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Abstract:  20 

Parkinson’s disease is a severe neurodegenerative disease. Several environmental contaminants 21 
such as pesticides have been suspected to favor the appearance of this pathology. The protein 22 
DJ-1 (or Park7) protects against the development of Parkinson’s disease. Thus, the possible 23 
inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified 24 
fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. 25 
Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible 26 
inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found 27 
as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects 28 
could be one of the various biological effects of these pesticides that may explain their 29 
involvement in the development of Parkinson’s disease. 30 

Keywords: Neurodegenerative diseases, Pesticides, Park7, thiocarbamates. 31 

1. Introduction 32 

Parkinson’s disease (PD) is the second most common neurodegenerative disease with 33 
complex etiology and variable pathology (Kalia and Lang 2015). Most cases originate from a 34 
combination of factors that are not fully characterized. Nevertheless, several molecular 35 
mechanisms were historically identified as common markers of the disease, including α-36 
synuclein misfolding and aggregation, and such processes play a central role in the occurrence 37 
of PD (Kazantsev and Kolchinsky 2008). Regarding its complex etiology, although 38 
multifactorial, the causes of PD have mainly two components, a genetic component, and an 39 
environmental component. Among various environmental factors, pesticides exposure has been 40 
found as a major candidate in PD pathogenesis. Indeed, an increased risk of developing PD has 41 
been observed in people exposed for a long period of time to pesticides (Baldi et al. 2021; 42 
Brown et al. 2006). Some studies were able to investigate the risks of specific chemicals, such 43 
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as paraquat, maneb, organochlorines and rotenone (Vellingiri et al. 2022). A review by Tanner 44 
et al. summarized the state of knowledge on this topic (Tanner et al. 2011). The chemicals for 45 
which most data link them to an increased PD risk are paraquat and rotenone, with exposure 46 
associated with a 2-3-fold higher PD risk over the general population (Yan et al. 2018). More 47 
recently a study estimated the consequences of exposure for 157 pesticides in the Netherlands 48 
population. Environmental exposure to pesticides was estimated using a spatio-temporal model, 49 
based on agricultural crops around the residential address. Four of these 157 pesticides were 50 
considered a priori relevant for PD: paraquat, maneb, lindane, and benomyl (Brouwer et al. 51 
2017). Interestingly, two of them are carbamates or thiocarbamates (R-NH-CO-NH-R or R-52 
NH-CS-S-R), that are highly reactive towards biomolecules through modification of their thiol 53 
residues.  54 

Thus, the association between exposure to agricultural pesticides and PD has long been 55 
a topic of study in the field of environmental health. However, the various molecular 56 
mechanisms that are at the origin of the effects of pesticides on the development of PD are not 57 
known in most cases. 58 

A major factor contributing to cellular and organism aging is the accumulation of 59 
advanced glycation end products (AGEs) on proteins, lipids and nucleic acids (Chaudhuri et al. 60 
2018; Miranda et al. 2016; Singh et al. 2001). The AGEs comprise a large number of 61 
heterogeneous chemical structures and a majority of them have a propensity to crosslink 62 
proteins, which alters their structure and function. The glycation process (also called non-63 
enzymatic glycosylation) is initiated by a non-enzymatic reaction between sugar-derived 64 
aldehydes and protein or nucleic acid nucleophiles such as amino or thiol groups. This reaction 65 
was discovered by the French chemist Louis-Camille Maillard in 1912 and the major glycating 66 
agents are reducing sugars (glucose, fructose, ribose, and their phosphorylated derivatives) and 67 
glyoxals such as methylglyoxal (MGO, CH3CO-CHO) (Maillard 1912). Glyoxals are formed 68 
as by-products of glucose metabolism and are responsible for 65% of cellular glycation events. 69 
The condensation reaction begins with the rapid formation of a hemithioacetal with thiols and 70 
of aminocarbinols with NH2 groups of biomolecules. Nucleic acids undergo permanent 71 
glycation by MGO and the most susceptible nucleotides are guanosine and deoxyguanosine 72 
(Thornalley 2008). Then, a series of dehydrations, oxidations and rearrangements result in a 73 
myriad of products: Amadori’s, AGEs and protein and/or DNA crosslinks. Several recent 74 
studies implicate glycation as an important process in the pathogenesis of PD (Miranda et al. 75 
2016; Sadowska-Bartosz and Bartosz 2016). Thus, it has been shown that α-synuclein itself, a 76 
protein that plays a central role in PD, can be glycated in models of this pathology (Guerrero et 77 
al. 2013). Recently, Outeiro and colleagues established that the glycation process enhances α-78 
synuclein toxicity in vitro and in vivo, in Drosophila and mice. 79 

The protein DJ-1 (or Park7) has a protective role towards the development of PD since 80 
the PARK7 gene is associated with recessive and sporadic forms of PD (Bonifati et al. 2003). 81 
Intensive studies have been undertaken to figure out DJ-1 function(s) and its role in the etiology 82 
of this neurodegenerative disease. Thus, DJ-1 has been proposed to take part in various 83 
physiological pathways related to the promotion of cell survival (Oh and Mouradian 2017). It 84 
also modulates oxidative and electrophilic stresses. DJ-1 activates the Nrf2-mediated 85 
antioxidant response (Neves et al. 2022). It catalytically protects and/or repairs various 86 
biomolecules against glycation by glyoxals (Matsuda et al. 2017; Richarme et al. 2017; 87 
Richarme et al. 2015) or detoxifies reactive compounds produced during glycolysis (Heremans 88 
et al. 2022; Lee et al. 2012). Although the nature of its physiological substrates is still a matter 89 
of controversy (Andreeva et al. 2019; Galligan et al. 2018; Jun and Kool 2020; Matsuda et al. 90 
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2017; Mazza et al. 2022; Mulikova et al. 2021; Pfaff et al. 2017a, b; Richarme 2017; Richarme 91 
and Dairou 2017; Richarme et al. 2017; Richarme et al. 2015) DJ-1 is involved in the protection 92 
against the glycation processes. 93 

This article reports the effects of about 100 pesticides belonging to the main chemical 94 
classes, such as organophosphates, organochlorines, arylureas, carbamates, aryloxyalkanoic 95 
acids, triazoles, neonicotinoids and pyrethroids, on human recombinant DJ-1. It shows that 96 
some of them are irreversible inhibitors of DJ-1 at the sub-micro molar level, revealing a new 97 
mode of action of these molecules. This strong inhibitory effect could be involved in the role 98 
of those pesticides in the development of PD. 99 

2. Materials and methods 100 
2.1.Materials.  101 

Most chemical and biochemical reactants were purchased from Sigma-Aldrich or Merck (St. 102 
Louis, United States). Plasmids for human DJ-1 were obtained from Dr. Sun-Sin Cha (Lee et 103 
al. 2003). Proteins were desalted with Micro Bio-Spin 6 columns (Biorad, Hercules, United 104 
States). UV-Visible spectra were recorded on a Carry 300 or Biotek PowerWave XS 105 
spectrometers. Gels were imaged on a LAS 4000 (GE Healthcare, Chicago, United States). The 106 
Liquid Chromatography (LC) system was composed of Shimadzu apparatus (Kyoto, Japan) 107 
equipped with a LC30AD pump, a SiL30AC auto-sampler coupled with a photodiode array 108 
detector PDA20A and a triple quadrupole mass detector 8060. 109 

2.2.Human DJ-1 production and purification 110 
Human DJ-1 was expressed and purified as previously described (Richarme et al. 2015). 111 
Briefly, the DJ-1 expression strain was grown in Luria-Bertani medium to an A600 = 0.6 and 112 
then induced with 1 mM isopropyl β-D-1-thiogalactopyranoside for 4 h. Bacteria were lysed by 113 
ultrasonic disruption, and the 100,000 g supernatant was used for DJ-1 purification. DJ-1 was 114 
first purified on a DEAE-Sephacel (Pharmacia, NJ, United States) column equilibrated in 30 115 
mM tris buffer, pH 8, containing 20 mM NaCl, 0.5 mM EDTA, and 1 mM dithiothreitol at 4°C. 116 
Protein was eluted with a linear gradient of 20–400 mM NaCl in equilibration buffer. DJ-1 was 117 
then purified on a hydroxyapatite column (Bio-Gel HTP from Bio-Rad) equilibrated in 20 mM 118 
phosphate buffer, pH 8, containing 20 mM NaCl, 0.5 mM EDTA and 1 mM dithiothreitol at 119 
4°C. Protein was eluted with a linear gradient of 20–250 mM sodium phosphate buffer, pH 8. 120 
Then, DJ-1 was dialyzed overnight against 50 mM phosphate buffer (Na2HPO4), pH 8, 20 mM 121 
NaCl, 0.5 mM EDTA and 1 mM dithiothreitol at 4 °C. Purified protein was quantitated with 122 
Bradford reagent (Bradford 1976). Purity was assessed by SDS-PAGE and/or western blot with 123 
anti-DJ-1 as antibody. Proteins were kept at -80°C until use. 124 

2.3.Enzyme Assay—Detection of DJ-1 esterase and deglycase activity 125 
Prior to any experiment, DJ-1 enzyme was reduced by 10 mM dithiothreitol (DTT) for 30 min 126 
and then dialyzed overnight at 4°C against 50 mM phosphate buffer. Protein concentration was 127 
determined using a Bradford assay with BSA (Bovine serum albumin) as standard (Bio-rad). 128 
DJ-1 esterase activity was performed as described previously (Vazquez-Mayorga et al. 2016) 129 
in a total volume of 200 µl: ten µL of DJ-1 solution (0.2 µM final) were added to 190 µL of a 130 
2.8 mM solution of p-nitrophenylacetate (pNPA), prepared in PBS from a 200 mM stock 131 
solution in dimethylsulfoxide. DJ-1 esterase activity was determined by monitoring the slope 132 
of the absorbance at 405 nm vs time at 37°C.  133 
The activity of DJ-1 concerning the protection against guanosine monophosphate glycation by 134 
methylglyoxal was determined by LC as previously reported (Richarme et al. 2015). Briefly 135 
guanosine monophosphate (GMP) 100 µM was incubated at 37°C in N2-gassed 50 mM 136 
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phosphate buffer pH 7.0, with 400 µM MGO, in the absence or presence of 4 µM DJ-1. The 137 
samples were analyzed by LC on a C18 Reverse phase LC Kinetex® - Phenomenex column 138 
equilibrated in water with formic acid 0.1% at 45°C, and eluted with a linear gradient with 139 
acetonitrile with 0.1% formic acid. The kinetics of GMP protection by DJ-1 was followed by 140 
measuring the area under the peak of the glycated GMP peak of the LC chromatogram 141 
(absorbance at 254 nm and Mass Spectrometry detection). 142 

2.4.Effects of pesticides on DJ-1 activity 143 
The inhibitory effects of pesticides were determined by running the enzymatic assay as 144 
described above, in the presence of pesticide (5 µM). This activity was compared to the activity 145 
of a similar DJ-1 solution without pesticide (100%). pNPA hydrolysis by pesticides without 146 
DJ-1 was also used as control and showed no significant esterase activity unless otherwise 147 
stated. For pesticides that show DJ-1 inhibition greater than 25% under the previous conditions, 148 
IC50 determinations were made. 149 
To test whether the reaction of DJ-1 with pesticide was irreversible, purified enzyme (1 µM 150 
final) was first incubated in presence or absence of pesticide for 30 min at 37°C. The samples 151 
were then dialyzed overnight at 4°C against phosphate buffer prior to enzyme assay. Controls 152 
were carried out with non-dialyzed samples. 153 
Kinetic data with thiram were obtained at 37°C as follows: to 1 mL of a 50 nM solution of DJ-154 
1 was added 1 µL of a 1 mM solution of thiram (final concentrations: 1 µM). The esterase 155 
activity was recorded at various time intervals by monitoring of pNPA hydrolysis. The 156 
bimolecular rate constant kinac was determined by Kitz & Wilson methodology proposed in 157 
1962, the time-course of an irreversible inhibition assay can be described by a rising exponential 158 
curve by fitting (Kitz and Wilson 1962). 159 

2.5.Effects of pesticides on the oxidation state of DJ-1 160 
Western blotting was performed as previously described (Bahmed et al. 2016). We used 161 
antibodies against native and Cys106-oxidized DJ-1 (Sigma) and the blots were then developed 162 
using an enhanced chemiluminescence western blotting kit according to the manufacturer’s 163 
instructions (Amersham Pharmacia Biotech, Piscataway, NJ). Images were quantitated using 164 
ImageJ software. 165 

2.6.Statistical Analyses 166 
Each experiment was performed independently at least three times. The results shown in figures 167 
are, if not otherwise stated, mean values ± S.E.M of 3–6 independent experiments. Statistical 168 
analysis was performed using analysis of ANOVA test using Prism (GraphPad Software). 169 

3. Results and discussion 170 

About hundred pesticides belonging to the main pesticide chemical classes were tested as 171 
possible inhibitors of DJ-1. First, they were tested as possible inhibitors of the esterase activity 172 
of human recombinant DJ-1 using pNPA as substrate (Figure 1) (Maksimovic et al. 2021; 173 
Vazquez-Mayorga et al. 2016). Table 1 shows the percentage of inhibition observed after 5 min 174 
of incubation of 0.2 µM DJ-1 in the presence of 2.8 mM pNPA and 5 µM pesticide. Under these 175 
conditions, only a little number of pesticides led to a significant inhibition of DJ-1. This was 176 
the case of three carbamates (benomyl, formetanate and oxamyl), five organochlorines (captan, 177 
DDE, dienochlore, folpet and lindane), one pyrethroid (resmethrin), two organophosphates, 178 
(diazinon and pirimidiphos methyl) and two unclassified pesticides (paraquat and dithianon) 179 
with various potencies (from 10 to 85% of inhibition). However, one family of pesticides 180 
emerges as major inhibitors of DJ-1, the thiocarbamate series (from 70 to 100% of inhibition). 181 
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Interestingly, a thiocarbamate used as a drug, disulfiram, was recently reported as a good 182 
inhibitor of the esterase activity of DJ-1 (Wu et al. 2022). 183 

Table 2 indicates the IC50 values found for those pesticides having led to a significant inhibition 184 
of DJ-1 (higher than 25 %). Almost all the tested thiocarbamates and dithianon led to 185 
remarkably low IC50 values, equal or lower than 1 µM. Thiram was found to be the best inhibitor 186 
under these conditions, with an IC50 value of about 0.02 µM. It is important to compare these 187 
IC50 values with the concentrations found after human exposure to those pesticides. Thus, for 188 
example, several recent studies have revealed that humans are exposed through their 189 
consumption of fruit and vegetables and their drinking water to concentrations of maneb up to 190 
450 µg/L (ie 1.7 µM) (Asghar et al. 2022; Carrasco Cabrera and Medina Pastor 2021; Onwona-191 
Kwakye et al. 2020; Ozhan and Alpertunga 2008). We found an IC50 for maneb of 0.06 µM 192 
that is much lower than the concentration reported upon maneb exposure. 193 

Experiments based on preincubation of DJ-1 in the presence of the inhibitors were then 194 
performed to determine the type of inhibition of those thiocarbamates. Figure 2a shows that the 195 
inhibition level observed with 1 µM thiram clearly increased with the time of preincubation of 196 
DJ-1 in the presence of this inhibitor. A complete inhibition of DJ-1 was observed after 5 min 197 
preincubation of DJ-1 with 1 µM thiram, indicating that this pesticide acts as an irreversible 198 
inhibitor of DJ-1. Determination of the kinact led to a value of 3.5 ± 0.5 104 M-1.s-1. Dialysis at 199 
equilibrium experiments of the incubates of DJ-1 in the presence of thiram confirmed that DJ-200 
1 remained inactive under these conditions and that thiram acted as an irreversible inhibitor 201 
(figure 2b). 202 

Some of the pesticides having led to a strong inhibitory effect on the esterase activity of DJ-1 203 
were tested on a previously described assay measuring the protecting activity of DJ-1 towards 204 
glycated GMP formation upon reaction of GMP with MGO (Figure 3), resulting in lactate 205 
formation, (Richarme et al. 2017). Figure 4A shows the LCMS chromatograms of glycated 206 
GMP (m/z = 436.22), alone (a) or after incubation with DJ-1 (b), or after incubation with 4 µM 207 
DJ-1 previously treated during 30 min at room temperature with 10 µM thiram (c). Figure 4B 208 
shows the formation of lactate (m/z=89.00) under identical conditions. Those results show that 209 
thiram is also an inhibitor of this protective activity of DJ-1against glycated GMP formation. 210 
Similar results were obtained with maneb and dithianon. 211 

As a first attempt to determine the mechanism of the inhibition of DJ-1 by the pesticides 212 
indicated in Table 2, experiments have been done to know whether some of them could lead to 213 
an irreversible oxidation of cysteine 106, a crucial residue of the DJ-1 active site (Blackinton 214 
et al. 2009; Canet-Aviles et al. 2004; Kinumi et al. 2004). For that purpose, western-blot 215 
analyses of DJ-1 incubation mixtures were done by using a specific antibody against an 216 
oxidized form of DJ-1, specifically at the level of Cys106. Figure 5 compares the analysis of 217 
untreated DJ-1 with DJ-1 pretreated with 100 µM H2O2 and confirmed that the antibody 218 
specifically recognizes S-oxidized DJ-1 (line 1 vs 2). Interestingly, analysis of DJ-1 pretreated 219 
with maneb (line 5) showed the presence of S-oxidized DJ-1 whereas this was not the case for 220 
DJ-1 pretreated with thiram or zineb. The oxidation of Cys106 observed upon treatment of DJ-221 
1 with maneb, that is a Mn(II) complex, could be due to the binding and reaction of dioxygen 222 
(O2) with its Mn(II) center with formation of superoxide. Accordingly, incubation of DJ-1 with 223 
thiram or zineb that did not contain such a Mn(II) redox active center did not lead to Cys106 224 
oxidation (Figure 5). 225 
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Similar experiments performed on DJ-1 pretreated with dithianon (figure 5) showed the 226 
formation of S-oxidized DJ-1 whereas this was not the case for DJ-1 pretreated with folpet, 227 
formetamate, lindane, resmethrine, oxamyl or triallate (data not shown). This oxidation of 228 
Cys106 by dithianon could be due to its particular activated quinone structure able to receive 229 
an electron from Cys106 with formation of a stable radical anion. 230 

From those data, it seems that oxidation of Cys106 would only be involved in the inhibition of 231 
DJ-1 by a few pesticides, such as maneb, mancozeb (data not shown) or dithianon. The 232 
mechanisms of inhibition of DJ-1 by the other pesticides mentioned in Table 2 remain to be 233 
determined. 234 

4. Conclusion 235 

Our study of the possible inhibitory effects of about hundred pesticides on human DJ-1 has 236 
shown that some twenty of them are inhibitors of the esterase activity of DJ-1 (Table 1). Fifteen 237 
of them are good inhibitors with IC50 values between 0.02 and 30 µM (Table 2). The pesticides 238 
of the thiocarbamate series are particularly good inhibitors. Thus, thiram was found as an 239 
irreversible DJ-1 inhibitor with an IC50 value of 0.02 µM. All those fifteen pesticides have been 240 
linked to the development of PD (Brouwer et al. 2017; Brown et al. 2006; Tanner et al. 2011). 241 
Interestingly, a recent study of the consequences of the exposure for 157 pesticides in the 242 
Netherland population has shown that four of those pesticides, paraquat, maneb, lindane and 243 
benomyl, were relevant for the development of PD (Brouwer et al. 2017). Interestingly,those 244 
four pesticides were found to act as inhibitors of DJ-1 (Tables 1 and 2). 245 

Several biological effects of some pesticides have been reported to contribute to the 246 
development of PD. Thus, for instance, rotenone act as inhibitor of mitochondrial complex1 247 
(Betarbet et al. 2006; Betarbet et al. 2000; Schiller and Zickermann 2022), Paraquat increases 248 
the formation of free radicals and oxidative stress (Ranjbar et al. 2018) and benomyl and some 249 
dithiocarbamates act as inhibitors of the aldehyde dehydrogenase that is responsible for the 250 
detoxication of a dopamine metabolite, 3,4-dihydroxyphenyl acetaldehyde (Burke et al. 2014; 251 
Fitzmaurice et al. 2014; Fitzmaurice et al. 2013).Our results show that some of the hundred 252 
pesticides tested in our study are strong inhibitors of DJ-1. However, the esterase activity of 253 
DJ-1 has so far no identified physiological role and further experiments using in cellulo and in 254 
vivo models are necessary to show that this inhibition of DJ-1 could be one of the various 255 
biological effects of those pesticides involved in the development of PD.  256 
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5. Appendices: Tables and figures legends 257 
5.1.Table 1. Inhibition of human DJ-1 by pesticides. 258 

% inhibition of the DJ1 esterase activity (using pNPA as substrate) upon incubation of DJ-1 in 259 
the presence of 2.8 mM pNPA and 5 µM pesticide; mean values +/- S.E.M. from 6 to 9 260 
experiments. 261 

Chemical Class Compounds % of Inhibition 

Aryloxy alkanoic acids 

Cyhalofop-butyl <5% 
Diclofop-methyl <5% 
Fenoxaprop-P <5% 

Fluazifop-P-butyl <5% 
MCPA <5% 
MCPB <5% 

Mecoprop-P <5% 
Quizalofop-P-ethyl <5% 

Aryl ureas 

Chlortoluron <5% 
Foramsulfuron <5% 

Linuron <5% 
Metobromuron <5% 

Metsulfuron-methyl <5% 
Nicosulfuron <5% 
Rimsulfuron <5% 

Tribenuron-methyl <5% 
Tritosulfuron <5% 

Carbamates 

Asulam <5% 
Benomyl 85 ± 6% 
Carbaryl <5% 

Carbendazim <5% 
Chlorpropham <5% 
Diethofencarb <5% 
Formetanate 56 ± 8% 
Iprovalicarb <5% 
Methomyl <5% 

Oxamyl 22 ± 7% 
Phenmedipham <5% 

Pirimicarb <5% 
Propamocarb <5% 
Prosulfocarb <5% 

Thiabendazole <5% 

Neonicotinoids 
Imidacloprid <5% 
Thiacloprid <5% 

Thiamethoxam <5% 

Organochlorines 
Boscalid <5% 
Bixafen <5% 
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captan 57 ± 9% 
Chlordecon <5% 

DDE 17 ± 4% 
DDT <5% 

Dieldrin <5% 
Dienochlore 35 ± 5% 
Endosulfan <5% 

Folpet 25 ± 4% 
Lindane 12 ± 4% 

Metolachlore <5% 

Organophosphates 

Acephate <5% 
Diazinon 10 ± 4% 

Dichlorvos <5% 
Dimethoate <5% 

Ethion <5% 
Fenitrothion <5% 
Glyphosate <5% 

Isocarbophos <5% 
Malathion <5% 

Methyl parathion <5% 
Monocrotophos <5% 
Parathion (ethyl) <5% 

Phosmet <5% 
pirimiphos methyl 14 ± 3% 

Profenofos <5% 
Tolclofos-methyl <5% 

Triazophos <5% 

Pyrethroids 

Allethrin <5% 
Bifenthrin <5% 
Cyfluthrin <5% 

Cypermethrin <5% 
Deltamethrin <5% 
Esfenvalerate <5% 
Fenvalerate <5% 
Fluvalinate <5% 
Permethrin <5% 
Phenothrin <5% 
Resmethrin 26 ± 4% 

Tetramethrin <5% 
Tralomethrin <5% 

Thiocarbamates  

Mancozeb 100 ± 5% 
Maneb 100 ± 6% 

Propineb 100 ± 3% 
Thiram 100 ± 1% 
Triallat 70 ± 12% 
Zineb 100 ± 7% 
Ziram 100 ± 6% 
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Triazoles 

Difenoconazole <5% 
Hexaconazole <5% 
Metconazole <5% 
Myclobutanil <5% 
Penconazole <5% 

Tebuconazole <5% 
Triticonazole <5% 

Others 

Atrazine <5% 
Cyprodinil <5% 
Dinitramin <5% 
Dithianon 100 ± 4% 
Iprodione <5% 

Mepanipyrim <5% 
Mesotrione <5% 

Paraquat 20 ± 4% 
Rotenone <5% 
Sedaxane <5% 

Tembotrione <5% 
  262 
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5.2.Table 2. IC50 values obtained for the inhibition of DJ1 (esterase activity) by 263 
pesticides. 264 

Mean values expressed in µM +/- S.E.M. from 3 to 6 experiments. 265 

Compounds STRUCTURE IC50 (µM) 

Benomyl 

 

0.92 ± 0.1 

Captan 

 

6.1 ± 0.3 

Dienochlore 

 

19.2 ± 0.2 

Dithianon 

 

1.1 ± 0.2 

Folpet 

 

15.1 ± 2.3 

Formetanate 

 

3.2 ± 0.3 

Mancozeb 

 

0.09 ± 0.01 

Maneb 

 

0.06 ± 0.01 
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Oxamyl 

 

24.8 ± 0.3 

Propineb 

 

0.17 ± 0.02 

Resmethrine 

 

18.1 ± 0.8 

Thiram 

 

0.018 ± 0.002 

Triallat 

 

0.99 ± 0.11 

Zineb 

 

0.17 ± 0.02 

Ziram 

 

0.15 ± 0.02 

 266 
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5.3.Figure 1. Esterase activity of DJ-1 towards pNPA as substrate. 268 
 269 

 270 
 271 
  272 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5.4.Figure 2. Kinetic analysis of DJ-1 inhibition by thiram 273 
a: Inhibition of the DJ-1 esterase activity as a function of the time of preincubation of DJ-1 with 274 
thiram. Mean values from three independent experiments. 275 
 276 
 277 

 278 
b: Inhibition of the DJ-1 esterase activity with thiram before and after dialysis. Mean values 279 
from three independent experiments. 280 
 281 
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5.5.Figure 3. Protective activity of DJ1 against glycation of GMP by MGO. 284 
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5.6.Figure 4. Inhibition by thiram of the protective effect of DJ-1 against GMP glycation  293 
A. LCMS profiles of glycated GMP (m/z =436.22) under the following conditions: (a) 294 

GMP (100 μM) incubated with MGO (400 µM), (b) GMP (100 μM) incubated with 295 
MGO (400 µM) and DJ-1 (4 μM), (c) GMP (100 μM) incubated with MGO (400 µM), 296 
DJ-1 (4 μM), and Thiram (10 μM). 297 

B. LCMS profiles of lactate (m/z = 89.00) under the following conditions: (a) GMP (100 298 
μM) incubated with MGO (400 µM), (b) GMP (100 μM) incubated with MGO (400 299 
µM) and DJ-1 (4 μM), (c) GMP (100 μM) incubated with MGO (400 µM), DJ-1 (4 μM), 300 
and Thiram (10 μM). 301 
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5.7.Figure 5. Effects of pesticides on the oxidation state of DJ-1 303 
Ponceau-stained full blot (above) and the immunostained DJ-1 band (below). Western blotting 304 
was performed with an antibody against Cys106-oxidized DJ-1 under the following conditions: 305 
1. DJ-1 (10 µM), 2. DJ-1 (10 µM) with 100 µM H2O2, 3. DJ-1 (10 µM) with 100 µM dithianon, 306 
4. DJ-1 (10 µM) with 100 µM thiram, 5. DJ-1 (10 µM) with 100 µM maneb and 6. DJ-1 (10 307 
µM) with 100 µM zineb. 308 
. 309 
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Abstract:  20 

Parkinson’s disease is a severe neurodegenerative disease. Several environmental contaminants 21 
such as pesticides have been suspected to favor the appearance of this pathology. The protein 22 
DJ-1 (or Park7), an esterase/déglycase protein,) protects against the development of Parkinson’s 23 
disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have 24 
been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values 25 
between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram 26 
that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 27 
µM. Thiram was also found as a good inhibitor of a deglycasethe protective activity of DJ-1 28 
against glycation. Such inhibitory effects could be one of the various biological effects of these 29 
pesticides that may explain their involvement in the development of Parkinson’s disease. 30 

Keywords: Neurodegenerative diseases, Pesticides, Park7, thiocarbamates. 31 

1. Introduction 32 

Parkinson’s disease (PD) is the second most common neurodegenerative disease with 33 
complex etiology and variable pathology (Kalia and Lang 2015). Most cases originate from a 34 
combination of factors that are not fully characterized. Nevertheless, several molecular 35 
mechanisms were historically identified as common markers of the disease, including α-36 
synuclein misfolding and aggregation, and such processes play a central role in the occurrence 37 
of PD (Kazantsev and Kolchinsky 2008). Regarding its complex etiology, although 38 
multifactorial, the causes of PD have mainly two components, a genetic component, and an 39 
environmental component. Among various environmental factors, pesticides exposure has been 40 
convictedfound as a major candidate in PD pathogenesis. Indeed, an increased risk of 41 
developing PD has been observed in people exposed for a long period of time to pesticides 42 
(Baldi et al. 2021; Brown et al. 2006). Some studies were able to investigate the risks of specific 43 
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chemicals, such as paraquat, maneb, organochlorines and rotenone (Vellingiri et al. 2022). A 44 
review by Tanner et al. summarized the state of knowledge on this topic (Tanner et al. 2011). 45 
The chemicals for which most data link them to an increased PD risk are paraquat and rotenone, 46 
with exposure associated with a 2-3-fold higher PD risk over the general population (Yan et al. 47 
2018). More recently a study estimated the consequences of exposure for 157 pesticides in the 48 
Netherlands population. Environmental exposure to pesticides was estimated using a spatio-49 
temporal model, based on agricultural crops around the residential address. Four of these 157 50 
pesticides were considered a priori relevant for PD: paraquat, maneb, lindane, and benomyl 51 
(Brouwer et al. 2017). Interestingly, two of them are carbamates or thiocarbamates (R-NH-CO-52 
NH-R or R-NH-CS-S-R), that are highly reactive towards biomolecules through modification 53 
of their thiol residues.  54 

Thus, the association between exposure to agricultural pesticides and PD has long been 55 
a topic of study in the field of environmental health. However, the various molecular 56 
mechanisms that are at the origin of the effects of pesticides on the development of PD are not 57 
known in most cases. 58 

A major factor contributing to cellular and organism aging is the accumulation of 59 
advanced glycation end products (AGEs) on proteins, lipids and nucleic acids (Chaudhuri et al. 60 
2018; Miranda et al. 2016; Singh et al. 2001). The AGEs comprise a large number of 61 
heterogeneous chemical structures and a majority of them have a propensity to crosslink 62 
proteins, which alters their structure and function. The glycation process (also called non-63 
enzymatic glycosylation) is initiated by a non-enzymatic reaction between sugar-derived 64 
aldehydes and protein or nucleic acid nucleophiles such as amino or thiol groups. This reaction 65 
was discovered by the French chemist Louis-Camille Maillard in 1912 and the major glycating 66 
agents are reducing sugars (glucose, fructose, ribose, and their phosphorylated derivatives) and 67 
glyoxals such as methylglyoxal (MGO, CH3CO-CHO) (Maillard 1912). Glyoxals are formed 68 
as by-products of glucose metabolism and are responsible for 65% of cellular glycation events. 69 
The condensation reaction begins with the rapid formation of a hemithioacetal with thiols and 70 
of aminocarbinols with NH2 groups of biomolecules. Nucleic acids undergo permanent 71 
glycation by MGO and the most susceptible nucleotides are guanosine and deoxyguanosine 72 
(Thornalley 2008). Then, a series of dehydrations, oxidations and rearrangements result in a 73 
myriad of products: Amadori’s, AGEs and protein and/or DNA crosslinks. Several recent 74 
studies implicate glycation as an important process in the pathogenesis of PD (Miranda et al. 75 
2016; Sadowska-Bartosz and Bartosz 2016). Thus, it has been shown that α-synuclein itself, a 76 
protein that plays a central role in PD, can be glycated in models of this pathology (Guerrero et 77 
al. 2013). Recently, Outeiro and colleagues established that the glycation process enhances α-78 
synuclein toxicity in vitro and in vivo, in Drosophila and mice. 79 

The protein DJ-1 (or Park7) has a protective role towards the development of PD since 80 
the PARK7 gene is associated with recessive and sporadic forms of PD (Bonifati et al. 2003). 81 
Intensive studies have been undertaken to figure out DJ-1 function(s) and its role in the etiology 82 
of this neurodegenerative disease. Thus, DJ-1 has been proposed to take part in various 83 
physiological pathways related to the promotion of cell survival (Oh and Mouradian 2017). It 84 
also modulates oxidative and electrophilic stresses. DJ-1 activates the Nrf2-mediated 85 
antioxidant response (Neves et al. 2022). It catalytically protects and/or repairs various 86 
biomolecules against glycation by glyoxals (Matsuda et al. 2017; Richarme et al. 2017; 87 
Richarme et al. 2015) or detoxifies reactive compounds produced during glycolysis (Heremans 88 
et al. 2022; Lee et al. 2012). Although the nature of its physiological substrates is still a matter 89 
of controversy (Jun and Kool 2020),. Although the nature of its physiological substrates is still 90 
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a matter of controversy (Andreeva et al. 2019; Galligan et al. 2018; Jun and Kool 2020; Matsuda 91 
et al. 2017; Mazza et al. 2022; Mulikova et al. 2021; Pfaff et al. 2017a, b; Richarme 2017; 92 
Richarme and Dairou 2017; Richarme et al. 2017; Richarme et al. 2015) DJ-1 is involved in the 93 
protection against the glycation processes. 94 

This article reports the effects of about 100 pesticides belonging to the main chemical 95 
classes, such as organophosphates, organochlorines, arylureas, carbamates, aryloxyalkanoic 96 
acids, triazoles, neonicotinoids and pyrethroids, on human recombinant DJ-1. It shows that 97 
some of them are irreversible inhibitors of DJ-1 at the sub-micro molar level, revealing a new 98 
mode of action of these molecules. This strong inhibitory effect could be involved in the role 99 
of those pesticides in the development of PD. 100 

2. Materials and methods 101 
2.1.Materials.  102 

Most chemical and biochemical reactants were purchased from Sigma-Aldrich or Merck (St. 103 
Louis, United States). Plasmids for human DJ-1 were obtained from Dr. Sun-Sin Cha (Lee et 104 
al. 2003). Proteins were desalted with Micro Bio-Spin 6 columns (Biorad, Hercules, United 105 
States). UV-Visible spectra were recorded on a Carry 300 or Biotek PowerWave XS 106 
spectrometers. Gels were imaged on a LAS 4000 (GE Healthcare, Chicago, United States). The 107 
Liquid Chromatography (LC) system was composed of Shimadzu apparatus (Kyoto, Japan) 108 
equipped with a LC30AD pump, a SiL30AC auto-sampler coupled with a photodiode array 109 
detector PDA20A and a triple quadrupole mass detector 8060. 110 

2.2.Human DJ-1 production and purification 111 
Human DJ-1 was expressed and purified as previously described (Richarme et al. 2015). 112 
Briefly, the DJ-1 expression strain was grown in Luria-Bertani medium to an A600 = 0.6 and 113 
then induced with 1 mM isopropyl β-D-1-thiogalactopyranoside for 4 h. Bacteria were lysed by 114 
ultrasonic disruption, and the 100,000 g supernatant was used for DJ-1 purification. DJ-1 was 115 
first purified on a DEAE-Sephacel (Pharmacia, NJ, United States) column equilibrated in 30 116 
mM tris buffer, pH 8, containing 20 mM NaCl, 0.5 mM EDTA, and 1 mM dithiothreitol at 4°C. 117 
Protein was eluted with a linear gradient of 20–400 mM NaCl in equilibration buffer. DJ-1 was 118 
then purified on a hydroxyapatite column (Bio-Gel HTP from Bio-Rad) equilibrated in 20 mM 119 
phosphate buffer, pH 8, containing 20 mM NaCl, 0.5 mM EDTA and 1 mM dithiothreitol at 120 
4°C. Protein was eluted with a linear gradient of 20–250 mM sodium phosphate buffer, pH 8. 121 
Then, DJ-1 was dialyzed overnight against 50 mM phosphate buffer (Na2HPO4), pH 8, 20 mM 122 
NaCl, 0.5 mM EDTA and 1 mM dithiothreitol at 4 °C. Purified protein was quantitated with 123 
Bradford reagent (Bradford 1976). Purity was assessed by SDS-PAGE and/or western blot with 124 
anti-DJ-1 as antibody. Proteins were kept at -80°C until use. 125 

2.3.Enzyme Assay—Detection of DJ-1 esterase and deglycase activity 126 
Prior to any experiment, DJ-1 enzyme was reduced by 10 mM dithiothreitol (DTT) for 30 min 127 
and then dialyzed overnight at 4°C against 50 mM phosphate buffer. Protein concentration was 128 
determined using a Bradford assay with BSA (Bovine serum albumin) as standard (Bio-rad). 129 
DJ-1 esterase activity was performed as described previously (Vazquez-Mayorga et al. 2016) 130 
in a total volume of 200 µl: ten µL of DJ-1 solution (0.2 µM final) were added to 190 µL of a 131 
2.8 mM solution of p-nitrophenylacetate (pNPA), prepared in PBS from a 200 mM stock 132 
solution in dimethylsulfoxide. DJ-1 esterase activity was determined by monitoring the slope 133 
of the absorbance at 405 nm vs time at 37°C.  134 
The deglycase activity of DJ-1 concerning the protection against guanosine monophosphate 135 
glycation by methylglyoxal was determined by LC as previously reported (Richarme et al. 136 
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2015). Briefly guanosine monophosphate (GMP) 100 µM was incubated at 37°C in N2-gassed 137 
50 mM phosphate buffer pH 7.0, with 400 µM MGO, in the absence or presence of 4 µM DJ-138 
1. The samples were analyzed by LC on a C18 Reverse phase LC Kinetex® - Phenomenex 139 
column equilibrated in water with formic acid 0.1% at 45°C, and eluted with a linear gradient 140 
with acetonitrile with 0.1% formic acid. The kinetics of GMP protection by DJ-1 was followed 141 
by measuring the surface area under the peak of the glycated GMP peak of the LC 142 
chromatogram (absorbance at 254 nm and Mass Spectrometry detection). 143 

2.4.Effects of pesticides on DJ-1 activity 144 
The inhibitory effects of pesticides were determined by running the enzymatic assay as 145 
described above, in the presence of pesticide (5 µM). This activity was compared to the activity 146 
of a similar DJ-1 solution without pesticide (100%). pNPA hydrolysis by pesticides without 147 
DJ-1 was also used as control and showed no significant esterase activity unless otherwise 148 
stated. For pesticides that show DJ-1 inhibition greater than 25% under the previous conditions, 149 
IC50 determinations were made. 150 
To test whether the reaction of DJ-1 with pesticide was irreversible, purified enzyme (1 µM 151 
final) was first incubated in presence or absence of pesticide for 30 min at 37°C. The samples 152 
were then dialyzed overnight at 4°C against phosphate buffer prior to enzyme assay. Controls 153 
were carried out with non-dialyzed samples. 154 
Kinetic data with thiram were obtained at 37°C as follows: to 1 mL of a 50 nM solution of DJ-155 
1 was added 1 µL of a 1 mM solution of thiram (final concentrations: 1 µM). The esterase 156 
activity was recorded at various time intervals by monitoring of pNPA hydrolysis. The 157 
bimolecular rate constant kinac was determined by Kitz & Wilson methodology proposed in 158 
1962, the time-course of an irreversible inhibition assay can be described by a rising exponential 159 
curve by fitting (Kitz and Wilson 1962). 160 

2.5.Effects of pesticides on the oxidation state of DJ-1 161 
Western blotting was performed as previously described (Bahmed et al. 2016). We used 162 
antibodies against native and Cys106-oxidized DJ-1 (Sigma) and the blots were then developed 163 
using an enhanced chemiluminescence western blotting kit according to the manufacturer’s 164 
instructions (Amersham Pharmacia Biotech, Piscataway, NJ). Images were quantitated using 165 
ImageJ software. 166 

2.6.Statistical Analyses 167 
Each experiment was performed independently at least three times. The results shown in figures 168 
are, if not otherwise stated, mean values ± S.E.M of 3–6 independent experiments. Statistical 169 
analysis was performed using analysis of ANOVA test using Prism (GraphPad Software). 170 

3. Results and discussion 171 

About hundred pesticides belonging to the main pesticide chemical classes were tested as 172 
possible inhibitors of DJ-1. First, they were tested as possible inhibitors of the esterase activity 173 
of human recombinant DJ-1 using pNPA as substrate (Figure 1) (Maksimovic et al. 2021; 174 
Vazquez-Mayorga et al. 2016). Table 1 shows the percentage of inhibition observed after 5 min 175 
of incubation of 0.2 µM DJ-1 in the presence of 2.8 mM pNPA and 5 µM pesticide. Under these 176 
conditions, only a little number of pesticides led to a significant inhibition of DJ-1. This was 177 
the case of three carbamates (benomyl, formetanate and oxamyl), five organochlorines (captan, 178 
DDE, dienochlore, folpet and lindane), one pyrethroid (resmethrin), two organophosphates, 179 
(diazinon and pirimidiphos methyl) and two unclassified pesticides (paraquat and dithianon) 180 
with various potencies (from 10 to 85% of inhibition). However, one family of pesticides 181 
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emerges as major inhibitors of DJ-1, the thiocarbamate series (from 70 to 100% of inhibition). 182 
Interestingly, a thiocarbamate used as a drug, disulfiram, was recently reported as a good 183 
inhibitor of the esterase activity of DJ-1 (Wu et al. 2022). 184 

Table 2 indicates the IC50 values found for those pesticides having led to a significant inhibition 185 
of DJ-1 (higher than 25 %). Almost all the tested thiocarbamates and dithianon led to 186 
remarkably low IC50 values, equal or lower than 1 µM. Thiram was found to be the best inhibitor 187 
under these conditions, with an IC50 value of about 0.02 µM. It is important to compare these 188 
IC50 values with the concentrations found after human exposure to those pesticides. Thus, for 189 
example, several recent studies have revealed that humans are exposed through their 190 
consumption of fruit and vegetables and their drinking water to concentrations of maneb up to 191 
450 µg/L (ie 1.7 µM) (Asghar et al. 2022; Carrasco Cabrera and Medina Pastor 2021; Onwona-192 
Kwakye et al. 2020; Ozhan and Alpertunga 2008). We found an IC50 for maneb of 0.06 µM 193 
that is much lower than the concentration reported upon maneb exposure. 194 

Experiments based on preincubation of DJ-1 in the presence of the inhibitors were then 195 
performed to determine the type of inhibition of those thiocarbamates. Figure 22a shows that 196 
the inhibition level observed with 1 µM thiram clearly increased with the time of preincubation 197 
of DJ-1 in the presence of this inhibitor. A complete inhibition of DJ-1 was observed after 5 198 
min preincubation of DJ-1 with 1 µM thiram, indicating that this pesticide acts as an irreversible 199 
inhibitor of DJ-1. Determination of the kinact led to a value of 3.5 ± 0.5 104 M-1.s-1. Dialysis at 200 
equilibrium experiments of the incubates of DJ-1 in the presence of thiram confirmed that DJ-201 
1 remained inactive under these conditions (data not shown) and that thiram acted as an 202 
irreversible inhibitor. (figure 2b). 203 

Some of the pesticides having led to a strong inhibitory effect on the esterase activity of DJ-1 204 
were tested on a previously described assay measuring the protecting activity of DJ-1 towards 205 
glycated GMP formation upon reaction of GMP with MGO (Figure 3), resulting in lactate 206 
formation, (Richarme et al. 2017). Figure 4A shows the LCMS chromatograms of glycated 207 
GMP (m/z = 436.22), alone (a) or after incubation with DJ-1 (b), or after incubation with 4 µM 208 
DJ-1 previously treated during 30 min at room temperature with 10 µM thiram (c). Figure 4B 209 
shows the formation of lactate (m/z=89.00) under identical conditions. Those results show that 210 
thiram is also an inhibitor of this deglycaseprotective activity of DJ-1.1against glycated GMP 211 
formation. Similar results were obtained with maneb and dithianon (data not shown).. 212 

As a first attempt to determine the mechanism of the inhibition of DJ-1 by the pesticides 213 
indicated in Table 2, experiments have been done to know whether some of them could lead to 214 
an irreversible oxidation of cysteine 106, a crucial residue of the DJ-1 active site (Blackinton 215 
et al. 2009; Canet-Aviles et al. 2004; Kinumi et al. 2004). For that purpose, western-blot 216 
analyses of DJ-1 incubation mixtures were done by using a specific antibody against an 217 
oxidized form of DJ-1, specifically at the level of Cys106. Figure 5 compares the analysis of 218 
untreated DJ-1 with DJ-1 pretreated with 100 µM H2O2 and confirmed that the antibody 219 
specifically recognizes S-oxidized DJ-1 (line 1 vs 2). Interestingly, analysis of DJ-1 pretreated 220 
with maneb (line 5) showed the presence of S-oxidized DJ-1 whereas this was not the case for 221 
DJ-1 pretreated with thiram or zineb. The oxidation of Cys106 observed upon treatment of DJ-222 
1 with maneb, that is a Mn(II) complex, could be due to the binding and reaction of dioxygen 223 
(O2) with its Mn(II) center with formation of superoxide. Accordingly, incubation of DJ-1 with 224 
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thiram or zineb that did not contain such a Mn(II) redox active center did not lead to Cys106 225 
oxidation (Figure 5). 226 

Similar experiments performed on DJ-1 pretreated with dithianon (figure 5) showed the 227 
formation of S-oxidized DJ-1 whereas this was not the case for DJ-1 pretreated with folpet, 228 
formetamate, lindane, resmethrine, oxamyl or triallate (data not shown). This oxidation of 229 
Cys106 by dithianon could be due to its particular activated quinone structure able to receive 230 
an electron from Cys106 with formation of a stable radical anion. 231 

From those data, it seems that oxidation of Cys106 would only be involved in the inhibition of 232 
DJ-1 by a few pesticides, such as maneb, mancozeb (data not shown) or dithianon. The 233 
mechanisms of inhibition of DJ-1 by the other pesticides mentioned in Table 2 remain to be 234 
determined. 235 

4. Conclusion 236 

Our study of the possible inhibitory effects of about hundred pesticides on human DJ-1 has 237 
shown that some twenty of them are inhibitors of the esterase activity of DJ-1 (Table 1). Fifteen 238 
of them are good inhibitors with IC50 values between 0.02 and 30 µM (Table 2). The pesticides 239 
of the thiocarbamate series are particularly good inhibitors. Thus, thiram was found as an 240 
irreversible DJ-1 inhibitor with an IC50 value of 0.02 µM. All those fifteen pesticides have been 241 
linked to the development of PD (Brouwer et al. 2017; Brown et al. 2006; Tanner et al. 2011). 242 
Interestingly, a recent study of the consequences of the exposure for 157 pesticides in the 243 
Netherland population has shown that four of those pesticides, paraquat, maneb, lindane and 244 
benomyl, were relevant for the development of PD (Brouwer et al. 2017). 245 
ThoseInterestingly,those four pesticides were found to act as inhibitors of DJ-1 (Tables 1 and 246 
2), suggesting that inhibition of DJ-1 would participate in their role in the development of PD.). 247 

Several biological effects of some pesticides have been reported to contribute to the 248 
development of PD. Thus, for instance, rotenone and paraquat act as inhibitorsinhibitor of 249 
mitochondrial complex1 (Betarbet et al. 2006; Betarbet et al. 2000; Schiller and Zickermann 250 
2022),, Paraquat increases the formation of free radicals and oxidative stress (Ranjbar et al. 251 
2018) and benomyl and some dithiocarbamates act as inhibitors of the aldehyde dehydrogenase 252 
that is responsible for the detoxication of a dopamine metabolite, 3,4-dihydroxyphenyl 253 
acetaldehyde (Burke et al. 2014; Fitzmaurice et al. 2014; Fitzmaurice et al. 2013).Our results 254 
show that some of the hundred pesticides tested in our study are strong inhibitors of DJ-1. This 255 
inhibition of DJ1However, the esterase activity of DJ-1 has so far no identified physiological 256 
role and further experiments using in cellulo and in vivo models are necessary to show that this 257 
inhibition of DJ-1 could be one of the various biological effects of those pesticides involved in 258 
the development of PD. These results could also be interesting in the regulatory framework for 259 
the implementation of AOPs (for Adverse Outcome Pathways, (Barouki et al. 2021)) linking 260 
DJ-1 to the etiology of PD and the weight of evidence of key event relationships. AOPs are 261 
increasingly used in regulatory toxicology to define pathways from a molecular initiating event 262 
(here, DJ-1 inhibition) to an adverse outcome (here Parkinson's disease), through several key 263 
events. The built-up of such an AOP linking DJ-1 inhibition to Parkinson's disease would be 264 
interesting in the future to identify potential neurodegenerative molecules before their 265 
marketing. 266 
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5. Appendices: Tables and figures legends 268 
5.1.Table 1. Inhibition of human DJ-1 by pesticides. 269 

% inhibition of the DJ1 esterase activity (using pNPA as substrate) upon incubation of DJ-1 in 270 
the presence of 2.8 mM pNPA and 5 µM pesticide; mean values +/- S.E.M. from 6 to 9 271 
experiments. 272 

Chemical Class Compounds % of Inhibition 

Aryloxy alkanoic acids 

Cyhalofop-butyl <5% 
Diclofop-methyl <5% 
Fenoxaprop-P <5% 

Fluazifop-P-butyl <5% 
MCPA <5% 
MCPB <5% 

Mecoprop-P <5% 
Quizalofop-P-ethyl <5% 

Aryl ureas 

Chlortoluron <5% 
Foramsulfuron <5% 

Linuron <5% 
Metobromuron <5% 

Metsulfuron-methyl <5% 
Nicosulfuron <5% 
Rimsulfuron <5% 

Tribenuron-methyl <5% 
Tritosulfuron <5% 

Carbamates 

Asulam <5% 
Benomyl 85 ± 6% 
Carbaryl <5% 

Carbendazim <5% 
Chlorpropham <5% 
Diethofencarb <5% 
Formetanate 56 ± 8% 
Iprovalicarb <5% 
Methomyl <5% 

Oxamyl 22 ± 7% 
Phenmedipham <5% 

Pirimicarb <5% 
Propamocarb <5% 
Prosulfocarb <5% 

Thiabendazole <5% 

Neonicotinoids 
Imidacloprid <5% 
Thiacloprid <5% 

Thiamethoxam <5% 

Organochlorines 
Boscalid <5% 
Bixafen <5% 
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captan 57 ± 9% 
Chlordecon <5% 

DDE 17 ± 4% 
DDT <5% 

Dieldrin <5% 
Dienochlore 35 ± 5% 
Endosulfan <5% 

Folpet 25 ± 4% 
Lindane 12 ± 4% 

Metolachlore <5% 

Organophosphates 

Acephate <5% 
Diazinon 10 ± 4% 

Dichlorvos <5% 
Dimethoate <5% 

Ethion <5% 
Fenitrothion <5% 
Glyphosate <5% 

Isocarbophos <5% 
Malathion <5% 

Methyl parathion <5% 
Monocrotophos <5% 
Parathion (ethyl) <5% 

Phosmet <5% 
pirimiphos methyl 14 ± 3% 

Profenofos <5% 
Tolclofos-methyl <5% 

Triazophos <5% 

Pyrethroids 

Allethrin <5% 
Bifenthrin <5% 
Cyfluthrin <5% 

Cypermethrin <5% 
Deltamethrin <5% 
Esfenvalerate <5% 
Fenvalerate <5% 
Fluvalinate <5% 
Permethrin <5% 
Phenothrin <5% 
Resmethrin 26 ± 4% 

Tetramethrin <5% 
Tralomethrin <5% 

Thiocarbamates  

Mancozeb 100 ± 5% 
Maneb 100 ± 6% 

Propineb 100 ± 3% 
Thiram 100 ± 1% 
Triallat 70 ± 12% 
Zineb 100 ± 7% 
Ziram 100 ± 6% 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Triazoles 

Difenoconazole <5% 
Hexaconazole <5% 
Metconazole <5% 
Myclobutanil <5% 
Penconazole <5% 

Tebuconazole <5% 
Triticonazole <5% 

Others 

Atrazine <5% 
Cyprodinil <5% 
Dinitramin <5% 
Dithianon 100 ± 4% 
Iprodione <5% 

Mepanipyrim <5% 
Mesotrione <5% 

Paraquat 20 ± 4% 
Rotenone <5% 
Sedaxane <5% 

Tembotrione <5% 
  273 
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5.2.Table 2. IC50 values obtained for the inhibition of DJ1 (esterase activity) by 274 
pesticides. 275 

Mean values expressed in µM +/- S.E.M. from 3 to 6 experiments. 276 

Compounds STRUCTURE IC50 (µM) 

Benomyl 

 

0.92 ± 0.1 

Captan 

 

6.1 ± 0.3 

Dienochlore 

 

19.2 ± 0.2 

Dithianon 

 

1.1 ± 0.2 

Folpet 

 

15.1 ± 2.3 

Formetanate 

 

3.2 ± 0.3 

Mancozeb 

 

0.09 ± 0.01 

Maneb 

 

0.06 ± 0.01 
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Oxamyl 

 

24.8 ± 0.3 

Propineb 

 

0.17 ± 0.02 

Resmethrine 

 

18.1 ± 0.8 

Thiram 

 

0.018 ± 0.002 

Triallat 

 

0.99 ± 0.11 

Zineb 

 

0.17 ± 0.02 

Ziram 

 

0.15 ± 0.02 

 277 
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5.3.Figure 1. Esterase activity of DJ-1 towards pNPA as substrate. 279 
 280 
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5.4.Figure 2. Kinetic analysis of DJ-1 inhibition by thiram 284 
a: Inhibition of the DJ-1 esterase activity as a function of the time of preincubation of DJ-1 with 285 
thiram. Mean values from three independent experiments. 286 
 287 
 288 

 289 
b: Inhibition of the DJ-1 esterase activity with thiram before and after dialysis. Mean values 290 
from three independent experiments. 291 
 292 
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5.5.Figure 3. DeglycaseProtective activity of DJ1 with glycatedagainst glycation of GMP 295 
as substrateby MGO. 296 
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5.6.Figure 4. Inhibition by thiram of the protective effect of DJ-1 against GMP glycation  306 
A. LCMS profiles of glycated GMP (m/z =436.22) under the following conditions: (a) 307 

GMP (100 μM) incubated with MGO (400 µM), (b) GMP (100 μM) incubated with 308 
MGO (400 µM) and DJ-1 (4 μM), (c) GMP (100 μM) incubated with MGO (400 µM), 309 
DJ-1 (4 μM), and Thiram (10 μM). 310 

B. LCMS profiles of lactate (m/z = 89.00) under the following conditions: (a) GMP (100 311 
μM) incubated with MGO (400 µM), (b) GMP (100 μM) incubated with MGO (400 312 
µM) and DJ-1 (4 μM), (c) GMP (100 μM) incubated with MGO (400 µM), DJ-1 (4 μM), 313 
and Thiram (10 μM). 314 
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5.7.Figure 5. Effects of pesticides on the oxidation state of DJ-1 316 
Ponceau-stained full blot (above) and the immunostained DJ-1 band (below). Western blotting 317 
was performed with an antibody against Cys106-oxidized DJ-1 under the following conditions: 318 
1. DJ-1 (10 µM), 2. DJ-1 (10 µM) with 100 µM H2O2, 3. DJ-1 (10 µM) with 100 µM dithianon, 319 
4. DJ-1 (10 µM) with 100 µM thiram, 5. DJ-1 (10 µM) with 100 µM maneb and 6. DJ-1 (10 320 
µM) with 100 µM zineb. 321 
. 322 
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