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Abstract

Illustrations are only rarely formal components of mathematical proofs,
however they are often very important for understanding proofs. Illustra-
tions are almost unavoidable in geometry, and in many other fields illustra-
tions are helpful for carrying ideas in a more suitable way than via words
or formulas. The question is: if we want to automate theorem proving,
can we automate creation of corresponding illustrations too? We report
on a new, generic, simple, and flexible approach for automated generation
of illustrated proofs. The proofs are generated using Larus, an automated
prover for coherent logic, and corresponding illustrations are generated in
the GCLC language. Animated illustrations are also supported.

Keywords. proofs illustration, synthetic geometry, automated deduction, dia-
grams, sketches, abstract term rewriting

1 Introduction

Illustrations typically do not form part of mathematical proofs, but are used for
communicating ideas more easily. In geometry, proofs and sketches are closely
related. Humans need sketches to visualize geometric statements, to reason
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about geometrical problems, and for help in understanding geometric proofs.
That is why the use of dynamic geometry software is widely spread in mathe-
matical education. However, many famous examples of incorrect or insufficiently
justified steps in geometric reasoning can be attributed to improper use of vi-
sual intuition based on geometric figures (i.e., in such cases, illustrations and
“proofs” were not properly matched). This goes from unjustified proof steps in
Euclid’s Elements to proofs and statements which rely on implicit assumptions
from the figure in the context of education [28], passing by incorrect proofs of
Euclid’s fifth postulate such as the one by Legendre [24]. Since their early days,
automated deduction systems for geometry have also tried to use the knowl-
edge given by figures (i.e., by concrete models) [17]. Some authors also studied
diagrammatic reasoning – how illustrations, following some rules, can provide
proofs. Diagrammatic reasoning systems can be defined rigorously enough such
that they behave as formal systems [37, 25].

In this paper, we present our approach for automated generation of proofs
accompanied by visual illustrations. While the approach can be used for various
mathematical theories, its primary target is geometry. We are not dealing with
diagrammatic reasoning, and we focus rather on generation of illustrations of
proofs as sketches similar to what a human would create. The proofs are read-
able synthetic proofs generated by Larus – our automated theorem prover for
coherent logic [20], and the module for illustrations is one of its extensions. The
use of coherent logic is an essential ingredient of our approach. The proofs in
coherent logic are organized in a purely forward reasoning style, hence the goal
to be proved is not changed along the proving process. Put in logical terms: co-
herent logic enjoys a complete deduction system which never modifies the right
hand sides of the sequents. The goal is unchanged, reached by some proof steps,
so does not need to be additionally depicted. In out approach, the initial sketch
depicts (a model of) the assumptions. Then, in each proof step, existence of new
objects and also new facts are derived along the proof and depicted dynamically
by extending and decorating the initial sketch. The generated illustrations are
stored in a domain specific, geometry oriented, language GCLC (developed by
the first author) [21, 23]. The illustrations can also be presented as animations,
in a step-by-step manner.

2 Coherent Logic

A formula of first-order logic is said to be coherent if it has the following form:

A0(x⃗) ∧ . . . ∧An−1(x⃗) ⇒ ∃y⃗(B0(x⃗, y⃗) ∨ . . . ∨ Bm−1(x⃗, y⃗))

where universal closure is assumed, and where x⃗ denotes a sequence of k vari-
ables x0, x1, . . . , xk−1; Ai (for 0 ≤ i ≤ n − 1) denotes an atomic formula (in-
volving zero or more variables from x⃗); y⃗ denotes a sequence of l variables
y0, y1, . . . , yl−1; Bj (for 0 ≤ j ≤ m − 1) denotes a conjunction of atomic for-
mulas (involving zero or more of the variables from x⃗ and y⃗). If there are no
formulas Ai, then the left-hand side of the implication is assumed to be ⊤. If



there are no formulas Bj , then the right-hand side of the implication is assumed
to be ⊥. There are no function symbols with arity greater than zero. Coherent
formulas do not involve the negation connective. A coherent theory is a set of
sentences, axiomatized by coherent formulas, and closed under derivability [14].

A number of theories and theorems can be formulated directly and simply
in coherent logic (CL). Several authors independently point to CL (or rules sim-
ilar to those of CL) as suitable for expressing (sometimes – also automating)
significant portions of mathematics [15, 2]. In contrast to resolution-based the-
orem proving, in CL the conjecture being proved is kept unchanged and proved
without using refutation, Skolemization and clausal form. Thanks to this, CL
is suitable for producing readable synthetic proofs [7].

Every first-order theory has a coherent conservative extension [14], i.e., any
first-order theory can be translated into CL, possibly with additional predicate
symbols. Translation of FOL formulas into CL involves elimination of negations:
negations can be kept in place and new predicates symbols for corresponding
sub-formula have to be introduced, or negations can be pushed down to atomic
formulas [31]. In the latter case, for every predicate symbol R (that appears
in negated form), a new symbol R is introduced that stands for ¬R, and the
following axioms are introduced ∀x⃗(R(x⃗) ∧ R(x⃗) ⇒ ⊥), ∀x⃗(R(x⃗) ∨ R(x⃗)). In
order to enable more efficient proving, some advanced translation techniques are
used. Elimination of function symbols, sometimes called anti Skolemization, is
also done by introducing additional predicate symbols [29].

The problem of provability in CL is semi-decidable. CL admits a simple
proof system, a sequent-based variant is as follows [33]:

Γ, ax,A0(⃗a), . . . , An−1(⃗a), B0(⃗a, b⃗) ∨ . . . ∨Bm−1(⃗a, b⃗) ⊢ P

Γ, ax,A0(⃗a), . . . , An−1(⃗a) ⊢ P
MP

Γ, B0(c⃗) ⊢ P . . . Γ, Bm−1(c⃗) ⊢ P

Γ, B0(c⃗) ∨ . . . ∨Bm−1(c⃗) ⊢ P
QEDcs (case split)

Γ, Bi(⃗a, b⃗) ⊢ ∃y⃗(B0(⃗a, y⃗) ∨ . . . ∨ Bm−1(⃗a, y⃗))
QEDas (assumption)

Γ,⊥ ⊢ P
QEDefq (ex falso quodlibet)

For a set of coherent axioms AX and the statement A0(x⃗)∧ . . .∧An−1(x⃗) ⇒
∃y⃗(B0(x⃗, y⃗)∨ . . .∨ Bm−1(x⃗, y⃗)) to be proved, within the above proof system one
has to derive the following sequent (where a⃗ denotes a sequence of new symbols
of constants): AX , A0(⃗a), . . . , An−1(⃗a) ⊢ ∃y⃗(B0(⃗a, y⃗)∨. . .∨ Bm−1(⃗a, y⃗)). Proofs
can be presented in the manner of forward reasoning, as illustrated by the
following example.



Example 1 Consider the following set of axioms:
ax1: ∀x (p(x) ⇒ r(x) ∨ q(x))
ax2: ∀x (q(x) ⇒ ⊥)

and the following conjecture that can be proved as a CL theorem:
∀x (p(x) ⇒ r(x))

Consider arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) ∨ q(a) (by MP, from p(a) using axiom ax1; instantiation: X 7→ a)

2. Case r(a):

3. Proved by assumption! (by QEDas)

4. Case q(a):

5. ⊥ (by MP, from q(a) using axiom ax2; instantiation: X 7→ a)

6. Contradiction! (by QEDefq)

7. Proved by case split! (by QEDcs, by r(a), q(a))

Larus is an automated theorem prover for coherent logic [20]. It has sev-
eral underlying proof engines, based on different approaches. Larus is publicly
available and open-source.1

3 Methods for Generating Illustrated Proofs

The basic idea for the proposed methods is simple: if we know how to visually
interpret all proof steps that introduce new objects or facts, then we know how
to produce a complete illustration. Indeed, following the Curry-Howard corre-
spondence which relates computer programs and proofs (a proof is a program,
and the formula it proves is the type for the program), proofs of existential
statements can be depicted using a function which takes the universally quan-
tified geometric objects of the statement as input and constructs witnesses of
the conclusion (along with its visual counterpart). The illustration is based on
a sequence of such witnesses in one universe. For geometry, we will focus on the
usual choice – Cartesian space (hence, for instance, geometry points will map to
Cartesian points). Of course, our illustration will be just one model for just one
proof branch. This idea is very well suited to coherent logic as an underlying
logical framework (see Section 2). In CL proofs, new facts are derived using
modus ponens, so we have to handle only these rule applications in the proof.

The above idea, obviously, cannot be applied in conjunction with resolution
or saturation based theorem provers for first-order logic, even less in conjunction
with algebraic provers (such as those based on Gröbner bases or Wu’s method
[10]), nor it can be applied on proof traces produced by such provers.

1https://github.com/janicicpredrag/Larus

https://github.com/janicicpredrag/Larus


3.1 Construction of witnesses

As an example, let us assume that, within a proof, there is an application of the
following axiom (with the obvious intended meaning):

∀x, y (point(x) ∧ point(y) ⇒ ∃z between(x, z, y))

It may have the following visual interpretation attached: “for two concrete
Cartesian points a and b, the Cartesian point c such that c is between a and
b can be created as the Cartesian midpoint of ab”. For example, assuming the
points a and b, occurring in the proof, are associated Cartesian coordinates
(2, 5) and (4, 11), if the above axiom has been applied to them, then the new
witness point will have the associated Cartesian coordinates (3, 8).

3.2 Illustrating individual proof steps

Visual interpretation of all proof steps can be supported in the two ways de-
scribed below.2

Method 1 — method based on illustrating axioms: In this variant of our
approach, each axiom needs its associated visual interpretation, its visual
counterpart. Within this visual counterpart, possible new witnesses are
created and illustrated, but also new facts that were established by the
axiom are illustrated. In the above example, we would draw the segment
ab. As another example, if a proof step establishes that some three points
are collinear, we would draw the Cartesian line that contain the three
Cartesian points corresponding to them.

Using this method, the only thing that we need for a visual interpreta-
tion of the proof of one conjecture are visual counterparts of all axioms
and lemmas/theorems used within the proof. Moreover, the visual inter-
pretation of used lemmas/theorems can also be produced automatically,
using the same method (as shown in Section 5). Therefore, what we need,
ultimately, are only visual interpretations of all axioms, provided by a
human.

Method 2 — method based on illustrating predicate symbols: Compared
to Method 1, Method 2 is even less demanding for the user. Instead of pro-
viding visual counterparts for each axiom (and theorem), the user needs
to provide only (i) ways to construct new witnesses by the axioms and
(ii) visual interpretation for each predicate symbol (recall that CL does
not use function symbols). The system automatically uses these visual
interpretations for illustrating each proof step: all predicates appearing
both in premises and in conclusions of the axioms are illustrated.

2This paper extends the work presented at the conference ADG 2021, and published in
EPTCS 352 [19]: the previous approach has been extended by Method 2, presented here.



Method 2 can be less demanding for the user, but Method 1 leaves more
freedom: an axiom may be illustrated in some specific way, not only by illus-
trating all predicates that occur in it. Actually, even if the user uses Method 2,
he/she is still free to modify fragments of automatically generated illustrations
and to provide illustrations of some axioms in the spirit of Method 1.

3.3 Premises and Initial Configuration

We explained how the figure is updated by each modus ponens rule application.
But how do we start the illustration in the first place? Recall that we prove the-
orems of the form: A0(x⃗)∧ . . .∧An−1(x⃗) ⇒ ∃y⃗(B0(x⃗, y⃗)∨ . . .∨ Bm−1(x⃗, y⃗)) (and
that all axioms used also have that form). In order to build the initial illustra-
tion, we need some constants a⃗ such that: A0(⃗a)∧ . . .∧An−1(⃗a) holds. But how
can we find and illustrate such objects? We can do that by using the same ap-
proach as described above, applied to the theorem: ∃x⃗(A0(x⃗)∧ . . .∧An−1(x⃗)).

3

In fact, here we perform a sort of constraint solving using theorem proving. For
example, if we provide to the prover axioms modeling only ruler-and-compass
geometry, then we can obtain a constructive proof of existence corresponding
to a ruler-and-compass construction. But, if we provide more powerful axioms
to the prover, such as the ability of trisecting the angle, then we could also,
in principle, illustrate proofs such as that of Morley’s theorem (this is only an
example since Morley’s theorem is currently way out of reach of our prover).
This approach also requires some care: the witness of the existential should be
taken as general as possible (in order to avoid misleading illustrations). This
problem can be addressed by adding non-degenerate conditions, for instance,
that the points asserted to exist are pairwise distinct and non-collinear. Al-
ternatively, instead of finding an initial illustration by proving the conjecture
∃x⃗(A0(x⃗)∧ . . .∧An−1(x⃗)), the user can chose initial objects himself/herself and
create an illutration of the premises manually.

3.4 Case Splits

There can be several case splits in the proof and it would make no sense to
illustrate all proof leaves. Moreover, some proof branches may be contradictory.
Not only that they are less interesting (they typically correspond to degenerative
cases) but they do not have models. Hence, if we have several proof branches
in one proof node, we could do the following:

• if all of them end up with contradiction, then they all belong to some
upper contradictory proof node, and we illustrate neither of them;4

3If, instead of just a model of the premises, we want to generate a construction procedure
for a whole class of initial configurations, we can choose to quantify universally some of the
variables, and apply the procedure to the statement: ∀x⃗′∃x⃗′′(A0(x⃗′, x⃗′′)∧ . . .∧An−1(x⃗′, x⃗′′)).

Those variables x⃗′ quantified universally would then correspond to the free points of the figure.
Depending on the choice of x⃗′, the statement can be a theorem or not, hence, the choice of
the set of these free points should be made by the user.

4If the premises themselves are contradictory, then we do not provide an illustration.



• If there are some proof branches that do not end up with contradiction,
then one that corresponds to the model being built should be illustrated.

In practice, we combine the above with other policies. For instance, for all
case splits of the form R(⃗a) ∨ R(⃗a), we follow only the negative branch, R(⃗a)
(for instance, three points are non-collinear) as generally they correspond to
non-degenerated, more interesting cases.

3.5 Randomization

In order to make illustrations partly unpredictable and more interesting, some
randomization may be added to the visual interpretation of the axioms/predi-
cate symbols. For example, if there is an axiom stating that for any two distinct
points there is a third one between them, then in the visual counterpart, that
third point could be chosen based on a pseudo-random number between 0 and 1.

4 Implementation

We implemented the described methods within our automated theorem prover
for coherent logic, Larus [20]. Larus’ flexible architecture already had proof
export to LATEX and Coq supported. So, we have implemented just two classes
more – two classes that export generated CL proofs (in Larus’ internal repre-
sentation) to visual representation. The new code has less than 500 lines of
C++.

For the target language, i.e., for the language of visual representation we
chose the GCLC language [23], a rich, special purpose language for mathemati-
cal, especially geometry illustrations. The gool GCLC can translate illustration
files to different image formats, including BMP, EPS, SVG, and LATEX formats.

For each theorem T (given in the TPTP format, the standard format for first-
order logic theorem provers [34]), once T has been proved, the prover generates
illustration files (in GCLC formats), using one of the two classes that implement
the two presented methods (see Section 3.2):

• One class assumes there are available visual interpretations of all axiom-
s/theorems used, and the main illustration file invokes files for all used
axioms/theorems. The “main” generated file invokes also the procedure
for existence of premises for T , and then the procedure for T itself, which
in turn invokes illustrations for each axiom application.

• One class assumes there are available visual interpretations of all predicate
symbols used and also procedures that describe how new witnesses are
constructed (by the axioms used). The main illustration file invokes the
procedure for existence of premises for T , and then the procedure for T
itself, that consists of illustrations of all facts occurring in the proof steps.

Actually, in some cases we could also somehow illustrate contradictory branches (as it is done
in some books [32, page 39]) – for instance, if it is proved that three points are both collinear
and non-collinear, we could draw a curved line that connect them.



In both cases, the prover generates a TPTP formulation of the theorem that
corresponds to existence of premises for T (see Section 3.3). If that theorem
can be proved automatically, its visual representation can also be obtain auto-
matically. Alternatively, the user may visualize objects used in the premises of
the theorem.

In both cases, the prover generates an illustration in small chunks of GCLC
code, GCLC procedures, like a procedure for existence of objects given in the
premises, or like a procedure that illustrates application of one axiom.

Animations (actually, sequences of images) are obtained simply by showing
visualizations of proof steps one by one. For that purpose, each proof step in
the illustration is annotated by a layer and, during animations, more and more
layers get visible. In addition, visualization for each proof step can go in stages:
for instance, first in some emphasized manner (or in another color), and then
in a regular way.

Generated illustrations, stored as readable GCLC files, can be further mod-
ified and improved by a human.

Generated (and possibly modified) GCLC files can be exported to different
formats, including the LATEX format TikZ. Thank to this, illustrations embedded
into proofs and proof text itself can share the same fonts and visual spirit.

5 Using Method 1: Euclid’s Elements, Book I,
Proposition 11

As a use-case for Method 1 (based on illustrations of the axioms), we use Propo-
sition 11 from Euclid’s Elements, Book I. Its original form reads as follows: “To
draw a straight line at right angles to a given straight line from a given point on
it.” The statement represented in first-order logic, following the formalization of
first book of Euclid’s Elements as proposed by Beeson et al. [3], is the following:

∀A,B,C BetS ACB ⇒ ∃X Per ACX
(BetS ACB means that C is strictly between A and B, Per ACX means that
ACX is a right angle with the vertex C). The TPTP file5 with the axioms and
lemmas6 (listed as axioms as well), relevant in a wider context, is as follows:

5In TPTP files, each fof term gives one first-order formula, along with its name and
kind (axiom or conjecture). In the concrete syntax, !...: and ?...: denote universal and
existential quantification, & and | denote conjunction and disjunction, => denotes implication,
!= denotes non-equality, etc. Atomic formualae can be simply expressed as betS(A,C,B).

6The proof checked by Coq can be found here: https://github.com/GeoCoq/GeoCoq/blob/
master/Elements/OriginalProofs/proposition_11.v

https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_11.v
https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_11.v


fof(lemma_betweennotequal,axiom, (! [A,B,C] :

((betS(A,B,C)) => ((( B != C ) & ( A != B ) & ( A != C )))))).

fof(lemma_extension,axiom, (! [A,B,P,Q] : (? [X] :

((( A != B ) & ( P != Q )) => ((betS(A,B,X) & cong(B,X,P,Q))))))).

fof(proposition_01,axiom, (! [A,B] : (? [X] : ((( A != B )) =>

((equilateral(A,B,X) & triangle(A,B,X))))))).

fof(defequilateral,axiom, (! [A,B,C] :

((equilateral(A,B,C)) => ((cong(A,B,B,C) & cong(B,C,C,A)))))).

fof(defequilateral2,axiom, (! [A,B,C] :

((cong(A,B,B,C) & cong(B,C,C,A)) => ((equilateral(A,B,C)))))).

fof(lemma_doublereverse,axiom, (! [A,B,C,D] :

((cong(A,B,C,D)) => ((cong(D,C,B,A) & cong(B,A,D,C)))))).

fof(lemma_congruenceflip,axiom, (! [A,B,C,D] :

((cong(A,B,C,D)) => ((cong(B,A,D,C) & cong(B,A,C,D) & cong(A,B,D,C)))))).

fof(defcollinear,axiom, (! [A,B,C] : ((col(A,B,C)) =>

((( A = B )) | (( A = C )) | (( B = C )) |

(betS(B,A,C)) | (betS(A,B,C)) | (betS(A,C,B)))))).

fof(defcollinear2a,axiom, (! [A,B,C] : ((( A = B )) => ((col(A,B,C)))))).

fof(defcollinear2b,axiom, (! [A,B,C] : ((( A = C )) => ((col(A,B,C)))))).

fof(defcollinear2c,axiom, (! [A,B,C] : ((( B = C )) => ((col(A,B,C)))))).

fof(defcollinear2d,axiom, (! [A,B,C] : ((betS(B,A,C)) => ((col(A,B,C)))))).

fof(defcollinear2e,axiom, (! [A,B,C] : ((betS(A,B,C)) => ((col(A,B,C)))))).

fof(defcollinear2f,axiom, (! [A,B,C] : ((betS(A,C,B)) => ((col(A,B,C)))))).

fof(lemma_collinearorder,axiom, (! [A,B,C] : ((col(A,B,C)) =>

((col(B,A,C) & col(B,C,A) & col(C,A,B) & col(A,C,B) & col(C,B,A)))))).

fof(deftriangle,axiom, (! [A,B,C] : ((triangle(A,B,C)) =>

((~ (col(A,B,C))))))).

fof(deftriangle2,axiom, (! [A,B,C] : ((~(col(A,B,C))) =>

((triangle(A,B,C)))))).

fof(defrightangle,axiom, (! [A,B,C] : (? [X] : ((per(A,B,C)) =>

((betS(A,B,X) & cong(A,B,X,B) & cong(A,C,X,C) & ( B != C ))))))).

fof(defrightangle2,axiom, (! [A,B,C,X] : ((betS(A,B,X) &

cong(A,B,X,B) & cong(A,C,X,C) & ( B != C )) => ((per(A,B,C)))))).

fof(proposition_11,conjecture,(! [A,B,C] : (? [X] : ((betS(A,C,B)) =>

((per(A,C,X))))))).

The proposition was proved automatically by the Larus prover, giving the
following proof in LATEX

7:

7This LATEX proof presentation is still very verbatim and it provides much more information
than a traditional proof; for future work we are planning to produce a more natural output.



Theorem 1 proposition 11 : ∀A ∀B ∀C (betS(A,C,B) ⇒ ∃X (per(A,C,X)) )

Proof:
Consider arbitrary a, b, c such that: betS(a, c, b). It should be proved that
∃X per(a, c,X).

1. Let w be such that betS(a, c, w) ∧ cong(c, w, a, c) (by MP, from betS(a, c, b),

betS(a, c, b) using axiom lemma extension; instantiation: A 7→ a, B 7→ c, P 7→ a,

Q 7→ c)

2. Let w1 be such that equilateral(a,w,w1) ∧ triangle(a,w,w1) (by MP, from

betS(a, c, w)∧ cong(c, w, a, c) using axiom proposition 01; instantiation: A 7→ a, B 7→
w)

3. w1 = c ∨ w1 ̸= c (by MP, using axiom eq excluded middle; instantiation: A 7→ w1,

B 7→ c)

4. Case w1 = c:

5. col(a,w,w1) (by MP, from betS(a, c, w) ∧ cong(c, w, a, c), w1 = c using axiom

colEqSub2; instantiation: A 7→ a, B 7→ w, C 7→ c, X 7→ w1)

6. ⊥ (by MP, from col(a,w,w1), equilateral(a,w,w1) ∧ triangle(a,w,w1) using

axiom nnncolNegElim; instantiation: A 7→ a, B 7→ w, C 7→ w1)

7. Contradiction! (by QEDefq)

8. Case w1 ̸= c:

9. per(a, c, w1) (by MP, from betS(a, c, w) ∧ cong(c, w, a, c), betS(a, c, w) ∧
cong(c, w, a, c), equilateral(a,w,w1) ∧ triangle(a,w,w1), w1 ̸= c using axiom

defrightangle2; instantiation: A 7→ a, B 7→ c, C 7→ w1, X 7→ w)

10. Proved by assumption! (by QEDas)

11. Proved by case split! (by QEDcs, by w1 = c, w1 ̸= c)

Note that the above Larus’ proofs omits applications of “simple axioms” (al-
though this feature can be turned off) — axioms that are universal implications
from one atomic formula to another. The above proof explicitly uses only the
following lemmas (not counting those implied by equality axioms and those in-
troducing ⊥): lemma extension, proposition 01, defrightangle2. Hence, we need
visual interpretation of these and we can write them ourselves. For instance,
the visual counterpart for proposition 01, the famous Euclid’s proposition 1 (on
existence of a equilateral triangle on a given segment), can be like the following:

procedure proposition_01 { A B X } {

circle c1 A B

drawcircle c1

circle c2 B A

drawcircle c2

intersec2 X2 X c1 c2

cmark X

}

In this visual interpretation, a point X is obtained (in the Cartesian model) as
an intersection of two circles – one with the center A with B on it,8 and one
the center B with A on it (each circle is drawn by the command drawcircle),

8The procedure proposition 01 assumes that A and B are distinct points. That condition
has to be ensured by the procedures that invoke this one, or by selection of initial points.



and the point X is annotated by a small circle (using the command cmark). Of
course, one could have chosen the other intersection of two circles. Alternatively,
instead of providing this visual interpretation for this theorem (proposition 01),
we could run the prover on it and could get another procedure, expressed in
terms of axioms (or, possibly, also in terms of some other lemmas). This alter-
native provides a simple, uniform approach that requires only a little manual
labour. However, this alternative is not always possible: maybe some axioms
necessary to prove the theorem are not available to the prover or, even if they
all are, the automated theorem prover may not be able to prove the statement.
Finally, even if the conjecture can be automatically proven and illustrated, in
some situations, one may still prefer a figure designed by a human, customized
for a certain context.

The prover also generates the conjecture that establishes existence of objects
such that the premises of the main conjecture hold:

fof(proposition_11, axiom, ( ? [A,B,C] : (betS(A,C,B))))

This conjecture can be proved automatically (if there are suitable axioms avail-
able) or can be illustrated by hand, as here (within the file proposition_11_exists.gcl):

procedure proposition_11_exists { a b c } {

point a 8 2

point b 22 7

towards c a b 0.7

cmark_t a

cmark_t b

cmark_t c

}

In this concrete illustration of initial objects, the constants a and b are associ-
ated Cartesian coordinates (8, 2) and (22, 7) (in millimeters, when it comes to
exporting images). The point c is chosen to divide the segment (a, b) such that
ac : ab = 0.7 : 1. All three points are annotated by small circles and by their
names (by the commands cmark_t).

The main conjecture is described by the following procedure, generated au-
tomatically by the prover (within the file proposition_11.gcl):

procedure proposition_11 { a b c w } {

call lemma_extension { a c a c w }

mark_t w

call proposition_01 { a w w1 }

mark_t w1

% --- Illustration for branch 2

call defrightangle2 { a c w1 w }

}

One point (w) is introduced by the application of lemma extension, and another
(w1) by the application of proposition 01. The illustration follows the second,
non-contradictory branch of the proof. The final proof step does not introduce



new objects, but only establishes a property ac ⊥ cw1 (which is stressed by
drawing a small square at the vertex of the angle).

Finally, the main file, that will be processed by GCLC, is generated auto-
matically and looks like the following:

% ----- Proof illustration -----

include proposition_11.gcl

include proposition_11_exists.gcl

include lemma_extension.gcl

include proposition_01.gcl

include defrightangle2.gcl

%-----------------------------

call proposition_11_exists { a b c }

call proposition_11 { a b c w }

After the include section with all needed files/procedures, there is a call to
the procedure which illustrates the objects such that the premises hold. After
that, with the concrete points a, b, c (provided by the previous procedure), the
main procedure is invoked. The illustration can be modified such that it provides
an animation (within GCLC graphical environment, but it can be also exported
as a sequence of images). This is implemented using layers, as in the following
addition to the main GCLC file, so the proof steps are shown one-by-one.

animation_frames 7 1

point A0 0 0

point A1 1 0 7 0

distance dA A0 A1

hide_layers_from dA

The above code defines an animation with 7 frames (one per second). Each
proof step can be associated with one layer, identified by numbers 1, 2, 3, etc.
GCLC provides support to generate animation with moving objects, but does
not provide an explicit access to the current frame number. Hence, a small trick
is used to show layers one by one: during the animation, the point A1 moves
from the coordinates (1,0) to (7,0), hence will have the coordinates (1,0), (2,0),
. . . , (7,0), and the distance to the point A0 with coordinates (0,0), will be equal
to the frame number: 1, 2, . . . , 7. In the ith frame, all layers from i upward
will be hidden, so the contents will be shown step by step (while keeping the
contents of the old frames).

Processing the above file gives the animation within the GCLC environment,
i.e., the illustration that gets extended in several steps, as shown in Figure 1.

6 Using Method 2: Examples in Abstract Term
Rewriting

The proposed approach for creating illustrated proofs is not limited to geometry:
it can be used for any theory that admits reasonable illustration of proof steps.
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Figure 1: Four steps in illustration of the proposition 11

One such example is theory of abstract rewriting systems. Visualization of
proofs in this theory has been studied by the second author [26]. In this section
we provide two examples of automatically generated proofs and diagrams, both
using Method 2 (based on visual counterparts for each predicate symbol).

6.1 A Simple Property of Abstract Term Rewriting

First we consider the following proposition: if two transitive relations R1 and
R2 are such that R2.R1 ⊆ R1.R2 then R1.R2 is transitive9. We translate this
statement to coherent logic, by specializing the generic definitions of transitivity
and composition of two relations to the relations R1 and R2. We obtain the
following list of axioms, the goal, and finally the illustrated proof10:

Axioms:

1. r1transitive : ∀A ∀B ∀C (r1(A,B) ∧ r1(B,C) ⇒ r1(A,C) )

2. r2transitive : ∀A ∀B ∀C (r2(A,B) ∧ r2(B,C) ⇒ r2(A,C) )

3. r2r1inr1r2 : ∀X ∀Y (r2r1(X,Y ) ⇒ r1r2(X,Y ) )

4. defr1r2 : ∀X ∀Y (r1r2(X,Y ) ⇒ ∃Z (r1(X,Z) ∧ r2(Z, Y )) )

5. defr2r1 : ∀X ∀Y (r2r1(X,Y ) ⇒ ∃Z (r2(X,Z) ∧ r1(Z, Y )) )

6. rdefr1r2 : ∀X ∀Y ∀Z (r1(X,Y ) ∧ r2(Y, Z) ⇒ r1r2(X,Z) )

7. rdefr2r1 : ∀X ∀Y ∀Z (r2(X,Y ) ∧ r1(Y, Z) ⇒ r2r1(X,Z) )

Theorem 2 goal : ∀X ∀Y ∀Z (r1r2(X,Y ) ∧ r1r2(Y, Z) ⇒ r1r2(X,Z) )

9x R1.R2 y means that there is a z such that xR1z and zR2y
10Note that relations are usually depicted using upper-case letters, but the TPTP/FOL

language requires predicates to be denoted by a name starting by a lower-case letter.



Proof:

Consider arbitrary a, b, c such that: r1r2(a, b), r1r2(b, c). It should be proved that
r1r2(a, c).

1. Let w be such that r1(a,w) ∧ r2(w, b) (by MP, from r1r2(a, b) using axiom defr1r2;

instantiation: X 7→ a, Y 7→ b)

2. Let w1 be such that r1(b, w1) ∧ r2(w1, c) (by MP, from r1r2(b, c) using axiom defr1r2;

instantiation: X 7→ b, Y 7→ c)

3. r2r1(w,w1) (by MP, from r1(a,w)∧ r2(w, b), r1(b, w1)∧ r2(w1, c) using axiom rdefr2r1;

instantiation: X 7→ w, Y 7→ b, Z 7→ w1)

4. Let w2 be such that r1(w,w2) ∧ r2(w2, w1) (by MP, from r2r1(w,w1) using axiom

defr1r2; instantiation: X 7→ w, Y 7→ w1)

5. r1(a,w2) (by MP, from r1(a,w)∧r2(w, b), r1(w,w2)∧r2(w2, w1) using axiom r1transitive;

instantiation: A 7→ a, B 7→ w, C 7→ w2)

6. r2(w2, c) (by MP, from r1(w,w2) ∧ r2(w2, w1), r1(b, w1) ∧ r2(w1, c) using axiom

r2transitive; instantiation: A 7→ w2, B 7→ w1, C 7→ c)

7. r1r2(a, c) (by MP, from r1(a,w2), r2(w2, c) using axiom rdefr1r2; instantiation: X 7→ a,

Y 7→ w2, Z 7→ c)

8. Proved by assumption! (by QEDas)
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As already mentioned, the above illustration was created using Method 2,
which is based on provided visual counterparts of all predicate symbols. One
fragment (provided by the user) is as follows:

...

procedure draw_r1 { X Y i }

{

call draw_edge { X Y L 1 }

printat L { R_1 }

}

...



The above code is invoked for illustrating facts of the form r1(x, y). It uses
an auxiliary procedure draw_edge also provided by the user. The last parameter
in the above procedure can be used to control the drawing style. In the above
procedure it was not used, but it can be used to visualy distinguish what Duval
calls the operational status of a statement [13]: at each step of the proof a
statement can either be an already known fact, or a premise, or a conclusion
of the current proof step. The main generated GCLC file invokes functions like
draw r1 with different values of the last argument, depending on the operational
status (see below).

In Method 2, specific procedures for axioms or lemmas used in the proof
are needed only if they introduce new objects and they need to specify only
how the corresponding objects are created in the model (and not how they can
be visualized). For instance, the following procedure for the axiom defr1r2

creates a point Z such that it forms a regular triangle with the given points X
and Y (the command “rotate A B angle C” constructs a point A such that it
is the image of C under the rotation by angle of measure angle degrees about
the point B.):

procedure defr1r2 { X Y Z }

{

rotate Z X 60 Y

}

Finally, the following, automatically generated main file, invokes the file
predicates.gcl that should be provided by the user and that should contain
procedures for visualization of each predicate symbol. The main file also includes
a file goal_exists.gcl and invokes a procedure for existence of initial objects.
For each proof step, procedures for creating new objects (if there are such in that
proof step) and for illustrating appearing facts are called. Here is a fragment
of the code covering the first three steps of the illustration given below (the
comments have been added manually to ease reading of the code):



include predicates.gcl

include goal_exists.gcl

% Call the procedure to create the initial objects called a, b and c

call goal_exists { a b c }

include defr1r2.gcl

% Call the procedure that creates w for given a and b

call defr1r2 { a b w }

% Draw and annotate w

cmark_t w

% Application of axiom (defr1r2):

% (! [X,Y] : (? [Z] : ((r1r2(X,Y)) => ((r1_r2_3(X,Z,Y))))))

layer 0

% Draw an arrow between a and b annotated by R1.R2

call draw_r1r2 { a b 0 }

% Draw an arrow between a and w annotated by R1

call draw_r1 { a w 1 }

% Draw an arrow between w and b annotated by R2

call draw_r2 { w b 1 }

layer 1

call draw_r1 { a w 2 }

call draw_r2 { w b 2 }

% Call the procedure that creates w1 for given b and c

call defr1r2 { b c w1 }

% Draw and annotate w1

mark_t w1

...

...

The sequence of illustrations can be viewed as animation within GCLC, and
the images in the sequence are given below. We can notice that the automat-
ically generated diagrammatic proof is very similar to the diagrammatic proof
present in the literature [26, page 13].
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6.2 Newmann’s Lemma

Our second example is Newmann’s lemma, a well known property of abstract
term rewriting systems, stating that if a relation is terminating and locally con-
fluent, then it is confluent. Huet has proposed a simple inductive proof [18].
Newmann’s lemma has been formalized in Coq by Coquand and Huet as early
as 1985 [12]. This automatic proof of this property was studied in the context
of coherent logic by Bezem and Coquand [6]. As Bezem and Coquand, we use
our coherent logic prover to reconstruct the induction step in Huet’s inductive



Figure 2: Huet’s original diagram for the proof

proof of Newman’s Lemma [18] and to generate a corresponding illustration.
To our knowledge, it is the first diagram for this proof that is generated au-
tomatically. For comparison, in Figure 2 we show the diagram for the proof
provided by Huet. Notice that in this, original diagram only steps 1, 2 and 4 of
our automatically generated proof are depicted. The fact that R∗ is transitive
is implicit. To generate the diagrammatic proof, we only had to write GCLC
procedures for illustrating the predicates, and procedures that introduce suit-
able new objects for local confluence and for induction hypothesis – a new node
forms a parallelogram with the three given nodes (and display the labels “Local
Confl” or “Ind” at the center of the parallelogram). For local confluence, we
write the following procedure:

procedure localconfluence { A B C W }

{

translate W A B C

midpoint L B C

printat L { Local Confl }

}

Using the following axioms:



Axioms:

1. localconfluence : ∀XY Z r(X,Y ) ∧ r(X,Z) ⇒ ∃T rstar(Y, T ) ∧ rstart(Z, T )

2. rstarrefl : ∀XY X = Y ⇒ rstar(X,Y )

3. rrstar : ∀XY r(X,Y ) ⇒ rstar(X,Y )

4. rstardef2 : ∀ABC r(A,B) ∧ rstar(B,C) ⇒ rstar(A,C)

5. rstartrans : ∀ABC rstar(A,B) ∧ rstar(B,C) ⇒ rstar(A,C)

6. assump : r(a, bp) ∧ rstar(bp, b) ∧ r(a, cp) ∧ rstar(cp, c)

7. inductivehyp : ∀ABC r(a,A)∧rstar(A,B)∧rstar(A,C) ⇒ ∃D rstar(B,D)∧
rstar(C,D)

the prover automatically generates the following proof:

Theorem 3 goal : ∃A rstar(b, A) ∧ rstar(c, A)

Proof:

It should be proved that ∃A rstar(b, A) ∧ rstar(c, A).

1. Let w be such that rstar(bp, w) ∧ rstar(cp, w) (by MP, from r(a, bp), r(a, cp)

using axiom localconfluence; instantiation: X 7→ a, Y 7→ bp, Z 7→ cp)

2. Let w1 be such that rstar(w,w1) ∧ rstar(b, w1) (by MP, from r(a, bp),

rstar(bp, w) ∧ rstar(cp, w), rstar(bp, b) using axiom inductivehyp; instantiation: A 7→

bp, B 7→ w, C 7→ b)

3. rstar(cp, w1) (by MP, from rstar(bp, w) ∧ rstar(cp, w), rstar(w,w1) ∧ rstar(b, w1)

using axiom rstartrans; instantiation: A 7→ cp, B 7→ w, C 7→ w1)

4. Let w2 be such that rstar(c, w2) ∧ rstar(w1, w2) (by MP, from r(a, cp),

rstar(cp, c), rstar(cp, w1) using axiom inductivehyp; instantiation: A 7→ cp, B 7→ c, C 7→

w1)

5. rstar(b, w2) (by MP, from rstar(w,w1) ∧ rstar(b, w1), rstar(c, w2) ∧ rstar(w1, w2)

using axiom rstartrans; instantiation: A 7→ b, B 7→ w1, C 7→ w2)

6. rstar(b, w2)∧ rstar(c, w2) (by MP, from rstar(b, w2), rstar(c, w2)∧ rstar(w1, w2)

using axiom trivial)

7. Proved by assumption! (by QEDas)



The prover also generates a GCLC file that leads to the following illustra-
tion, similar to the one proposed by Huet. The symbol 1 in Huet’s diagram
corresponds to R in ours, ∗ to R∗, x to a, y to b, z to c, y1 to bp, z1 to cp, u to
w, v to w1 and t to w2.
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7 Comparison of the Two Methods: Varignon’s
theorem

In this section we compare the two presented methods in terms of code needed
to be written by hand, using Varignon’s theorem as an example. Varignon’s
theorem states that the quadrilateral formed by joining the midpoints of the
four side of a quadrilateral is a parallelogram. Here we give a proof, found by the
theorem prover, using the midpoint theorem, and the fact that a quadrilateral
with opposite sides parallel is a parallelogram. This proof requires some non-
degeneracy conditions. First, we list the most important axioms and lemmas
(listed explicitly in the proof). tP (A,B,C,D) denotes that the lines AB and
CD are parallel and distinct, while pG(A,B,C,D) denotes that the points A,
B, C, and D form a parallelogram.



Axioms:

1. triangle mid par strict : ∀A ∀B ∀C ∀P ∀Q (¬col(A,B,C) ∧
midpoint(B,P,C) ∧midpoint(A,Q,C) ⇒ par(A,B,Q, P ) )

2. lemma par trans : ∀A ∀B ∀C ∀D ∀E ∀F (par(A,B,C,D) ∧ par(C,D,E, F ) ∧
¬col(A,B,E) ⇒ par(A,B,E, F ) )

3. defparallelogram2 : ∀A B C D (par(A,B,C,D) ∧ par(A,D,B,C)) ⇒
pG(A,B,C,D) )

Theorem 4 ∀A ∀B ∀C ∀D ∀I ∀J ∀K ∀L
(¬col(B,D,A) ∧ ¬col(B,D,C) ∧ ¬col(A,C,B) ∧ ¬col(A,C,D) ∧ ¬col(I, J,K) ∧
B ̸= D ∧A ̸= C ∧
midpoint(A, I,B) ∧midpoint(B, J,C) ∧midpoint(C,K,D) ∧midpoint(A,L,D)
⇒ pG(I, J,K,L) )

Proof:
Consider arbitrary a, b, c, d, e, f , g, h such that: ¬col(b, d, a), ¬col(b, d, c),
¬col(a, c, b), ¬col(a, c, d), ¬col(e, f, g), b ̸= d, a ̸= c, midpoint(a, e, b),
midpoint(b, f, c), midpoint(c, g, d), midpoint(a, h, d). It should be proved that
pG(e, f, g, h).

1. par(b, d, f, g) (by MP, from ¬col(b, d, c), midpoint(c, g, d), midpoint(b, f, c) using

axiom triangle mid par strict; instantiation: A 7→ b, B 7→ d, C 7→ c, P 7→ g, Q 7→ f)

2. par(b, d, e, h) (by MP, from ¬col(b, d, a), midpoint(a, h, d), midpoint(a, e, b) using

axiom triangle mid par strict; instantiation: A 7→ b, B 7→ d, C 7→ a, P 7→ h, Q 7→ e)

3. par(a, c, e, f) (by MP, from ¬col(a, c, b), midpoint(b, f, c), midpoint(a, e, b) using

axiom triangle mid par strict; instantiation: A 7→ a, B 7→ c, C 7→ b, P 7→ f , Q 7→ e)

4. par(a, c, h, g) (by MP, from ¬col(a, c, d), midpoint(c, g, d), midpoint(a, h, d) using

axiom triangle mid par strict; instantiation: A 7→ a, B 7→ c, C 7→ d, P 7→ g, Q 7→ h)

5. par(e, f, g, h) (by MP, from par(a, c, e, f), par(a, c, h, g), ¬col(e, f, g) using axiom

lemma par trans; instantiation: A 7→ e, B 7→ f , C 7→ a, D 7→ c, E 7→ g, F 7→ h)

6. par(f, g, e, h) (by MP, from par(b, d, f, g), par(b, d, e, h), ¬col(e, f, g) using axiom

lemma par trans; instantiation: A 7→ f , B 7→ g, C 7→ b, D 7→ d, E 7→ e, F 7→ h)

7. pG(e, f, g, h) (by MP, from par(e, f, g, h), par(f, g, e, h) using axiom defparallelo-

gram2; instantiation: A 7→ e, B 7→ f , C 7→ g, D 7→ h)

8. Proved by assumption! (by QEDas)



procedure th_varignon_exists { a b c d e f g h } {

point a 5 5

point b 25 7

point c 30 28

point d 2 24

midpoint e a b

midpoint f b c

midpoint g c d

midpoint h a d

cmark_t a

cmark_t b

cmark_t c

cmark_t d

cmark_t e

cmark_t f

cmark_t g

cmark_t h

drawsegment a b

drawsegment b c

drawsegment c d

drawsegment d a

}

We do not list the GCLC code generated by either method. Both meth-
ods require the manually created file and the procedure th varignon exists,
like the one above, that illustrates the object given in the premises (for both
methods, the alternative is to automatically prove that such object exist and
obtain a corresponding illustration; in this case, that could require a number of
axioms/lemmas).

In the following, we give the (complete) code needed by Method 1 (left)
and by Method 2 (right). For Method 1, the user needs to provide illustrations
for each axiom/lemma used (or to ensure that they are proved automatically,
yielding the illustration on the way). In our example, there are three such ax-
ioms/lemmas. For Method 2, the user needs to provide illustrations for each
predicate symbol and (in this concrete case) does not need to provide any spe-
cific illustration for the used axioms/lemmas (since they do not introduce new
objects). So, it is sufficient for the user to provide the following GCLC code:



procedure triangle_mid_par_strict

{ A B C P Q } {

drawdashline A B

drawdashline Q P

}

procedure lemma_par_trans

{ A B C D E F } {

drawdashline A B

drawdashline E F

}

procedure defparallelogram2

{ A B C D } {

linethickness -3

drawsegment A B

drawsegment C D

drawsegment B C

drawsegment A D

normal

}

procedure draw_midpoint { a b c l }

{

cmark c

}

procedure draw_nnncol { a b c l }

{

drawdashline a b

}

procedure draw_par { a b c d l }

{

drawdashline a b

drawdashline c d

}

procedure draw_tP { a b c d l }

{

}

procedure draw_pG { a b c d l }

{

linethickness -3

drawsegment a b

drawsegment c d

drawsegment b c

drawsegment a d

normal

}

Both methods generate the same illustration:

a
b

c

d

e

f

g

h

As it can be seen above, the code to be written by hand is short using
either method. However, the real benefit comes when one needs to prove and
illustrate a number of theorems in a single theory. In such a case, the amount
of manual labour needed for new theorems becomes very small. The user may
have preferences over the available methods: if he/she wants some specific visual
message for some axioms/lemmas, then Method 1 can be a better choice. If
there is a large number of available and potentially used axioms/lemmas, then
Method 2 can be a better choice.



8 Related Work

There is a huge number of sources addressing the role of figures in general, so
we focus here only on a closely related work about the visualization of proofs
in geometry which have either been generated automatically (by automated
theorem proving) or machine checked (by interactive theorem proving).

The most significant contribution related to visualization of geometric proofs
is the work of Ye et al. implemented in JGEX [40]. Ye et al. use the algebraic
characterization of geometric predicates and triangulation of systems of poly-
nomial equations to generate figures automatically for the statements. JGEX
proposes several modes for illustration of proofs: illustration by animated di-
agrams, or animated diagrams with text, and they apply this method to two
kinds of proofs: manually crafted proofs [39], or proofs generated automatically
by the full-angle method or the deductive database method [38]. Their system
provides interactive visualization using animations that follow proof steps as the
user explore the proofs (within one integrated tool), while our illustrations are
static images or can be viewed as sequences of images within the tool GCLC
(which does not show corresponding proofs). The approach for illustrations gen-
erated by the full-angle method or the deductive database are similar to ours,
but our approach is generic and not limited to geometry – it can be used for
any coherent theory for which the user provides visualization for the axioms or
for all predicates used.

Wilson and Fleuriot designed and implemented a tool for the visualization
of proofs as direct acyclic graph with nodes depicted using geometric figures [36]
for the full-angle method [9].

The above works are focused on the visualization of proofs. There is a
larger number of approaches and systems for visualization of geometric state-
ments. Bertot et al. [4] proposed to embed a dynamic geometry software into
PCoq [5, 1] (PCoq is a user interface for the Coq proof assistant [11]). The
second author implemented a prototype dynamic geometry software GeoProof
which can export statements in the syntax of Coq [27]. Gao’s MMP/geometer
software, an automatic geometry theorem prover based on algebraic methods,
offered a way to draw figures corresponding to the statements [16]. Wang pro-
posed generating figures from a set of geometrical constraints by decomposing
the system of polynomials into irreducible representative triangular sets, and
finding an adequate numerical solution from each triangular set [35]. The first
author implemented the GCLC software in which geometry configurations are
described using a custom language and then illustrated, while conjectures about
configurations can be expressed and then proved automatically by several avail-
able automated theorem provers [21, 22]. Pham and Bertot implemented a
prototype connecting GeoGebra to PCoq [30]. Botana et al. implemented au-
tomated theorem provers based on algebraic methods within GeoGebra [8]. In
these last two works, the initial configuration of the geometric statements can
be visualized automatically using the dynamic geometry environment.



9 Conclusions and Perspectives

We presented a new approach for automated generation of illustrated proofs,
primarily of geometry theorems. The approach, with its two variations, is sim-
ple, and it is a small extension to our prover for coherent logic, Larus. The
approach is modular, as all illustrations rely only on individual visual interpre-
tations of axioms used or of predicate symbols used. The approach is flexible,
as one can provide (created by hand) different visual counterparts of the axioms
and predicate symbols, but also of particular lemmas used within other proofs.
The illustrations are generated in the GCLC language and they can also be
viewed as animations, where proof steps are shown step-by-step. The generated
illustrations can be exported to different image formats.

When Larus finds a proof, it can generate the corresponding Coq proof and
illustration. In the future, this work could be extended to deal with coherent
logic proofs which are not necessarily obtained automatically by Larus, but
constructed interactively within Coq.

We also plan to improve the translation of proofs to text form, to generate
more natural English text.
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[1] Ahmed Amerkad, Yves Bertot, Löıc Pottier, and Laurence Rideau. Mathe-
matics and Proof Presentation in Pcoq. In Workshop Proof Transformation
and Presentation and Proof Complexities in connection with IJCAR 2001,
Siena, June 2001.

[2] Jeremy Avigad, Edward Dean, and John Mumma. A Formal System for
Euclid’s Elements. The Review of Symbolic Logic, 2:700–768, 2009.

[3] Michael Beeson, Julien Narboux, and Freek Wiedijk. Proof-checking Eu-
clid. Annals of Mathematics and Artificial Intelligence, 85(2-4):213–257,
2019. Publisher: Springer.

https://github.com/janicicpredrag/Larus


[4] Yves Bertot, Frédérique Guilhot, and Löıc Pottier. Visualizing Geometrical
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[21] Predrag Janičić. GCLC — A Tool for Constructive Euclidean Geometry
and More Than That. In Andrés Iglesias and Nobuki Takayama, editors,
Mathematical Software - ICMS 2006, volume 4151 of Lecture Notes in Com-
puter Science, pages 58–73. Springer, 2006.
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