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Abstract

The aim of this article is to study the impact of resistance acquisition on the distribution of
neutral mutations in a cell population under therapeutic pressure. The cell population is modeled
by a bi-type branching process. Initially, the cells all carry type 0, associated with a negative growth
rate. Mutations towards type 1 are assumed to be rare and random, and lead to the survival of
cells under treatment, i.e. type 1 is associated with a positive growth rate, and thus models the
acquisition of a resistance. Cells also carry neutral mutations, acquired at birth and accumulated
by inheritance, that do not affect their type. We describe the expectation of the ”Site Frequency
Spectrum” (SFS), which is an index of neutral mutation distribution in a population, under the
asymptotic of rare events of resistance acquisition and of large initial population. Precisely, we
give asymptotically-equivalent expressions of the expected number of neutral mutations shared by
both a small and a large number of cells. To identify the influence of relatives on the SFS, our
work also lead us to study in detail subcritical binary Galton-Watson trees, where each leaf is
marked with a small probability. As a by-product of this study, we thus provide the law of the
generation of a randomly chosen leaf in such a Galton-Watson tree conditioned on the number of
marks.

keywords: Site Frequency Spectrum, rescue dynamics, sub and super-critical branching processes,
Galton-Watson trees.

MSC classes: 60F05, 60J28, 60J80, 92D15.

1 Introduction

The Site Frequency Spectrum (SFS) is a statistical object that records the distributions of some
mutations in an evolving population along time and it has provided a simple means of understanding
the evolutionary history of populations from genomic data ([15]). Considering the increasing amount
of genomic data collected, the SFS has thus become a key object to study. It has been studied in
many forms (on sampled or unsampled populations, as a limit for large sample size, as a long time
limit,...) with different models (Wright-Fisher, Moran, coalescent, semi-deterministic, birth and death
process, Galton-Watson process,...). Recently, Dinh et al, in [10], compared and discussed some of
these different approaches using simulations with some mathematical analyses.

In our article, we are interested in understanding the impact of a rescue dynamics on the SFS
associated to the accumulation of neutral mutation in a population of two types of individuals. Previous
works have studied distribution of mutations, produced by two-type (or more) branching processes as
in [1], [5], [6], [8], [9], [13], [10], [25], [20], among others. In those studies as in our article, each
population is characterized by a growth rate, representing a type, and non-neutral mutations are non-
reversible. Moreover, the individuals accumulate neutral mutations by inheritance and during their
lifetime, whether at birth as in our case, or throughout life.

However, a fundamental assumption regarding the growth of the initial population distinguishes
our study from the previously cited works. Indeed, in these previous studies, all populations or at least
initial populations are assumed to be supercritical (or critical), i.e. the growth rates of individuals
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are positive (or null). In our work, the initial population is assumed to have a large size and is
described by a sub-critical birth and death process (i.e. its size decreases exponentially fast). The
second population, resulting by rare mutations from the first one, follows a supercritical process. Such
dynamics are commonly called rescue dynamics.

Studying rescue dynamics is particularly important in the context of oncology. Indeed treatments,
especially chemotherapy, exert significant selection pressures on cell populations and can thus favor
the emergence of resistant populations. Our process aims at modeling this specific mechanism. Pre-
cisely, the first population models a cancer cells population sensitive to a given treatment. While the
treatment is administered, cells can become resistant to it and form a second population which can
increase even under the treatment (and thus can be rescued). This idea is justified by some evidence in
oncology. For example, in [21], Ollier et al studied the resistance to a chemotherapy, named temozolo-
mide, in low-grade gliomas. Using longitudinal tumor size measurements and mathematical models,
they show the correlation between this chemotherapy and the development of resistance for the patient
in half of the cases. Precisely, in half of the cases, a mathematical model considering the emergence of
resistant cells while the treatment is given fits the data better than a model assuming that resistant
cells are present before treatment.

We will study the rescue dynamics in a multi-scale context. We will assume that initially there is
no resistant cell and there is a large number N of sensitive cells (N >> 1). Each sensitive cell can
become resistant at birth with probability proportional to 1

Nα , with 0 < α ≤ 1. Such an assumption
is commonly called a rare mutation assumption since the probability decreases to 0 with N . In the
same spirit, Durrett and Schweinsberg in [12] study the distribution of two specific mutations in a cell
population and assume a recombination probability depending on the population size. In [4], such an
assumption is made on neutral mutations’ occurrence. Cheek and Antal in [8] and [9] also include such
multi-scale assumption but they restricted their attention to the case where the expected number of
mutational events is finite. On the contrary, in our study, we include both cases where the expected
number of rescue events is finite or infinite, as this quantity is of order N1−α with α ∈ (0, 1]. In the
following, the resistant cells born from a rescue event will be called ancestral resistant cells.

The SFS classifies mutations according to the number of cells that carry them. In order to describe
the SFS in such a rescue dynamics context, we need to identify mutations carry by more than one
ancestral resistant cell. To this end, we show some general properties of the Galton-Watson tree asso-
ciated with each initial sensitive cell. Previous works have studied rescue dynamics using multi-type
branching processes as [2], [11], [17], [18], [19], [14], [22], among others. To our knowledge, none of
them have been interested in describing the relationship between the resistant ancestral cells. In [23],
authors use the Galton-Watson structure to capture times of rescue events due to an accumulation of
mutations without looking at the relationship between the ancestral resistant cells.

The paper is organized as follows. In Section 2, we introduce the model, the multi-scale assump-
tions, and the definition of the SFS we are looking for. Then we present the main results. Section 3 is
devoted to the study of the ancestral resistant cells dynamics, which are resistant cells whose mother
are sensitive cells. These cells play a key roll in our proofs, as we will split our quantities of interest,
related to the SFS, into the contributions of neutral mutations that appeared before (resp. after) the
occurrence of ancestral resistant cells. In particular, we will detail in Section 3, the law of occurrence
of ancestral resistant cells and the law of the number of neutral mutations they carry. The proof of the
main theorems are presented in Section 4. We start by studying the contributions of neutral mutations
that appeared after the occurrence of ancestral resistant cells in the subsection 4.1. Then we deal in
Subsection 4.2 with the contribution of these emerging after the appearance of ancestral resistant cells.
Finally, Section 5 include numerical illustration of the results and some discussions about these results.

2 Model description

We consider a population of cancer cells with cells sensitive to a treatment and cells resistant to it.
Our model describes the number of sensitive cells ZN

0 (t) at time t ≥ 0, the one of resistant cells ZN
1 (t)

at time t ≥ 0, and the number of neutral mutations carried by each cell. A neutral mutation refers to
a mutation that has no impact on the birth and death rates of the cell under the treatment/medium
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in which it is observed. The initial state of the process is assumed to be

(ZN
0 (0), ZN

1 (0)) = (N, 0).

Cells carry no neutral mutation initially, and the process follows the following dynamics:

• Each sensitive cell divides at rate b0 and dies at rate d0. We denote by λ0 := d0 − b0 > 0 the
absolute value of the growth rate of sensitive cells.

• Each resistant cell divides at rate b1 and dies at rate d1. Its growth rate, which is positive, is
denoted by λ1 := b1 − d1 > 0.

• At each division, the cell is replaced by two daughter cells:

– Each daughter cell inherits the neutral mutations of their mother in addition to an inde-
pendent random number of neutral mutations Nω with the following expectation:

E[Nω] = ω/2 ≥ 0.

– Each of the two daughter cells may become resistant with probability γN := γ/Nα, with
0 < α ≤ 1, independently from one another. The parameter α models the rarity of the
occurrence of resistances.

Hence notice that, considering all the dynamics, the (induced) growth rate of sensitive cells is −(λ0 +
2γNb0), which is negative.

Finally, the dynamics of the process ZN (t) = (ZN
0 (t), ZN

1 (t))t≥0 (disregarding neutral mutations)
is the one of a continuous-time Markov chain on N2 with the following rates:

(z0, z1) 7→ (z0 + 1, z1) at rate (1− γN )2b0z0
(z0, z1) 7→ (z0 − 1, z1) at rate d0z0
(z0, z1) 7→ (z0, z1 + 1) at rate 2γN (1− γN )b0z0 + b1z1
(z0, z1) 7→ (z0 − 1, z1 + 2) at rate γ2

Nb0z0
(z0, z1) 7→ (z0, z1 − 1) at rate d1z1

Our aim is to describe the distribution of neutral mutations in the resistant cells population at a
large time, precisely after the characteristic time of extinction of sensitive cells, i.e. log(N)/λ0. As
previously mentioned, we will describe this distribution using the site frequency spectrum (SFS) which
counts, for all i ∈ N∗ and t ≥ 0, the number of neutral mutations carried by exactly i resistant cells at
time t. This sequence will be denoted by (Si(t))i∈N,t≥0.

For clarity, we set an example starting from one sensitive cell on Figure 1. The SFS associated to
this progeny is given by S1(t) = 3, S3(t) = 1, S7(t) = 2 and for all i /∈ {1, 3, 7}, Si(t) = 0. Indeed, in
this example, only 7 resistant cells are alive at time t. All resistant cells at time t carried mutations
{1} and {2}. Mutation {4} is carried by three cells while mutations {7}, {8} and {9} are carried by
only one resistant cell. We are only interested in resistant cells alive at time t, so mutations {3, 5, 6, 10}
which are carried by only sensitive cells don’t impact the SFS we are interested in.

Our aim is thus to describe the expectation of the SFS of the resistant population in a limit of
large initial sensitive population, i.e. N tends to +∞, and in the timescale of the sensitive population
extinction, i.e. we will set results for

tN := t log(N), with t > 0.

Similarly to [10] and [25], SN
i (t) will be computed by separating the quantity into two different contri-

butions: (1) S
N

i (t) that counts neutral mutations that appeared in a resistant cell and (2) SN
i (t) that

counts neutral mutations that appeared in a sensitive cell, which are transmitted to resistant cells as
a hitch-hiking effect ([24]).

The first result details the expected SFS for fixed i, i.e. it describes the number of mutations shared
by a small number of resistant cells at time tN .

Theorem 2.1. For all i ∈ N, t ≥ 0,

E
[
SN
i

(
tN
)]

∼
N→∞

I(i)
2b0γω

λ1 + λ0
Nλ1t+1−α, with I(i) :=

∫ 1

0

1− y

1− d1y/b1
yi−1dy. (1)
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Figure 1: Example of progeny starting from one sensitive cell and including neutral mutations. Solid
lines correspond to sensitive genealogy, dashed lines to resistant one, cross to dead cells and framed
numbers to neutral mutations appeared at each division.

Notice how the dynamics of the sensitive cells affects the asymptotically-equivalent expression of
the expected SFS. In [15] and [7], such an equivalent was obtained for a birth and death process starting
with one resistant cell (see Lemma A.2). Moreover, Lemma A.1 states the number of resistant events
that occur during the process of extinction of the sensitive population. By noticing that the resistance
events all appear in a negligible time relatively to the time of interest tN , one may think that the final
expectation of the SFS would correspond to the multiplication of the two asymptotically-equivalent
expressions given by the two lemmas previously cited, i.e.

I(i)
2b0γω

λ0
Nλ1t+1−α.

This is not the case. Indeed, notice that the growth rate of the resistant population modifies the
constant parameter. Finally, we can conclude that the rescue dynamics has a significant effect on the
SFS, although the order size of the approximation (Nλ1t+1−α) and its shape with respect to i is not
directly impacted.

As previously indicated, the proof of this theorem 2.1 will be done by studying two distinct quan-

tities E[SN

i (tN )] and E[SN
i (tN )] (cf Lemma 4.1 and Lemma 4.3 respectively). In this case where i is

fixed, notice that nearly all of the contribution is accounted for by the first quantity E[SN

i (tN )], i.e. by
the neutral mutations occurring in a resistant cell. Indeed, Lemma 4.1 and 4.3 imply that the second
quantity is negligible with respect to the first one.

However, the approximation given by Theorem 2.1 is not appropriate to study the ”large families”,
i.e. mutations that affect a large number of resistant cells. Indeed, as tN increases with N , the order
size of the total population at tN is eλ1tN conditioned to the rescue. We should thus study the SFS
for some i depending on N as i ∼ Nλ1t. Hence, we chose to study Sx1,x2

(t), with x1, x2 ∈ (0,∞] and
x1 < x2, and which is the number of mutations carried by a number of resistant cells between x1 e

λ1t

and x2 e
λ1t at time t. Let us now state the result associated to this quantity.

Theorem 2.2. For all t ≥ 0, x1, x2 ∈ (0,∞] with x1 < x2, we denote

Sx1,x2
(t) =

∑
i∈(x1eλ1tN ,x2eλ1tN )

Si(t) (2)

Then for all x1, x2 ∈ (0,∞] with x1 < x2, t ≥ 0,

E
[
SN
x1,x2

(tN )
]

∼
N→∞

b0γωλ1

(
J(x1)− J(x2)

)
N1−α. (3)
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where for all x > 0, J(x) = K(x) + L(x) with

K(x) :=
2

λ0 + λ1

∫ ∞

0

(e−(λ1+λ0)s − 1) eλ1 se−x
λ1
b1

eλ1s

ds, (4)

L(x) :=
1

b1

∫ +∞

0

(1 + 2b0s) e
−λ0se−x

λ1
b1

eλ1s

ds. (5)

As previously, this theorem will be proved by splitting the SFS into two contributions: E[SN

x1,x2
(tN )]

describing the number of mutations that appeared during resistant divisions (cf Lemma 4.2) and
E[SN

x1,x2
(tN )] describing the number of mutations that appeared during sensitive divisions (cf Lemma 4.4).

Contrary to Theorem 2.1, E[SN

x1,x2
(tN )] and E[SN

x1,x2
(tN )] both contribute to the asymptotically-

equivalent expression of E[SN
x1,x2

(tN )]. The difference between their contributions lies in the shape of

the functions K and L, respectively associated to E[SN

x1,x2
(tN )] and E[SN

x1,x2
(tN )]. We deduce from

Theorem 2.2 that the rescue dynamics impact the asymptotic expected of the SFS of large families
thought three different ways:

• The mean number of ancestral resistant cells given in Lemma A.1;

• The lost of time due to the growth rate of the sensitive cells given by λ0;

• The number of times the sensitive cells divide before they become resistant. Such influence is
described by the parenthesis (1 + 2b0s) in the expression of L. Surprisingly, we find a factor
2, already met in the dynamics of branching processes (see remark of the main theorem in [3])
which translates the increase of the probabilities to see a resistant cell appearing in a lineage
having many divisions.

Let us now deal with the proof of the results.

3 Description of ancestral resistant cells

Let us remind that we call ancestral resistant cell a resistant cell whose mother is a sensitive cell. In
this section, we establish results regarding the law of occurrence of ancestral resistant cells and the
probabilities that the progeny of an initial sensitive cell carries one or more ancestral resistant cells.

In our first result, Proposition 3.1, we describe the law of the time of appearance of ancestral
resistant cells and the law of the number of neutral mutations they carry.

To this end, we will study the progeny of one sensitive cell alive at time 0. We assume that α > 0,
hence the probability for two or more ancestral resistant cells to emerge in the progeny of the same
initial sensitive cell is insignificant compared to the probability of emergence of a unique ancestral
resistant cell in the progeny of an initial sensitive cell (see Lemma 3.2 for rigorous arguments). So we
will study the structure of progeny containing exactly one ancestral resistant cell. Proposition 3.1 gives
the law of GN and TN , respectively, the generation and the appearance time of an ancestral resistant
cell conditioned on belonging to a progeny that carried exactly one ancestral resistant cell.

Proposition 3.1. For any N ∈ N∗, let

pN =
(1− γN )b0
b0 + d0

, βN =
(b0 + d0)γN
d0 + b0γN

and xN =
√
1− 4pN (1− pN )(1− βN ). (6)

Then

(i) the law of GN is characterized by, for all g ∈ N∗,

P(GN = g) = xN (1− xN )g−1 (7)

(ii) and the density of TN , fTN
, is written, for all t ≥ 0,

fTN
(t) = δ0xNe−tδ0xN , (8)

with
δ0 := b0 + d0. (9)
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Using the proof of this proposition, we are able to state the law of one ancestral resistant cell
chosen uniformly at random and belonging to a progeny that carried at least one ancestral resistant
cell (and not exactly one as for Proposition 3.1). Such a result is given by Lemma A.3. Moreover, we
are also able to state the following lemma, which deals with the probability that a progeny carries a
given number of ancestral resistant cells and which will be useful to prove our main results.

Lemma 3.2. Let denote by AN
k the event that there is exactly k ancestral resistant cells in the progeny

of one (initial) sensitive cell, then

P
(
AN

1

)
=

1− xN

xN (1− γN )
γN =

2b0
λ0

γN + o
N→∞

(γN ), (10)

where xN is defined in (6).
Moreover, the expected number of multiple ancestral resistant cells in the progeny of a (initial)

sensitive cell is given by ∑
k≥2

kP
(
AN

k

)
=

2b0δ
2
0

λ3
0

γ2
N + o

N→∞
(γ2

N ). (11)

All the results of this section are true for all γN ∈ (0, 1). Hence we obtain that for all γN ∈ (0, 1),
GN follows a geometric law of parameter xN ∈ (0, 1) given by Formula (13) and TN follows an expo-
nential law of parameter xNδ0.The parameter δ0 represents the global dynamical rate of one sensitive
cell. The parameter xN can be seen as the probability for a sensitive cell to become resistant knowing
AN

1 , i.e. knowing there is only one ancestral resistant cell in the progeny of its initial ancestor. Hence
to have one resistant ancestral cell at generation g, g − 1 divisions need to be done without events of
resistance and an event of resistance has to succeed at the gth attempt. We illustrate the results of
Proposition 3.1 with numerical simulations in Figure 2. Orange histograms have been obtained with
a sample of 100 000 realizations of GN in cases (a) and (b), and of 100 000 realizations of TN for cases
(c) and (d). Two different values of γN were used γN = 0.2 for (a) and (c) and γN = 0.002 for (b)
and (d). We can see that the bigger γN is, the more realizations of GN are close to 1 and of TN close
to 0. Indeed, the process Z0 is subcritical. Hence the probability to observe old sensitive cells is very
rare. When γN is small, we need to simulate a lot of events to observe 100 000 realizations of GN . So
we increase the chance of observing rare events as old sensitive cells.

The end of this section is devoted to the proofs.

Proof of Proposition 3.1. The main idea to prove this proposition is to study the topology of the
subcritical family trees issued from the initial sensitive cells, disregarding the neutral mutations and
the offspring of ancestral resistant cells. To this aim, we will slightly modify the trees as follows:

• Firstly, as we are first interested in the generation of the ancestral resistant cells, we consider
fixed time of living. In other words, we consider Galton-Watson trees.

• At the end of the living time of a cell (except the one at the tree root), it becomes a resistant
cell with probability γN . In other words, we disconnect the event of division and the event of
becoming resistant, such that in the new considered tree, cells divide and at the end of their
living time, we decide if they were actually resistant or not (with probability γN ).

• If a cell become resistant at the end of its living time, this leaves a leaf, as if it was dead. Indeed,
we are not interested in the offspring of the resistant cells to prove this theorem.

To summarize, the trees under consideration are the following ones. At the end of its living time, a
cell can

- become resistant with probability γN and have no progeny;

- die with probability (1− γN ) d0

b0+d0
;

- divide into two with probability (1− γN ) b0
b0+d0

=: pN .
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(a) Empirical and theoretical law of GN for γN = 0.2. (b) Empirical and theoretical law of GN for
γN = 0.002.

(c) Empirical and theoretical law of TN for γN = 0.2. (d) Empirical and theoretical law of TN for
γN = 0.002.

Figure 2: Theoretical and empirical law of TN and GN for b0 = 1.0, d0 = 2.0 and two different values
of γN (γN = 0.2 at left and γN = 0.002 at right). The orange histograms has been obtained using
100 000 realizations of GN (for Figures (a) and (b)) and of TN (for Figures (c) and (d)). The blue cross
of Figures (a) and (b) correspond to Formula (7). The blue lines of Figures (c) and (d) correspond to
the function (8).

Notice also that we will have to exclude the possibility that the root becomes resistant at the end of
its life time, since in our initial process the roots are all sensitive cells.
On Figure 3, we give an example of tree with its corresponding modified tree. The probability of each
event is given above the branch. We can notice that the probability of these two configurations of tree
is actually the same.

To proceed with the proof of the proposition, we need the following general lemma concerning
Galton-Watson trees that we state here but prove at the end of this section.

Lemma 3.3. Let T (p, β) be a subcritical Galton-Watson tree such that branches divide into two with
probability p < 1/2 or die with probability 1−p and such that, once the (finite) tree is constructed, each
leaf is marked independently from one another with probability β. Let denote by RT (p,β) the event that
T (p, β) has exactly one marked leaf. Finally, let GT (p,β) be the generation of a leaf chosen uniformly
at random in a tree of law T (p, β). The generation of a leaf is the smallest number of edges on a path
between the leaf and the root. Then, for all g ∈ N∗,

P
(
GT (p,β) = g | RT (p,β)

)
= x(1− x)g−1 (12)
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(a) Initial tree. (b) Corresponding modified tree.

Figure 3: An example of family tree (a) without modification or (b)with the modification. The
probability of each event, leading to this tree, is given up to each branch. In the modified case (b),
the probability for the root to divide is given by p̂ which correspond to division event knowing that
the root can’t become resistant.

where
x =

√
1− 4p(1− p)(1− β). (13)

Considering the notation of the previous Lemma 3.3, the tree under consideration is TN :=
T (pN , βN ), with pN and βN defined in (6), conditioned on the event ETN that the root can not
become resistant, and identifying marked leaves with ancestral resistant cells. Indeed, according to
the previous consideration, pN corresponds to the probability that a cell divides and

βN =
γN (b0 + d0)

d0 + γNb0
=

γN
1− pN

corresponds to the probability that a leaf is the result of a ”resistant event” and not a ”death event”.
Hence, we have for all g ∈ N∗,

P(GN = g) = P
(
GTN = g + 1|RTN , ETN

)
On the event RTN ∩ETN , the root of TN divides into two cells with probability 1 that will then evolve

independently from one another and that will give two independent subtrees T (1)
N and T (2)

N whose laws
follow the same law as TN . Let us denote by RT

0 the probability that the tree T has no marked leaf.
Thus, using the Markov property

P(GN = g) =
P
({

GTN = g + 1
}
∩RTN ∩ ETN

)
P (RTN ∩ ETN )

=

pN

[
P
({

GT (1)
N = g

}
∩RT (1)

N ∩RT (2)
N

0

)
+ P

({
GT (2)

N = g
}
∩RT (2)

N ∩RT (1)
N

0

)]
pN

[
P
(
RT (1)

N ∩RT (2)
N

0

)
+ P

(
RT (2)

N ∩RT (1)
N

0

)] .

Since T (1)
N and T (2)

N are two independent trees with the same law as TN , we finally have,

P(GN = g) =
2P
({

GTN = g
}
∩RTN

)
P
(
RTN

0

)
2P (RTN )P

(
RTN

0

) .

We conclude the proof of (7) using Lemma 3.3.

To find the density of TN , it is sufficient to notice that the life time of each sensitive cells is
distributed as exponential r.v. with parameter δ0 = b0 + d0, and that an ancestral resistant cell has
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GN ancestors. Thus, TN =
∑GN

i=1 Ei, where (Ei)i∈N is a sequence of i.i.d. r.v. of exponential law with
parameter δ0 and independent from GN . Hence TN follows an exponential law with parameter xNδ0.
This ends the proof of Proposition 3.1.

Proof of Lemma 3.3. To simplify notation in the proof of this lemma, we will write T for T (p, β), R
for RT and G for GT . The main idea to prove Equation (12) is to condition on the number of leaves.
We will denote the number of leaves of tree T by λ(T ). Then, for all g ∈ N∗,

P(G = g|R) =

∑
n≥1 P(G = g,R, λ(T ) = n)

P(R)

=

∑
n≥1 P(R|G = g, λ(T ) = n)P(G = g, λ(T ) = n)∑

n≥1 P(R|λ(T ) = n)P(λ(T ) = n)
.

Notice that for all g, n ∈ N∗, P(R|G = g, λ(T ) = n) = P(R|λ(T ) = n) = nβ(1 − β)n−1. Indeed, the
probability to have exactly one resistant among the n leaves of T is given by β(1−β)n−1 and we have
n possible configurations. Then by writing for all g, n ∈ N∗,

vg,n := P(G = g, λ(T ) = n) and un := P(λ(T ) = n), (14)

we find

P(G = g|R) =

∑
n≥1 n(1− β)n−1vg,n∑
n≥1 n(1− β)n−1un

. (15)

To end the proof, we thus have to study the two sums of the r.h.s. of Equation (15).
Let us first deal with

∑
n≥1 n(1− β)n−1un. To this aim, notice that using the Markov property at

the time of the first generation, we have for all n ∈ N∗

un = 1{n=1}(1− p) + 1{n≥2}p

n−1∑
i=1

uiun−i.

We deduce from this inductive relation that there exists a sequence (αn)n≥1 independent from p such

that α1 = 1, αn =
∑n−1

i=1 αiαn−i for all n ≥ 2 and un = αn(1 − p)npn−1 for all n ≥ 1. Since by
definition (cf (14))

∑
n≥1 un = 1 whatever p < 1/2, we deduce that for all p < 1/2,∑

n≥1

αnp
n(1− p)n = p. (16)

Then, using classical results for derivative of function series, we have that∑
n≥1

n(1− β)n−1un = F ′(1− β), with F (y) =
∑
n≥1

uny
n. (17)

Moreover,

F (y) =
1

p

∑
n≥1

αn[p(1− p)y]n =
1

p

∑
n≥1

αn[p̃(y)(1− p̃(y))]n =
p̃(y)

p
, (18)

with p̃(y) = 1
2 (1−

√
1− 4yp(1− p)), which implies that p̃(y) is for all y ∈ [0, 1] the unique root in [0, 1/2]

of the following polynomial X(1−X) = y p (1−p); and where the last equality is a consequence of (16)
which is true for any p < 1/2. In addition with Equation (17) and the definition of x (cf Formula (13)),
we finally deduce that ∑

n≥1

n(1− β)n−1un =
p̃′(1− β)

p
=

1− p

x
. (19)

We now deal with the sum
∑

n≥1 n(1−β)n−1vg,n for all g ∈ N∗. Similarly, we first give an inductive
relation on the sequence (vg,n)1≤g≤n, by using again the Markov property at the time of the first event:

vg,n = (1− p)1{g=n=1} + 2 p 12≤g≤n

n−1∑
i=1

n− i

n
vg−1,n−iui,

9



where the factor (n− i)/n comes from the probability that the chosen leaf belongs to the sub-tree with
n− i leaves. From this last equation, we deduce by induction on the parameter g that

v1,n = 1{n=1}(1− p)

for all g ≥ 2, vg,n = 1{n≥g}
2g−1

n
(1− p)npn−1γg,n (20)

with γg,n =

n−(g−1)∑
i=1

αiγg−1,n−i1{n≥g≥3} and γ2,n = αn−11{n≥2}.

Then, as p < 1/2, for all g ≥ 3,

∑
n≥1

n(1− β)n−1vg,n =
2g−1

p(1− β)

∑
n≥g

[(1− β)p(1− p)]nγg,n

=
2g−1

p(1− β)

∑
n≥g

n−g+1∑
i=1

αi[(1− β)p(1− p)]iγg−1,n−i[(1− β)p(1− p)]n−i,

=
2g−1

p(1− β)

∑
n≥1

αn[(1− β)p(1− p)]n

 ∑
n≥g−1

γg−1,n[(1− β)p(1− p)]n

 ,

where the last equality follows from the identification of a Cauchy product of series. Thus, using again
an induction and then Equation (16) and the definition of p̃, we obtain for all g ≥ 3,

∑
n≥1

n(1− β)n−1vg,n =
2g−1

p(1− β)

∑
n≥1

αn[(1− β)p(1− p)]n

g−2∑
n≥2

αn−1[(1− β)p(1− p)]n

 ,

=
2g−1

p(1− β)

(
p̃(1− β)

)g−1

(1− β)p(1− p),

= (1− x)g−1(1− p), (21)

which gives the value of the second sum. Moreover, as
∑

n≥1 n(1− β)n−1v1,n = 1− p and∑
n≥1 n(1− β)n−1v2,n = (1− p)(1− x), Formula (21) is also true for g ∈ {1, 2}.

Finally, using Equations (19) and (21) in (15), we obtain Equation (12), which concludes the proof
of Lemma 3.3.

Proof of Lemma 3.2. Using the notation and the arguments of the proofs of Proposition 3.1 and
Lemma 3.3, we have

P(AN
1 ) =

P(RTN ∩ ETN )

P(ETN )
=

2pNP(RTN )P(RTN
0 )

1− γN

=
2pN

(1− γN )

∞∑
n=1

unnβN (1− βN )n−1 ×
∞∑

n=1

un(1− βN )n

=
2pN

(1− γN )

βN (1− pN )

xN

1− xN

2pN

=
1− xN

xN (1− γN )
γN .

where the third line is implied by (19) and (18) and the last one by βN (1 − pN ) = γN . Finally,
to deduce (10), it remains to find an approximation of xN . Let notice that 1 − pN = d0+γNb0

δ0
and

10



1− βN = d0(1−γN )
d0+γNb0

then

xN = (1− 4pN (1− pN )(1− βN ))
1/2

=

(
1− 4

(1− γN )2b0d0
δ20

)1/2

=
λ0

δ0

(
1 + 4

b0d0γN (2− γN )

λ2
0

)1/2

=
λ0

δ0
+ 4

b0d0
λ0δ0

γN + o
N→∞

(γN ). (22)

Hence (1− xN )/(xN (1− γN )) converges to 2b0/λ0 when N increases to ∞, and we conclude (10).

Let us now deal with (11). To this aim, we denote by RTN

k the event that the tree TN presents

exactly k ancestral resistant cells. Notice that ETN ⊂ RTN

k as soon as k ≥ 2. Then

∑
k≥2

kP(AN
k ) =

∑
k≥2

k
P
(
RTN

k ∩ ETN

)
P (ETN )

=
1

1− γN

∑
k≥2

kP
(
RTN

k

)
=

1

1− γN

∑
k≥2

k
∑
n≥k

(
n

k

)
βk
N (1− βN )n−kun

=
1

1− γN

∑
n≥2

un

n∑
k=2

k

(
n

k

)
βk
N (1− βN )n−k

=
1

1− γN

∑
n≥2

un

(
nβN − nβN (1− βN )n−1

)
=

βN

1− γN

(
1− pN
1− 2pN

− 1− pN
xN

)
,

where the last equality is a consequence of (19). In addition with (22) and the fact that βN (1− pN ) =
γN , ∑

k≥2

kP(AN
k ) =

γN
1− γN

1

(1− 2pN )xN
(xN − 1 + 2pN )

=
γN

1− γN

1

(1− 2pN )xN

(
λ0

δ0
+ 4

b0d0
λ0δ0

γN + o
N→∞

(γN )− λ0

δ0
− 2b0

δ0
γN

)
=

2b0δ
2
0

λ3
0

γ2
N + o

N→∞
(γ2

N ),

which concludes the proof of Lemma 3.2.

In the next section, we will see how to use Lemma 3.2 and the random variables GN and TN to
compute the expected SFS of ZN with neutral mutations starting with N sensitive cells.

4 Expectation of the Site frequency spectrum

We are now ready to prove Theorem 2.1 and Theorem 2.2, presented in Section 2, which give formulas
and approximations when N is large of the expected site frequency spectrum (SFS) of a rescued
population. As a reminder, the SFS is defined, for all i ∈ N∗, as Si(t) the number of neutral mutations
carried by exactly i resistant cells alive at time t. To this aim, we will decompose SN

i (t) for all i ∈ N
into two parts: SN

i (t) = S
N

i (t) + SN
i (t) where

• S
N

i (t) counts mutations that appeared in a resistant cell;

• SN
i (t) counts mutations that appeared in a sensitive cell.

11



Using such decomposition we will prove our two main theorems by studying independently those
two quantities, then combining them to deduce our main results. Indeed, Theorem 2.1 follows from
Lemma 4.1 and Lemma 4.3 and Theorem 2.2 follows from Lemma 4.2 and Lemma 4.4.

Each of the following two subsections focuses on one of the two quantities above.

4.1 Number of neutral mutations appeared in a resistant cell

The aim of this subsection is the study of E[SN

i (tN )] for all i ∈ N∗ and all t > 0. To this aim, we will
decompose the quantity into two parts such that, for all i ∈ N∗, t > 0,

E
[
S
N

i (tN )
]
= P (N, i) +R(N, i), (23)

where

P (N, i) := N1+λ1t−α δ0(1− xN )γw

(1− γN )

∫ tN

0

hi(e
λ1 (tN−s))e−(λ1+xNδ0) s ds (24)

with hi(x) :=

∫ (x−1)/(x− d1
b1

)

0

1− y

1− d1

b1
y
yi−1dy, (25)

and R(N, i) will be given in (30).
P (N, i) represents the part provided by the progeny that include exactly one ancestral resistant cell
and R(N, i) represents the part provided by the progeny that carry two or more ancestral resistant
cells. When N → ∞, we will be able to prove that this second part is negligible with respect to P (N, i)
in every situation of our interest.

Firstly, we state a result in the case where i is fixed (see Lemma 4.1). Then we deal with the
cases where i is of order Nλ1t (see Lemma 4.2). Nλ1t corresponds to the order size of the resistant
cells number at time tN . We also deduce a theoretical approximation when N tends to infinity of

E[SN

x1,x2
(t)], where S

N

x1,x2
(t) is the number of mutations (that appeared in a resistant cell) carried by

a number of resistant cells between x1e
λ1tN and x2e

λ2tN at time t,

S
N

x1,x2
(t) =

∑
i∈(x1eλ1tN ,x2eλ1tN )

S
N

i (t). (26)

Lemma 4.1. For all i ∈ N∗, t > 0,

E
[
S
N

i (tN )
]

∼
N→∞

I(i)
2b0γω

λ1 + λ0
N1+λ1t−α, with I(i) :=

∫ 1

0

1− y

1− d1y/b1
yi−1dy,

and

lim sup
N→∞

sup
i∈N∗

R(N, i)

N1+λ1t−2α
< ∞. (27)

Lemma 4.2. For all t > 0,

(i) for iN = ⌈xNλ1t⌉+ 1 with x > 0,

E
[
S
N

iN (tN )
]

∼
N→∞

b0γωλ1K
′(x)N1−λ1t−α,

where K ′ is the derivative of the function K defined in (4) and

lim sup
N→∞

sup
i∈N∗

R(N, iN )

N1−λ1t−2α
< ∞. (28)

(ii) Moreover for all x1, x2 ∈ (0,∞] with x1 < x2,

E
[
S
N

x1,x2
(tN )

]
∼

N→∞
b0γωλ1

(
K(x1)−K(x2))

)
N1−α,

where K is defined in (4).

12



The rest of the subsection is devoted to the proofs of these results.

Proof of (23), (24). To obtain our result, we sum on all trees started by sensitive initial cells and
structured the sum using the number of ancestral resistant cells that appeared in these trees, i.e. for
all i ∈ N and all N ∈ N,

E
[
S
N

i (tN )
]
= E

 N∑
j=1

∞∑
k=1

1Aj
k

k∑
l=1

S
(1),j,l
i (tN − T j,l,k

N )

 ,

where for all j ∈ N and k ∈ N, Aj,N
k is the event that there is exactly k ancestral resistant cells in the

jth tree and (T j,1,k
N , ..., T j,k,k

N ) is the random vector of appearance times of the k ancestral resistant cells

of the jth tree conditioned on Aj,N
k . For all k ∈ N, the sequence (T j,1,k

N , ..., T j,k,k
N )j∈N is a i.i.d. sequence

of vectors and, without loss of generality, we assume that the law of these vectors are exchangeable.

Finally, for all i ∈ N, (S(1),j,l
i )j,l∈N is a sequence of i.i.d random functions that give the SFS of the

cell population issued from one resistant cell and this sequence is independent from all other random

variables of the model. Indeed, S
N

i counts the mutations that appeared in resistant cells only. From
this previous consideration and the fact that the N trees issued from the N sensitive initial cells are
i.i.d., we deduce

E
[
S
N

i (tN )
]
= N

∞∑
k=1

P(A1,N
k )kE

[
S
(1),1,1
i (tN − T 1,1,k

N )|A1,N
k

]
.

In what follows, for simplicity, T 1,1,k
N will be denoted by T k

N , A1,N
k by AN

k and S
(1),1,1
i by S

(1)
i for all

k, i ∈ N. Thus, by denoting fX the distribution function of a r.v. X that admits such function, we
have

E
[
S
N

i (tN )
]
=NP(AN

1 )

∫ tN

0

E
[
S
(1)
i (tN − s)

]
fT 1

N
(s)ds+R(N, i) (29)

with R(N, i) = N

∞∑
k=2

P(AN
k )k

∫ tN

0

E
[
S
(1)
i (tN − s)

]
fTk

N
(s)ds. (30)

In particular, this corresponds to the splitting found in (23).

Then from Lemma A.2, we deduce that, for all t ≥ 0,

E
[
S
(1)
i (t)

]
= ωeλ1t

∫ eλ1t−1

eλ1t−d1/b1

0

1− y

1− d1

b1
y
yi−1dy = ωeλ1thi(e

λ1t). (31)

Indeed, S
(1)
i (t) corresponds to the SFS at time t of a birth and death branching process with neutral

mutations accumulated at each division, starting from a single individual and with birth rate b1 and
death rate d1. Notice that it does not depend on N .

Moreover, recall that the law of T 1
N is given by (8) of Proposition 3.1. Then we use (31), (10) and

(8) into (29) to deduce (24).

Proof of Lemma 4.1. Let us prove (27). To this aim, we use (30) and (31) to deduce that for all
N, i ∈ N

R(N, i) ≤ N

∞∑
k=2

kP(AN
k )

∫ ∞

0

ωeλ1(tN−s)

(∫ 1

0

(1− y)yi−1

1− d1y/b1
dy

)
fTk

N
(s)ds

≤ ω
b1
λ1

N1+λ1t
∞∑
k=2

kP(AN
k ),
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where the last inequality is due to the upper bounds
∫ 1

0
(1−y)yi−1

1− d1
b1

y
dy ≤ b1

λ1
and

∫∞
0

e−λ1sfTk
N
(s)ds ≤ 1.

The result (27) is then a consequence of Equation (11) of Lemma 3.2.

We can now prove Lemma 4.1. In view of (23) and (27), it is sufficient to show that

P (N, i)

N1+λ1t−α
→

N→∞
2b0ωγ

I(i)

λ0 + λ1
. (32)

We know from (24) that,

P (N, i)

N1+λ1t−α
=

ωγδ0(1− xN )

1− γN

∫ ∞

0

gN (s) ds, with gN (s) := 1s≤tNhi(e
λ1 (tN−s))e−(λ1+xNδ0) s.

Then, for all s ≥ 0, we have the following convergence

gN (s) →
N→∞

I(i)e−(λ0+λ1)s.

Moreover for all s ≥ 0 and N ∈ N, |gN (s)| ≤ I(i)e−λ1s, which defined an integrable function on (0,∞).
We thus conclude with the Dominated convergence theorem that

∫∞
0

gN (s) ds tends to I(i)/(λ0 + λ1)
when N tends to ∞. Finally, according to (22), we have that δ0(1− xN )/(1− γN ) tends to 2b0 when
N tends to infinity. Combining the last two limits gives (32), which ends the proof of Lemma 4.1.

Proof of Lemma 4.2. Let us first prove (28). From (30) and (31), we know that, with the notation of
the previous proof,

R(N, iN ) = N

∞∑
k=2

P(AN
k )k

∫ tN

0

ωeλ1(tN−s)hiN (eλ1(tN−s))fTk
N
(s)ds,

with hi(x) =
∫ x−1

x−d1/b1
0

1−y
1−d1y/b1

yi−1dy. Since λ1/b1 ≤ (1− d1y/b1) for all y ∈ (0, 1),

hi(x) ≤
b1
λ1

h̃i(x), (33)

with h̃i(x) :=
1
i

(
x−1

x− d1
b1

)i

− 1
i+1

(
x−1

x− d1
b1

)i+1

= 1
i(i+1)

(
1−

λ1
b1

x− d1
b1

)i [
1 + i

λ1
b1

x− d1
b1

]
. Thus

R(N, iN )

N1−λ1t−2α
≤ b1ωN

2λ1t+2α

λ1iN (iN + 1)

∞∑
k=2

P(AN
k )k

∫ ∞

0

g̃N (s)fTk
N
(s)ds,

with

g̃N (s) := 1{s∈[0,tN ]}e
−λ1s

(
1−

λ1

b1

eλ1(tN−s) − d1

b1

)iN [
1 +

iN
λ1

b1

eλ1(tN−s) − d1

b1

]
(34)

≤ e−λ1s

[
1 + iN

λ1

b1

e−λ1tN eλ1s

1− d1

b1
e−λ1(tN−s)

]
1{s∈[0,tN ]}

≤ 1 + (x+ 2) ≤ x+ 3,

for N sufficiently large, since iN = ⌈xeλ1tN ⌉+ 1. Hence,

R(N, iN )

N1−λ1t−2α
≤ b1ωN

2α

x2λ1
(x+ 3)

∞∑
k=2

P(AN
k )k. (35)

We finally find (28) by using the approximation given by (11) of Lemma 3.2.
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We then prove Lemma 4.2 (i). We fix x > 0 and recall that iN = ⌈xNλ1t⌉+1. Recall the definition
P (N, i) given by (24). In view of (28), it is sufficient to prove that

P (N, iN )

N1−λ1t−α
−→
N→∞

b0γωλ1K
′(x). (36)

According to the change of variable used in the proof of Lemma A.2, we know that, for s ∈ [0, tN ],

hi(e
λ1(tN−s)) =

λ2
1

b1

∫ tN

s

1

(eλ1(tN−u) − d1

b1
)2

( eλ1(tN−u) − 1

eλ1(tN−u) − d1

b1

)i−1

du.

Then, noticing that ∫ u

0

e−(λ1+xNδ0)sds =
(1− e−(λ1+xNδ0)u)

λ1 + xNδ0
,

we deduce from (24) by an integral exchange that,

P (N, iN ) = N1+λ1t−α λ2
1δ0(1− xN )γω

b1(1− γN )(λ1 + xNδ0)

∫ +∞

0

lN (u)e−2λ1 tN du, (37)

where

lN (u) := 1{u∈[0,tN ]}
(1− e−(λ1+xNδ0)u)

(e−λ1u − d1

b1
e−λ1tN )2

( 1− e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

)iN−1

.

However, for u ≤ tN , we have,( 1− e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

)iN−1

= exp
(
(iN − 1) log

(
1− λ1

b1

e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

))
≤ exp

(
− (iN − 1)

λ1

b1
e−λ1(tN−u)

)
with iN = ⌈xeλ1tN ⌉+ 1, x > 0. Hence for all u > 0,

lN (u) ≤ (eλ1u)2

(1− d1

b1
eλ1u)2

exp(−x
λ1

b1
eλ1u).

Such upper bound defines an integrable function on R+. Moreover, notice that, when N tends to +∞,
δ0(1− xN )/(1− γN ) tends to 2b0 and for all u > 0,

lN (u) →
N→∞

(1− e−(λ1+λ0)u)e2λ1u exp

(
−x

λ1

b1
eλ1u

)
. (38)

Then we can deduce from Formula (37), the convergence result (36) by the dominated convergence
theorem. That concludes the proof of Lemma 4.2 (i).

We end the proof by proving the second part of the Lemma 4.2 (ii). According to (23) and (26),

E
[
S
N

x1,x2
(t)
]
=

∑
i∈(x1Nλ1t,x2Nλ1t)

P (N, i) +
∑

i∈(x1Nλ1t,x2Nλ1t)

R(N, i).

Then from (35), we obtain the following upper bound

1

N1−2α

∑
i∈(x1Nλ1t,x2Nλ1t)

R(N, i) ≤ N−λ1t
∑

i∈(x1Nλ1t,x2Nλ1t)

b1ω(ie
−λ1tN + 2)N2α

(ie−λ1tN + 1)2λ1

∞∑
k=2

P(AN
k )k

≤ (x2 − x1)
b1ω(x2 + 2)

(x1 + 1)2λ1
N2α

∞∑
k=2

P(AN
k )k,

and from (11), we deduce that

lim sup
N∈N

1

N1−2α

∑
i∈(x1Nλ1t,x2Nλ1t)

R(N, i) < ∞.
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Then, noticing that δ0(1−xN )
(1−γN )(λ1+xNδ0)

tends to 2b0
λ1+λ0

when N tends to infinity (see Formula (22)), we

deduce from Formula (37) that Lemma 4.2 (ii) will be proved as soon as we prove

Ω̃N :=
λ1

b1
Nλ1t

∑
iN∈(x1Nλ1t,x2Nλ1t)

∫ +∞

0

lN (u)e−2λ1 tN du, −→
N→∞

K(x1)−K(x2),

with,

lN (u) = 1{u∈[0,tN ]}
(1− e−(λ1+xNδ0)u)

(e−λ1u − d1

b1
e−λ1tN )2

( 1− e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

)iN−1

.

However, by calculus, we obtain

Ω̃N =

∫ tN

0

1− e(−λ1+δ0xN )u

e−λ1u − d1

b1
e−λ1tN

[(
1− λ1

b1

e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

)⌊x1N
λ1t⌋

−

(
1− λ1

b1

e−λ1(tN−u)

1− d1

b1
e−λ1(tN−u)

)⌊x2N
λ1t⌋+1 ]

ds.

We conclude, arguing as previously, with the dominated convergence theorem.

4.2 Number of neutral mutations appeared in a sensitive cell

In this subsection, we deal with the second term that appears in the SFS, that is, SN
i (tN ), which

counts the number of neutral mutations that appeared in a sensitive cell and that can be found in
exactly i resistant cells at time tN . As previously, we will divide the quantity into two parts such that,
for all i ∈ N∗, t > 0,

E
[
SN
i (tN )

]
= Q(N, i) + R̃(N, i), (39)

where Q(N, i) represents the weight provided by the trees that carry exactly one ancestral resistant
cell and can be written as

Q(N, i) :=
NγN (1− xN )δ0ω

2(1− γN )

∫ tN

0

κi

(
e−λ1(tN−s)

)
(1 + sδ0(1− xN ))e−sδ0xN ds (40)

with κi(x) :=
λ2
1

b21

x(1− x)i−1

(1− d1

b1
x)i+1

; (41)

and where R̃(N, i) represents the part provided by the trees that carry two or more ancestral resistant
cells. When N → ∞, we will be able to prove once again that this part is negligible with respect to
Q(N, iN ).

Two results are deduced below using this decomposition. The first one deal with the case when

i is fixed. In this case, we prove that this part of the SFS is negligible compared with E[SN

i (tN )],
described in the previous section, and which is of order N1+λ1t−α.

Lemma 4.3. For all i ∈ N∗, t > 0, when N is large,

E
[
SN
i (tN )

]
= O

N→∞

(
N1−α

)
. (42)

When i = iN depends on the size of the population N , the result is more intricate. Contrary to
the case studied in the previous section related to Si, we are not able to deal with the equivalent
of E[SiN

(tN )], as we are not able to bound precisely R̃(N, iN ). The main difficulty comes from the
fact that the relationships between the ancestral resistant cells have to be managed to deal with this
quantity, which is currently beyond our reach. We however are able to derive a result for E[SN

x1,x2
(t)],

where SN
x1,x2

(t) is the number of mutations (that appeared in a sensitive cell) carried by a number of

resistant cells between x1e
λ1tN and x2e

λ2tN at time t,

SN
x1,x2

(t) =
∑

i∈(x1eλ1tN ,x2eλ1tN )

SN
i (t). (43)
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Our result in this case is an exact asymptotic equivalent, contrary to the previous section. Let us state
it in the next lemma.

Lemma 4.4. For all t > 0, and for x1, x2 ∈ (0,∞] with x1 < x2,

E
[
Sx1,x2

(
tN
)]

∼
N→∞

b0γωλ1

(
L(x1)− L(x2)

)
N1−α, (44)

where L is defined in (5).

The end of the section is devoted to the proof of the previous lemmas.

Proof of (39) and (40). As indicated in the introduction of this section, we divide the quantity into
two parts, the first one incorporates progeny that include exactly one ancestral resistant cells, the
second those that include two or more ancestral resistant cells: for all i ∈ N, t > 0,

E
[
SN
i (tN )

]
= N

∞∑
k=1

P(AN
k )E

[
S
(k)
i (tN )|AN

k

]
,

where S
(k)
i is the number of neutral mutations that appeared in a sensitive cell whose first ancestor

has exactly k ancestral resistant cells in its progeny. Obviously, to obtain (39) we set

Q(N, i) := NP(AN
1 )E

[
S
(1)
i (tN )|AN

1

]
and R̃(N, i) := N

∞∑
k=2

P(AN
k )E

[
S
(k)
i (tN )|AN

k

]
. (45)

Let us now find a precise expression for Q. We denote by (N j
ω)j∈N a i.i.d. sequence of r.v. with the

same law as Nω, and by Z̃ a branching birth and death process with birth rate b1 and death rate d1
starting from 1 individual. Then using (10) and the notation of Proposition 3.1, we find

Q(N, i) =
NγN (1− xN )

xN (1− γN )
E

GN∑
j=1

N j
ω1{Z̃(tN−TN )=i}

 ,

=
NγN (1− xN )ω

2xN (1− γN )
E
[
GNE[1{Z̃(tN−TN )=i}|GN ]

]
. (46)

The law of TN |{GN = g} is a Gamma law with parameters (δ0, g), and from Formula (7.3) Chap 5 of
[16], we know that for all u ≥ 0, i ≥ 1,

P
(
Z̃(u) = i

)
=

λ2
1e

−λ1u(1− e−λ1u)i−1

b21(1− d1

b1
e−λ1u)i+1

= κi(e
−λ1u). (47)

In addition with (46), we find

Q(N, i) =
NγN (1− xN )ω

2xN (1− γN )

∞∑
g=1

gP(GN = g)

∫ tN

0

κi

(
e−λ1(tN−s)

) sg−1e−δ0s

(g − 1)!
δg0 ds

=
NγN (1− xN )ω

2(1− γN )

∫ tN

0

κi

(
e−λ1(tN−s)

)
e−δ0s

∞∑
g=1

g(1− xN )g−1 sg−1δg0
(g − 1)!

ds.

By noticing that for all z ∈ R
∞∑
g=1

g
zg−1

(g − 1)!
=

∞∑
g=2

zg−1

(g − 2)!
+

∞∑
g=1

zg−1

(g − 1)!
= (z + 1)ez,

we obtain equation (40).

Proof of Lemma 4.3. Let us first deal with the term R̃(N, i). Recalling (45), we have that

R̃(N, i) ≤ N

∞∑
k=2

P(AN
k )kE[G(k),1]E[Nw], (48)
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where (G(k),1, ..., G(k),k) is the vector of the generations of the k ancestral resistant cells of a progeny,
knowing that this progeny contains exactly k ancestral resistant cells. We assume that the law of this
vector is exchangeable without loss of generality. The r.h.s of (48) is obtained by considering that all
neutral mutations appeared in the ancestors of an ancestral resistant cell (in each progeny containing

exactly k ancestral resistant cells) count in S
(k)
i (t). Then using the notation of Section 3 and arguing

as in (15) and Lemma 3.2, we have for all k ≥ 2,

P(AN
k )E[G(k),1] = P(RTN

k ∩ ETN |ETN )
∑
g≥1

gP
(
GTN = g + 1|RTN

k , ETN

)
=

1

1− γN

∑
g≥1

gP
(
{GTN = g + 1} ∩ RTN

k

)
=

1

1− γN

∑
g≥1

g

∞∑
n≥k

(
n

k

)
βk
N (1− βN )n−kvg+1,n,

In addition with (48), we find

R̃(N, i) ≤ Nω

2(1− γN )

∑
g≥1

g

∞∑
n≥2

n∑
k=2

k

(
n

k

)
βk
N (1− βN )n−kvg+1,n,

≤ Nω

2(1− γN )

∑
g≥1

gβN

∞∑
n≥2

(nvg+1,n − n(1− βN )n−1vg+1,n),

≤ NωβN (1− pN )

2(1− γN )

∑
g≥1

g((2pN )g − (1− xN )g).

where the last inequality is a consequence of (21). Then, noticing by (6) that γN = βN (1− pN ),

R̃(N, i) ≤ NωγN
2(1− γN )

(
2pN

1− 2pN
− 1− xN

xN

)
≤ NωγN

2(1− γN )(1− 2pN )xN
(xN + 2pN − 1)

≤ Nωγ2
N

2(1− γN )(1− 2pN )xN

2b0
δ0

(
2d0
λ0

− 1

)
+ o

N→∞
(N1−2α), (49)

according to (22).
Let us now deal with the first term Q(N, i). According to (47), κi(e

−λ1u) corresponds to a proba-
bility, then

Q(N, i) ≤ NγNδ0ω

2(1− γN )

∫ ∞

0

(1 + sδ0)e
−sδ0xN ds

≤ NγNδ0ω

2(1− γN )

[
1

δ0xN
+

1

δ0x2
N

]
= O

N→∞
(N1−α). (50)

Equations (49) and (50) are sufficient to obtain (42) and to conclude Lemma 4.3.

Proof of Lemma 4.4. Let set 0 < x1 < x2, then

E
[
SN
x1,x2

(t)
]
=

∑
i∈(x1Nλ1t,x2Nλ1t)

Q(N, i) +
∑

i∈(x1Nλ1t,x2Nλ1t)

R̃(N, i). (51)

Let us first deal with the last term of the r.h.s.. Note that each mutation is counted in only one of the
elements of the sequence (SN

i )i≥1, corresponding to the exact number i of resistant offspring from the

cell in which this mutation occurred. Thus, the bound (48) is still valid for
∑

i∈(x1Nλ1t,x2Nλ1t) R̃(N, i)
as we bounded by adding all neutral mutations that appeared in the ancestors of all ancestral resistant
cells (considering progeny containing at least 2 ancestral resistant cells). Thus, using arguments similar
to those used to obtain (49), we conclude that∑

i∈(x1Nλ1t,x2Nλ1t)

R̃(N, i) ≤ O
N→∞

(N1−2α). (52)
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We finally deal with the first term of the r.h.s of (51). Using the definition of Q(N, i) in (40) and
the fact that, for all z < 1,

k2∑
i=k1+1

zi =
zk1 − zk2

1− z
,

and that (
1− 1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)−1

=
1− d1

b1
e−λ1(tN−s)

λ1

b1
e−λ1(tN−s)

we find

1

N1−α

⌊x2N
λ1t⌋∑

i=⌊x1Nλ1t⌋+1

Q(N, i)

=
γ(1− xN )δ0ωλ

2
1

2(1− γN )b21

∫ tN

0

(1 + sδ0(1− xN ))e−sδ0xN−λ1(tN−s)

(1− d1

b1
e−λ1(tN−s))2

⌊x2N
λ1t⌋∑

i=⌊x1Nλ1t⌋+1

(
1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)i−1

ds

=
γ(1− xN )δ0ωλ1

2(1− γN )b1

∫ tN

0

(1 + sδ0(1− xN ))e−sδ0xN

1− d1

b1
e−λ1(tN−s)

[(
1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)⌊x1N
λ1t⌋

−

(
1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)⌊x2N
λ1t⌋ ]

ds. (53)

We now prove that the r.h.s converges, when N increases, to +∞. According to (22),

γ(1− xN )δ0ωλ1

2(1− γN )b1
−→
N→∞

γb0ωλ1

b1
. (54)

Let define

ĝN (s) := 1{s∈(0,tN )}
(1 + sδ0(1− xN ))e−sδ0xN

1− d1

b1
e−λ1(tN−s)

[(
1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)⌊x1N
λ1t⌋

−

(
1− e−λ1(tN−s)

1− d1

b1
e−λ1(tN−s)

)⌊x2N
λ1t⌋ ]

.

Using (22), we prove that, for N large enough,

for all s ∈ R+, ĝN (s) ≤ (1 + sδ0)e
−sλ0

1− d1/b1
,

whose r.h.s. can be integrated on (0,∞) w.r.t s, and arguing as in (34), we have that for all s ∈ R+

ĝN (s) −→
N→∞

(1 + 2b0s)e
−λ0s

[
e−

λ1
b1

x1e
λ1s

− e−
λ1
b1

x2e
λ1s
]
.

We conclude with the dominated convergence theorem, (54) and (53), that

1

N1−α

⌊x2N
λ1t⌋∑

i=⌊x1Nλ1t⌋+1

Q(N, i) −→
N→∞

γb0ωλ1

b1

∫ ∞

0

(1 + 2b0s)e
−λ0s

[
e−

λ1
b1

x1e
λ1s

− e−
λ1
b1

x2e
λ1s
]
ds.

Recalling (51) and (52), this ends the proof of Lemma 4.4.
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5 Illustration and Discussion

In this section, we illustrate and discuss the two main theorems, stated in Section 2 and the four
lemmas, presented in Section 4. In the following, we approximate by simulation the quantities for
N = 500, tN = log(N)/λ0 and using the following set of parameters (called reference parameters set
below),

b0 = 1.2, d0 = 2.0, b1 = 1.2, d1 = 0.5, ω = 2.0, α = 0.9 and γ = 1.0.

As seen in Section 4, the SFS of a rescued population can be computed by counting two types of
mutations separately: (1)the number of mutations that appear during sensitive cell division SN

i (tN )

and (2)those of resistant cell division S
N

i (tN ).

Let us first deal with the case of mutations carried by a small number of cells (see Lemmas 4.1 and
4.3). In such case, the expected number of mutations is well approximated by the expected number of
mutations appeared in resistant cells, i.e.

E
[
SN
i (tN )

]
∼

N→+∞
E
[
S
N

i (tN )
]
.

We illustrate this equivalence relation in Figure 4 where the orange bullets and the red bars correspond

to the empirical expectation over 50 000 realizations, respectively, of SN
i (tN ) and S

N

i (tN ), for i ∈
[0, 20] (subfigure a) and i ∈ [21, 121] (subfigure b). The blue crosses correspond to their theoretical
approximation given by Theorem 2.1 and Lemma 4.1, respectively. We observe that, for small values of

i, the empirical expectations of SN
i (tN ) and S

N

i (tN ) correspond, as do their theoretical approximations.

Approximation given by Theorem 2.1 can be seen as the contribution of each ancestral resistant
cell, appeared at a random times of law given in Proposition 3.1 (ii), multiplied by the total number
of ancestral resistant cells that appeared before tN ,

E
[
S
N

i

(
tN
)]

∼
N→∞

2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

ωλ0

λ1 + λ0
I(i)Nλ1t︸ ︷︷ ︸

contribution of a cell

. (55)

Indeed, in the one hand, the expected number of ancestral resistant cells, E[NN
R ], is given by Lemma A.1

and its asymptotic equivalent, when N is large, corresponds to the underlined formula with the indi-
cation ”number of ancestral resistant cells” of Equation (55). Notice that this approximation when N
is large is the same as the approximation of NP

(
AN

1

)
(see Formula (10)), which represents the mean

number of ancestral resistant cells unrelated to another ancestral resistant cell.
On the other hand, recall that the time of occurrence of an ancestral resistant cell conditioned

on belonging to a progeny that carried exactly one ancestral resistant cell follows an exponential law
of parameter δ0 xN (cf Proposition 3.1). Then notice that δ0 xN tends to λ0 when N tends to infin-
ity. Moreover, when i is fixed and N is large, E

[
SN
i (tN − s)|ZN (s) = (0, 1)

]
can be approximated

by ωI(i)eλ1(tN−s). Hence the second term of the product (55) can be interpreted as the SFS asso-
ciated with the process generated by one ancestral resistant cell appeared at an exponential time of
parameter λ0, since∫ tN

0

E
[
SN
i (tN − s)|ZN (s) = (0, 1)

]
λ0e

−λ0s ds ∼
N→∞

∫ tN

0

ωI(i)eλ1(tN−s)λ0e
−λ0s ds

∼
N→∞

ω
λ0

λ1 + λ0
I(i)Nλ1t.

In conclusion, in this asymptotic case, the shape of the SFS with respect to i is not impacted by
the rescue dynamics. However, the expected SFS is impacted by the time it takes for the ancestral
resistant cells to appear, although the SFS is studied at an asymptotically long time tN .

The fraction λ0

λ1+λ0
can be interpreted as a loss coefficient due to the rescued dynamics. When λ0 is

large, the process ZN
0 is extinct quickly, so the exponential time is close to 0 and the loss coefficient is
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Figure 4: Empirical and theoretical expectation of SN
i (tN ) and S

N

i (tN ) for small value of i, i.e i ∈ [1, 20]
in (a) and i ∈ [21, 121] in (b). The orange bullets and the red bars correspond to the empirical

expectation over 50 000 realizations, respectively, of SN
i (tN ) and S

N

i (tN ). The blue crosses correspond
to the theoretical approximation given by Theorem 2.1 and Lemma 4.1.

close to 1. When λ1 is large, even if the exponential time is small, starting the birth and death process
induced by an ancestral resistant cell from this time and not from t = 0 is a huge disadvantage, so the
loss coefficient is close to 0.

The size order of E[SN

i

(
tN
)
] is given by the size order of the resistant population number at time

tN which is Nλ1t. The mutation number due to sensitive division can not reach such size order. This
is why, it is negligible in such asymptotic case.

Let us now illustrate and discuss the results on the number of mutations carried by a large number of
resistant cells, i.e. for i depending on N . Remind that in this case, we assumed that iN is proportional
to the size order of the resistant population number at time tN , i.e iN ∼ eλ1tN when N → ∞. As in

Formula (55), the approximation of E[SN

iN (tN )], given by Lemma 4.2(i), can be seen as the expected
number of ancestral resistant cells multiplied by the contribution of one ancestral resistant cell,

b0γωλ1 K
′(x)N1−λ1t−α =

2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

∫ ∞

0

(∫ u

0

ωb1e
λ1(u−s)λ0e

−λ0sds

)
︸ ︷︷ ︸

Ω1

(
λ1

b1
)2e−λ1(tN−u)e−x

λ1
b1

eλ1u

︸ ︷︷ ︸
Ω2

du.

(56)
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The integral term Ω1 represents the number of mutations, due to resistant division, that appeared at
time u. Indeed, ω represents the mean number of mutations due to one division, b1 ds represents the
probability that a resistant cell divides during a small interval of time ds and eλ1(u−s) represents the
number of progeny at time u of an ancestral resistant cell appeared at time s. Finally, the integration
over an exponential density of parameter λ0 is due to the stochastic time of occurrence of each ancestral
resistant cell, following a law given by Proposition 3.1(ii). Ω2 gives the approximation when N tends
to infinity, of the probability that a resistant cell appeared at time u has exactly iN progeny at time
tN (see Formula (47) and convergence result (38)).

As previously explained, we are not able to give an asymptotic approximation of E
[
SN
iN
(tN )

]
as we are not able to control the influence of the kinship events between ancestral resistant cells.

However, in Figure 5, the empirical expectation of SN
iN
(tN ), SN

iN
(tN ) and S

N

iN (tN ) for iN ∈ [200, 700]
are respectively represented by the green line, the orange bullets and the pink line. Considering our
reference parameters set, notice that eλ1tN ≈ 230. We observe that the empirical expectations of

SN
iN
(tN ) and S

N

iN (tN ) have the same order of magnitude when iN ∼ eλ1tN when N → ∞. We observe

also that, when iN increases, the empirical expectation of SN
iN
(tN ) decreases faster to 0 than the one

of S
N

iN (tN ).

200 300 400 500 600 700
iN

0.00

0.02

0.04

0.06 Empirical expected SNiN(tN)

Empirical expected SNiN(tN)

Empirical expected S
N
iN

(tN)

Figure 5: Empirical expectation of SN
iN
(tN ), SN

iN
(tN ) and S

N

iN (tN ) for large values of iN , i.e iN ∈
[200, 700]. The orange bullets, the pink and green lines correspond to the empirical expectation over

50 000 realizations, respectively, of SN
iN
(tN ), S

N

iN (tN ), and SN
iN
(tN ).

Finally, we illustrate and discuss the result we obtain on Sx1,x2(tN ) with 0 < x1 < x2, defined in (2).
To simplify the understanding of the illustrations and discussions, we focus on Sx(tN ) := Sx,+∞(tN ),
for x > 0.

We first deal with the results about SN
x (tN ), whose empirical expectation, using our reference

parameters set, is drawn in Figure 6 with orange bullets. The blue line, in Figure 6, corresponds to the
function x 7→ b0γωλ1 L(x)N

1−α, which is the theoretical approximation of E[SN
x (tN )] when N is large

(see Lemma 4.4). Let us discuss the shape of this theoretical approximation. Recall that, for x > 0

N1−αb0γωλ1 L(x) =
2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

∫ ∞

0

ω

2
(1 + 2b0s)︸ ︷︷ ︸

∆1

λ1

b1
e−x

λ1
b1

eλ1s

︸ ︷︷ ︸
∆2

λ0e
−λ0s︸ ︷︷ ︸
∆3

ds. (57)

As previously discussed, the first term is an approximation of the expected total number of ancestral
resistant cells. Then, ∆3 corresponds to the limiting density of time of occurrence of an ancestral

22



0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0
x

0

2

4

6

8
empirical expected SNx (tN)

Theoretical approximation

Figure 6: Empirical expectation of SN
x (tN ) for x ∈ [0.1, 7]. The orange bullets correspond to the

empirical expectation over 50 000 realizations of SN
x (tN ). The blue line corresponds to the function

b0γωλ1 LN1−α with L defined in (5).

resistant cells (cf Proposition 3.1). In view of (47) and the proof of Lemma 4.4, we can interpret ∆2

as an approximation of the probability that a cell, appeared at time s, has more than xeλ1tN offspring
at time tN . Indeed,

P(Z̃(tN − s) > xeλ1tN ) =
∑

i>xeλ1tN

λ2
1

b21

e−λ1(tN−s)

(1− d1e−λ1(tN−s)/b1)2

(
1− e−λ1(tN−s)

1− d1e−λ1(tN−s)/b1

)i−1

=
λ1

b1

e−λ1u

e−λ1u − d1

b1
e−λ1tN

(
1− e−λ1(tN−s)

1− d1e−λ1(tN−s)/b1

)⌊xeλ1tN ⌋

−→
N→∞

∆2

Finally, the factor ∆1 = ω
2 (1 + 2b0s) represents the mean number of mutations carried by a resistant

cell that appeared at time s, which is proportional to the number of times a sensitive cell divides before
becoming resistant at time s. Indeed, the term ω/2 corresponds to the mean number of mutations
that a cell gets after one division. The term (1 + 2b0s) corresponds to the division needed to become
resistant and to the mean number of divisions a resistant cell makes before appearing at time s knowing
that its family tree has only one resistant cell. The mean number of divisions made by a sensitive cell
over a time [0, s] is given by b0s. Hence the factor 2 is surprising. However it has already been met in
the dynamics of branching processes (see remark of the main theorem in [3]). Here, it translates the in-
crease of the number of divisions in a resistant lineage compared to a sensitive one (destined to die out).

Let us then discuss results about S
N

x (tN ). In Figure 7, we draw the empirical expectation of this
quantity using orange bullets. The blue line represents the function x 7→ b0γωλ1N

1−αK(x) that is the

asymptotic approximation of E[SN

x (tN )] when N is large, given by Lemma 4.2.
Let us discuss the shape of this theoretical approximation. Recall that, for x > 0

b0γωλ1K(x)N1−α =
2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

∫ ∞

0

(∫ u

0

ωb1e
λ1(u−s)λ0e

−λ0sds

)
︸ ︷︷ ︸

Ω1

λ1

b1
e−x

λ1
b1

eλ1u

︸ ︷︷ ︸
∆2

du. (58)

This expression is the same as the approximation of E
[
SN
iN
(tN )

]
given by (56) for which we replace

Ω2 by ∆2, defined in (57). Indeed, in this case, we take into account mutations carried by more than
xeλ1tN cells and not exactly iN ∼ eλ1tN . For this reason, Ω2, as a function of x, corresponds to the
derivative of ∆2 correctly renormalized.

Finally, in Figure 8, we draw using dash and continuous lines respectively, the functions K and L
on [0.6, 6], which represents the weight of the contribution of mutations due to resistant and sensitive
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Figure 7: Empirical expectation of S
N

x (tN ) for x ∈ [0.1, 7]. The orange bullets correspond to the

empirical expectation over 50 000 realizations of S
N

x (tN ). The blue lines correspond to the function
b0γωλ1N

1−αK with K defined in (4).
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(a) b0 = 1.2, λ0 = 0.8.
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(b) b0 = 2.2, λ0 = 0.8.
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Figure 8: Graph of the functions K and L on [0.6, 6] for the reference parameter set with different
values of b0 and λ0. The dash line represents the function K(x) for x ∈ [0.6, 6], defined in (4). The
continuous line represents the function L(x) for x ∈ [0.6, 6], defined in (5).

divisions respectively (see Formula (3)). Notice that, depending on the value of the birth and growth
rates of sensitive cells, the contribution E[SN

x (tN )] of mutations appeared in sensitive cells may become

larger than the contribution E[SN

x (tN )] of mutations appeared in resistant cells, this is true for example
when b0 is large, λ0 is small and x is sufficiently large (x > 1 on Subfigure (d)). Moreover we observe
that, when we don’t take into account the number of ancestral resistant cells, the influence of the
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sensitive dynamics in the contribution of mutations, that appeared during resistant divisions, is only
due to λ0 contrary to the mutations appeared during sensitive divisions.

We conclude that the rescue dynamics influence the SFS associated with mutations carried by both
a small and a large number of cells in the population at the characteristic time tN of extinction of
sensitive cells.
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A Annexe

The following lemma gives the expected number of resistant mutations that occur during the extinction
of the sensitive initial population.

Lemma A.1. Let NN
R be the total number of ancestral resistant cells in the process described in

Section 2.

E[NN
R ] =

2b0γN
λ0 + 2γNb0

N ∼
N→∞

2b0γ

λ0
N1−α (59)

Proof. The dynamics of the process NN
R are influenced by only two different events which can be

modeled by two independent Poisson processes. Hence, there exist Y1 and Y2, two independent Poisson
processes which are both independent of the process Z0, such that we can write

NN
R = Y1

(
2b0γN (1− γN )

∫ ∞

0

ZN
0 (s)ds

)
+ 2Y2

(
b0γ

2
N

∫ ∞

0

ZN
0 (s)ds

)
.

Notice that, for all t ≥ 0, E[ZN
0 (t)] = Ne−(λ0+2γNb0) t, we deduce by taking the expectation in the

previous expression that

E[NN
R ] = 2b0γN (1− γN )

∫ ∞

0

E[ZN
0 (s)]ds+ 2b0γ

2
N

∫ ∞

0

E[ZN
0 (s)]ds =

2b0γN
λ0 + 2γNb0

N.

This second lemma states the SFS of a birth and death process that is supercritical and that starts
with one individual. The proof follows the proof of Proposition 3.1 in [7] and is given for clarity in
order to adapt it to our notation.

Lemma A.2. For all i ∈ N∗, N ∈ N∗ and t > 0,

E
[
SN
i (t)|ZN (0) = (0, 1)

]
= weλ1t

∫ eλ1t−1

eλ1t−d1/b1

0

1− y

1− d1

b1
y
yi−1dy.

Moreover, for tN = t log(N)

E
[
SN
i (tN )|ZN (0) = (0, 1)

]
∼

N→∞
wNλ1tI(i), (60)

where the definition of I(i) is given by (1).

Proof. We assume that initially the population is given by only one resistant cell. We denote by M i,da
t

the number of mutations carried by i resistant cells at time t with ages in [a− da, a]. Hence M i,da
t is

given by the number of mutations that appeared on any resistant cells at time t− a,

E[M i,da
t ] = 2E

[ Z1(t−a)∑
j=1

Nw1division between t − a − da and t − a, Z̃j
1(a)=i

]
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where Z̃j
1 is a supercritical birth and death process with parameters b1 > d1 starting by one cell. The

2 in the previous formula corresponds to the contribution of the two daughter cells using the branching
property of the process we are studying.

Then taking conditional expectation and using independence between cells we obtain,

E[M i,da
t ] = 2E

[
Z1(t− a)

]
E
[
Nw

]
P(division between t− a− da and t− a)P(Z1(a) = i)

= 2 e(b1−d1)(t−a)(w/2)b1daP(Z̃1(a) = i).

For all t > 0, the law of Z̃1(t) is given by (see [16] Chapt 5; formula (7.3)),

P(Z̃1(a) = i) =
(b1 − d1)

2e(b1−d1)a

(b1e(b1−d1)a − d1)2

(b1(e(b1−d1)a − 1)

b1e(b1−d1)a − d1

)i−1

Hence, we obtain,

E[M i,da
t ] = w

λ2
1e

λ1t

(b1eλ1a − d1)2

(b1(eλ1a − 1)

b1eλ1a − d1

)i−1

b1da.

The result is deduced by a change of variable as those found in [15] and by noticing that

E[SN
i (t)|ZN (0) = (0, 1)] =

∫ t

0

E[M i,da
t ]da.

Finally, the asymptotically equivalent expression is obtained as soon as we notice that

eλ1tN − 1

eλ1tN − d1/b1
−→
N→∞

1.

Following the proof of Proposition 3.1, the last lemma gives the law of the generation and the
appearance time of one ancestral resistant cell chosen uniformly at random conditioned on belonging
to a progeny that carried at least one ancestral resistant cell (and not exactly one as for Proposition 3.1).

Lemma A.3. For any N ∈ N∗, we denote by G̃N and T̃N , the generation and the appearance time of
an ancestral resistant cell chosen uniformly at random and conditioned on belonging to a progeny that
carried at least one ancestral resistant cell and we introduce

p̃N :=
1− xN

2
=

1−
√
1− 4pN (1− pN )(1− βN )

2
(61)

with xN , pN and βN defined in (6). Then

(i) the law of G̃N is characterized by, for all g ∈ N∗,

P(G̃N = g) =
2g−1

pN − p̃N

[
1

g
((pN )g − (p̃N )g)− 2

g + 1
((pN )g+1 − (p̃N )g+1)

]
(ii) and the density of T̃N , fT̃N

, is written, for all t ≥ 0,

fT̃N
(t) =

e−t(b0+d0)(1−2pN )

2t (pN − p̃N )

[
(1− eN (t))

(
1 +

1

t(b0 + d0)

)
− 2(pN − p̃NeN (t))

]
where

eN (t) = e−2t(b0 + d0) (pN − p̃N ).

Proof. This proof follows the proof of Proposition 3.1 and will use Lemma 3.3 for which the event
RT (p,β) will not correspond to T (p, β) has exactly one marked leaf but at least one marked leaf. In
the following we make the calculus corresponding to this change. Notice that, in this case, for all
g, n ∈ N∗, P(R|G = g, λ(T ) = n) = P(R|λ(T ) = n) = 1− (1− β)n. Hence the Equation (15) become,

P(G = g|R) =

∑
n≥1(1− (1− β)n)vg,n∑
n≥1(1− (1− β)n)un

=

∑
n≥1 vg,n −

∑
n≥1(1− β)nvg,n

1−
∑

n≥1(1− β)nun
. (62)
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Thus, using the same arguments as previously and Equation (16) which is true for any p < 1/2, we
can calculus the three sums of Equation (62). Indeed∑

n≥1

(1− β)nun =
1

p

∑
n≥1

αn[(1− β)p(1− p)]n =
1

p

∑
n≥1

αnp̃
n(1− p̃)n =

p̃

p
, (63)

where p̃ satisfies p̃ < 1/2 and
p̃(1− p̃) = p(1− p)(1− β). (64)

Moreover, using induction formula (20), we obtain for all g ≥ 3,

∑
n≥1

vg,n =
2g−1

p

∑
n≥g

[p(1− p)]n

n
γn,g

=
2g−1

p

∫ p

0

(1− 2x)
∑
n≥g

[x(1− x)]n−1γn,g

=
2g−1

p

∫ p

0

(1− 2x)

x(1− x)

∑
n≥g

n−g+1∑
i=1

αi[x(1− x)]iγn−i,g−1[x(1− x)]n−i,

where we identify a Cauchy product of infinite sum. Thus, using again an induction and then Equa-
tion (16), we obtain for all g ≥ 3,

∑
n≥1

vg,n =
2g−1

p

∫ p

0

(1− 2x)

x(1− x)

∑
n≥1

αn[x(1− x)]n

 ∑
n≥g−1

γn,g−1[x(1− x)]n

 dx,

=
2g−1

p

∫ p

0

(1− 2x)

x(1− x)

∑
n≥1

αn[x(1− x)]n

g−2∑
n≥2

αn−1[x(1− x)]n

 dx,

=
2g−1

p

∫ p

0

(1− 2x)xg−1dx,

= (2p)g−1

(
1

g
− 2p

g + 1

)
, (65)

which gives the value of the second sum. Moreover, as
∑

n≥1 v1,n = 1− p and∑
n≥1 v2,n = 2

p

∫ p

0
(1−2x)x dx, Formula (65) is also true for g ∈ {1, 2}. To deal with the last sum of the

r.h.s. of Equation (62), we use the fact that the previous computations to deal with the second sum are
true for any p < 1/2. Thus, writing ṽg,n such that vg,n = pn−1(1− p)nṽg,n and using Equations (64)
and (65), we have ∑

n≥1

(1− β)nvg,n =
p̃

p

∑
n≥1

p̃n−1(1− p̃)nṽg,n

=
2g−1p̃g

p

(
1

g
− 2p̃

g + 1

)
. (66)

Using the same arguments as the proof of Proposition 3.1 (i), that concludes the proof of Lemma A.3
(i).

As previously, to find the density of T̃N , it is sufficient to notice that the life time of each sensitive
cells is distributed as exponential r.v. with parameter b0 + d0, and that the chosen ancestral resistant

cell has G̃N ancestors. Thus, T̃N =
∑G̃N

i=1 Ei, where (Ei)i∈N is a sequence of i.i.d. r.v. of exponential
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law with parameter b0 + d0 and independent from G̃N . That is,

fT̃N
(t) =

∞∑
g=1

P(G̃N = g)fΓ(g,b0+d0)(t)

=

∞∑
g=1

2g−1

pN − p̃N

[
1

g
((pN )g − (p̃N )g)− 2

g + 1
((pN )g+1 − (p̃N )g+1)

]
tg−1(b0 + d0)

ge−t(b0+d0)

(g − 1)!

=
e−t(b0+d0)

pN − p̃N

[
1

2t
(e2t(b0+d0)pN − e2t(b0+d0)p̃N )

− 1

2t2(b0 + d0)

(
e2pN t(b0+d0)(2pN t(b0 + d0)− 1)− e2p̃N t(b0+d0)(2p̃N t(b0 + d0)− 1)

)]
,

by noticing, for the last equality, that
∑∞

g=1
xg+1

(g−1)!(g+1) =
∑∞

g=1
xg+1

g! − xg+1

(g+1)! = ex(x − 1) + 1. And

the last formula can be rewritten to conclude the proof of Lemma A.3 (ii).
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