Towards Retail Stores Automation: 6-DOF Pose Estimation combining Deep Learning Object Detection and Dense Depth Alignment - Addendum

Virgile Foussereau, Iori Kumagai, Guillaume Caron

- To cite this version:

Virgile Foussereau, Iori Kumagai, Guillaume Caron. Towards Retail Stores Automation: 6-DOF Pose Estimation combining Deep Learning Object Detection and Dense Depth Alignment - Addendum. 2023. hal-04230973

HAL Id: hal-04230973
https://hal.science/hal-04230973
Preprint submitted on 6 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards Retail Stores Automation: 6-DOF Pose Estimation combining Deep Learning Object Detection and Dense Depth Alignment Addendum

Virgile Foussereau ${ }^{1,2}$, Iori Kumagai ${ }^{1}$, Guillaume Caron ${ }^{1,3}$

I. INTRODUCTION

This document is meant to serve as an addendum to [1]. The main purpose of this addendum is to provide a mathematical demonstration to show that given a convex shape S and its bounding box B, the center point is the only point guaranteed to be part of S. This justifies the choice made in [1] to use the bounding box center point as pose initialization for the detected object.

II. ADDENDUM

Proposition 1. We consider the bounding box B of a convex shape S in the plane. The center point of B is the only point guaranteed to be inside S.

Proof: We call G the set of points that are guaranteed to be inside a convex shape S given its bounding box B. We want to show that $G=\left(x_{0}, y_{0}\right)$ with $\left(x_{0}, y_{0}\right)$ the center point of B.

- Uniqueness: First, we show that $G \subseteq\left(x_{0}, y_{0}\right)$.

We consider the four corners of B : $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)$. We consider only convex shapes with non-zero area, so we have $x_{1}<x_{2}$ and $y_{1}<y_{2}$.

[^0]- The segment S_{1} between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is a convex shape corresponding to the bounding box B , so $G \subseteq S_{1}$.
- Likewise, the segment S_{2} between $\left(x_{2}, y_{1}\right)$ and (x_{1}, y_{2}) is a convex shape corresponding to the bounding box B , so $G \subseteq S_{2}$.

Therefore $G \subseteq S_{1} \cap S_{2}$ and, as $S_{1} \cap S_{2}=\left(x_{0}, y_{0}\right)$, we have $G \subseteq\left(x_{0}, y_{0}\right)$.

Existence: We want to show that $\left(x_{0}, y_{0}\right) \in G$.
Let S be a convex shape with bounding box B. We have at least one point from S on each edge of B :

$$
\begin{array}{lr}
\mathbf{p}_{\mathbf{A}}=\left(x_{1}, y_{A}\right) & y_{1} \leq y_{A} \leq y_{2} \\
\mathbf{p}_{\mathbf{B}}=\left(x_{2}, y_{B}\right) & x_{1} \leq x_{B} \leq x_{2} \\
\mathbf{p}_{\mathbf{C}}=\left(x_{C}, y_{2}\right) & y_{1} \leq y_{C} \leq y_{2} \\
\mathbf{p}_{\mathbf{D}}=\left(x_{D}, y_{1}\right) & x_{1} \leq x_{D} \leq x_{2}
\end{array}
$$

$\mathbf{p}_{\mathbf{A}}, \mathbf{p}_{\mathbf{B}}, \mathbf{p}_{\mathbf{C}}, \mathbf{p}_{\mathbf{D}} \in S$.
Note that these points are not necessarily distinct.
As S is convex, we have segment $\left[p_{A}, p_{D}\right] \subseteq S$.
If $y_{A}=y_{1}$ or $x_{D}=x_{1}$, we directly have a point from S on line L_{1} between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, namely $\left(x_{1}, y_{1}\right)$.

- If $y_{A}>y_{1}$ and $x_{D}>x_{1}$, then the segment $\left[p_{A}, p_{D}\right]$ is not parallel to the line L_{1} between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, as neither of the two points are on the line. We can write the equation of line L_{1} as: $L_{1}(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)+y_{1}$. As $L_{1}\left(x_{1}\right)=y_{1}$ and L_{1} is strictly increasing we have:

$$
y_{A}>L_{1}\left(x_{1}\right) \text { and } y_{1}<L_{1}\left(x_{D}\right)
$$

meaning that $\mathbf{p}_{\mathbf{A}}$ and $\mathbf{p}_{\mathbf{D}}$ are not on the same side of L_{1}. Therefore we obtain an intersection point $\left(u_{1}, v_{1}\right) \in$ $\left[p_{A}, p_{D}\right] \cap L_{1}$. As S is convex, we also have $\left(u_{1}, v_{1}\right) \in S$. Let's write the equations defining u_{1} and v_{1} :
$\exists \alpha, \beta \in[0,1],\left\{\begin{array}{l}u_{1}=\left(x_{D}-x_{1}\right) \alpha+x_{1}=\left(x_{2}-x_{1}\right) \beta+x_{1} \\ v_{1}=\left(y_{1}-y_{A}\right) \alpha+y_{A}=\left(y_{2}-y_{1}\right) \beta+y_{1} .\end{array}\right.$
We can solve these equations to find α and β :
First we express $\beta=\frac{x_{D}-x_{1}}{x_{2}-x_{1}} \alpha$. Then by substitution we have:

$$
\begin{gathered}
\left(\left(y_{2}-y_{1}\right) \frac{x_{D}-x_{1}}{x_{2}-x_{1}}+y_{A}-y_{1}\right) \alpha=y_{A}-y_{1} \\
\Leftrightarrow \alpha=\frac{1}{1+\frac{y_{2}-y_{1}}{y_{A}-y_{1}} \frac{x_{D}-x_{1}}{x_{2}-x_{1}}} \\
\Leftrightarrow \alpha=\frac{1}{1+\frac{y_{2}-y_{1}}{y_{A}-y_{1}} \frac{x_{D}-x_{1}}{x_{2}-x_{1}}} .
\end{gathered}
$$

Therefore we can express the value of v_{1} :

$$
v_{1}=y_{A}-\frac{y_{A}-y_{1}}{1+\frac{y_{2}-y_{1}}{y_{A}-y_{1}} \frac{x_{D}-x_{1}}{x_{2}-x_{1}}},
$$

and find an upper bound:

$$
\begin{array}{rlr}
v_{1} & \leq y_{A}-\frac{y_{A}-y_{1}}{1+\frac{y_{2}-y_{1}}{y_{A}-y_{1}}} \quad \text { as } x_{D} \leq x_{2} \\
& \leq y_{A}-\frac{\left(y_{A}-y_{1}\right)^{2}}{y_{A}+y_{2}-2 y_{1}} \\
& \leq \frac{y_{A}^{2}+y_{A} y_{2}-2 y_{A} y_{1}-y_{A}^{2}+2 y_{A} y_{1}-y_{1}^{2}}{y_{A}+y_{2}-2 y_{1}} \\
& \leq \frac{y_{A} y_{2}-y_{1}^{2}}{y_{A}+y_{2}-2 y_{1}} .
\end{array}
$$

Let's define the function $f: y \longmapsto \frac{y y_{2}-y_{1}^{2}}{y+y_{2}-2 y_{1}}$ for $y \in\left[y_{1}, y_{2}\right]$.
Then $f^{\prime}(y)=\frac{y_{2}\left(y+y_{2}-2 y_{1}\right)-y y_{2}+y_{1}^{2}}{\left(y+y_{2}-2 y_{1}\right)^{2}}$ and:

$$
\begin{aligned}
& f^{\prime}(y) \geq 0 \\
& \Leftrightarrow \quad y_{2}\left(y+y_{2}-2 y_{1}\right) \geq y y_{2}-y_{1}^{2} \\
& \Leftrightarrow \quad y_{2}^{2}-2 y_{1} y_{2} \geq-y_{1}^{2} \\
& \Leftrightarrow \quad\left(y_{2}-y_{1}\right)^{2} \geq 0
\end{aligned}
$$

Therefore f is increasing on $\left[y_{1}, y_{2}\right]$. As $f\left(y_{2}\right)=\frac{y_{2}^{2}-y_{1}^{2}}{2\left(y_{2}-y_{1}\right)}=\frac{y_{2}+y_{1}}{2}=y_{0}$, we have that $v_{1} \leq y_{0}$.

Likewise, we can find a point $\left(u_{2}, v_{2}\right) \in\left[\mathbf{p}_{\mathbf{C}}, \mathbf{p}_{\mathbf{B}}\right] \cap L_{1}$ with $\left(u_{2}, v_{2}\right) \in S$ and $v_{2} \geq y_{0}$.
S is convex, so the segment $\left[\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right]$ is a subset of S. As $\left(x_{0}, y_{0}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ are three points of the line L_{1} with $v_{1} \leq y_{0} \leq v_{2}$, we have $\left(x_{0}, y_{0}\right) \in\left[\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right]$.

Therefore, $\left(x_{0}, y_{0}\right) \in G$.
\therefore We have shown that $G=\left(x_{0}, y_{0}\right)$.

References

[1] V. Foussereau, I. Kumagai, and G. Caron, "Towards retail stores automation: 6-dof pose estimation combining deep learning object detection and dense depth alignment," in IEEE/SICE SII, 2024, pp. 1-7.

[^0]: ${ }^{1}$ CNRS-AIST JRL (Joint Robotics Laboratory) IRL, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
 ${ }^{2}$ Ecole Polytechnique, Palaiseau, France.
 ${ }^{3}$ UPJV MIS Laboratory, Amiens, France.
 Email: virgile.foussereau@polytechnique.org

