoising tasks, sur-
passing state-of-the-art techniques that rely on the straight-
through estimator (STE). Furthermore, we proposed and
evaluated three practical regularization techniques that aid
in converging to a morphological network, showcasing their
efficacy in a classification task. Additionally, we introduced
a fourth regularization technique that, though promising in
theory, currently faces computational challenges. We will
adress these shortcoming in future work.

Despite promising results, there is still room for enhanc-
ing both the floating point and binary modes of our network.
In future work, diverse architectures, such as incorporating
convolution layers, could be explored to further improve the
performance and applicability of BiMoNN. Overall, our re-
search lays the foundation for advancing the field of bina-
rized neural networks with a morphological perspective, of-
fering valuable insights into developing more powerful and
efficient models for a wide range of tasks.

References
[1] Jesus Angulo. Some open questions on morphological oper-

ators and representations in the deep learning era. In Interna-
tional Conference on Discrete Geometry and Mathematical
Morphology, pages 3–19. Springer, 2021. 1

[2] Theodore Aouad and Hugues Talbot. Binary morphological
neural network. In 2022 IEEE International Conference on
Image Processing (ICIP), pages 3276–3280, 2022. 1, 2, 4

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville.
Estimating or propagating gradients through stochastic neu-
rons for conditional computation. CoRR, abs/1308.3432,
2013. 1

[4] Jan Chorowski and Jacek M Zurada. Learning understand-
able neural networks with nonnegative weight constraints.
IEEE transactions on neural networks and learning systems,
26(1):62–69, 2014. 8

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks
with binary weights during propagations. In C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015. 1, 8

[6] Gianni Franchi, Amin Fehri, and Angela Yao. Deep morpho-
logical networks. Pattern Recognition, 102:107246, 2020. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1026–
1034, 2015. 4

[8] Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao
Hu, Peisong Wang, Qingshan Liu, and Jian Cheng. Prox-
ybnn: Learning binarized neural networks via proxy matri-
ces. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 223–241. Springer, 2020. 1

[9] Romain Hermary, Guillaume Tochon, Élodie Puybareau,
Alexandre Kirszenberg, and Jesús Angulo. Learning
grayscale mathematical morphology with smooth morpho-
logical layers. Journal of Mathematical Imaging and Vision,
pages 1–18, 2022. 1

[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in neural information processing systems, 29, 2016.
8

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 7

[12] Minje Kim and Paris Smaragdis. Bitwise neural networks.
arXiv preprint arXiv:1601.06071, 2016. 1

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 3

[14] Branislav Kisacanin and Dan Schonfeld. A fast thresholded
linear convolution representation of morphological opera-
tions. IEEE Transactions on Image Processing, 3(4):455–
457, 1994. 1

[15] Jérémie Laydevant, Maxence Ernoult, Damien Querlioz, and
Julie Grollier. Training dynamical binary neural networks
with equilibrium propagation. CoRR, abs/2103.08953, 2021.
8

[16] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 2, 7

[17] Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and
Junchi Yan. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016. 5, 6

[18] Jonathan Masci, Jesús Angulo, and Jürgen Schmidhuber.
A learning framework for morphological operators using
counter–harmonic mean. In International Symposium on
Mathematical Morphology and Its Applications to Signal
and Image Processing, pages 329–340. Springer, 2013. 1

[19] Ranjan Mondal, Moni Shankar Dey, and Bhabatosh Chanda.
Image restoration by learning morphological opening-
closing network. Mathematical Morphology-Theory and Ap-
plications, 4(1):87–107, 2020. 1

[20] Ana Neacsu, Jean-Christophe Pesquet, and Corneliu
Burileanu. Accuracy-robustness trade-off for positively
weighted neural networks. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 8389–8393. IEEE, 2020. 8

[21] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-
sion – ECCV 2016, pages 525–542, Cham, 2016. Springer
International Publishing. 1

[22] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning Representations by Back-propagating
Errors. Nature, 323(6088):533–536, 1986. 4

[23] J. Serra. Image Analysis and Mathematical Morphology.
Academic Press, 1982. 1

[24] Yucong Shen, Xin Zhong, and Frank Y Shih. Deep morpho-
logical neural networks. arXiv preprint arXiv:1909.01532,
2019. 1

[25] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S.
Boyd. OSQP: an operator splitting solver for quadratic
programs. Mathematical Programming Computation,
12(4):637–672, 2020. 5

[26] Chunyu Yuan and Sos S Agaian. A comprehensive review
of binary neural network. arXiv preprint arXiv:2110.06804,
2021. 4

[27] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. 1

A. Initialization

A.1. Initialization

In this section, we investigate the initialization of the BiSE neuron. Let us suppose that we stack L ∈ N∗ BiSE neurons
one after the other.

Notations Let l ∈ [[1, L]] be the layer number. Let Wl ∈ RΩS be the random set of weights of this layer. Let bl ∈ R be
the bias (not random). Let µl := E(Wl) and σl := V ar(Wl). Let x0 ∈ {0, 1}ΩI be the input image, and for l ∈ [[1,K]],
let xl be the output of the lth layer: xl := ξ(yl) ∈ [0, 1]ΩI with yl := xl−1 ⊛ Wl − bl ∈ RΩI such that for j ∈ ΩI ,
yl(j) =

∑
i∈ΩS

Wl(i)xl−1(j − i)− bl. Let nl = |Wl|.

Assumptions
1. For l ∈ [[1, L]], the

(
Wl(i)

)
i∈Ωl

S

are independent, identically distributed (IID)

2. For l ∈ [[1, L]], the
(
xl(i)

)
i∈ΩI

are IID

3. For l ∈ [[1, L]] , E[yl] = 0 and p(yl) is symmetrical around 0
4. For (l, i, j) ∈ ([[1, L]]× ΩS × ΩI) , Wl(i) and xl−1(j − i)) are independent

Under these assumptions, we can drop the i and j index and rewrite yl =
∑

Wlxl−1 − bl, with implicit indexing. The
same goes for xl.

According to Fubini-Lebesgue theorem, and using assumption 3, we have E[xl] = E[ξ(yl)] = ξ(E[yl]) = 0.5.

Bias computation We have, ∀l ∈ [[1,K]] , E[yl] = nlE[Wl]E[xl−1] − bl. We use the unbiased estimator to compute the
mean, by summing all the weights of the layer: µl := 1

nl

∑
w∈Wl

w. Therefore, with E(x0) the mean of the inputs:

b1 = E(x0)
∑
w∈W1

w (48)

∀l ∈ [[2,K]] , bl =
1

2

∑
w∈Wl

w (49)

In some cases, we initialize the scaling factor p = 0 to avoid bias towards applying complementation or not. Then, this
initialization leads to a point with zero grad (see annexe A.2 for details). Therefore, we add some noise to the bias:

∀l ≥ 2 , Bl =
1

2

∑
Wl

w + U(−ϵbias, ϵbias) (50)

B1 = E(x0)
∑
W1

w + U(−ϵbias, ϵbias) (51)

ϵbias depends on the length of the network. It is set between [10−4, 10−2].

Variance computation We find a recurrence relation between V ar(yl) and V ar(yl−1). To simplify the computations, let
p′ = dξ(p·x)

dx (0) be the tangent at 0, and let us assume that p′ > 0. We approximate the smooth threshold by a piece-wise
linear function:

ξ(u) ≃
(1
2
+ p
)
1]− 1

2p ,
1
2p [

(u) + 1] 1
2p ,+∞](u) (52)

E[x2
l] = E[ξ(yl)2] (53)

E[x2
l] ≃ p′2

∫ 1
2p′

− 1
2p′

y2p(yl)dyl + p′
∫ 1

2p′

− 1
2p′

ylp(yl)dyl +
1

2

∫ +∞

0

p(yl)dyl +
1

2

∫ +∞

1
2p′

p(yl)dyl (54)

= p′2V ar(yl) +H(p′) +
1

4
(55)

with H(p′) :=

∫ +∞

1
2p′

(
1

2
− 2p′2y2

l

)
p(yl)dyl (56)

By independence, we have

1

nl
V ar(yl) = V ar(Wlxl−1) (57)

= σlV ar(xl−1) + E[xl−1]
2σl + µ2

l V ar(xl−1) (58)

= σl[E[x2
l−1]− E[xl−1]

2] + E[xl−1]
2 + µ2

l [[E[x2
l−1]− E[xl−1]

2] (59)

= E[x2
l−1](σl + µ2

l)− µ2
lE[xl−1]

2 (60)

≃ p′2V ar(yl−1)(σl + µ2
l)−

1

4
µ2
l + (σl + µ2

l)
(1
4
+H(p′)

)
(61)

= p′2V ar(yl−1)(σl + µ2
l) +G(p′) (62)

with G(p′) :=
1

4
σl +H(p′)(σl + µ2

l) (63)

If G(p′) ≥ 0, which is equivalent to H(p′) ≥ − σl

4(σl+µ2
l)

1

nl
V ar(yl) ≤ p′2V ar(yl−1)(σl + µ2

l) (64)

We unroll the recursive relation. Let

V (p′) := V ar(y1)

l∏
k=1

p2nk(σk + µ2
k) (65)

Then

V (p′) ≤ V ar(yl) ≤ V (p′) +

L∑
k=1

1

4
σk

l∏
m=k

p2nm(σm + µ2
m) (66)

The right hand side of the inequality comes from the fact that H(p′) ≤ 0.
If G(p′) ≤ 0, which is equivalent to H(p′) ≤ − σl

4(σl+µ2
l)

, we have:

0 ≤ V ar(yl) ≤ V (p′) (67)

If the variance is equal to 0, then the output is constant: therefore, the gradient is 0 and we cannot learn the parameters.
On the other hand, if the variance is too high, the model is poorly conditioned: we can expect the learning to be unstable.

If the number of layers is too big, the product term V (p′) can either vanish or explode. To avoid variance exploding when
G(p′) ≥ 0, and to avoid variance vanishing when G(p′) ≤ 0, we choose to ensure that the product is equal to 1 by imposing
each term to be 1.

∀l ∈ [[1, L]] , p′2nl(σl + µ2
l) = 1 (68)

σl =
1

p′2nl
− µ2

l (69)

∀l ∈ [[1, L]] , p′2nl(σl + µ2
l) = 1 (70)

The variance needs to be positive, which gives

µl <
1

p′

√
1

nl
(71)

We have a range of possible means and variances. Let us choose a uniform distribution for Wl. Then Wk ∼ U(µl −√
3σl, µl +

√
3σl). We want positive weights (see theorem 2.3), therefore we want µl >

√
3σl, which gives

µl >

√
3

2p′

√
1

nl
(72)

Using equations 71 and 72, we choose µl as the mean of the bounds:

µl :=

√
3 + 2

4p′
√
nl

(73)

Role of the scaling factor p Finally, p′ is related to the value of p: p′ = d(ξ(p·x)
dx (0) = pξ′(0). Ideally, to avoid bias towards

applying complementation or not, p should be set at 0, therefore p′ = 0. We consider that after the first few iterations, p ̸= 0,
and our computations become valid.

How to set p′ in practice ? We want the BiSE output to be in the full range [0, 1]. Let us suppose that after a few iterations,
p = 1. With Bl =

∑
w∈Wl

w, the lowest output value is given by an image full of 0, giving ξ(−Bl). The highest output
is given by an image full of 1 and gives ξ(Bl). Let h ∈]0, 1[(e.g. h = 0.95). We want ξ(B) > h, which is the same as
ξ(−Bl) < 1− h thanks to the binary-odd property. By using the fact that µlnl ∼

∑
w∈Wl

w, we have:

ξ(Bl) ≥ h⇔ p′ ≤
√
3 + 2

8ξ−1(h)

√
nl (74)

Summary With h = 0.95, ϵbias ∈ [10−4, 10−2] and p′l :=
√
3+2

8ξ−1(h)

√
nl,

∀l ∈ [[1, L]] , µl :=

√
3 + 2

4p′l
√
nl

(75)

∀l ∈ [[1, L]] , σl :=
1

p′2l nl
− µ2

l (76)

∀l ∈ [[1, L]] , Wl ∼ U(µl −
√
3σl, µl +

√
3σl) (77)

∀l ∈ [[1, L]] , pl := 0 (78)

∀l ∈ [[2, L]] , bl :=
1

2

∑
w∈Wl

w + U(−ϵbias, ϵbias) (79)

b1 := E(x0)
∑
w∈W1

w + U(−ϵbias, ϵbias) (80)

We can approximate E(x0) with the mean of a few samples, for example the first batch.

Reparametrization We computed the weights and biases of the convolution. In the BiSE definition 2.2, they correspond
to W (ω) and B(β). The true initialization must be done on ω and β. If W and B are invertible, the problem is solved:

ωl =W−1(Wl) (81)

βl = B−1(bl) (82)

If the functions are not invertible, the study must be done case by case in order to find generative distributions for ωl and
βl that respects the resulting distributions for W (ωl) and B(βl).

Dual reparametrization For the dual reparametrization, we need to adapt the parameter K.

Proposition A.1. Let σ, µ ∈ R2
+ such that µ −

√
3σ > 0. Let a ∈ R∗

+. Let Xi ∼ U
(
a, aµ+

√
3σ

µ−
√
3σ

)
be a sequence of

independent, identically distributed random variables, SN =
∑N
i=1Xi, KN = µ · N and Wi,N = KN

Xi

SN
. Then, almost

certainly (a.c.)
Wi,N −→a.c.

N 7→∞ U(µ−
√
3σ, µ+

√
3σ) (83)

Proof.

E[|Xi|] = E[Xi] =
a

2

(
1 +

µ+
√
3σ

µ−
√
3σ

)
= a

µ

µ−
√
3σ

< +∞ (84)

Then, according to the strong law of large numbers, SN

N −→a.c. E[Xi]. Then:

Wi,N = Xiµ
N

SN
−→a.c.

N Xiµ
µ−

√
3σ

aµ
=

1

a
(µ−

√
3σ)Xi ∼ U(µ−

√
3σ, µ+

√
3σ) (85)

Finally if we take a = µk −
√
3σk the initialization becomes:

K = µk · nk = 2 · ξ−1(h) (86)

Wk ∼ U(µk −
√
3σk, µk +

√
3σk) (87)

K
Wk∑
w∈Wk

w
∼a.c.nk→+∞ U(µk −

√
3σk, µk +

√
3σk) (88)

Remark on bias initialization Theorem 2.3 expresses the operation approximated by the BiSE depending on the bias.
From the second to the last layer, the bias is initialized at the middle of both operation. Therefore, the BiSE are unbiased to
learn either dilation or erosion.

However, for the first BiSE layer, the bias is initialized differently. If E(x0) <
1
2 , then the bias indicates a dilation. We

bias the BiSE to learn a dilation. This is explained by the assumption that the output must mean at 1
2 . If the input is a lower

than 1
2 , we must increase its value. The same goes for the erosion: if the value of the input is too high, we reduce it by

applying an erosion.

A.2. Gradient Computation

Let Γ = χL ◦ ... ◦ χ1 be a sequence of BiSE neurons, with parameters pl, bl and Wl for all layers l. We compute
L(Γ(X), Y) for one input sample. Let

Πl := ∂1L
(
Γ(X), Y

)(N∏
k=l+1

diag(ξ′(χk))pkWk

)
(89)

We re-denote Wl as the linear matrix such that χl−1 ⊛Wl = χl−1Wl.

dL
dpl

:= Πldiag(ξ′(χl))(χl−1Wl − bl) (90)

dL
dbl

:= Πldiag(ξ′(χl))(−pl) (91)

dL
dWl

:= Πldiag(ξ′(χl))plϕl−1 (92)

If for all l, pl = 0, then dL
dbl

= dL
dWl

= 0. Moreover, by initialization of the bias bl, we have χl−1Wl − bl = 0, leading to
dL
dpl

= 0. With our current initialization, all the gradients are equal to 0. Therefore, in practice, we add a uniform noise to the
bias:

∀l ≥ 2 , bl =
1

2

∑
Wl

w + U(−10−4, 10−4) (93)

B1 = E(X)
∑
W1

w + U(−10−4, 10−4) (94)

This will lead to pl moving away from 0, which unblocks the other gradients as well. We introduce a small bias towards
either dilation or erosion. However, its significance is negligible, and does not prevent from learning one operation or the
other.

B. Experiments

Table 2: Best set of hyperparameters for each architecture

Architecture W (ω) B(ω) Coef Regu Regu Delay Learning Rate Last Activation
DLUI (W = Id) identity identity 0 - 6.2 · 10−3 tanh
DLUI (No Regu) positive positive 0 - 9.8 · 10−2 tanh
DLUI Lexact positive projected reparam 0.01 10000 4.2 · 10−2 softmax
DLUI Luni positive projected reparam 0.01 20000 6.1 · 10−2 softmax
DLUI Lnor positive identity 0.001 10000 5.4 · 10−2 softmax

We perform a random search across a range of hyperparameters to identify the optimal configuration. The hyperparameters
explored in the search are as follows:

• Learning rate between 10−1 and 10−3.
• Last activation: Softmax layer vs Normalized tanh. If Softmax Layer, we use LCE , else we use LBCE
• Applying the softplus reparametrization to the weights or not.
• The bias reparametrization schema between no reparametrization, positive, projeceted and projected reparam.
• Regularization loss: either no regularization, or the projection onto constant set (choose between Lexact, Luni and Lnor).

If we apply regularization, then we also apply softplus reparametrization.
• If regularization: the coefficient c in the loss, either 0.01 or 0.001.
• If regularization: the number of batches to wait before applying the regularization, in [0, 5000, 10000, 15000, 20000].

For each regularization schema, we select the model with the best binary validation accuracy, and the corresponding results
are displayed in Table 1. Detailed hyperparameter configurations are provided in Table 2 for reference.

We investigate the effects of each hyperparameter.

Bias Reparametrization For the choice of bias reparametrization function, we observed that not applying any
reparametrization to the bias resulted in less robustness, and the network occasionally failed to learn. Applying projected
reparametrization improved robustness, but it did not increase the proportion of activated neurons. Conversely, applying
the positive projected and projected reparametrization functions increased the ratio of activated BiSE neurons from 0.9% to
around 20%. Ensuring that the bias falls within the correct range of values enhances the interpretability of the network.

Regularization Delay when activating the regularization loss at the beginning of training, the results were notably worse,
especially in binary accuracy. Our hypothesis is that the network does not have enough time to explore the right morphological
operations and is prematurely drawn to a non-optimal operator, getting stuck in its vicinity. We observed that the accuracy
improved when increasing the waiting time before activating the regularization loss. Future work may explore more advanced
policies for applying the loss, such as using the loss at a given frequency instead of every batch, increasing the coefficient of
the loss at each step, or waiting for the network to converge before applying regularization.

Regularization coefficient and last activation The coefficient of the regularization loss did not have a significant impact,
as well as replacing the normalized tanh by a softmax layer.

