SUPPLEMENTARY INFORMATION

REVISITING PHOTOISOMERISATION IN FLUORINATED ANALOGS OF ACETYLACETONE TRAPPED IN CRYOGENIC MATRICES

Alejandro Gutiérrez-Quintanilla,^{a,b,c,*} Michèle Chevalier, ^a Rasa Platakyté,^d Justinas Ceponkus ^d, Claudine Crépin^{a, *}

^a Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.

^b Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana. Ave. Salvador Allende No. 1110, Quinta de los Molinos, La Habana 10400, Cuba.

^c Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France

^d Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania

a.gutierrez-quintanilla@univ-pau.fr

Fig. S1 Visualization of non-covalent interactions through NCI plot calculations for the CTC-CTT and TCC-TCT pairs. Left: Graph of reduced density gradient (s) versus density multiplied by the sign of λ_2 (second eigenvalue of the Hessian of the electronic density). Right: Isosurface of s at 0.35. The same color code is employed in the left and right panels: dark blue for strong attractive interactions, light green for weak interactions (either attractive or repulsive), and red for strong repulsive interactions. In the right panel, we observe the green color corresponding to steric repulsion, and an extra light blue-green region for CTT and TCC isomers corresponding to non-covalent interactions.

Fig. S2 Expansion of Figure 3 in the 1750-1550 cm⁻¹ region in (a) nitrogen 3.2 K, (b) neon at 8 K and (c) *para*-hydrogen at 2.8 K. Two doublets appear in all the matrices near 1690 cm⁻¹ (\blacklozenge) and 1670 cm⁻¹ (\diamondsuit). Multiplets are also observed in the band near 1640 cm⁻¹ (\ast). Some experiments in nitrogen matrix have also been performed and are added in this graph to show the presence of the doublets. w: bands associated to water molecules trapped in the matrix.

Fig. S3 Electronic absorption spectra of hexafluoroacetylacetone in neon matrix at 8 K. (1, black) deposited sample, (2, red) 30 min of irradiation at 290 nm (3, blue) 70 min of irradiation at 290 nm

Fig. S4 Infrared experimental spectra of hexafluoroacetylacetone in para-hydrogen matrix at 2.8 K. (a) asdeposited sample, CCC isomer, (b) CTT, and (c) TCC isomers

Fig. S5 Infrared experimental spectra of trifluoroacetylacetone in para-hydrogen matrix at 2.8 K. (a) as-deposited sample, CCC, (b) CTC(CO), (c) CTT(OH), and (d) TCT(OH) isomers. The vOH mode for the last two isomers is predicted to appear at very close frequencies (see Tables S7 and S8) as observed experimentally

Fig. S6 Experimental infrared spectrum of TCC isomer of hexafluoroacetylacetone in (a) neon matrix at 8 K after an irradiation of the deposited sample at 265nm. This spectrum is the result of subtractions of different spectra along irradiation to remove the CCC and CTT bands. The other panels show, as comparison, the simulated infrared spectra of all the open enol isomer. These spectra were obtained through frequency calculation of each optimized structure at the M06-2X/6a-311++G(3df,3pd) within the harmonic approximation. Frequency values in the figure are corrected with a 0.970 scaling factor, and each transition is represented by the convolution of a Lorentzian function (FWHM=2 cm⁻¹).

Fig. S7 NCI calculation for the CTT(OH) conformer of trifluoroacetylacetone. Isosurface of the reduced density gradient (s) at 0.35 value; light blue corresponds to attractive non-covalent interactions, while green and reddish colors correspond to repulsive interactions

Fig. S8 FT-IR spectra deposited trifluoroacetylacetone in (a) para-hydrogen at 2.8 K and (b) neon matrices at 8 K, and (c) theoretical frequency calculation (M06-2X) of the two CCC tautomers in harmonic approximation with 0.973 scaling factor. (See ref. [1] for more details). The "Absorbance" axis in the right panel has been zoomed (x3) for a better comparison. w : bands associated to water molecules trapped in the matrix.

Table S1: Natural atomic charges for the oxygen atoms in H8-acac and F6-acac obtained by the NBO 3.0 module in Gaussian16 after optimization of the CCT isomer at M06-2X/6-311++G(3df,3pd).

	O (C=O)	О (О-Н)
H8-acac	-0.567	-0.656
F6-acac	-0.487	-0.640

Table S2: Geometric parameters from the optimized geometries of the CCC conformer at M06-2X/6-311++G(3df,3pd). All the distances between two atoms are given in Ångströms (Å), and the angles in degrees (°)

	Distances					
Molecule	00	O-H	C=O	C-0	C=C	C-C
Acetylacetone	2.528	0.998	1.233	1.318	1.361	1.445
Trifluoroacetylacetone (CO)	2.584	0.986	1.221	1.315	1.364	1.430
Trifluoroacetylacetone (OH)	2.543	0.994	1.227	1.312	1.346	1.459
Hexafluoroacetylacetone	2.610	0.982	1.214	1.310	1.348	1.445
			Ang	les		
Molecule	0…	Н-О	O=	C-C	C-0	C=C
Acetylacetone	148	.44	121.83		120.23	
Trifluoroacetylacetone (CO)	145.54		125.74		119.52	
Trifluoroacetylacetone (OH)	145.70		121.05		118.89	
Hexafluoroacetylacetone	142	.02	124.96		118.32	

Table S3: Vibrational assignment of the CCC conformer of hexafluoroacetylacetone. Infrared experimental frequencies (cm⁻¹) of the chelated enol form of AcAcF6 in nitrogen, neon and *para*-hydrogen matrices, and Raman experimental frequencies in argon matrix are compared to experimental values obtained in argon matrix [2]. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm⁻¹) are also included for comparison. IR (km/mol) intensities and Raman scattering activities (Å⁴/amu) obtained in the harmonic approximation. Scaling factor (sf): 0.970

				Experimental			Theore	etical	
Assignment (simplified description)		N -			Ar				Int.
(simplified description)	IN2	Ne	pH ₂	IR (this work)	Ref. [2] (IR)	Raman (this work)	Harmonic*st	IR	Raman
vOH							3353.2	206	43
	3142.4	3148.7	2126	3138.7		2125 0	2171 0	11	40
VCH	3123.4	3130.6	5120	3122.3		5125.9	5171.0	11	40
VCO + VC=C (25)	1698.7	1700.6	1699.0	1698.8	1699.0	1699	1753 2	151	16
	1692.6	1694.3	1693.4	1692.0	1099.0	1692	1755.2	1.51	10
	1637.9			1639.3		1639			
$vCO + vC = C(s) + \deltaOH$	1632.7	1643 7	1641 5	1629.4	1640.0	1634	1640 7	276	93
	1624.3	10-13.7	1041.5	1623.8	1040.0	1627	10-10.7		
						1612			
νС-ΟΗ + δCΗ	1441.9	1444.0	1442.5	1443.5	1445.0	1442	1456.2	128	7
δOH +vcarbon chain (as)	1363.0	1366.9	1365.7	1363.7	1364.0	1363	1374.7	82	7
δOH +vcarbon chain (s)	1288.8	1300.8	1298.8	1295.5	1296.0	1295	1305.0	89	15
δOH + vCF ₃ (CO side) + C-CF ₃ (OH)	1267.6	1272.6	1271.7	1267.8 1264.4	1269.0	1269	1270.7	536	4
vCF₃ (CO side)	1225.5	1230.5	1229.3	1226.1 1220.3	1227.0		1241.3	143	1
vCF2 (OH side)	1211 0	1219.7	1216.3	1216.6	1213.0	1711	1233.6	396	3
	1211.0	1214.6	1212.3	1212.3	1215.0	1211	1235.0	350	5
vCF₃ (OH side)	1181.0	1191.1	1189.7	1183.5	1185.0	1183	1210.0	272	3
vCF₃ (CO side)	1165.4	1167.8	1166.8	1168.0 1162.6	1168.0	1164	1185.6	259	1
δCH	1109.5	1111.1	1110.4	1109.9	1110.0	1110	1112.4	60	6
vC-C	1087.2	1090.6	1089.7	1089.1	1092.0	1087	1086.0	230	1

Δ	915.5	917.9	917.2	917.4	918.0	916	911.2	12	10
r	010 C	020 J	910 E	910 7	820.0	823	823.4	70	1
δ₅CF₃ (umbrella both sides) (as)	010.0	820.2	619.5	019.7	820.0	820	819.7	3	1
γΟΗ + γCΗ	807.7	813.6	811.9			815	812.3	25	0.1
r	748.4	751.1	750.3	752.1	752.0	749	746.3	18	0.2
δ₅CF₃ (umbrella both sides) (s)	741.4	742.4	742.5	742.7	744.0	741	739.9	14	8
r	716.6	717.5	717.4	717.4	719.0	716	714.0	12	0.4
δ₅CF₃ (OH side)	658.5	660.1	659.8	659.8	660.0	659	651.4	61	0.2
δ _{as} CF ₃ (OH side)						585.7	578.6	23	1
δasCF3 (CO side)						573.3	565.8	13	0.1
$\delta_{as}CF_3$ (OH side) + $\delta_{as}CF_3$ (OH side)						525.5	518.5	3	1
δ _{as} CF ₃ (OH side) + δ _{as} CF ₃ (OH side)						512.7	505.0	0.3	1
δ _{as} CF ₃ (CO side)						438.2	430.9	0.2	2
δ _{as} CF ₃ (OH side)						432.1	424.3	1	0.5
δF-C-CO						355.6	348.9	1	1
Δ						315.3	305.0	4	2
ρCF₃(OH side)						309.4	302.9	0.02	0.1
ρCF₃(CO side)						253.2	246.3	1	0.2
Δ						236.5	228.8	2	2
π CF ₃						219.7	211.1	4	1

v, stretching; δ , in plane bending; γ , out of plane bending; ρ , in plane rocking; π , out of plane rocking; Δ , in plane ring deformation; Γ , out of plane ring deformation; s, symmetric; a, asymmetric

Table S4 Vibrational assignment of the CTT isomer of hexafluoroacetylacetone. Infrared experimental frequencies (cm^{-1}) in neon and *para*-hydrogen matrices. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm⁻¹) are also included for comparison. IR (km/mol) intensities were obtained in the harmonic approximation. Scaling factor (sf): 0.970. The mode assignments employed in ref. [2] do not exactly match those proposed in the present work.

		F	requencies		
Assignment		Experimental	Theoretical	Infrared	
(simplified description)	Ar [2]	Ne	pH₂	Harmonic*sf	Intensities
vOH	3593	3612.8	3596.7	3732.5	261
vCH		3051.6	3048.8	3126.1	5
vC=O/vC=C (as)	1746	1751.7	1749.6	1816.7	124
νC=O/νC=C (s)/δOH	1663*	1663.6	1662.1	1688.3	387
δΟΗ/δϹΗ	1410	1422.6 1414.5 1409.8	1421.8 1413.6 1410.0	1410.0	167
vC-OH/vC-CH₃	1356*	1354.8	1354.5	1363.1	157
νCF₃ (CO side)/δOH/δCH	1290	1294.8 1286.9	1289.1	1291.7	153
vCF₃ (OH side)	1223*	1225.3	1224.0	1248.2	294
νCF₃ (both sides)/δOH/δCH	1237	1241.8	1241.0	1241.8	21
νCF₃ (CO side)/δOH/δCH	1206	1220.5	1217.8	1230.3	290
vCF₃ (OH side)/δCH	1193*	1193.5	1192.6	1208.4	221
vCF₃ (CO side)	1154	1157.1	1155.4	1174.4	231
vCF₃ (OH side)/δOH/δCH	1134*	1134.9	1135.4	1134.9	317
vC-C	1048	1047.8	1048.1	1041.5	97
vCF₃ (CO side)	881	880.0	879.5	878.4	123
үСН	855	855.5	856.9	862.7	23
δ₅CF₃(OH side)	786	785.0	784.4	784.4	7
γCH/γC=O	749	747.6	747.0	749.7	5
δ₅CF₃(CO side)	734*	731.7 730.2	731.6	728.8	65
γCH/Γ(C=C-CF₃)				686.1	2
Δ				626.4	7
$\delta_{as}CF_3(OH side)/\Delta$				573.8	1
$\delta_{as}CF_3(CO side)/\Delta$				542.3	27
$\delta_{as}CF_3(CO side)/\Gamma$				510.3	9
$\delta_{as}CF_3(OH side)/\Gamma$				501.4	1
үОН				461.8	98
Δ				439.6	2
Δ				419.6	5
δር-ΟΗ				372.3	5
δC=O/ρCF₃(CO side)				315.4	5
γCH/πCF₃				273.1	2
ρCF₃(OH side)/∆				268.4	6
πCF₃/Γ				235.9	0

Δ	161.4	0.2
Г	154.2	3
Δ	111.4	0
Г	92.7	0
τCF₃(CO side)/Γ	33.8	0.8
Г	20.2	0.0043

v, stretching; δ , in plane bending; γ , out of plane bending; ρ , in plane rocking; π , out of plane rocking; τ : torsion; Δ , in plane ring deformation; Γ : out of plane carbon skeleton deformation; s, symmetric; as, antisymmetric. * Bands exhibiting splitting in argon [2]. A grey background is used to identify multiplets

Table S5 Vibrational assignment of the TCC isomer of hexafluoroacetylacetone. Infrared experimental frequencies (cm⁻¹) in neon and *para*-hydrogen matrices. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm⁻¹) are also included for comparison. IR (km/mol) intensities were obtained in the harmonic approximation. Scaling factor (sf): 0.970

		Frequencie	S		
Assignment	Experir	nental	Theoretical	Infrared	
(simplined description)	Ne	pH₂	Harmonic*sf	intensities	
vOH	3631.5	3623.7	3749.7	199	
vCH	3234.4		3146.8	11	
vCO	1722.1	1719.3 1714.4	1794.9	239	
vC=C	1659.5	1658.0	1683.3	293	
vC-OH	1445.0 1437.9	1443.5 1435.9	1448.0	134	
νC-CH₃/δCH	1365.4	1364.6	1361.0	56	
νϹ-Ϲℍ₃/δΟΗ/δϹΗ	1306.0	1304.4	1300.5	59	
νCF₃ (both sides)/δOH	1274.7	1272.3	1275.8	103	
vCF₃ (both sides)/δOH	1235.4 1225.8 1219.9	1227.0	1242.2	188	
vCF₃ (OH side)/δOH	1209.5	1206.8	1215.1	556	
vCF₃ (OH side)	1184.0	1182.0	1204.4	283	
νCF₃ (CO side)/δOH/δCH	1156.4	1153.1	1161.5	287	
νCF₃ (CO side)/δOH/δCH	1119.1	1128.9	1133.1	239	
vC-OH	1032.6	1030.3	1039.7	66	
vC-CF₃	858.4*	859.3*	868.3	17	
үСН			866.5	44	
δsCF₃(CO side)	769.1		769.4	7	
Γ (CO side)			734.0	1.3	
δsCF₃(OH side) /∆	730.0	730.3	726.5	13	
Γ (OH side)			712.8	3	
Δ			645.2	35	
δasCF₃/∆			575.7	0.2	
δasCF₃/∆			548.3	23	
δasCF ₃ (OH side)/ Γ			522.6	13	
δasCF ₃ (CO side)/ $Γ$			506.7	0.1	
δsCF₃(CO side)/ γOH			457.4	8	
γOH/ δsCF₃(OH side)			436.1	17	
γОН			401.7	28	
Δ/δC=O			353.3	5	
ρCF₃(OH side)/δC-OH			314.4	2	
γΟΗ/πCF₃			289.8	8	
ρCF₃(CO side)/∆			260.9	4	
πCF₃(CO side)			229.3	2	
Δ			183.8	4	

Г	135.5	3
Γ	123.0	2
τCF₃(CO side)	78.8	2
τCF₃	41.7	1
τCF₃(OH side)/Γ	28.9	0.1

v, stretching; δ , in plane bending; γ , out of plane bending; ρ , in plane rocking; π , out of plane rocking; τ : torsion; Δ , in plane ring deformation; Γ : out of plane carbon skeleton deformation; **s**, symmetric; **as**, antisymmetric. A grey background is used to identify multiplets. * Two modes accidentally overlap in frequency and are assigned to the same experimental band

Table S6 Vibrational assignment of the CTC(CO) isomer of trifluoroacetylacetone. Vibrational experimental frequencies (cm⁻¹) in neon and *para*-hydrogen. Values for argon matrices from ref. [3] are also included. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm⁻¹) are added for comparison. IR intensities (km/mol) are obtained in the harmonic approximation. Scaling factor (sf): 0.973.

		Frequenc	ÿ	Theoretic	cal
Assignments (simplified description)	Ne	pH ₂	Ar [3]	Harm.*sf(0.973)	Infrared Int.
vOH	3614.8	3597.6	3588	3751.4	76
vCH₃	3022.0			3134.8	6
vCH	2967.0			3102.8	5
vCH₃	2932.0			3046.6	1
vCH₃				2990.5	4
vC=O	1732.2 1728.3	1730.9 1727.4	1725	1794.7	148
vC=C	1623.2 1616.3	1618.5	1617	1632.8	732
δCH₃ δCH₃/δCH៸ δOH/νC-C	1448.4*	1447.3*	1447	1451.0 1449.0	10 37
δCH₃ /νC-CH₃	1428.4	1424.5		1425.3	32
δCH₃ /νC-CF₃	1374.6	1372.4	1370	1369.2	81
νC-CF₃/δCH₃	1337.3 1331.9	1335.9 1330.2	1335	1339.4	134
νCF₃/ δCH	1293.0	1292.3		1286.0	11
νCF₃/ δCH	1221.5 1219.3	1221.3	1218	1235.9	213
δርΗ/ δΟΗ	1204.2 1197.8	1204.3 1197.7	1195	1196.6	119
vCF₃	1150.5	1149.0	1147	1170.7	262
vC(H)-C(=O)/vC-CH₃/ vCF₃	1083.8	1084.0	1084	1082.9	225
ρCH₃				1039.0	1
ρCH₃	1016.6	1015.3	1014	1010.0	40
vC-CF ₃	877.4	877.2	878	884.6	109
vC-CH₃	853.7	852.6		852.9	1
үСН	817.9 814.1	817.7 815.0	815	824.4	53
Г				754.7	0.0
δ₅CF₃	729.1	729.4	731	729.0	61
$\delta_{as}CF_3/\Delta$				574.9	19
үСН/үОН				542.4	15
γOH/δ _{as} CF ₃				513.3	1
үОН				494.6	79
δH₃C-C-OH				477.1	6
δ _{as} CF ₃ /Δ				440.6	1
δC=Ο/Δ				374.7	2

ρCF₃	321.1	2
$\pi CF_3/\Gamma$	258.8	1
Δ	250.7	6
Г	150.5	3
Δ	139.3	0.5
τCH₃	72.0	0.2
τCF₃/τCH₃/Γ	36.4	1
τCH₃/Γ	22.3	1

v, stretching; δ , in plane bending; γ , out of plane bending; ρ , in plane rocking; π , out of plane rocking; τ : torsion; Δ , in plane ring deformation; Γ : out of plane carbon skeleton deformation; s, symmetric; as, antisymmetric. A grey background is used to identify multiplets. * Two modes accidentally overlap in frequency and are assigned to the same experimental band

Table S7 Vibrational assignment of the CTT(OH) isomer of trifluoroacetylacetone in neon and *para*-hydrogen. Values for argon matrices from ref. [3] are also included. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm⁻¹) are added for comparison. IR intensities (km/mol) are obtained in the harmonic approximation. Scaling factor (sf): 0.973

		Frequer	ncies		
Assignments	E>	operimental		Theoretical	Infrared
(simplified description)	Ne	pH ₂	Ar [3]	Harmonic*sf	Intensities
vOH	3626.1	3613.5	3610	3758.1	233
vCH				3121.0	2
vCH₃	3031.5	3030.9 3022.6		3098.9	5
vCH ₃	2970.9	2966.1		3042.8	3
vCH₃		2923.6		2980.6	1
vC=O/ vC=C	1726.6	1714.7	1726	1789.8	151
vC=C/ vC=O/ δOH	1661.4 1659.4	1657.5	1659	1695.1	308
δCH₃	1434.5 1431.9	1433.5		1439.6	9
δCH₃	1429.5 1425.3	1428.3	1427	1431.8	16
δΟΗ/ δCΗ/ vC-CF₃/ δCH₃	1403.3 1402.4 1401.2	1402	1400	1405.9	265
δCH₃/ νC-CH₃	1365.7 1362.3	1365.1 1360.7	1360	1361.7	12
δCH₃/δOH/ vC-CF₃/ vC(H)-C(=O)	1314.8	1314.6	1315	1319.6	50
νCF₃/ δΟΗ	1219.1	1217.2	1214	1249.7	268
δΟΗ/ δϹΗ	1239.4	1248	1252	1249.5	160
vCF₃/ δCH	1190.1 1188.8	1189	1189	1205.1	184
δCΗ/ ρCΗ₃	1156.5 1150.5	1157.4 1150.3	1149	1151.0	273
δΟΗ/ vCF₃/ρCH₃	1117.7	1119.0	1118	1125.9	142
ρCH₃	1021	1019.1	1017	1018.2	7
ρCH₃	954.4	953.8	954	946.9	62
ρ CH₃/vC(H)-C(=O)	931.5 928.8	931.5 930.0	931	930.0	13
үСН/Г	847.6	850.6 849.1	850	863.6	12
vC-CF ₃ /δ _s CF ₃	779.0	778.8	779	781.3	6
Г		676.5		685.1	2
Δ		653.9	656	650.7	14
ρ ϹϜ ₃/δϜ₃Ϲ-Ϲ-ϴΗ				583.1	41
πCH₃				574.4	5

δasCF₃/Δ	562.4	10
δasCF₃/Γ	502.7	2
∆⁄ δasCF₃	433.1	1
үОН	431.9	96
δС-ОН	380.3	6
Δ	325.4	1
Г	255.5	1
Δ	236.9	7
Γ	168.5	1
Δ	148.1	1
τCH₃	134.4	0
τCF₃/τCH₃/Γ	99.4	1
Г	18.3	3

v, stretching; **\delta**, in plane bending; **\gamma**, out of plane bending; **\rho**, in plane rocking; **\tau**: torsion; **\Delta**, in plane ring deformation; **\Gamma**: out of plane carbon skeleton deformation; **s**, symmetric; **as**, antisymmetric. A grey background is used to identify multiplets.

Table S8 Vibrational assignment of the TCT(OH) isomer of trifluoroacetylacetone in neon and *para*-hydrogen. Values for argon matrices from ref. [3] are also included. Calculated harmonic frequencies [M06-2X/6-311++G(3df,3pd)] (cm-1) are added for comparison. IR intensities (km/mol) are obtained in the harmonic approximation. Scaling factor (sf): 0.973

	Frequencies				Infrared
Assignments	Experimental			Theoretical	
(simplified description)	Ne	pH₂	Ar [3]	Harmonic*sf	intensities
vOH	3631.8	3612.8	3604	3756.8	177
vCH	3026.1	3014.8		3155.0	5
vCH₃	2983.2	2980.8		3099.6	6
vCH₃	2931.8	2929.7		3057.3	2
vCH₃		2902.3		2991.8	0.1
vC=O	1709.9	1709.5 1705.5	1710	1768.9	251
νC=C/ δΟΗ	1697.2	1693.3	1693	1737.2	99
δCH₃	1435.8	1434.9	1436	1440.2	10
δCH₃	1424	1422.2	1421	1431.0	64
νC-O/νC-CF₃/δCH₃	1394.3	1394.3	1394	1405.2	96
δCH₃	1369	1367.4	1366	1364.0	46
δΟΗ/ δCΗ	1306.1	1306.4	1305	1303.2	42
δΟΗ/ νC-C	1249.4	1248.3	1259	1256.4	218
δCH/ vCF₃	1243.8	1242.6	1242	1242.7	183
vCF ₃ /vC(H)-C(=O)/ δCH ₃	1221.2	1220.5	1217	1237.6	444
vCF ₃	1146 1143.5	1142.3	1142	1164.7	281
δCH/vC-O/ ρCH₃/vCF₃	1076.8	1077.8	1078	1084.6	12
ρCH₃	1027.4	1026.4	1026	1024.9	7
ρ CH₃/νC-O	995.4	995.0	996	989.8	32
үСН/Г	858.1 856.2	856.3	855	868.9	31
νC-CF ₃/ δC=C-C	850	851.1	852	856.5	25
vC-CH₃/ vC(H)-C(=O)	809.9	810.9	812	809.1	7
Δ	712.7	713.4	714	709.5	18
Г				699.5	3
$\delta_{as}CF_3/\Delta$				591.8	3
Г				580.4	0.2
δC=Ο				525.5	21
δ_{as} CF $_3/\Gamma$				501.1	0.4
∆∕δ₅CF₃				433.4	6
Δ				363.1	2
δС-ОН				307.0	14
γΟΗ/Γ				300.3	52
Γ/γΟΗ				278.3	30
Δ				252.0	9
τCH₃				228.1	0.1
Δ				150.3	4

Г	118.5	0.2
Г	57.1	0.5
τCF ₃	29.4	5

v, stretching; δ , in plane bending; γ , out of plane bending; ρ , in plane rocking; τ : torsion; Δ , in plane ring deformation; Γ : out of plane carbon skeleton deformation; s, symmetric; as, antisymmetric. A grey background is used to identify multiplets. s, symmetric; as, antisymmetric. A grey background is used to identify multiplets.

Table S9 Theoretical energy (in wavelength [nm]) and intensity (oscillator strength in parentheses) for the first five singlet electronic transitions of Hexafluoroacetylacetone enol isomers computed at the TD-DFT M06-2X/6-311++G(3df,3pd) level of theory

M06-2X		
CCC	310.2 (0.001) ^a , 246.6 (0.267) ^b , 173.4 (0.001) ^c , 168.3 (0.008), 153.2 (0.005)	
ССТ	341.1 (0.000), 224.3 (0.348) , 177.8 (0.001), 166.8 (0.000), 160.3 (0.002)	
СТС	327.9 (0.000), 227.1 (0.334) , 227.1 (0.334), 191.4 (0.002), 172.3 (0.000)	
СТТ	328.1 (0.000) ^a , 230.0 (0.346) ^b , 178.6 (0.001) ^c , 168.2 (0.000), 163.0 (0.011)	
TCC	323.7 (0.000) ^a , 226.5 (0.366) ^b , 169.0 (0.010) ^c , 164.6 (0.003), 157.4 (0.002)	
TCT	330.6 (0.000), 220.2 (0.398) , 176.6 (0.002), 163.9 (0.002), 158.9 (0.001)	
TTC	320.4 (0.003), 227.3 (0.199) , 190.5 (0.022), 171.2 (0.027), 166.8 (0.096)	
TTT	323.0 (0.002), 227.6 (0.238) , 177.1 (0.001), 170.2 (0.095), 167.2 (0.030)	

The electronic transitions are classified for the experimentally observed isomers, even when there is a slight loss of planarity in the carbon skeleton for some isomers: ${}^{a}n \rightarrow \pi^{*}$ transition, ${}^{b}\pi \rightarrow \pi^{*}$ transition, ${}^{c}\pi \rightarrow \sigma^{*}$ transition

Table S10 Theoretical energy (in wavelength [nm]) and intensity (oscillator strength in parentheses) for the first five singlet electronic transitions of Trifluoroacetylacetone enol isomers computed at the TD-DFT M06-2X/6-311++G(3df, 3pd) level of theory

M06-2X				
СО				
CCC	294.9 (0.001) ^a , 245.1 (0.301) ^b , 189.5 (0.005) ^c , 168.9 (0.000), 168.0 (0.006)			
ССТ	327.6 (0.000), 229.1 (0.384) , 203.9 (0.000), 178.5 (0.013), 174.6 (0.014)			
СТС	312.4 (0.000) ^a , 232.9 (0.355) ^b , 202.3 (0.001) ^c , 172.5 (0.000), 166.9 (0.025)			
СТТ	313.5 (0.000), 235.1 (0.362) , 199.9 (0.000), 175.1 (0.011), 168.3 (0.004)			
тсс	312.1 (0.001), 233.1 (0.404) , 190.2 (0.006), 169.2 (0.003), 165.6 (0.015)			
тст	317.6 (0.000), 226.1 (0.435) , 203.5 (0.000), 178.2 (0.012), 169.0 (0.010)			
TTC	309.6 (0.000), 227.6 (0.428) , 202.4 (0.003), 173.0 (0.001), 168.3 (0.013)			
TTT	312.4 (0.001), 228.9 (0.446) , 200.9 (0.001), 175.2 (0.014), 169.9 (0.006)			
ОН				
CCC	303.2 (0.001) ^a , 239.4 (0.270) ^b , 192.1 (0.006) ^c , 186.3 (0.025), 178.2 (0.000)			
ССТ	339.7 (0.000), 214.1 (0.370) , 186.3 (0.003), 183.1 (0.007), 173.8 (0.001)			
СТС	326.0 (0.000), 218.3 (0.331) , 202.7 (0.002), 183.9 (0.014), 173.8 (0.001)			
СТТ	326.2 (0.000) ^a , 220.8 (0.347) ^b , 187.5 (0.002) ^c , 177.6 (0.013), 176.8 (0.008)			
тсс	320.7 (0.000), 212.1 (0.378) , 184.4 (0.003), 174.8 (0.032), 164.9 (0.000)			
тст	328.0 (0.000) ^a , 206.8 (0.418) ^b , 186.4 (0.002) ^c , 176.7 (0.025), 169.8 (0.000)			
TTC	325.1 (0.001), 214.4 (0.376) , 196.9 (0.003), 176.6 (0.022), 169.8 (0.004)			
TTT	325.6 (0.001), 214.8 (0.405) , 188.2 (0.001), 173.2 (0.017), 170.1 (0.021)			

The electronic transitions are classified for the experimentally observed isomers, even when there is a slight loss of planarity in the carbon skeleton for some isomers : ${}^{a}n \rightarrow \pi^{*}$ transition, ${}^{b}\pi \rightarrow \pi^{*}$ transition, ${}^{c}\pi \rightarrow \sigma^{*}$ transition

References

- 1. Gutiérrez-Quintanilla A, Platakyte R, Chevalier M, et al (2021) Hidden Isomer of Trifluoroacetylacetone Revealed by Matrix Isolation Infrared and Raman Spectroscopy. J Phys Chem A 125:2249–2266. https://doi.org/10.1021/acs.jpca.0c10945
- 2. Nagashima N, Kudoh S, Nakata M (2003) Infrared and UV-visible absorption spectra of hexafluoroacetylacetone in a low-temperature argon matrix. I. Structure of a non-chelated enol-type isomer. Chem Phys Lett 374:59–66. https://doi.org/10.1016/S0009-2614(03)00688-2
- Minoura Y, Nagashima N, Kudoh S, Nakata M (2004) Mechanism of UV-Induced Conformational Changes among Enol-Type Isomers of (Trifluoroacetyl)acetone Studied by Low-Temperature Matrix-Isolation Infrared Spectroscopy and Density Functional Theory Calculation. J Phys Chem A 108:2353–2362. https://doi.org/10.1021/jp031192y