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Abstract—What are the best mobile development approaches to
cut the carbon footprint? To answer this question, this experience
paper provides a life-size comparison of native versus cross-
platform frameworks prevailing in the mobile software industry
at the time of writing, namely Kotlin Multiplatform Mobile,
React Native and Flutter. To do this, we collected metrics related
to the package size, network traffic and battery drain issued
by a boilerplate application developed following the different
approaches. Our preliminary findings tend to show that the cross-
platform solutions perform quite well.

Index Terms—android, ios, kotlin, react, flutter, carbon

I. INTRODUCTION

Within a decade, the mobile software sector has seen

tremendous success. The landscape has also reorganised, lead-

ing to the overwhelming dominance of 2 mobile platforms

that now share the market: almost 71% for Android (Google)

and 27% for iOS (Apple). However, this market fragmentation

is still a concern for mobile developers. Either they opt for

native development, but have to write the app twice, or they

opt for cross-platform development to write a single code

base. The pros and cons of each development method are

regularly debated, whether from a time-to-market or user

experience perspective [8]. But as climate change rises up

the global economic and political agenda, more and more

(mobile) developers are also concerned about the sustainability

of the software they create. It is therefore useful to compare

development practices from an environmental perspective until

the decarbonization of software becomes mainstream practice.

Unfortunately, the everyday mobile developers often finds

himself alone when facing this challenge. In [11], a survey

of experienced developers showed that they are genuinely

interested in the energy consumption of software, despite the

fact that little knowledge is available. Authors of [18] pin-

pointed the energy-related questions posed in Stack Overflow

by mobile developers, anxious to learn about power-related

problems that are encountered by others.

From the trenches, at the implementation stage, eco-friendly

mobile developers may refer to catalogues of code smells

inherited from embedded systems [12] or mobile-specific

green patterns [2]. More recently, they may use a lint-like tool

to automatically clean their codebase of energy code smells

[4], [7]. Before that, the choice of programming language

itself can have a small impact on energy consumption [5] in

particular contexts. But in the case of Android for example,

this choice is obviously limited, and it has been shown that

migrating from Java to Kotlin has no significant impact on

the energy efficiency of the app [1]. However, an even earlier

choice that the development team has to make (and therefore

the hardest to change later) is the choice between native and

cross-platform development methods. Therefore, this paper

investigates whether this key design decision will have an

ecological impact once the mobile application is deployed on

a potentially large number of devices.

To this end, we have formulated the following 3 research

questions:

• RQ1: Does the development method affect the size of the
application archive file?

• RQ2: Does the development method affect the amount of
data the application exchanges over the network?

• RQ3: Does the development method influence the energy
consumption of the app?

By answering RQ1, we are fighting the “fatware” syndrome,

i.e. the inflation of software size over the last decades (e.g.

TikTok on iOS is now 400Mb!), which marginalises owners

of low-end devices. In fact, the number of bytes downloaded to

install the application and its subsequent updates is constantly

increasing. This is particularly salient on mobile platforms,

where updates are frequent and automatic, regardless of new

differential download techniques. Answering RQ2 leads to

pinpoint how much the client side, network infrastructure and

server side are stressed over the Internet. Indeed, it is not

unreasonable to assume that the more data that is exchanged

and processed, the more energy is likely to be consumed on

a global scale. Last but not least, by answering RQ3, we are

looking at the battery drain. The direct effect of this is an

increased demand for electricity (and its source production1)

to charge the handheld device. The indirect effect is to shorten

the life of the device, since its lithium-ion battery has a limited

number of charge/discharge cycles. It is worth recalling that

the manufacture of new user device remains the main source

of greenhouse gas emissions in the ICT sector [6].

1Depending on the country, electricity production can be more or less
decarbonised. See https://app.electricitymaps.com/
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The paper is structured as follows: Section II gives an

overview of modern cross-platform frameworks. Section III

describes the development principles of our validation ap-

plication. The experimental results are presented in IV and

discussed in section V. Related work is mentioned in section

VI before we conclude in section VII.

II. BACKGROUND

Targeting both the iOS and Android platforms is crucial to

reach the largest customer market. Android development has

historically been done natively in Java, and more recently in

Kotlin, to which more and more developers are migrating [3].

Native development on iOS was done in Objective-C before it

was gradually replaced by the Swift language. These native

solutions are the ones officially recommended by Google

and Apple for mobile app development and have become

the de facto standard. However, it is an expensive and time-

consuming task, as development has to be done twice. As a

result, competitive cross-platform frameworks have emerged

since 2015. Cross-platform solutions allow a single codebase

to be used to build an app for both Android and iOS. These

include React Native, Flutter and Kotlin Multiplatform Mobile,

three very popular frameworks with three different approaches

to implementing cross-platform and code-sharing. Other cross-

platform solutions exist (Ionic, MAUI) but are less common.

A. React Native

React Native is an open source cross-platform framework

initiated by Facebook and based on the ReactJS framework. It

has been around since 2015 and is now the most popular cross-

platform framework. Unlike native code, React Native runs on

JavaScript code using a JavaScript engine (JavaScriptCore or

Hermes), but uses the native platform components – through

a binding mechanism – to render the UI, so that the final

applications look like native applications.

B. Flutter

Flutter is an open source, cross-platform framework backed

by Google. Its first stable release was released in 2018. It uses

Dart (also supported by Google) as its programming language.

Dart is a garbage collected language that can be compiled

JIT (Just In Time, using the Dart VM) or AOT (Ahead Of

Time, for better performance). Flutter uses its own rendering

engine to manage the UI and does not rely on the native

platform components at all (unlike React Native). However,

it still provides a plugin system to access (non-UI) native

platform features.

C. Kotlin Multiplatform Mobile

Kotlin Multiplatform Mobile (KMM) is more of a code-

sharing framework than a complete cross-platform framework.

In fact, its goal is to create portable libraries for iOS and

Android native applications using a single code base written

in the Kotlin language. Therefore, KMM always requires a

native component to run. When running on Android, KMM

runs on top of the Java VM, just like any native Android

application. When running on iOS, KMM is compiled into

native code (AOT compilation) using Kotlin Native, a native

Kotlin compiler.

III. METHODOLOGY

The aim of this paper is to provide a fair comparison of the

different development approaches available to developers. To

do this, we followed the 5 development approaches (2 native

+ 3 cross-platform), resulting in 8 variants of a single app.

This starting work represents several man-months, and for the

sake of reproducible research, the entire codebase is open2.

A. Baseline

From an end-user perspective, the 8 variants should look

identical: same features, same user journey, same content. This

also means identical technical decisions under the hood: same

assets (format and image resolution) and same interactions

with the server side (API calls and triggering events). However,

it cannot be denied that each development approach has its

own specificities. In order to remove these differences as much

as possible, we have imposed the following design principles:

• No advanced architecture: the application is made up of

basic screens, and each network call is made every time a

screen is displayed (i.e. no prefetching or advanced state

management),

• No fine-tuning: network and UI components of the plat-

form are used as is: network cache, render cache, etc. are

used with their default settings,

• No third-party libraries: the code must rely only on the

platform’s built-in components or, to a lesser extent, on

external libraries officially supported by the editor.

It is worth noting that the development of the different

versions of the app was done in parallel to avoid disruption

to the practice at the time. In particular, the iOS native

development was done using SwiftUI and the Android native

development was done using Jetpack Compose.

B. Validation App

The mobile application created especially for this study

is a (turnip) movie database application with master/detail

navigation, whose data comes from The Movie Database API3.

In our opinion, this application is fairly representative of a

mobile application in app stores today (with the exception of

video games). This high quality standard app uses modern-

day UI elements and both light and dark modes have been

implemented.

As shown in Figure 1, the app consists of three screen types.

The first type of screen is the home/category, which consists

of 2 sections:

• A top section displaying a “trending carousel” that makes

an API call at each screen appearance to retrieve its

content,

• A bottom section displaying a list of 4 category carousels.

Carousel content is retrieved with one API call per

2https://github.com/orgs/TurnipOffApp/repositories
3https://developers.themoviedb.org/
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Fig. 1. The 3 app screens (iOS, light mode)

carousel (made on each screen appearance). Category

carousels use infinite scrolling with a page size of 20

items, making a new API call to load the next page.

The second type of screen is the film details, which consists

of 2 sections:

• A header containing the poster image, film title and other

film related information. It is loaded with an API call

triggered on screen appearance,

• A credits section that displays 2 carousels (cast and crew)

without infinite scrolling / lazy loading. Content for these

2 carousels is retrieved in a single API call (performed

on each screen appearance).

The third type of screen is the actor details, which is made

up of 2 sections:

• A header containing the actor’s image, name and other

actor-related information. It is loaded with an API call

triggered on screen appearance,

• A credits section that displays 2 carousels (cast and crew)

without infinite scrolling / lazy loading. Content for these

2 carousels is retrieved in a single API call (performed

on each screen appearance).

IV. EVALUATION

Apart from the weight of the application, which is easy to

obtain, measuring the energy and data consumed at runtime

is cumbersome, especially on iOS. That’s why we used a pre-

mium solution called “App Scan”4, developed by the company

Greenspector, which remains a reference in the field.

A. Experimental Setup

To conduct our experiment, GreenSpector has provided us

with its bench of physical handled devices (see Figure 2),

consisting of Samsung S7 (Android 8), Samsung S9 (Android

9 and 10), Pixel C tablet (Android 8) and Apple iPhone 8 (iOS

13).

4https://greenspector.com/en/evaluate-app-scan/

The probes are based on software-based sensors embedded

in Android phones. Calibration work makes it possible to qual-

ify the quality of the measurement. In fact, some information

provided by the APIs or the manufacturer cannot be used. A

quality score is given between 0 and 10. A score close to 10

indicates a high measurement frequency and precision. A score

below 5 indicates that the measurement is not accurate enough

to be used. So only phones with a score above 8 were included

in the test. For iOS, since energy data is not provided by

the platform, the solution is hardware-based, with a wattmeter

placed between the battery and the iPhone.

Fig. 2. Picture of the test bench with real devices

B. Experimental Scenario

The end user scenario for such a Master-Detail styled

application is straightforward: Browse the home page > Click
on a movie > Browse the movie detail > Click on an actor
> Browse the actor detail. Although the user journey is

very commonplace, it must be possible to play it without

a human in the loop in order to obtain the least biased

comparison possible. This is allowed by the Greenspector

Domain-Specific Language (GDSL) in which test scenarios

can be written once, and run several times in both mobile

platforms. Contrary to frameworks like Appium [15] which are

based on frequent network exchanges to execute the scripts,

the GDSL framework is designed to have a minimal energy

and data overhead.

The GDSL is a series of actions that are performed in

sequence on the device. It includes basic actions such as

wait, click or pause, as well as more complex actions such

as launching an application or managing the GPS. The GDSL

language allows measurement points to be placed in the

scenario, which allows a fine granularity of the metrics. An

excerpt of the GDSL script written for the experiment is shown

below:

pressHome
measureStart
applicationStart;fr.insideapp.turnipoff
waitUntilText;Worst action movies
pause;1000
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measureStop;LOADING_launch
measureStart
pause;30000
measureStop;PAUSE_home
measureStart
swipe;355;500;20;500
...

During the automated execution of the tests, the devices

are placed in a situation that allows for the most stable

measurements. For example, applications are uninstalled at

each iteration. The user scenario was played 10 times – an

acceptable accuracy/duration trade-off – for each version of

the app. We then took the average of the results. Only the

light mode of the app was tested.

C. Experimental Results

Table I shows the metrics extracted from Greenspector’s

App Scan dashboard, namely app size (in kilobytes), network

data exchange (in kilobytes) and energy consumption (in mili-

ampere-hours), if applicable.

1) App Size: Each mobile operating system uses its own file

format to distribute and install application software: IPA (iOS

App Store Package) and APK (Android Application Package).

Such a file contains all the bytecode, of course, but also all

the static resources needed to run the application (icons, String

literals, misc. properties). The weight of this file characterises

the volume of data exchanged by the stores (installation, then

updates), as well as the space occupied on the user’s device.

Techniques exist to reduce the size of the application for both

operating systems [9], [10].

2) Network Traffic: The amount of data initiated by user

activity at run-time has a strong impact on the energy con-

sumption of the radio and the global network equipment chain.

In other words, this is about the greenhouse gas emissions to

power the Internet. Opportunities for energy-savings of HTTP

requests have been investigated in [14]. A technical limitation

of App Scan has forced us to ignore the computed values for

iOS, as they are system-wide and not application-specific.

3) Energy Consumption: Essentially, an application’s en-

ergy consumption is a complex combination of data process-

ing, network interactions and UI rendering, all with power-

hungry hardware components behind the scenes. For interested

readers, a per-component stress test has been performed by

Malavolta et al. in [13] on Android devices. The more these

components are stimulated, the higher the power consumption

and the faster the battery drains. Unfortunately, an unknown

technical error prevented the value for KMM on iOS from

being known.

V. DISCUSSIONS

In this section, an attempt is made to provide reasons for the

observed differences in the results with a view to answering

the 3 research questions. Some limitations are also noted.

A. Analysis
1) App Size: Native development in Swift or Kotlin un-

deniably produces smaller applications than crossplatform

solutions. These are the languages officially recommended

by the mobile platforms and therefore take full advantage of

them. Notice the lightweight of the Swift version compared

to its Kotlin counterpart, which is much heavier because it

has to cope with a variety of hardware configurations and

manufacturers.
On their side, cross-platform solutions generate larger pack-

ages. As KMM only deals with the business logic and relies

on native UI rendering, it offers a significant gain in size for

both platforms. Flutter and React are far behind but with a big

difference: Flutter generates comparable occupancy on both

OS, while for React it is double on Android compared to

iOS. We believe that this situation would be even worse if

the validation application had embedded third party libraries.

Indeed, the React Native or Flutter SDKs are usually built

upon a native SDK with a Flutter/React Native wrapper to

interface with it. Adding external SDKs will then widen the

gap between native and cross-platform applications.
It should be noted that a difference of 15 to 20 MB between

the average native package and those of Flutter or React Native

will generate 7 to 10 MB more network traffic per installation.

Indeed, app downloads are optimised/compressed by the store,

so the actual amount of data transmitted over the network is

half the total app package size. But for a mass-market app that

generates around 10 million installs per year, this translates

into 70 to 100 TB of additional network traffic and carbon

emissions thereof.

RQ1 – Native development is by far the best solution
for both iOS and Android in terms of app size package
criteria. The gap between native and cross-platform
development will widen as app complexity increases.

2) Network Traffic: The results show quite significant dif-

ferences between the development approaches, with React

Native being by far the best performing. As stated in our

baseline, we didn’t try to optimise the number of requests

and the amount of data, leaving that to the frameworks. The

truth is that React Native naturally optimises traffic, perhaps

gaining its strength from the huge and active community

around ReactJS/React Native.
On the Android side, there is a wide gap of 69% of data

exchanged between the least data-intensive solution (React

native) and the most data-intensive (Flutter), with KMM and

Kotlin equally far from these extremes. At this point, it

is difficult to explain why Flutter underperforms so much

compared to the other 3 solutions. But it seems wise to

say that applications based on remote content (e.g. social

networking) should flee Flutter. If a few hundred kilobytes

can make a difference in a very simple master-detail scenario,

imagine the volume at stake for behemoths apps like TikTok

or Twitter. Here we touch on the underlying reasons for
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Development App size (kB) Net traffic (kB) Energy (mAh)
method Android iOS Android iOS Android iOS

Swift N/A 216 N/A — N/A 8,59

Kotlin 1200 N/A 944 N/A 21,60 N/A

KMM 3600 1600 932 — 21,66 —

Flutter 17500 18000 1190 — 18,27 9,19

React Native 27300 13100 706 — 19,45 11,62

TABLE I
COMPARISON OF THE ECOLOGICAL IMPACT OF THE 5 DEVELOPMENT METHODS (PARTIAL)

the continued growth of the global network infrastructure to

meet the demands of software applications. Without a deep

understanding of cross-platform solutions, developers must

remain vigilant on this aspect.

RQ2 – React Native is the most data-saving solu-
tion over the network on Android. This development
approach really widens the gap with its competitors,
especially Flutter.

3) Energy Consumption: In terms of power consumption,

the app acts like a black box, draining the battery over time.

That’s pretty much all the end user cares about, and they’re

sure to complain if an app drains their battery abnormally

fast. For our part, we have no way of knowing whether

this or that element is involved. Broadly, it is difficult for

developers to determine the root causes of energy hotspots.

Native developers may rely on energy profilers within their

IDE (namely, Android Studio and Xcode), but nothing is

available for cross-platform developers.

Here the results between iOS and Android are different and

quite difficult to analyse. Flutter has incredibly good results

on both platforms, helped by its modern rendering engine,

even though it generates more data exchanges than the other

solutions (see previous section). This tends to prove that there

is not such a direct relationship between these two metrics.

Kotlin and KMM are close together, probably because KMM

uses the native UI developed for Kotlin. React Native performs

well, although we would expect it to be the most energy

consuming solution. However, React Native generates 25%

less traffic than KMM and native development, which probably

compensates for its inherently power-hungry UI rendering. The

results are quite different on iOS, where native development in

Swift remains slightly more efficient than Flutter, and React

Native comes in last. The difference between the best and

worst performers is less than 10%, much less than on Android.

RQ3 – In terms of energy consumption, Flutter and
React Native perform best than native development on
Android, while native prevails on iOS, heeled by Flutter.

B. Limitations

A single tested application is clearly not enough to provide

statistical evidence of the environmental impact of develop-

ment methods. It is worth noting that this would require a

colossal amount of upstream programming. Nevertheless, the

results already give an idea of the orders of magnitude involved

for a contemporary mobile application. As a side note, this

highlights the lack of a collection of apps coded using the

different existing methods to foster research on this topic, as

did AndroZoo [22] for closed-source Android app analysis.

Measurement is a difficult art, and this paper is no excep-

tion. The physical test bench cannot reflect the diversity of

devices and OS versions into the wild, and our well-controlled

test environment (stable WiFi, battery charge level between

20% and 80%, etc.) is not the real life. Also, our neutral

baseline (see III-A), while useful to ensure a fair comparison,

can be criticised when it comes to actual development aimed

at the mass market. Finally, mobile development frameworks

are evolving at a rapid pace, bringing with them a host of

optimisations, so the metrics calculated are no longer valid at

the time you read this document.

VI. RELATED WORKS

There is virtually no work in the literature that looks at the

ecological impact of mobile development methods beyond the

energy aspect. However, we can cite [21] where the authors

state that React Native consumes between 6% and 8% more

power than its native Android counterpart, which contradicts

our own findings. Generally speaking, if we assume that

performance is directly related to power, then some of the

existing research can be taken into account. To a lesser extent,

what happens with mobile-friendly web apps or hybrid apps

can also be taken into account.

We can cite the work of Biørn-Hansen et al. [19] on the per-

formance overhead of cross-platform versus native for Android

only. The authors found that cross-platform frameworks for

mobile application development can lead to lower performance

compared to the native development approach. However, the

results also show that certain cross-platform frameworks can

perform as well as or better than native on some of the

five metrics they observed (CPU usage, PreRAM, RAM,

ComputedRAM and Time-to-Completion), but no framework

scored best across all of the features in their study. At this
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point, we argue that the link between run-time efficiency and

energy/carbon efficiency is an open research question.
On Android, some work has looked directly at the energy

implications of the choices made by developers. The authors of

[17] analysed the impact of different languages (C/C++/Java)

and compiler optimisations on energy consumption, as well

as the impact of different Android system runtimes (ART vs.

Dalvik) on energy efficiency. The main finding was that ART,

the successor to Dalvik, has greatly improved the energy effi-

ciency of Java code, making it comparable to NDK program-

ming. In [16], the authors focus on the different development

approaches to deliver an app for the Android platform. They

compare regular Java development with C/C++ development

throughout Native Development Kit (NDK) and hybrid app

(web-based with JavaScript) from the energy consumption

perspective. Although their results were not uniform, they

found that JavaScript was more energy efficient in 75% of

all benchmarks, and that Java was the big loser. However, this

result is contradicted by a very recent study [20] in which

native Android apps consume significantly less energy than

their Web counterparts, with large effect size.

VII. CONCLUSION

Despite the partial results obtained, this first-of-its-kind

study can provide useful insights for software researchers

and developers interested in the low-carbon transition issue.

Understanding the impact of a primer development decision

on application size, network traffic and power consumption is

a key step. And this is available for both mobile platforms,

although iOS is largely underrepresented in the scientific

literature. Of course, this preliminary work is intended to be

completed as iOS-related technical hurdles are overcome and

development frameworks evolve.
Already as it is, certain preconceptions are being challenged

as cross-platform solutions have improved significantly over

the years. Native development is probably still the best in terms

of performance (i.e. run-time efficiency), but not necessarily

in terms of carbon efficiency. As usual, it is about making

trade-offs between a number of quality attributes. But it’s a

safe bet that a low ecological impact will be promoted as a

general best practice in the years to come.
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