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aUniversité Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
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Abstract

We give several characteristic properties of FAC spaces, namely topological
spaces with no infinite discrete subspace. The first one was obtained in 2019
by the first author, and states that every closed set is a finite union of irre-
ducible closed subsets. The full result extends well-known characterizations
of posets with no infinite antichain. One of them is that FAC spaces are,
equivalently, topological spaces in which every closed set contains a dense
Noetherian subspace, or spaces in which every Hausdorff subspace is finite,
or in which no subspace has any infinite relatively Hausdorff subset. The lat-
ter comes with a nice min-max property, extending an observation of Erdős
and Tarski in the case of posets: on spaces with no infinite relatively Haus-
dorff subset, the cardinalities of relatively Hausdorff subsets are bounded,
and the least upper bound is also the least cardinality of a family of closed
irreducible subsets that cover the space.
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1. Introduction

A topological space T ∶= (E,F), where F is the set of closed subsets, is
Noetherian if every descending sequence of closed subspaces is stationary. A
subset X of E is discrete if and only if the induced topology on X is the
discrete topology, namely if every subset of X is closed with respect to the
induced topology. A closed subset is irreducible if it is non-empty and not
the union of two proper closed subsets. Our main objective is to show the
following.

Theorem 1. The following properties are equivalent for a topological space
T ∶= (E,F).

(i) No infinite subset of E is discrete;

(ii) Every closed set is a finite union of irreducible closed subsets;

(iii) Every closed set contains a dense subset on which the induced topology
is Noetherian.

The equivalence between (i) and (ii) was proved by the first author in
2019 [10]. The resulting spaces were called FAC spaces there, since they are
a topological generalization of posets with the f inite antichain condition,
namely those that have no infinite antichain. Hence, compared to [10], (iii)
is a new, equivalent definition of FAC spaces, itself inspired from a well-known
equivalent characterization of posets with the finite antichain condition (see
Section 3.5). We will also mention a few other equivalent conditions in The-
orem 14, which, as we will see, are connected to a nice min-max property,
which we will state in Proposition 13.

We give a proof of the equivalence of (iii) with (i) and (ii) in Section 2.
That also gives an alternative proof of the equivalence between (i) and (ii),
and will stress the importance of the notion of infinite separating chain of
closed sets, inspired from work by Chakir and Pouzet [3, 2]. We make addi-
tional remarks in Section 3, relating the result to other characterizations of
FAC spaces, to Noetherian spaces, to a related result of Galvin, Milner and
Pouzet in the larger context of closure operators, to lattice properties, and
finally to a min-max result due to Erdős and Tarski [5], which will lead us
to the topological min-max theorem announced above.
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2. The proof

We mimic the proof of a similar, fairly well-known result for posets, which
we will give in Section 3.5. The significant part is the implication (i)⇒ (iii).

We recall that a closure system is a pair (E,ϕ) where ϕ (the closure) is a
map from the power set of E into itself which is extensive, order-preserving
and idempotent [4, Section II.1]. A closure is topological if and only if it
commutes with finite unions. The fixed points of a topological closure form
the lattice of closed sets of a topology, and conversely, the usual closure
operator of a topological space is a topological closure.

Given a closure system (E,ϕ), a subset C ⊆ E is closed if ϕ(C) = C; it is
independent if x /∈ ϕ(C ∖ {x}) for every x ∈ C; it is generating if ϕ(C) = E.
When ϕ is a topological closure, a set is independent if and only if it is
discrete, and the generating sets are called dense.

The closure ϕ↾E′ induced by ϕ on a subset E′ of E is defined by ϕ↾E′(X) ∶=
ϕ(X) ∩E′ for every X ⊆ E′.

Although our results will only apply to topological closures, we use the
language of (general) closures so as to be able to relate our results to a
theorem of Galvin, Milner and Pouzet in Section 3.3.

We will use the following notion and result, adapted from [3, Section
3, p.7], see also [2, p.25]. A non-empty chain I of closed sets of (E,ϕ) is
separating if for every I ∈ I ∖ {⋃I} and every finite set F ⊆ ⋃I ∖ I, there is
a set J ∈ I such that I /⊆ ϕ(F ∪ J). Note that J is necessarily included in
I, and strictly so: otherwise, since I is a chain, I would be included in J ,
hence in ϕ(F ∪J). In particular, a separating chain I cannot have a smallest
element I ≠ ⋃I; an infinite separating chain cannot have a smallest element
at all.

We illustrate the notion in Figure 1. Here we assume that ϕ is a topo-
logical closure operator, so that it commutes with unions; I is a countable
chain I0 ⊇ I1 ⊇ ⋯ ⊇ In ⊇ ⋯, we consider I ∶= In, and F is the finite set of
bullets in the top tier of the figure. Below left, we show ϕ(F ∪ In+1), which
is the union of In+1 with the closures of each of the points in F (each closure
of a point being shown as a triangular region that extends below the point),
and ϕ(F ∪In+1) contains In; but ϕ(F ∪In+2), shown below right in the figure,
does not, and therefore we can take J ∶= In+2.

The following holds for every closure system, not necessarily topological.
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φ(F ∪ In+2) ⊉ In

Figure 1: A separating chain

Lemma 1. A closure system (E,ϕ) contains an infinite independent set if
and only if E contains a subset E′ that contains an infinite separating chain
of closed sets with respect to the induced closure.

Proof. Any infinite independent set contains a countably infinite indepen-
dent subset, so we may as well assume a given infinite independent set X
of the form {xn ∶ n < ω}, where xm ≠ xn for all m ≠ n. Set E′ ∶= X. Then
the chain I = {In ∶ n < ω}, where In ∶= ϕ↾E′(X ∖ {xi ∶ i < n}), is separat-
ing in E′. Indeed, first ⋃I = I0 = E′ = X, next every I ∈ I ∖ {⋃I} is an
In for some n ≥ 1. For every finite set F of points of I0 ∖ In, define J as
In+1. Since xn is different from every xi, i < n, xn is in X ∖ {xi ∶ i < n}
hence in In. It follows that xn is not in F . It is not in J either, because
J ⊆ ϕ(X ∖ {xi ∶ i < n + 1}) ⊆ ϕ(X ∖ {xn}), and X is independent. Therefore
xn is not in F ∪ J . We rewrite that as F ∪ J ⊆ X ∖ {xn}, and conclude that
ϕ(F ∪ J) ⊆ ϕ(X ∖ {xn}). Since X is independent again, xn cannot be in
ϕ(F ∪ J). However, xn is in In, so In /⊆ ϕ(F ∪ J).

Conversely, let E′ be a subset of E such that the induced closure ϕ′ ∶= ϕ↾E′

on E′ contains an infinite separating chain I of closed sets. We construct
an infinite independent subset for the induced closure ϕ′, and therefore also
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for the closure ϕ. To this end, we will define inductively an infinite sequence
x0, I0, . . . , xn, In, . . . such that I0 ∈ I ∖ {⋃I}, x0 ∈ ⋃I ∖ I0 and such that, for
every n ≥ 1:

(an) In ∈ I;

(bn) In ⊂ In−1;

(cn) xn ∈ In−1 ∖ ϕ′({x0, . . . , xn−1} ∪ In).

Since I is infinite, I ∖ {⋃I} /= ∅. We choose I0 ∈ I ∖ {⋃I} and x0 ∈ ⋃I ∖ I0
arbitrarily. Now let n ≥ 1. Let us assume that xk, Ik are defined and satisfy
(ak), (bk), (ck) for every k ≤ n − 1, and let us define I ∶= In−1 and F ∶=
{x0, . . . , xn−1}. Since I ∈ I and F is a finite subset of ⋃I ∖ I, there is some
J ∈ I such that I /⊆ ϕ′(F ∪ J). The set J is a proper subset of I: otherwise,
since I is a chain, we would have I ⊆ J , hence I ⊆ J ⊆ F ∪J ⊆ ϕ′(F ∪J). We
pick z ∈ I ∖ ϕ′(F ∪ J), and we set xn ∶= z, In ∶= J .

It remains to check that the set X ∶= {xn ∶ n < ω} is independent. For
every x ∈X, say x = xn, we know that xn is in In−1 and not in the closed set
C ∶= ϕ′({x0, . . . , xn−1} ∪ In), by (cn). The set C contains x0, . . . , xn−1. For
every k > n + 1, Ik−1 ⊂ In by (bk−1), . . . , (bn+1), and xk ∈ Ik−1 by (ck), so In
contains every xk with k > n + 1. It also contains xn+1, and since In ⊆ C, C
contains every xk with k ≥ n + 1. It follows that C contains every element of
X except x = xn. Therefore C ⊇ ϕ′(X ∖ {x}), from which we conclude that
x, not being in C, is not in ϕ′(X ∖ {x}) either. ◻

Remark 2. Assuming ϕ topological, we can take E′ ∶= E in Lemma 1. In-
deed, let X be an infinite independent subset of the form {xn ∶ n < ω}, where
the points xn are pairwise distinct. Let In ∶= ϕ(X ∖ {xi ∶ i < n}). The chain
I = {In ∶ n < ω} is separating, as we now check. First ⋃I = I0 = ϕ(X).
Every I ∈ I ∖ {⋃I} is an In for some n ≥ 1. For every finite set F of
points of ϕ(X) ∖ In, we define J as In+1 and we check that In /⊆ ϕ(F ∪ J)
by showing that xn, which is in In, is not in ϕ(F ∪ In+1). Since ϕ is topo-
logical, it suffices to show that xn is neither in ϕ(F ) nor in ϕ(In+1) = In+1.
The latter—that xn is not in In+1—is clear. As for the former, we note
that In ∪ ϕ(X ∖ {xn}) = ϕ((X ∖ {xi ∶ i < n}) ∪ (X ∖ {xn})) = ϕ(X), using
the fact that ϕ is topological. That implies ϕ(X) ∖ In ⊆ ϕ(X ∖ {xn}), so
F ⊆ ϕ(X ∖ {xn}), whence ϕ(F ) ⊆ ϕ(X ∖ {xn}). If xn were in ϕ(F ), it would
then be in ϕ(X ∖ {xn}), and that is impossible since X is independent.
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Remark 3. In general, namely if ϕ is not topological, we cannot take E ∶=
E′.

Let us consider E ∶= P(N), and let us define ϕ by ϕ(A) ∶= P(⋃A) for every
A ∈ P(E). The closed subsets of E are exactly the sets of the form P(A)
with A ⊆ N. There is an infinite independent set, say X ∶= {{n} ∣ n ∈ N}.
However, no subset of E has any separating chain of closed sets I. Indeed,
let us assume that one existed, and let us pick any I ∈ I ∖ {⋃I}. Since I
is closed, I = P(A) for some A ⊆ N. We take F ∶= {A}: for every J ∈ I,
ϕ(F ∪ J) ⊇ ϕ(F ) = P(A) = I, so I cannot be separating.

In a quasi-ordered set E, for every A ⊆ E, we write ↓A for {x ∈ E ∶ ∃y ∈
A,x ≤ y}. A subset A is cofinal in E if and only if E = ↓A [6, Chapter 2, 5.1,
p.44]. An initial segment is a subset I of E such that I = ↓ I. The finitely
generated initial segments are the sets of the form ↓A, A finite. We write ↓x
for ↓{x}.

Every closure system E is quasi-ordered by x ≤ y if and only if x ∈ ϕ({y}).
For every x ∈ X, ↓x = ϕ({x}). Every closed set is an initial segment. If ϕ
is topological, then every finitely generated initial segment ↓A is equal to
ϕ(A), hence is closed.

We say that a quasi-ordered set is well-founded if and only if it has no
infinite strictly descending sequence x0 > x1 > ⋯ > xn > ⋯, where x < y if and
only if x ≤ y and y /≤ x. That extends the same notion on posets.

We will use the following lemma in order to prove the implication (i)⇒
(iii).

Lemma 2. If (E,ϕ) is a closure system then E contains a generating subset
D such that the collection of finitely generated initial segments I<ω(D) of the
quasi-ordered set (D,≤↾D) is well-founded under inclusion.

Proof. According to a result of Birkhoff, the poset I<ω(P ) of finitely gener-
ated initial segments of a poset P is well-founded if P is well-founded [1, The-
orem 2, p.182]. This property holds for initial segments of a quasi-ordered set
too, since initial segments of a quasi-ordered set are inverse images of initial
segments of the order quotient. For the reader’s convenience, we give a proof
of Birkhoff’s result. Let ↓A1 ⊃ ↓A2 ⊃ ⋯ ⊃ ↓An ⊃ be an infinite descending se-
quence where each Ai is finite. We may assume that each Ai is an antichain.
We construct a tree T whose vertices are finite chains {x1, x2,⋯, xn} where
each xi ∈ Ai and x1 ≥ x2 ≥ ⋯ ≥ xn. The cardinality of such a set is n, or some
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lower number (if some element appears several times), and is the depth of
the vertex in T . The unique parent of a depth n set, n ≥ 1, is obtained by
removing its least element (xn, but also xn−1 if that happens to be equal to
xn, and so on). The empty chain is the root. Every element of each An is
the least element of at least one such chain, of depth at most n. Hence every
set ↓An appears as the initial segment generated by a finite set of vertices of
T . Since there are infinitely many sets ↓An, the tree T is infinite. Since T
is finitely branching, by Kőnig’s Lemma [12] it has an infinite branch, and
that is an infinite descending sequence of elements: contradiction.

Thus, in order to prove the lemma, it suffices to prove that E contains a
generating subset on which the quasi-order ≤ is well-founded.

A result due to Hausdorff (see [6, Chapter 2, p.57]) states that every poset
contains a well-founded cofinal subset. That is also valid for quasi-ordered
sets such as E. Indeed, let us consider the family W of all well-founded
subsets of the set E, and let us order it by prefix: A ⊑ B if and only if
B ∩ ↓A = A. By Zorn’s Lemma, it has a maximal element A. If A were not
cofinal, there would be a point x that is not in ↓A. Then B ∶= A∪{x} would
be a strictly larger well-founded subset of E, contradicting maximality.

Hence let D be a well-founded cofinal subset of E. For every x ∈ E, there
is a point y ∈D such that x ≤ y. In other words, x is in ϕ({y}), hence in the
larger set ϕ(D). Therefore ϕ(D) = E and D is generating. ◻

Proof of the implication (i)⇒ (iii).
Let ϕ be the closure associated with the collection of closed sets F , and

let us remember that it is topological. Let C be a closed set. We define a
dense subset of C on which the induced topology is Noetherian. This will be
D, as given by Lemma 2. We note that D is dense in C, begin a generating
set.

Let ϕ↾D be the closure induced on D, namely ϕ↾D(X) ∶= ϕ(X) ∩D for
every X ⊆ D. This is also a topological closure, and we claim that it is
Noetherian.

By (i), E contains no infinite discrete set, so D does not contain any
infinite discrete set either. Let us imagine thatD contained an infinite strictly
descending sequence I0 ⊃ I1 ⊃ ⋯ ⊃ In ⊃ ⋯ of closed subsets. By Lemma 1,
that chain must fail to be separating: there must be an index m1 ≥ 1 and a
finite set F1 of points of I0 ∖ Im1 such that, for every n < ω (in particular,
for every n > m1), Im1 ⊆ ϕ↾D(F1 ∪ In) = ϕ↾D(F1) ∪ In. The last equality is
because ϕ↾D is topological, and In is closed. Hence m1 ≥ 1, F1 ⊆ I0 ∖ Im1 ,
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and for every n > m1, Im1 ∖ In ⊆ ϕ↾D(F1). We do the same with the infinite
subsequence starting at Im1 : there is an index m2 ≥ m1 + 1 and a finite set
F2 ⊆ Im1 ∖ Im2 such that for every n > m2, Im2 ∖ In ⊆ ϕ↾D(F2). Proceeding
this way, we obtain indices mk+1 ≥ mk + 1 and finite sets Fk+1 ⊆ Imk

∖ Imk+1

such that for every n >mk+1, Imk+1
∖ In ⊆ ϕ↾D(Fk+1), for every k ≥ 1.

Since Fk+1 ⊆ Imk
∖ Imk+1

⊆ ϕ↾D(Fk), we have ϕ↾D(Fk+1) ⊆ ϕ↾D(Fk), for
every k ≥ 1. It follows that the sequence (ϕ↾D(Fk))k≥1 is descending. Since D
was obtained from Lemma 2, that sequence must be finite. Let us pick k ≥ 2
such that ϕ↾D(Fk) = ϕ↾D(Fk+1). The set Fk cannot be empty, since ϕ↾D(Fk)
contains Imk

∖ Imk+1
, which is non-empty. We pick x ∈ Fk. In particular, x is

in Imk−1
∖Imk

, hence is not in Imk
. However, x is also in ϕ↾D(Fk) = ϕ↾D(Fk+1),

and since Fk+1 ⊆ Imk
∖ Imk+1

⊆ Imk
, x is also in ϕ↾D(Imk

) = Imk
: contradiction.

◻

Proof of the implication (iii)⇒ (ii).
Let ϕ be the closure on E. Let C be a closed set and D be a dense subset

of C on which the closure ϕ↾D is well-founded.
On D every closed set D′ is a finite union of irreducible closed sets. This

fact goes back to Noether, see [1, Chapter VIII, Corollary, p.181]. Indeed, if
D is not such, then, since the collection of closed sets on D is well-founded,
there is a minimal member C ′ which is not a finite union of irreducible
members. In particular, C ′ is non-empty. If C ′ is the union of two proper
closed subsets, by minimality those closed subsets must be finite unions of
irreducible subsets of D, hence so must be C ′. It follows that C ′ is irreducible:
contradiction.

Now D is itself closed in D, so we can write D as a finite union of irre-
ducible closed subsets Ci of D, 1 ≤ i ≤ n. For each Ci, ϕ(Ci) is irreducible in
E, as one easily checks [9, Lemma 8.4.10]. By density and the fact that ϕ is
topological, C = ϕ(D) = ⋃ni=1ϕ(Ci). ◻

Proof of the implication (ii)⇒ (i).
Let ϕ be the closure on E again, and let X be a discrete subspace. We

write ϕ(X) as a finite union of irreducible closed sets I1, . . . , In.
For each x ∈ X, x is in some Ik. We claim that Ik = ϕ({x}). To this

end, we note that Ik ⊆ ϕ(X) = ϕ({x}) ∪ ϕ(X ∖ {x}), since ϕ is topological.
Therefore Ik is equal to the union of the two closed sets ϕ({x}) ∩ Ik and
ϕ(X∖{x})∩Ik. SinceX is discrete, hence independent, x is not in ϕ(X∖{x}),
and since x ∈ Ik, ϕ(X ∖ {x}) ∩ Ik is a proper closed subset of Ik. Because
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Ik is irreducible, ϕ({x}) ∩ Ik cannot be a proper closed subset of Ik, so
ϕ({x}) ∩ Ik = Ik. This means that Ik ⊆ ϕ({x}), and the converse inclusion
follows from x ∈ Ik.

It follows that for any two distinct points x, y ∈ X, x and y cannot be in
the same Ik. Otherwise ϕ({x}) = ϕ({y}), but since X is independent, x is
not in ϕ(X ∖ {x}), hence not in the smaller set ϕ({y}). That is impossible
since ϕ({x}) = ϕ({y}) contains x.

Since each Ik can contain at most one point from X, X is finite. ◻

3. Remarks and comments

3.1. Other characterizations

A.H. Stone [14, Theorem 2] shows that (i) is equivalent to two further
properties: (iv) every open cover of every subspace X of T has a finite
subfamily whose union is dense in X, and (v) every continuous real-valued
function on every subspace of T is bounded.

He also shows [14, Theorem 3] that, for every topological space X, the fact
that X is a finite union of irreducible closed subsets—the special case of (ii)
where the closed set is the whole of X—is equivalent to six other conditions,
among which: (a) X is semi-irreducible, namely every collection of pairwise
disjoint non-empty open sets is finite, and: (b) X has only finitely many
regular open sets. He also observes that the cardinality of such collections
must be bounded [14, Theorem 3, (vi)].

In particular, our condition (ii) is equivalent to: (vi) every closed sub-
space of T is semi-irreducible, and to: (vii) every closed subspace of T has
only finitely many regular open sets.

We will come back to this in Section 3.5.

3.2. Noetherian topological spaces

Noetherian topological spaces have been studied for their own sake by
A.H. Stone [14]. They are an important basic notion in algebraic geometry,
since the spectrum of any Noetherian ring in a Noetherian topological space,
with the Zariski topology. They have also found applications in verification,
the domain of computer science concerned with finding algorithms that prove
properties of other computer systems, automatically [8]. One can consult
Section 9.7 of [9], which is devoted to Noetherian topological spaces.
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3.3. A related result on general closure systems

The implication (i)⇒ (ii) follows from the following result about closure
systems, as we will see. We recall that an up-directed subset of a poset P is
a non-empty subset A of P such that any two elements of A have an upper
bound in A, and that an ideal is an up-directed initial segment. We always
order powersets by inclusion.

Theorem 4. [7, Theorem 1.2] If a closure system (E,ϕ) contains no infinite
independent set then: (∗) there are finitely many pairwise disjoint subsets Ai
(i ∈ I) of E and, for each Ai, a proper ideal Ni of P(Ai) such that for every
X ⊆ ⋃i∈I Ai, the set X generates E if and only if Ai ∩X /∈ Ni, for each i ∈ I.

As it will become apparent in Proposition 7, this result specialized to
topological closures is just implication (i) ⇒ (ii). Decompositions of topo-
logical closures were considered in [13], but this consequence was totally
missed.

Remark 5. Condition (∗) entails that ⋃i∈I Ai generates E.

Remark 6. In Theorem 4, and if ϕ is topological, we may suppose that:

Ai ∩ ϕ( ⋃
j∈I∖{i}

Aj) = ∅ for each i ∈ I. (1)

This is Remark 1 of [13]. We repeat the argument. Let Ai and Ni satisfy con-
dition (∗) of Theorem 4. If (1) does not hold, we set A′

i ∶= Ai∖ϕ(⋃j∈I∖{i}Ai)
and N ′

i ∶= Ni ∩ P(A′
i). First, we claim that each N ′

i is a proper ideal
of A′

i. To this end, we set X ∶= A′
i ∪ ⋃j/=iAj. Because ϕ is topological,

ϕ(X) = ϕ(A′
i) ∪ ϕ(⋃j/=iAj) ⊇ A′

i ∪ ϕ(⋃j/=iAj) ⊇ Ai; also, ϕ(X) ⊇ X ⊇ Aj for
every j ≠ i, so ϕ(X) ⊇ ⋃j∈I Aj. Remark 5 then entails that X generates E.
By (∗), A′

i ∩X = A′
i cannot be in Ni; therefore A′

i is not in N ′
i , showing that

N ′
i is a proper ideal of P(A′

i).
Next, let X ⊆ ⋃i∈I A′

i. Let us assume that X generates E. Since X ⊆
⋃i∈I Ai, we may use (∗): Ai ∩ X /∈ Ni, for each i ∈ I. Hence A′

i ∩ X =
Ai ∩X /∈ N ′

i . Conversely, if A′
i ∩X /∈ N ′

i for each i ∈ I, then A′
i ∩X /∈ Ni, so

Ai ∩X = A′
i ∩X /∈ N ′

i , hence X generates E by (∗).

Proposition 7. Let ϕ be a topological closure operator on a set E. Then E
is a finite union of irreducible closed sets iff E has a decomposition satisfying
condition (∗) on generating sets of Theorem 4.

10



Proof. The result is a consequence of the following two claims. Each one
establishes one direction of the implication.

Claim 8. Let Ai, Ni (i ∈ I) be a finite decomposition satisfying condition (∗)
on generating sets of Theorem 4. According to Remark 6, we may assume
that it satisfies Condition (1). Then, for every subset Y of E, Y ∈ Ni iff
Y ⊆ Ai and ϕ(Y ) /⊇ Ai. In particular, Xi ∶= ϕ(Ai) is irreducible.

Proof (Proof of Claim 8.). By Remark 5, E = ϕ(⋃j∈I Aj). Let us as-
sume that Y ∈ Ni. Since Ni is an initial segment, Ai ∩ Y is in Ni. For
X ∶= Y ∪⋃j∈I∖{i}Aj, Ai ∩X = Ai ∩ Y since the sets Aj are pairwise disjoint,
so Ai ∩ X is in Ni. By (∗), X does not generate E. If Ai ⊆ ϕ(Y ) then
E = ϕ(⋃j∈I Aj) ⊆ ϕ(ϕ(Y ) ∪ ⋃j∈I∖{i}Aj) = ϕ(Y ∪ ⋃j∈I∖{i}Aj) (since ϕ is a
topological closure operator) = ϕ(X), which is impossible. Hence Ai /⊆ ϕ(Y ).

Conversely, if ϕ(Y ) /⊇ Ai, then there is a point x in Ai—hence not in
ϕ(⋃j∈I∖{i}Ai) by Condition (1)—which is not in ϕ(Y ), hence not in ϕ(Y ) ∪
ϕ(⋃j∈I∖{i}Aj). The latter is equal to ϕ(X), where X ∶= Y ∪⋃j∈I∖{i}Aj, since
ϕ is topological, so X does not generate E. Using (∗), Aj ∩X is in Nj for
some j ∈ I. If j ≠ i, then Aj ∩X ⊇ Aj by definition of X, and Aj ∩X ∈ Nj

implies Aj ∈ Nj, contradicting the fact that Nj is proper. Therefore j = i.
This means that Ai∩X, which is equal to Ai∩Y since the sets Aj are pairwise
disjoint, hence to Y since Y ⊆ Ai, is in Ni.

We finally show that Xi = ϕ(Ai) is irreducible. Since Ni is proper, Ai
is non-empty, hence Xi is non-empty. Let us assume that Xi is the union
of two proper closed subsets C1 and C2. We consider Y ∶= C1 ∩ Ai (resp.,
Y ∶= C2 ∩Ai). Then Y ⊆ Ai and ϕ(Y ) ⊆ C1 (resp., C2); in particular, ϕ(Y )
cannot contain Xi = ϕ(Ai), hence cannot contain Ai. By the first part of the
claim, Y is in Ni. In other words, both C1 ∩Ai and C2 ∩Ai are in Ni. Since
Ni is an ideal, (C1 ∩Ai) ∪ (C2 ∩Ai) = (C1 ∪C2) ∩Ai = Xi ∩Ai = Ai is in Ni,
which is impossible since Ni is proper. ◻

Claim 9. If E is a finite union of irreducible closed sets, let (Xi)i∈I be a
family of such sets with ∣I ∣ minimum. Set Ai ∶= Xi ∖⋃j/=iXj and Ni ∶= {A′ ⊆
Ai ∶ ϕ(A′) /=Xi}. This decomposition satisfies Condition (∗) of Theorem 4.

Proof (Proof of Claim 9.). We check thatNi is an ideal. GivenA′,B′ ∈
Ni, ϕ(A′ ∪B′) = ϕ(A′) ∪ ϕ(B′), since ϕ is topological. If that were equal to
the whole of Xi, and since ϕ(A′) and ϕ(B′) are both proper closed subsets
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of Xi, Xi would fail to be irreducible. Hence ϕ(A′ ∪B′) ≠Xi, so that A′ ∪B′

is in Ni.
Then we check that Ni is proper, namely that Ai is not in Ni. By defi-

nition of Ai, Xi ⊆ Ai ∪ (⋃j/=iXj) ⊆ ϕ(Ai) ∪ (⋃j/=iXj), so Xi = (Xi ∩ ϕ(Ai)) ∪
(Xi ∩ (⋃j/=iXj)) = ϕ(Ai) ∪ (Xi ∩ (⋃j/=iXj)), a union of two closed subsets.
The second one, Xi∩(⋃j/=iXj), is a proper subset of Xi since we have chosen
a family of least cardinality. Since Xi is irreducible, the other one cannot be
a proper subset. Therefore ϕ(Ai) =Xi. It follows that Ai is not in Ni.

Finally, let X ⊆ ⋃i∈I Ai.
If Ai∩X belongs toNi for no i ∈ I, then by definition ofNi, ϕ(Ai∩X) =Xi,

hence ϕ(X) = ϕ(⋃i∈I Ai ∩X) = ⋃i∈I ϕ(Ai ∩X) = ⋃i∈IXi = E.
Conversely, let us assume that ϕ(X) = E. Since X ⊆ ⋃j∈I Aj, X =

⋃j∈I Aj ∩ X, and since ϕ is topological, E = ϕ(X) = ⋃j∈I ϕ(Aj ∩ X). We
recall that E = ⋃i∈IXi, so for every i ∈ I, Xi ⊆ ⋃j∈I ϕ(Aj ∩ X), and since
Xi is irreducible, there is a j ∈ I such that Xi ⊆ ϕ(Aj ∩X). If j ≠ i, then
Xi ⊆ ϕ(Aj) ⊆ ϕ(Xj) = Xj, which is impossible since we have chosen (Xi)i∈I
of least cardinality. Hence j = i, meaning that for every i ∈ I, Xi ⊆ ϕ(Ai∩X).
Since ϕ(Ai ∩X) ⊆ ϕ(Ai) ⊆ ϕ(Xi) =Xi, Xi = ϕ(Ai ∩X), and that shows that
Ai ∩X is not in Ni. ◻

3.4. Topological properties versus lattice properties

Item (ii) in Theorem 1 is a property about the lattice of closed sets of a
topological space: if two topological spaces have isomorphic lattices of closed
sets, then they both satisfy (ii) or neither one satisfies it. A property of a
space that only depends on the isomorphism class of its lattice of closed sets
is called a lattice property. Hence (ii) is a lattice property.

Item (i), too, is a lattice property. Indeed, as it is well-known, the exis-
tence of an infinite discrete subspace (or more generally of an infinite indepen-
dent subset for a closure system) amounts to the existence of an embedding
of P(N), the collection of subsets of N ordered by inclusion, into the lattice
of closed sets.

It not clear that item (iii) is a lattice property without having a proof
of Theorem 1. In order to see why, let us consider the sobrification Xs

of a topological space X, see Section 8.2.3 of [9] for example. This is a
construction that naturally occurs through the contravariant duality between
topological spaces and frames. To say it briefly, Xs is the free sober space over
X [9, Theorem 8.2.44]. A sober space is a T0 space in which the irreducible
closed subsets are the closures of single points. The sobrification Xs can be
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obtained as the collection of irreducible closed subsets ofX, with the topology
whose open sets are (exactly) the sets ◇U defined as {C irreducible closed ∣
C ∩ U ≠ ∅}, where U ranges over the open subsets of X. The map U ↦ ◇U
is then an order-isomorphism [9, Lemma 8.2.26]. It follows that a lattice
property cannot distinguish X from its sobrification Xs. And density, as
used in the statement of item (iii), is not a lattice property: any dense subset
of N with the cofinite topology (whose closed sets are the finite subsets of N
plus N itself) must be infinite, but Ns, which is homeomorphic to the space
obtained by adding a new point ∞ to N, and whose closed sets are the finite
subsets of N plus Ns, has a one-point dense subset, {∞}, but an isomorphic
lattice of closed sets.

3.5. The case of posets

Theorem 1 has a well-known predecessor in the theory of posets. It is
worth to recall it.

Let P be a poset, and A be a subset of P . An upper bound of A is any
z ∈ P such that x ≤ z for every x ∈ A. Two elements are compatible if they
have a common upper bound, and incompatible otherwise. The set A is up-
independent if all its elements are pairwise incompatible; it is consistent if
all its elements are pairwise compatible.

The final segments of P are the initial segments of P d, the opposite order;
we denote by ↑A, resp. ↑a, the final segment of P generated by A ⊆ P , resp.
a ∈ P .

The set I(P ) of initial segments of P is the set of closed sets of a topology,
the Alexandroff topology. In this setting, a subset A is discrete if and only if
it is an antichain, A is dense if and only if it is cofinal, and A is irreducible
if and only if it is an ideal.

A poset P is well-quasi-ordered (w.q.o. for short) if it is well-founded and
contains no infinite antichain. According to Higman [11], P is w.q.o. iff I(P )
is well-founded.

We recall the following result (see [6, Chapter 4]):

Theorem 10. The following properties are equivalent for a poset P :

(a) P contains no infinite antichain;

(b) every initial segment of P is a finite union of ideals;

(c) every initial segment of P contains a cofinal subset which is well-quasi-
ordered.

13



Proof. This is just Theorem 1 applied to P with the Alexandroff topology,
provided one notes that a poset is well-quasi-ordered if and only if it is
Noetherian in its Alexandroff topology. But the proof simplifies.
(a) ⇒ (c). Let P ′ be an initial segment. By an already cited result

of Hausdorff, P ′ contains a well-founded cofinal subset A. Since P has no
infinite antichain, P ′ has no infinite antichain; being well-founded it is w.q.o.
(c) ⇒ (b). Let P ′ be an initial segment and A be a cofinal subset of P ′

which is w.q.o. Being w.q.o., A is a finite union of ideals I1, . . . , Iq. This
is a basic result of the theory of w.q.o. [1, Chapter VIII, Corollary, p.181].
Indeed, as in the proof of implication (iii) ⇒ (ii) of Theorem 1, replacing
“closed” by “initial segment” and “irreducible closed” by “ideal”, if A is not
such, then, since I(A) is well-founded, there is a minimal member A′ ∈ I(A)
which is not a finite union of ideals. This A′ is irreducible, hence is an ideal:
contradiction.

Now P ′ = ↓A = ↓ I1 ∪ . . . ↓ Iq and the set ↓ Ii are ideals of P ′.
(b)⇒ (a). Let A be an antichain of P . An ideal I of ↓A cannot contain

more than one element of A. Since ↓A is a finite union of ideals, A is finite.
◻

A direct proof of (a) ⇒ (b) can be obtained from a special case of a
result of Erdős and Tarski [5]. This special case is a prototypal min-max
result which has been overlooked, and which states the following:

Remark 11 (Erdős-Tarski). If a poset P contains no infinite up-independent
set then there is a finite upper bound on the cardinality of up-independent
sets. In this case, the maximum cardinality of up-independent sets, the least
number of ideals whose union is P and the least number of consistent sets
whose union is P are equal.

We will dispense with the proof, as it will be a consequence of Proposition 13
below. Now, assuming (a), we can prove (b) as follows. Let I be an initial
segment of P . Since by (a) there is no infinite antichain in P , I does not
contain any infinite antichain either. In the subposet I, the up-independent
subsets are all finite, since every up-independent subset is an antichain. Their
maximum cardinality is then the least number of ideals whose union is I, by
Remark 11.

Just as Theorem 1 generalizes Theorem 10, we will generalize Remark 11
to the topological setting in Proposition 13.

In the topological setting, we replace up-independence with relative Haus-
dorffness, defined as follows. A subset L of a topological space T ∶= (X,F)

14



is relatively Hausdorff if and only if for every two distinct points x and y
of L, we can find two disjoint open neighborhoods U of x and V of y in X
(not in the subspace L itself, whence “relative”). In particular, X is rela-
tively Hausdorff in itself if and only if it is Hausdorff. Given a poset P in
its Alexandroff topology, every point x has a smallest open neighborhood,
which is ↑x. Then L ⊆ P is relatively Hausdorff if and only if for every two
distinct points x and y of L, ↑x and ↑ y are disjoint in P , if and only if L is
up-independent.

Remark 12. Every relatively Hausdorff subset L of a topological space X is
Hausdorff in the subspace topology. However, the reverse implication fails in
general. In order to see this, let us consider any space X⊺ obtained by adding
an element ⊺ to a Hausdorff space X and requiring that the non-empty open
subsets of X⊺ are those of the form U ∪ {⊺}, where U ranges over the open
subsets of X. Then X is Hausdorff in the subspace topology from X⊺, but
is not relatively Hausdorff in X⊺ unless X has at most one element.

We also replace consistency by hyperconnectedness. A hyperconnected
space is a non-empty space in which any two non-empty open sets intersect.
In a poset P with the Alexandroff topology, a subspace Q is hyperconnected
in the induced topology if and only of the smallest open neighborhoods ↑x
and ↑ y of any two points x and y intersect, if and only if Q is consistent.
Hence the following has Remark 11 as a special case.

Proposition 13 (Min-max). In a topological space T ∶= (X,F) with no
infinite relatively Hausdorff subset, there is a finite upper bound on the car-
dinalities of relatively Hausdorff subsets. In this case, the following numbers
exist and are equal:

(a) the maximum cardinality of relatively Hausdorff subsets of X;

(b) the maximum number of pairwise disjoint non-empty open subsets of
X.

(c) the least number of irreducible closed subsets whose union is X;

(d) the least number of hyperconnected subspaces of X whose union is X.

Proof. We write ϕ for closure in T . We proceed by making a series of
observations.
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Observation 1. Given any relatively Hausdorff subset Y of X, say of
cardinality n, we can find n pairwise disjoint non-empty open subsets of
X. In order to see this, let us write Y as {y1,⋯, yn}. Since Y is relatively
Hausdorff, for every pair of indices i, j with 1 ≤ i < j ≤ n, there are disjoint
open sets Uij and Vij such that yi ∈ Uij and yj ∈ Vij. For each y ∶= yi in Y , let
Uy ∶= ⋂j>iUij ∩⋂j<i Vji. Then y ∈ Uy, and the sets Uy are pairwise disjoint.

Observation 2. Given n pairwise disjoint non-empty open subsets U1, . . . ,
Un of X, there is a relatively Hausdorff subset Y of X of cardinality n: we
simply pick one point from each Ui.

Observation 3. Every irreducible closed subset of X is hyperconnected.
Indeed, let C be irreducible closed in X. We consider two non-empty open
subsets of C, necessarily of the form U ∩ C and V ∩ C, where U and V are
open in X. Then C ∖U and C ∖V are proper closed subsets of C, and since
C is irreducible, C ≠ (C ∖U) ∪ (C ∖ V ); in other words, U ∩ V ≠ ∅.

Observation 4. The closure (in T ) of every hyperconnected subspace is
irreducible closed. Indeed, let U be a hyperconnected subspace of T , and let
us assume that we can write ϕ(U) as the union of two proper closed subsets
C0 and C1. Since C0 and C1 are proper, V0 ∶= X ∖C0 and V1 ∶= X ∖C1 both
intersect ϕ(U). Hence they both intersect U . It follows that U∩V0 and U∩V1
are non-empty open subsets of U , and since U is hyperconnected, they must
intersect. But (U ∩ V0) ∩ (U ∩ V1) = U ∖ (C0 ∪ C1) ⊆ ϕ(U) ∖ (C0 ∪ C1) = ∅,
which is a contradiction; so ϕ(U) is irreducible.

Observation 5. Every non-empty subset U of X contains a hypercon-
nected open subset. Otherwise, U is bad, where we call bad any non-empty
open subset of X with no hyperconnected open subset. We form an infi-
nite binary tree T as follows, whose vertices s are all labeled by bad sets
Vs. (Here s ranges over the finite 0-1 strings, and we write ε for the empty
string, s0 and s1 for the string s with 0, resp. 1, appended to its end.) Its
root is Vε ∶= U . Given any vertex s labeled with a bad set Vs, since Vs itself is
not hyperconnected, there are two non-empty open subsets Vs0 and Vs1 of V
whose intersection is empty. The sets Vs0 and Vs1 are themselves bad, since
they are included in the bad set Vs. We label the two successors s0 and s1 of
s by Vs0 and by Vs1 respectively. Now that T has been built, the collection
{V0n1 ∶ n ∈ N} consists of infinitely many pairwise disjoint non-empty open
sets. We pick xn ∈ V0n1 for each n ∈ N, and then {xn ∶ n ∈ N} is an infinite rel-
atively Hausdorff subset of X, since the open sets V0n1 are pairwise disjoint;
and this is impossible. This shows that U cannot be bad, proving the claim.

Observation 6. Let us call sieve any collection S of pairwise disjoint hy-
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perconnected open sets. We note that every sieve is finite, by Observation 2.
Every sieve S is included in a maximal sieve Smax, with respect to inclusion,
by Zorn’s Lemma, and if Smax is any maximal sieve, say of cardinality n, then
we can find a minimal cover of X by irreducible closed sets, of cardinality n.

This is proved as follows. We claim that ⋃U∈Smax
U is dense in X. Other-

wise X∖ϕ(⋃U∈Smax
U) would be a non-empty open set, hence it would contain

a hyperconnected open set V (by Observation 5), and then Smax∪{V } would
be a strictly larger sieve, contradicting maximality.

For every U ∈ Smax, U is hyperconnected, so ϕ(U) is irreducible closed,
by Observation 4. Since ⋃U∈Smax

U is dense in X and since ϕ is topological,
X is covered by the n irreducible closed sets ϕ(U), U ∈ Smax.

The cover {ϕ(U) ∣ U ∈ Smax} is minimal, namely removing any element
would fail to produce a cover. Indeed, let U be any element of Smax, and
let us pick a point x from U . Then x /∈ ⋃V ∈Smax∖{U}ϕ(V ), since otherwise U
would intersect ϕ(V ) for some V ∈ Smax ∖ {U}, hence also V itself.

Observation 7. Any two minimal finite covers C1,⋯,Cm and C ′
1,⋯,C ′

n of
X by irreducible closed subsets have the same cardinality.

For each i ∈ {1,⋯,m}, Ci ⊆X = ⋃nj=1C ′
j. Since Ci is irreducible, is is easy

to see that Ci ⊆ C ′
j for some j ∈ {1,⋯, n}. We pick one such j and call it

f(i); therefore f is a map from {1,⋯,m} to {1,⋯, n} such that Ci ⊆ C ′
f(i)

for every i ∈ {1,⋯,m}. Similarly, there is a map g∶{1,⋯, n}→ {1,⋯,m} such
that C ′

j ⊆ Cg(j) for every j ∈ {1,⋯, n}. For every i, we have Ci ⊆ C ′
f(i) ⊆

Cg(f(i)). If i ≠ g(f(i)), then removing Ci from the list C1,⋯,Cm would still
produce a cover of X by irreducible closed subsets, contradicting minimality;
so i = g(f(i)), for every i ∈ {1,⋯,m}. Similarly, j = f(g(j)) for every
j ∈ {1,⋯, n}. Therefore f and g are mutually inverse, and m = n.

Observation 8. Given any minimal finite cover of X by irreducible closed
subsets C1, . . . , Cn, there is a relatively Hausdorff subset of X of cardinality
n. Indeed, for every i ∈ {1,⋯, n}, by minimality Ci /⊆ ⋃k≠iCk, so we can pick
a point xi ∈ Ci ∖⋃k≠iCk. The subset Y ∶= {x1,⋯, xn} is relatively Hausdorff,
since for all i < j, xi and xj are separated by the disjoint open sets X∖⋃k≠iCk
and X ∖⋃k≠j Ck in X.

Those observations allow us to prove the proposition as follows. By Ob-
servations 1 and 2, the numbers that we can obtain as cardinalities of rel-
atively Hausdorff subsets of X or as cardinalities of collections of pairwise
disjoint non-empty subsets of X are the same. By Observation 5, those
are also the possible cardinalities of sieves, and by Observation 6 they are
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bounded from above; let nmax be their maximum. Observation 6 also tells us
that nmax ≤ nmin (and that nmin <∞), where nmin is the cardinality of some
minimal cover of X by irreducible closed sets. By Observation 7, nmin is,
equivalently, the least number of irreducible closed sets needed to cover X.
Observation 8 tells us that nmin ≤ nmax, so nmin = nmax.

Finally, if n hyperconnected sets suffice to cover X, then their closures
are irreducible closed and cover X by Observation 4, and conversely, if n irre-
ducible closed sets cover X, then they are hyperconnected by Observation 3,
so nmin is also the least number of hyperconnected sets covering X. ◻

We have already mentioned that the Erdős-Tarski result (Remark 11) is
the special case of the equality of the numbers mentioned in items (a) and
(d) of Proposition 13, when X is a poset P with its Alexandroff topology.
While the Erdős-Tarski result implies the (a)⇒ (b) direction of Theorem 10,
it is not clear that Proposition 13 would entail the (i) ⇒ (ii) direction of
Theorem 1. In analogy with the setting of posets, where we had used the
fact that every up-independent subset is an antichain, we would need to say
that every relatively Hausdorff subset is discrete, but this is clearly wrong.
(Consider any non-discrete Hausdorff space.) However, this does hold in FAC
spaces, as we now see. Since the proof uses Proposition 2.7 of [10], which
relies on Theorem 2.1 there, which itself is the equivalence of (i) and (ii) of
Theorem 1, it would be a fallacy to use it to derive (i)⇒ (ii), though. But
we obtain the following, which we offer as our conclusion. (A KC-space is a
space in which every compact subset is closed.)

Theorem 14. A topological space T ∶= (E,F) is a FAC space, namely satis-
fies the equivalent conditions (i), (ii) or (iii) of Theorem 1, or A.H. Stone’s
equivalent conditions (iv)–(vii) (see Section 3.1), if and only if it satisfies
any of the following equivalent conditions:

(viii) No infinite subspace of T is both sober and T1;

(ix) No infinite subspace of T is a KC-space;

(x) No infinite subspace of T is Hausdorff;

(xi) For no subspace X of T is there any infinite subset of X that is relatively
Hausdorff in X.

Then the min-max conditions of Proposition 13 hold on every subspace X of
T .
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Proof. Let ϕ be closure in T . We claim that if T = (E,F) is a FAC space,
then every subspace L of E is a FAC space. Indeed, given any infinite subset
A of L, A is not discrete in E since E is FAC, so there is a point x in A such
that x ∈ ϕ(A ∖ {x}). Then x ∈ ϕ(A ∖ {x}) ∩ L = ϕ↾L(A ∖ {x}), showing that
A is not discrete in L.

Proposition 2.7 of [10] states that, for a FAC space, it is equivalent to be
sober and T1, or a KC-space, or Hausdorff, or finite and discrete. Hence, if T
is a FAC space, then (viii)–(x) hold. Since every relatively Hausdorff subset
is Hausdorff as a subspace (see Remark 12), the implication (x) ⇒ (xi)
follows. The implications (viii) ⇒ (x) and (ix) ⇒ (x) follow from the fact
that every Hausdorff space is sober, T1, and a KC-space. Finally, if (xi)
holds, then Proposition 13 applies, and item (c) of that proposition (applied
to the case of a closed subspace X) implies item (ii) in Theorem 1, showing
that T is a FAC space. ◻
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