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Figure 1: Examples of geographical iconographic heritage1

ABSTRACT

As the number of digitized geographic iconographic heritage col-

lections increases, their global use is under-exploited by their lack

of structure at large scale, which does not facilitate their access nor

their understanding. Using automatic image retrieval methods ap-

pears to be the solution to bring structure by building links between

contents, within and between collections. This paper presents an

overview of methods for image retrieval applied to geographic

iconographic heritage collections, both from the perspectives of

image content description and of post-processing re-ranking. The

article evaluates features and methods to identify their efficiency

when faced with a challenging dataset. Moreover, new re-ranking

approaches exploiting structuring information (scene geometry,

metadata) are proposed to improve retrieval without having to

adapt image descriptors to the specific data (retraining, fine-tuning,

etc.) for every new specific collection.

CCS CONCEPTS

• Information systems→ Information retrieval; Image search;

Information retrieval; • Applied computing → Arts and hu-

manities.
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1 INTRODUCTION

In this article, we are interested in the geographical iconographic

heritage, i.e. digitized or born-digital image collections, acquired at

variable temporal periods and showing the territory and its human-

made and natural visual landmarks. As a huge visual testimony

of our environment, this category of contents is widespread but

generally scattered in multiple provider or host institutions, such as

GLAMs (Galleries, Libraries, Archives and Museums) or mapping

agencies. Their exploitation embraces a large number of applica-

tions, ranging from historical and sociological studies up to mobile

mapping scenarios, through digital tourism, education or landscape

ecology. Some research works already try to exploit semi-automatic

and automatic methods to use heritage collections for some of those

applications ([3ś5, 18]). As illustrated in Figure 1 with iconography

1From top to bottom and left to right: © Charles Lansiaux / DHAAP / Roger-Viollet;
© IGN, Stereopolis; © Médiathèque du patrimoine et de la photographie; © Musée
départemental Albert-Kahn;© Ville de Paris, COARC/Jean-Marc Moser;© Commission
du Vieux Paris / DHAAP / Roger-Viollet; © Pascal Saussereau / DHAAP; © DHAAP
/ Roger-Viollet; © Donation Marcel Bovis, Médiathèque du patrimoine et de la pho-
tographie; © DHAAP / Roger-Viollet; ©Marc Lelievre / DHAAP; © Charles Lansiaux /
DHAAP / Roger-Viollet; © Charles Lansiaux / DHAAP / Roger-Viollet
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from Paris at the street level, the visual representations associated

with such contents are diverse given the various acquisition con-

ditions (different sources, dates, viewpoints) and the evolution of

landmarks over time, making their analysis still challenging today.

They are usually described and indexed with metadata of variable

quality and specification, making them not always easily interop-

erable, accessible, understandable in different contexts, and then

largely under-exploited. To mitigate these issues and address new

demands, one well-established alternative is to use image retrieval

in order to describe, compare and link the contents directly, inde-

pendently of the organization set up for the collection. Because of

the specificity of such contents, in this work our aim is to evaluate

image retrieval techniques for this type of data, in order to illustrate

the practical feasibility of building visual links automatically and

thus helping to bring structure to the collections.

The article is organized as follows: Section 2 revisits state-of-

the-art descriptors and re-ranking approaches for image retrieval.

Section 3 in turn presents the geographic iconographic dataset con-

sidered in the developments. We then evaluate retrieval methods,

up to re-ranking, on this dataset in Section 4. Finally, in Section

5, we propose methods to improve the retrieval on such data, by

exploiting the specificity and structure of the data and propagating

it during re-ranking.

2 CONTENT-BASED IMAGE RETRIEVAL

OVERVIEW

This section presents an overview of the state of the art on content-

based image retrieval, both from the perspective of visual descrip-

tors and the perspective of post-processing methods for re-ranking

the images returned with the descriptors.

2.1 Features for image retrieval

Main improvements to image retrieval came with the advent of new

image descriptors. From handcrafted to learned descriptors, the

methods are numerous and current learned methods have proved

to be state-of-the-art [7]. Multiple networks have first been devel-

oped for image classification and have been exploited for the more

specific task of instance retrieval. Example backbones for image

classification are VGG [30], ResNet [12] or ResNest [37]. State-of-

the-art image descriptors are built on the features extracted by

those backbones. On the one hand, the features can be aggregated

in one global feature describing the whole image. Depending on the

pooling operation used for the aggregation, different features can

be extracted. Examples of global descriptors are SPoC [1], MAC [34]

and RMAC [34], GeM [25] but also the more recent CVNet [15]. On

the other hand, as with hand-made methods like VLAD [14], local

features can also be extracted and aggregated to describe an image.

Some learned methods also build on this paradigm, using attention

mechanisms to select the most meaningful features in the image,

such as DeLF [19] or How [33]. As with the visual-bag-of-words

paradigm, local features are aggregated in a vector to perform sim-

ilarity comparison between images. Several methods have been

devised to perform the aggregation step: we can specifically men-

tion ASMK [32] which performs highly with local features. Finally,

several works attempt to combine local and global features to im-

prove image retrieval performance, like DELG [6], DOLG [36] or

CVNet [15]. However, whereas DOLG fuse both features to obtain

a single descriptor, DELG and CVNet exploit the local features in a

second time, as a trained re-ranking step, an essential step that will

be discussed in section 2.2.

2.2 Re-ranking approaches

Figure 2: Re-ranking methods paradigms

.

Retrieving similar images simply based on visual descriptors and

their similarities may not always yield the best results at the top of

the list, because some other kinds of information, e.g. geometry in

the image, was not encapsulated in the visual descriptor in order

to be robust to the many transformations an image can undergo.

Consequently, retrieval is usually considered as a two-step process:

at first retrieval at large scale with descriptors, then re-ranking of

the responses based on other finer or more specific criteria.

As presented in Figure 2, re-ranking methods can be divided into

several categories. First, a very common re-ranking method is a geo-

metric verification step. The idea is to match local features between

the query image and each retrieved image, estimate the transforma-

tion parameters using a robust approach such as RANSAC [6, 10],

and reorder the results based on the number of matches considered

as inliers. Local features can be the ones used in the retrieval step

as in [19] with DELF, but also other more precise features used

in other computer vision tasks, such as SfM, like SuperPoint [9].

This step can also be included directly in the descriptor training

process as in DOLG [36], DELG [6] or CVNet [15] which does not

apply RANSAC with local features, but a dense cross-scale feature

correlation to assess the coherence between images.

Another family of approaches regroups query expansion meth-

ods. The main idea is to take advantage of contextual information

from the first retrieved images list by aggregating the features of the

query and its most similar images to increase the meaningfulness

of the query descriptor in order to improve the retrieval results.

Multiple adaptations have been proposed, such as changing the

aggregation weighting scheme (Average-QE [1], 𝛼-QE [25], etc.).

Other approaches [16, 17] based on pseudo-relevance feedback ag-

gregate features to be more similar to the first retrieved images and
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more dissimilar to the further ranked images. More recent meth-

ods [11, 39] use an attention mechanism to select images and their

weight in the aggregation process.

A specific kind of approach within query expansion re-ranking

relies on diffusion, which propagates the similarity through the

𝑘-NN graph of similar images. Such solutions have achieved state-

of-the-art performance onmany benchmarks [2, 8, 13, 21, 29]. In the

article, we focus on a representative method [38], that we describe

in more detail: it first embeds a 𝑘1-NN graph in an adjacency matrix

𝐴∗ with 𝑖 and 𝑗 two images in the dataset and 𝑁 (𝑖, 𝑘) the 𝑘 most

similar images to 𝑖:

𝐴∗
𝑖, 𝑗 =




1 if 𝑗 ∈ N (𝑖, 𝑘1) ∧ 𝑖 ∈ N ( 𝑗, 𝑘1)

0 if 𝑗 ∉ N(𝑖, 𝑘1) ∧ 𝑖 ∉ N( 𝑗, 𝑘1)

0.5 otherwise

(1)

Once the graph of 𝑘1-NN is set as base for the GNN process,

the 𝑘2-NN graph is exploited to select the edges (𝑒𝑖 𝑗 ) representing

image similarity between images 𝑖 and 𝐽 𝑗 that are used during the

aggregation step to update the node (image) feature; 𝑘2 is lower

than 𝑘1 (usually much more lower). The aggregation scheme, with

ℎ
(𝑙)
𝑖 the feature of image 𝑖 at the 𝑙-th layer, is:

ℎ
(𝑙+1)
𝑖 = ℎ

(𝑙)
𝑖 +

∑
𝑒𝛼𝑖 𝑗 · ℎ

(𝑙)
𝑖 , 𝑗 ∈ N (𝑖, 𝑘2) (2)

This method exploits the manifold of the dataset and is very efficient

because the message propagation is concurrent between all nodes.

The whole dataset is re-ranked in one passage.

Finally, learned methods of re-ranking have been proposed to

exploit the new paradigm of transformers. [31] proposes Re-ranking

Transformers, a network that predicts the similarity of an image pair

directly, provided their global and local features, as a replacement

for geometric verification methods. Meanwhile, inspired by query

expansion approaches, [20] proposes a transformer-based network

that aggregates affinity features among the first results to enrich the

representations of the images with some contextual information.

[40] exploits transformers in an end-to-end fashion, both for global

image description and retrieval and then for re-ranking. It exploits

vision transformer tokens instead of handcrafted or CNN local

features and reranks based on correlation between features rather

than a pairwise geometrical verification.

3 THE GEOGRAPHICAL ICONOGRAPHIC

HERITAGE COLLECTION CONSIDERED

The dataset we consider consists of more or less recent heritage con-

tent depicting Paris between 1915 and 2015 from a mostly ground-

level perspective. The collections belong to eight providers:

• the Department of Architectural History of the City of Paris,

• the COARC, a service of the Department of Architectural

History specialized in religious buildings,

• the mobile mapping 2015 Stereopolis dataset from the French

Mapping Agency [22],

• the Planet’s Archives - Paris of the Albert Kahn Museum,

• the Cité de l’Architecture et du Patrimoine,

• the Médiathèque du Patrimoine et de la Photographie,

• the Commission for the Old Paris,

• the Paris6K public benchmark [23].

In total, we assembled a dataset of 1,637 images of which an

example is shown in Figure 1, divided into 31 classes depicting reg-

ular buildings, renowned monuments (e.g. the Panthéon), churches

(e.g. the Saint-Sulpice church), and remarkable buildings (e.g. the

Lavirotte building). To further challenge image retrieval in the

experiments, we added 8,197 images as distractors (from the De-

partment of Architectural History of the city of Paris), which leads

to a total of 9,834 images in the dataset.

Due to the large time period of acquisition and the multitude of

providers, this dataset displays a large number of specific challenges

for image retrieval:

• different techniques of acquisition, colors, etc.

• different resolution, levels of details, artisticity, etc,

• collection specificities increasing the above differences,

• changes in the scenes depicted due to the evolution of Paris

throughout the century.

In addition to these images, several metadata may be available

sometimes, such as an acquisition date or a location. The latter may

be of various types, from an address manually provided (it is the

case with some images of our dataset, e.g. those from the Dept. of

Architectural History of the City of Paris) up to a precise pose of

the camera (with the mobile mapping system Stereopolis).

4 EVALUATION OF STATE-OF-THE-ART

METHODS ON OUR CHALLENGING DATA

In this section, we present the evaluation of state-of-the-art meth-

ods on the dataset presented in section 3. We first evaluate the

recent literature on image descriptors and second, some of the most

representative re-ranking methods.

4.1 Evaluation framework

All the experiments of the article are run on a Tesla-V100 GPU

with 16 Go RAM and 10 CPU cores. We evaluate the efficiency

of the approaches mostly with the mean Average Precision score

(mAP); the implementation used is from [25]2. The choice has

been made to not retrain the learning networks involved, because

we consider there are no training datasets existing for the data

considered here, and that the constantly evolving data in digital

humanities would require regular retraining which is not a realistic

approach in practical use cases. All implementations are the authors’

and the networks weights used are the ones provided by the authors.

4.2 Image descriptor evaluation

Four recent state-of-the-art image descriptorswere evaluated: DELG

[6], R101-GeM [12, 25], CVNet-Global [15], How+ASMK [32, 33].

All methods are deep detectors and descriptors. The first three ones

produce a global feature per image and are trained on Google Land-

marks Dataset v2 (GLDv2) [35], whereas the last one, trained on

SfM120k [24], produces local features and then aggregates them

using ASMK [32] for comparison between image descriptors.

A first evaluation was performed on the dataset without distrac-

tors as shown in Table 1. At this step, CVNet clearly outperforms the

other three descriptors. However, when more deeply compared to

How+ASMK (called How-A afterwards), it is revealed that it mainly

2https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Table 1: Score of tested image descriptors.

mAP Dataset w/o distractors Dataset

DELG [6] 53.2 -

R101 - GeM [12, 25] 57.9 -

CVNet-global [15] 67.3 37.1

How + ASMK [32, 33] 55.1 41.0

improves intra-collection retrieval and not between collections: in-

deed, when comparing the entropy of the distribution of the various

providers in the true positive retrieved images, we observed that it

is higher with How-A than with CVNet-Global. When including

the large number of distractors in the dataset, How-A outperforms

CVNet-Global; because it is a local descriptor, How-A proves to

be more discriminative when the visual elements are very similar

through images, which is frequent in the considered collections

displaying redundant Parisian-style architectural features.

4.3 Re-ranking methods evaluation

As presented in Section 2.2, a large number of methods have been

implemented to improve image retrieval results through a re-ranking

step. Starting from How-A as visual descriptor, we have tested ap-

proaches from all families to evaluate what best suited our chal-

lenging data. Table 2 shows the performance of these approaches

on the whole dataset, by providing an idea of the improvement in

terms of mAP when exploiting re-ranking.

Table 2: Improvement of mAP with re-ranking

Approach Order of magnitude

Weighted descriptor aggregation [1, 25] + 0.1

Pseudo relevance feedback [16] < + 0.5

Transformers-based

CSA [31], RRT [20] - 10

CV-Net Rerank [15] - 2

Geometric Verification [9, 26] + 0.5

Diffusion [29, 38] + 15

Descriptor aggregation methods [1, 25], as well as pseudo-rele-

vance feedback ones [16], do not appear relevant to our problem

because of the high variability of images, inducing a high variabil-

ity in those multidimensional descriptors, in turn squashing the

descriptor’s specificity during aggregation.

Transformers based images (RRT [31], CSA [20]), and the re-

ranking part of CVNet [15] all suffer from the same drawback:

although reputed to be efficient, they are not here because by de-

fault trained on GLDv2, which is not suitable for specific heritage

collections as ours. The solution would be to retrain or fine-tune

those methods specifically to our data, but it has not been our choice

as explained in Section 5.

Geometric verification is a very common step in image retrieval

pipelines. In our case, we extract SuperPoint [9] local features,

match them with the SuperGlue process [26] and using a classical

RANSAC, we re-rank images based on their geometric coherence

with the query. The mAP gain is moderate as shown in Table 2 (and

confirmed further in section 5 where it serves as reference).

Finally, diffusion methods have the most impact at the re-ranking

step. We tested SSR [29] and a GNN-based re-ranking method [38]

(called GNN-R afterwards), where the mAP gain is substantial.

Furthermore, GNN-R can be repeated multiple times to further

extract similarity information and then improve retrieval; we have

selected it as re-ranking method in the experiments of section 5.

5 HOW TO IMPROVE RETRIEVAL

Some existing re-ranking methods, as GNN-R, perform well on our

dataset, by improving the retrieval results notably, but they do not

really take into account its specificity. A commonly used solution

would be fine-tuning existing state-of-the-art learned methods with

our specific data. However, this solution has its drawbacks. First,

it requires a certain number of annotated data possibly equally

distributed among classes and providers, which is difficult to obtain

in our case of collections with a sparse overlap in distribution.

Secondly, fine-tuning on some specific collections may be efficient

on those ones, but when confronted to their evolution (due to

ongoing massive digitization, open data access, etc.), one may need

to fine-tune the model all over regularly. For these reasons, we

choose to study solutions that take into account the specificity of

the data without having to retrain models specifically for them.

Here, we propose three ways for improving retrieval, presented

in sections 5.1, 5.2 and 5.3. They are evaluated in Table 3, facing

several reference approaches, i.e. simple retrieval (How-A), retrieval

with re-ranking with geometric verification (How-A + RANSAC),

and several degrees of diffusion (GNN-R).

5.1 3D-based geometric verification

First, a main aspect in our dataset is the very large variation in

viewpoint and level of detail, which allows to better understand

the disappointing performance of the classical pairwise geometric

verification such as RANSAC. To overcome this drawback, our first

intuition was to use a 3D reconstruction of the scene, in order to

check the geometric coherence of a result image not simply against

the query image but against a more global geometry of the scene.

To do this, we reconstruct a 3D point cloud of the scene using

Structure-from-Motion algorithms via the library Colmap [27, 28]

based on keypoints extracted with [9, 26]. To reconstruct the scene,

the query and the first ten retrieved images are used. If a scene is

reconstructed successfully (at least two images including the query,

using Colmap’s default parameters), then the first𝑘 retrieved images

are repositioned in the 3D scene through 2D-3D registration. These

images are then re-ranked depending on their coherence with the

scene: for each image, it is measured as the number of matches

between 2D points in the image and 3D points in the point cloud

exploited to compute its 3D pose.

Exploiting a 3D reconstruction encapsulates a lot more of the

scene’s global geometry and details than a single image, since the

reconstruction belongs to several images. Thus, images very differ-

ent from the query can still visually and geometrically be linked

to the query image. The benefits of this approach, called R3D in

the article, are quite clear when we refer to Table 3: we observe an
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Table 3: mAP score with a re-ranking step on the dataset with distractors

Descriptor + Diffusion after a first re-ranking step Mean time

Re-ranking step No GNN-R GNN-R × 1 GNN-R × 2 GNN-R × 3 (k = 135)

How-A 41.0 57.2 59.3 57.0

How-A + RANSAC 41.5 57.2 59.3 57.0 +120 s

How-A + R3D 44.4 61.9 64.2 61.9 +220 s

How-A + RANSAC + R3D 44.9 62.9 65.8 63.3 +340 s

How-A + R2D 36.4 60.0 63.0 60.5 +150 s

How-A + distance weighting (Stereopolis only) 41.7 58.8 61.7 59.5 +1/30s

How-A + distance weighting (all available locations) 43.3 59.4 61.8 60.0 +1/30s

How-A + R2D + distance weighting (all available locations) 36.4 60.1 63.0 60.6 +150 s

increase of 3.4% of mAP facing How-A, and of 2.9% facing How-A

+ RANSAC, without diffusion ("No GNN-R").

We can also note that all these results are notably improved by

using several steps of diffusion up to 2 steps ("GNN-R × 2"), the

results decreasing afterwards, whatever the approach. How-A +

R3D reaches a mAP of 64.2% with a 2-step diffusion (an increase of

4.9%). In the Table, the "Mean time" column provides the averaged

cost in terms of computation time for the first 135 images retrieved,

by adding these post-processing to the simple retrieval with How-A.

Not surprisingly, the R3D reconstruction takes more time than the

RANSAC step.

We also observe that combining a simple RANSAC with the R3D

reconstruction further improves the results (up to 65.8%) because

the images used for the reconstruction process are geometrically

more similar to the query, but at the expense of an even longer

computation time, since both steps are performed successively.

5.2 2D geometric query expansion

Section 5.1 has demonstrated that exploiting a 3D reconstruction

of the scene brings a great consistency in geometric verification.

However, in some use cases, it could be considered as an operation

too computationally costly. Thus, we have studied an alternative,

called R2D, that tries to leverage the benefits the 3D information,

by exploiting geometric information from the whole scene fully

in 2D. The idea is to use the features extracted in similar images

and reproject them in the query image to enrich its geometric

significance and artificially enlarge the scene it encodes. It does not

only encode the geometry of the scene it depicts, but also parts of

the scene depicted by its most similar images.

The first step consists in creating all triplets with the query 𝑞

and two images from its 𝑘 most similar retrieved ones: (𝑞, 𝐼1, 𝐼2)

(with 𝑘 = 10 in our experiments). Then, for each triplet:

• extract keypoints for images in triplet: sets 𝐾𝑞, 𝐾𝐼1 , 𝐾𝐼2
• define matches pairwise:𝑀𝑞,𝐼1 ,𝑀𝑞,𝐼2 ,𝑀𝐼1,𝐼2
• define the query’s solid matches as :

𝐾𝑠
𝑞 =

{
𝑘 if𝑀𝐼1,𝐼2 ◦𝑀𝑞,𝐼1 (𝑘) = 𝑀𝑞,𝐼2 (𝑘),∀𝑘 ∈ 𝐾𝑞

}
,

• define the query’s unsolid matches:

𝐾𝑢
𝑞 =

{
𝑘 if 𝑘 ∉ 𝐾𝑠

𝑞,∀𝑘 ∈ 𝐾𝑞

}
,

• if |𝐾𝑠
𝑞 | > 10, estimate homographies ℎ𝐼1,𝑞 and ℎ𝐼2,𝑞 ,

• then reproject unmatched points of 𝐼1 and 𝐼2 in the query:

𝐾ℎ
𝑞 =

{
ℎ𝐼1,𝑞 (𝑘) if 𝑘 ∉ 𝑀𝑞,𝐼1 [𝐾

𝑠
𝑞],∀𝑘 ∈ 𝐾𝐼1

}

∪
{
ℎ𝐼2,𝑞 (𝑘) if 𝑘 ∉ 𝑀𝑞,𝐼2 [𝐾

𝑠
𝑞],∀𝑘 ∈ 𝐾𝐼2

}

The three types of points are shown in the example of Figure 3.

Once those steps are performed on all triplets, they are globally

concatenated for each query: 𝐾𝑎
𝑞 = 𝐾𝑠

𝑞 ∪ 𝐾𝑢
𝑞 ∪ 𝐾ℎ

𝑞 .

Once the new set of points is created, all the similar images are

matched pairwise and re-ranked using this new set, as follows:

• match the keypoints 𝐾𝑎
𝑞 and those (𝐾𝐼 ) of image 𝐼 :𝑀𝑞,𝐼

• select the subsample of solid matches 𝑆𝑠 (matches with a solid

keypoint) or the subsample of solid and unsolid matches 𝑆𝑠,𝑢

if the number of solid matches is less than 5,

• estimate a transformation via RANSAC based on this sub-

sample of matches,

• reevaluate the matches based on this transformation and

keep the matches respecting this transformation up to a

maximum difference of 10 pixels,

• the final score 𝑠𝐼 of 𝐼 is computed using the number of each

type of match (solid:𝑀𝑠
𝐼
,unsolid:𝑀𝑢

𝐼
, reprojected: 𝑀ℎ

𝐼
) and

the subsample of points used for the RANSAC:

𝑠𝐼 =




10 × |𝑀𝑠
𝐼
| + 5 × |𝑀𝑢

𝐼
| + 10 × |𝑀ℎ

𝐼
| if 𝑆𝑠 is used

10 × |𝑀𝑠
𝐼
| + 5 × |𝑀𝑢

𝐼
| + 5 × |𝑀ℎ

𝐼
| if 𝑆𝑠,𝑢 is used

10 × |𝑀𝑠
𝐼
| + 5 × |𝑀𝑢

𝐼
| + 1 × |𝑀ℎ

𝐼
| otherwise

(3)

Using this 2D geometric query expansion is less efficient than

the 3D reconstruction. As shown in Table 3 with How-A+R2D,

the performance drops even compared to a setting without re-

ranking. It can be explained by the fact that R2D relies on several

homography estimations which remains a rough estimation of the

scene geometry compared to the 3D reconstruction. However, the

benefits of these method reveal themselves when combined with

the diffusion process: the mAP is 63% after a 2-step diffusion, for a

computation time comparable to RANSAC’s one. An explanation

for such a high impact of the diffusion is the fact that R2D increases

inter-collection retrieval, which the diffusion in turn leverages

very well. Indeed, we have computed the entropy of the providers

distribution on the true positives images returned: it revealed that

R2D’s entropy is close to R3D’s and higher than RANSAC’s one
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Figure 3: Query image set of keypoints with solid points in

red, unsolid points in blue and reprojected ones in green

.

(and How-A’s), which explains why diffusion after RANSAC leads

to similar results as diffusion after How-A.

5.3 Metadata structure diffusion

As previously shown in Sections 5.1 and 5.2, exploiting structural

(geometrical) information improves the retrieval performance. To

continue to evaluate other tracks exploiting the specificity of the

manipulated data, we chose to be interested in their metadata,

starting from the observation that in practice, some metadata are

present at least partially, in some of the collections. Like image

retrieval, such data may provide useful links between images, that

can be simply but efficiently combined with visual similarity.

To evaluate our hypothesis, we focused on the position infor-

mation available for some of the images in our dataset. This is

universal information, but potentially of varying nature: it can be

directly available for images acquired through mobile mapping (e.g.

Stereopolis), or the result of a geocoding of associated addresses

(e.g. those manually provided by experts of the Dept. of Architec-

tural History of the City of Paris). It should be noted, however, that

their quality can be variable, due to potential human error (when

manually added, copied and digitized), to acquisition precision (e.g.

low-cost mapping) and to environment evolution (e.g. streets re-

named or created through centuries). Then, based on the image

location available and in addition to the visual similarity score pro-

vided by image retrieval, we define a spatial proximity score𝑤𝑖, 𝑗

between two images 𝑖 and 𝑗 , which takes the location quality into

account with a confidence rate (𝑐𝑖 for 𝑖 and 𝑐 𝑗 for 𝑗 ), as follows:

𝑤𝑖, 𝑗 =

{
𝑆 (𝑥𝑖, 𝑗 )

1

𝑐𝑖×𝑐 𝑗 if 𝑆 (𝑥𝑖, 𝑗 ) < 1

𝑆 (𝑥𝑖, 𝑗 )
𝑐𝑖×𝑐 𝑗 otherwise

(4)

𝑆 (𝑥𝑖, 𝑗 ) is a proximity score based on the spatial Euclidean dis-

tance between 𝑖 and 𝑗 : 𝑥𝑖, 𝑗 (normalized over the diameter of Paris

in our experiments). We define 𝑆 as a double sigmoid function:

𝑆 (𝑥𝑖, 𝑗 ) = 𝑎 + (𝑏 − 𝑎) ×
tanh(𝑘1 (𝑥𝑖, 𝑗 − 𝑋1)) + 1

2

+ (𝑐 − 𝑏) ×
tanh(𝑘2 (𝑥𝑖, 𝑗 − 𝑋2)) + 1

2
(5)

with 𝑎, 𝑏, 𝑐 the bottom, middle and top values of the double sig-

moid’s plateaux. 𝑋1, 𝑋2, 𝑘1 and 𝑘2 are respectively the values for

the inflexion point and the steepness coefficient for both slopes.

𝑤𝑖, 𝑗 ranges in [0,2] and equals 1 if we do not have location

information for both images. Confidence rate 𝑐𝑖 is 1 for Stereopolis,

as it is precisely acquired as part of the mobile mapping, while

for geocoded addresses, we set it below (0.9 for queries, 0.8 for

distractors), because they are considered slightly less reliable.

We then combine the proximity and visual similarity scores

between couples of images, through a simple weighting of the

similarity score with the weight of equation 4, with the objective of

limiting incoherent retrieval errors due to the limitations of visual

descriptors. The whole process does not modify the eventual other

steps of re-ranking, which are applied as previously explained.

As shown in Table 3, exploiting this spatial information improves

the retrieval score more than a classic geometric verification, for a

negligible online computation cost. We first exploited all possible

location information available, for queries and distractors (i.e. 80.5%

of the dataset). Then only Stereopolis locations (5% of the dataset

with distractors) were used: using only a small part of the dataset

is still more efficient than a simple geometric verification, espe-

cially when combined with diffusion which further propagates the

structure in the retrieval process. Also, not surprisingly, the more

positional information available, the better the retrieval results.

However, after diffusion, the results are not much higher, suggest-

ing that quantity of information is not as important as certainty

and distribution among the dataset. Furthermore, combining a geo-

metric re-ranking step with distance weighting on the similarity

scores used in the diffusion process does not increase retrieval any

further (experiment "R2D + distance weighting" in Table 3), which

tends to show that data linked through R2D do not suffer from

inconsistency in terms of location.

6 CONCLUSION

In this paper, we have evaluated state-of-the-art features and re-

ranking methods for image retrieval with a challenging dataset

of geographic heritage images. We show that diffusion-based re-

ranking methods greatly improve retrieval, without considering a

re-training step on the data. To further improve retrieval, we pro-

pose re-ranking approaches exploiting the structure of the dataset

better: two re-ranking methods exploiting a more global geometry

of the scene, and a weighting scheme using the available metadata

information, here location. Once combined with diffusion-based

methods, the proposed approaches improve retrieval for a com-

putational cost on par with classical methods. As a perspective to

deal with the most difficult retrieval cases, we think to continue to

exploit the potential of diffusion-based methods by wisely injecting

punctual manual intervention in order to propagate more structure

in the dataset, without adding too much manual overhead.
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