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ABSTRACT

Going beyond networks, to include higher-order inter-
actions of arbitrary sizes, is a major step to better de-
scribe complex systems. In the resulting hypergraph rep-
resentation, tools to identify structures and central nodes
are scarce. We consider the decomposition of a hyper-
graph in hyper-cores, subsets of nodes connected by at
least a certain number of hyperedges of at least a cer-
tain size. We show that this provides a fingerprint for
data described by hypergraphs and suggests a novel no-
tion of centrality, the hyper-coreness. We assess the role
of hyper-cores and nodes with large hyper-coreness in
higher-order dynamical processes: such nodes have large
spreading power and spreading processes are localized in
central hyper-cores. Additionally, in the emergence of
social conventions very few committed individuals with
high hyper-coreness can rapidly overturn a majority con-
vention. Our work opens multiple research avenues, from
comparing empirical data to model validation and study
of temporally varying hypergraphs.

INTRODUCTION

Network theory provides a powerful framework to de-
scribe a wide range of complex systems whose elements
interact in pairs [1–4]: this theory has developed numer-
ous concepts and techniques to characterize the structure
of complex networks at various scales, from the single el-
ement (node or link) to groups of nodes to the whole
system. Moreover, networks can support dynamical pro-
cesses of various types, from spreading to synchronization
phenomena [3]. Thus, understanding how network fea-
tures impact such processes, or which parts of a network
play the most important role, is of crucial relevance. For
instance, hubs, nodes with a very large number of connec-
tions (degree), are known to influence processes such as
spreading or opinion dynamics, because of their tendency
to be reached easily, and of their ability to transmit to
many other nodes [1, 3]. The statistics of the individ-
ual number of connections of nodes are however not a
sufficiently rich characterization: the existence of well-
connected groups of nodes might be even more relevant.
For instance, the tendency of hubs to be connected to
each other far above chance is quantified by the rich-club
coefficient [5]. A more systematic way to decompose a
network into a hierarchy of subgraphs of increasing con-
nectedness is given by the k-core decomposition [6–9]: the
k-core of a network is the maximal subgraph such that
all its nodes have degree (number of neighbours in the
subgraph) at least k. This decomposition provides a fin-

gerprint of the network’s structure [8, 10–12], gradually
focusing on more densely interconnected parts of the net-
work that were shown to play a crucial role in spreading
processes [13–15]. In fact, the coreness of a node, defined
as the largest value of k such that the node belongs to
the corresponding k-core, gives a centrality measure that
largely determines the impact of a spreading process ini-
tiated (seeded) in that node [13]. This decomposition has
also been extended to weighted networks [16], via the s-
core decomposition (where s represents the strength of a
node, i.e., the sum of the weights of its adjacent links)[17],
to temporally evolving networks [18, 19], to multilayer
networks [20] and to bipartite networks [21–23].

Despite their convenience, network representations are
limited to systems composed of only dyadic interac-
tions. However, recent works have made clear that many
real systems include interactions between groups of units
[24, 25]. Examples range from group conversations [26]
to research teams [27], from neural systems [28] to inter-
actions between species in ecosystems [29]. Analogously,
considering a purely dyadic network substrate for the un-
folding of processes, such as consensus formation or (so-
cial) contagion, could put a limit on the ability to de-
scribe key mechanisms that are at play. For instance,
reinforcement mechanisms –in which two or more people
can convince others in a group conversation– cannot be
naturally accounted for by considering only dyadic inter-
actions [30–33]. In these cases, systems and processes
can be effectively represented within the framework of
hypergraphs, a “higher-order” generalization of networks
in which nodes can interact in hyperedges, groups of arbi-
trary size [25, 34, 35]. Higher-order interactions give rise
to both novel structures [36–38] and phenomena [24, 39],
highlighting the importance of characterization tools able
to detect hierarchies and relevant subparts of these sys-
tems that are better represented by hypergraphs.

Here, we contribute to this endeavour by studying
the decomposition of a hypergraph in (k,m)-hyper-cores,
which are defined as a series of subhypergraphs of increas-
ing connectivity k, ensured by hyperedges of increasing
sizes m [40] (this definition is in fact equivalent to the
one of two-mode cores in bipartite networks [21–23]). We
apply this decomposition to a wide range of data sets,
representing systems of different nature: this highlights
how such decomposition identifies non-trivial mesoscopic
higher-order structures, in particular when comparing it
to the one obtained in suitable null models. The decom-
position in hyper-cores leads us to the definition of the
hyper-coreness, a new family of centrality measures for
nodes in hypergraphs based on their degree of inclusion in
hyper-cores. Finally, we investigate the role of the hyper-
cores, and of the nodes with the largest hyper-coreness,
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in paradigmatic spreading and consensus processes based
on group interactions [32, 41, 42]. We show that spread-
ing processes tend to be localized on hyper-cores associ-
ated to large k and m. We then study the performance
of hyper-coreness-based strategies to identify influential
nodes in sustaining and driving higher-order processes.
We find that hyper-coreness can be effectively used to
maximise the total outbreak size in higher-order spread-
ing processes [41, 42] and to help committed minorities
reach the tipping point leading to the systemic takeover
in social convention games [43].

RESULTS

Hyper-core decomposition and hyper-coreness

The hyper-cores, i.e. the higher-order cores of a hy-
pergraph, allow us to define a systematic decomposition
of a hypergraph in a double hierarchy of nested sub-
hypergraphs of increasing connectedness and hyperedge
sizes. Let us consider a (static) hypergraph H = (V, E),
where V is the set of its N = |V| nodes and E is the
set of its hyperedges [25]. We recall that a hyperedge
e = {i1, i2, ..., im} is a set of m nodes, which can thus
represent a group interaction between these nodes. We
denote by M = maxe∈E |e| the largest hyperedge size in
H. Each node i ∈ V can be characterized by a vector
of degrees d(i) = [d2(i), d3(i), ..., dm(i), ..., dM (i)] whose
component dm(i) denotes the m-hyper-degree of the node
i, i.e., the number of distinct hyperedges of size m to
which it belongs. We denote by Dm(i) =

∑
p≥m dp(i)

the number of distinct hyperedges of size at least m to
which i belongs.

The (k,m)-hyper-core is defined as the maximum sub-
hypergraph J induced by the set of nodes A ⊆ V and
with hyperedges of size at least m, such that ∀ i ∈
A, DJm(i) ≥ k, where DJm(i) denotes the number of dis-
tinct hyperedges of size at least m in which i is involved
within the subhypergraph J [40]. In other terms, all the
nodes in the (k,m)-hyper-core belong to at least k hyper-
edges of size at least m, within the hyper-core itself. The
set of hyperedges of the subhypergraph J , induced by the
setA ⊆ V, is defined by S = {e∩A s.t. e ∈ E∧|e∩A| ≥ m}
[44], i.e., a hyperedge of S is a subset of a hyperedge of
E , of size at least m and containing only nodes of A.
Note that hyperedges of S might thus not be in E , but
they can still be interpreted as existing interactions if
one assumes that subsets of a set of interacting nodes are
indeed interacting. As our study will focus on the sets
of nodes forming the various hyper-cores, rather than on
their sets of hyperedges, this consideration does not im-
pact our results. We also note that this definition of
hyper-cores is equivalent to the one of two-mode cores in
bipartite networks, upon mapping a hypergraph onto a
bipartite representation, in which nodes represent either
hyperedges or nodes of the hypergraph, and each hyper-
edge is connected to its elements [21–23, 45]. The (k,m)
two-mode-core of a bipartite graph corresponds indeed to
the bipartite subgraphs in which the nodes have degree
respectively at least m (for the nodes representing hyper-
edges) and k (for the nodes representing nodes of the hy-
pergraph). The earlier works introducing such concepts

[21–23] have indeed mostly focused on their interpreta-
tion in bipartite networks, rather than for hypergraphs
(see however [40]), and have shown their interest for vi-
sualisation purposes [21] but did not study how empirical
data can be systematically decomposed into hyper-cores,
nor the interplay between hyper-cores and dynamical pro-
cesses on hypergraphs.

To obtain the (k,m)-hyper-core of a hypergraph, one
can first remove from E all hyperedges of size smaller than
m. One then removes recursively from V all nodes i with
Dm(i) < k, until all the nodes in the remaining subhy-
pergraph are involved in at least k hyperedges of size at
least m. Note that this process does not correspond only
to the removal of nodes with Dm(i) < k in the original
hypergraph H: indeed, each time a node is removed, the
sizes of the hyperedges to which it belongs decrease by one
unit. Thus, the removal of a node can induce the removal
of some of the hyperedges to which it belongs, if their size
becomes less than m, or if they fully coincide with already
existing hyperedges. In Fig. 1 we illustrate the process on
an example hypergraph and highlight some of its (k,m)-
hyper-cores. The straightforward implementation of the
procedure to obtain the complete (k,m)-core structure of
a hypergraph H = (V, E) features a time complexity that
scales as M(N + |E| log(|E|)) (see the Code Availability
for an implementation, and the Supplementary Note 7 in
the Supplementary Information, SI, for further details;
we also note that efficient algorithms have been proposed
in the context of bipartite graphs [23]).

As k and m increase, the (k,m)-hyper-cores progres-
sively identify groups of nodes increasingly connected
with each other through interactions of increasing order.
In fact, the (k,m)-hyper-core includes the (k,m+1)- and
(k+ 1,m)-hyper-cores (Fig. 1). We define the m-shell in-
dex Cm(i) of a node i as the value of k such that i belongs
to the (k,m)-hyper-core but not to the (k+ 1,m)-hyper-
core. The (k,m)-shell S(k,m) can then be defined as the
set of all nodes whose shell index Cm(i) at size m is k,
and we denote by kmmax the maximum value of k such
that the shell S(k,m) is not empty. The ratio Cm(i)/kmmax
thus quantifies how well-connected node i is in the hy-
pergraph when considering group sizes at least m. As
this ratio is a function of m, different nodes have differ-
ent functions, which can potentially exhibit very different
functional shapes (see Supplementary Figure 5 in the SI
for examples). It is therefore impossible to use such func-
tions to compare and rank nodes. This suggests to use
another strategy, namely, to construct a scalar capable of
summarizing the centrality properties of a node with re-
spect to the hyper-core decomposition. We thus define a
family of centrality measures that we call hyper-coreness.
Specifically, we define for each node i its g-hyper-coreness
Rg(i) as:

Rg(i) =

M∑
m=2

g(m)Cm(i)/kmmax, (1)

where g(m) is an arbitrary weight function, which can
weigh differently the various possible sizes of higher-order
interactions. Rg is thus now a scalar that can be used
to rank nodes. The simplest case is given by the size-
independent hyper-coreness R, which weighs equally all
group sizes by using g(m) = 1, ∀m. Alternatively, the
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FIG. 1. Sketch of the (k,m)-hyper-core decomposition.
We show a hypergraph and highlight some of its (k,m)-hyper-
cores. Note the inclusions as k or m increase: the (1, 2)-
hyper-core contains the (1, 3)-hyper-core, which contains the
(2, 3)-hyper-core; similarly the (1, 2)-hyper-core contains the
(2, 2)-hyper-core which contains the (2, 3)-hyper-core. On the
other hand, the (1, 3)-hyper-core and the (2, 2)-hyper-core
share some nodes but neither is included in the other. The
green nodes belong to the (1, 2)-hyper-core but neither to the
(1, 3)- nor the (2, 2)- ones. The blue nodes belong to the
(1, 3)-hyper-core but are excluded from the (2, 3) one. Or-
ange nodes belong to the (2, 2)-hyper-core but are excluded
from the (2, 3) one because they belong only to hyperedges
of size 2. The (1, 4)-core and (1, 5)-core contain all the nodes
involved respectively in at least one interaction with m ≥ 4
and m ≥ 5 (for simplicity these cores are not highlighted).
The (k, 2)-cores and (k, 3)-cores with k ≥ 3, and the (k, 4)-
cores and (k, 5)-cores with k ≥ 2 are all empty. Notice that
the node i does not belong to the (2, 3)-core even if D3(i) = 2
because of the recursive and interaction downgrading mecha-
nisms of the decomposition; in the (1, 3)-core and (2, 3)-core
the pairwise interactions ei ∀i ∈ [1, 5] are excluded, thus the
(1, 3)-core is composed of two disjoint subhypergraphs.

function g could be used to emphasise hyperedges of
larger or smaller sizes, or a specific value (e.g. by using
g(m) = δ(m −m∗) if m∗ is a specific size of interest for
a dynamical process). In the spirit of a data-driven mea-
sure, we also consider the frequency-based hyper-coreness
Rw, where the function g is informed by each data set
and weighs each group size m by its relative abundance
in the data:

Rw(i) =

M∑
m=2

Ψ(m)Cm(i)/kmmax, (2)

where Ψ(m) is the fraction of hyperedges of size m in the
considered data set. The rationale behind using such a
weight function is to give more importance to the more
frequent hyperedge sizes.

Hyper-core decomposition of empirical hypergraphs

To illustrate the decomposition processes along (k,m)-
hyper-cores, we rely on a number of empirical hyper-

graphs, obtained from publicly available data sets, that
describe a variety of systems of agents interacting in dif-
ferent environments.In particular, we consider data sets
of face-to-face interactions between individuals, collected
in contexts ranging from workplaces to schools [46–49].
We also use data sets of email communication (email-EU,
email-Enron [50–52]) and of other online interactions: on-
line reviews of products (music-review [52, 53]) or opin-
ion exchanges in scientific forums [52, 54]. We moreover
consider data describing committees membership (house-
committees, senate-committees [52, 55, 56]) and bills
sponsorship (congress-bills, senate-bills [52, 55, 57, 58])
in the US Congress. Finally, we use ecological data sets,
describing pollination interactions between plants and in-
sects species [59–61]. These data sets cover a wide range
of system sizes and of interaction size distributions (see
Methods and Supplementary Note 1 in the SI, for a de-
tailed description of each data set). In the following,
we give results on the music-review, email-EU, house-
committees, and congress-bills data sets, and we refer to
the SI for the other data sets.

Figure 2 shows the results of the hyper-core decompo-
sition on two data sets. The relative size n(k,m) of the
(k,m)-hyper-cores exhibits distinct behaviors as a func-
tion of k andm, identifying structural differences between
data. In some cases, the decrease with k is rather smooth
(Fig. 2a and Supplementary Figures 2 and 3 in the SI),
showing that most shells are populated. In other cases,
abrupt drops and plateaus can be observed (Fig. 2e and
Supplementary Figures 2 and 3 in the SI), correspond-
ing to alternatively empty and densely populated (k,m)-
shells (see also Supplementary Figure 4 in the SI for the
sizes of the (k,m)-shells vs. k and m).

These differences indicate that the (k,m)-hyper-cores
could be used to provide a fingerprint of hypergraphs,
just as the k-core decomposition provides a fingerprint
of networks [8, 10, 12]. We explore this point further in
Fig. 2b,f, by comparing the hyper-core decomposition
of empirical data with the ones of randomized versions
that preserve the distribution of hyperedges sizes and the
hyper-degrees of each node (see Methods for details on
the randomization). The most common pattern obtained
in the data sets considered (see also SI) consists in signif-
icantly smaller hyper-core sizes in the data for low values
of m and k, and significantly larger sizes at large values
of m and k. In particular, kmmax is most often smaller in
the data for m ≤ m0 (m0 = 3 in Fig. 2b) but larger for
m > m0 (see also SI). This shows the existence of struc-
tures that are more strongly connected by hyperedges of
large size in the data than in their randomized counter-
parts, i.e., that cannot be explained by the distribution of
hyperedge sizes nor by the heterogeneity of node degrees.
Such results provide evidence of non-trivial hierarchical
arrangement of hyperedges connectivity in data, which
should thus be taken into account for realistic hypergraph
modeling.

The distributions of hyper-coreness values also differ
across data sets, as illustrated in the rank-order plots of
Fig. 2c,d,g,h and in the SI: some data sets have an almost
uniform distribution of values, others feature few nodes
with high hyper-coreness and many nodes with medium
hyper-coreness, or vice-versa. We also show in the SI
some typical examples of the normalized m-shell index
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FIG. 2. Hyper-core decomposition of empirical hypergraphs. Panels a,e show colormaps giving the relative size n(k,m)

(number of nodes in the hyper-core, divided by the total number of nodes N) of the (k,m)-hyper-core as a function of k and
m (white regions correspond to n(k,m) = 0). In the insets, n(k,m) is shown as a function of k at fixed values of m. Panels b,f

show colormaps giving the z-score z(k,m) of the (k,m)-hyper-core relative size, with respect to 103 shuffled realizations of the
hypergraph, as a function of k and m (values of z(k,m) ∈ (−1.96, 1.96) are shown in white). In panels c,g the size-independent
hyper-coreness R(i) is plotted as a function of the corresponding node rank; the insets give scatterplots of R(i) vs. the s-
coreness, S(i), for all nodes. Panels d,h are the same as c,g, but for the frequency-based hyper-coreness Rw(i). In panels a-d
we consider the email-EU data set: R(i) and S(i) have a Pearson correlation coefficient of ρ = 0.90 (p-value p� 0.001) and the
corresponding rankings have a Kendall’s τ coefficient of τ = 0.85 (p� 0.001), while Rw(i) and S(i) have ρ = 0.90 (p� 0.001)
and τ = 0.85 (p � 0.001); in panels e-h we consider the music-review data set: R(i) and S(i) have ρ = 0.74 (p � 0.001) and
τ = 0.58 (p� 0.001), while Rw(i) and S(i) have ρ = 0.98 (p� 0.001) and τ = 0.89 (p� 0.001).

function Cm(i) as a function of m for various nodes. As
anticipated above, the diversity of these functions and
of their shapes makes it difficult to compare them and
justifies the need to define summary indices such as the
hyper-coreness.

We finally compare in the insets of Fig. 2c,d,g,h the
hyper-coreness R and Rw with the centrality of nodes
obtained by disregarding the higher-order nature of the
interactions and projecting the hypergraph H onto a net-
work. To this aim, we transform each hyperedge in a
network clique, and each edge (i, j) of the resulting net-
work is weighted by the number of distinct hyperedges in
H involving both i and j. We then perform the s-core
decomposition of this weighted network and assign its s-
coreness S(i) to each node i [17]. As expected, since all
measures deal with coreness concepts, S(i) and R(i) are
positively correlated, as well as S(i) and Rw(i). How-
ever, they do not provide exactly the same information,
and the hyper-coreness measures enhance the information
given by the s-coreness by providing an internal hierar-
chy within the nodes of maximal s-coreness, thanks to
the fact that the hyper-coreness centralities take into ac-
count not only the connectivity but also the sizes of the
connecting hyperedges. That is, nodes presenting the
same s-coreness values can span a broad range of hyper-
coreness values.

Having illustrated the relevance of the newly defined
cores on empirical hypergraphs, we now move to study

the role that these substructures play in dynamical pro-
cesses on hypergraphs. In particular, we are going to in-
vestigate whether the (k,m)-hyper-cores and the hyper-
coreness centralities can be used to identify nodes and
structures relevant for spreading and consensus processes
whose mechanisms are explicitly defined on hyperedges.
To this aim, we will consider different models of spread-
ing processes that have been recently well studied and
shown to exhibit interesting new phenomenology driven
by higher-order effects [41, 42], and a consensus formation
model that has been shown to reproduce well experimen-
tal results on the effect of critical masses of committed
individuals [62], and where higher-order effects have also
been shown recently to influence this phenomenology [32].

Higher-order contagion processes localize in
hyper-cores, and high hyper-coreness seeds increase

total outbreak size

Networks are widely used to describe the substrate on
which contagion processes take place, such as the spread
of pathogens or information. In standard diffusion mod-
eling approaches, nodes represent individuals that at any
time can be in one of several possible states, such as S
(susceptible), I (infectious) or R (recovered); S nodes be-
come I at rate β when they share a link with an infectious
(I) individual, while infected (I) nodes recover sponta-
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neously at rate µ, either becoming again susceptible (S),
in what is usually called the SIS model [63], or becom-
ing recovered (R) in the so-called SIR model. Recently,
several models have been proposed to take into account
possible higher-order mechanisms, that amount to rein-
forcement mechanisms affecting the contagion probabil-
ity due to the simultaneous exposure to multiple sources
of infections in group interactions [30, 41, 64, 65]. For
instance, in a social contagion process, the probability
that an individual is convinced upon separate exposures
to two “infectious” neighbours can be reinforced if these
exposures occur during a group discussion featuring the
three individuals altogether.

Here, we show that hyper-cores and nodes with large
hyper-coreness centralities play a crucial role in the dy-
namics of higher-order spreading processes. To this aim,
we consider the recently proposed higher-order non-linear
contagion [41]. In this model, each susceptible node in a
hyperedge of size m in which there are i infected individ-
uals becomes infectious with rate λiν , where ν controls
the non-linearity of the process (for ν = 1 the usual linear
contagion is recovered, while for ν > 1 non-linearities are
introduced) and λ ∈ [0, 1] (see Methods for details). In-
fected individuals (I) recover independently at constant
rate µ, becoming either susceptible S (SIS model) or R
(SIR). The higher-order nature of contagion produces
novel effects on the epidemic phenomenology, including
abrupt transitions with bistability in the SIS phase dia-
gram and intermittent regimes [42, 64]. Moreover, hyper-
edge size has been shown to play an important role for
such higher-order non-linear contagion processes: on the
one hand, in a stationary state, the infection tends to lo-
calize on large hyperedges [41]; on the other hand, nodes
belonging to large groups are optimal seeds —in terms of
spreading speed— at the beginning of an outbreak [41].
Nevertheless, which nodes among these large groups are
most important for the contagion, both in terms of be-
ing infectious more often in an SIS process, or in terms
of having large spreading power, remains an unexplored
issue. In spreading processes on networks the coreness
has been shown to correlate with spreading properties
of nodes [13]. Thus, here it seems natural to investigate
which role the connectivity properties of large hyperedges
play in higher-order contagion processes: does the infec-
tion process localize more strongly in hypercores of large
k and m and/or on nodes with large hyper-coreness val-
ues? Do nodes with higher hyper-coreness have larger
spreading power?

To investigate these points, we perform numerical sim-
ulations of the higher-order non-linear contagion model
on empirical hypergraphs. In the SIS case, the system is
initialized with one single seed of infection (a randomly
chosen node in state I) in an otherwise fully suscepti-
ble population. We let the process evolve (see Methods)
until a steady state is reached in which the number of
infectious individuals fluctuates (we consider parameter
values such that the epidemic does not die out rapidly).
We then consider a finite time-window T and measure
for each node j the time τ(j) it spends in the I state
during that window. In this way we identify the nodes
on which the epidemic is mainly localized in the steady
state, i.e. the nodes that drive and sustain the process.
In the SIR case instead, the dynamics starts from a single
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FIG. 3. Hyper-cores for seeding and localization in
higher-order non-linear contagion processes. For the
SIS model, panels a and c give the heatmap of the average
fraction of time 〈τ/T 〉 of infected nodes in the steady state as
a function of k and m. Averages are computed over all the
nodes of each (k,m)-hyper-core. The insets represent 〈τ/T 〉
as a function of k for fixed values of m. All results are obtained
by averaging the results of 103 numerical simulations, with an
observation window T = 103. For the SIR model, panels b and
d show the heatmap of the average final size of the epidemic
〈R∞〉 as a function of k and m, where the process is seeded
in a single node belonging to the (k,m)-hyper-core (averaged
over all nodes of the hyper-core). The insets represent 〈R∞〉
as a function of m for fixed values of k. All results are obtained
by averaging the results of 300 numerical simulations for each
seed. Panels a and b: music-review data set with ν = 1.25,
λ = 5× 10−4 (a) and ν = 3, λ = 5× 10−4 (b). Panels c and
d: house-committees data set with ν = 1.25, λ = 5×10−4 (c)
and ν = 4, λ = 5× 10−5 (d). In all panels µ = 0.1.

seed and evolves until no individual is in the state I any-
more (only nodes in states S or R remain). To quantify
the “spreading power” of each node j considered as an in-
dividual seed, we average the final epidemic size R∞(j),
i.e., the number of nodes in state R at the end of the
process, over 300 stochastic runs for each seed.

Figure 3 reports results of simulations performed on the
music-review and house-committees data sets (see SI for
the other data sets). Panels 3a and 3c show that nodes
in (k,m)-hyper-cores with either increasing k or m tend
to be more often infectious during the SIS process, as
τ(j)/T averaged over all nodes of each (k,m)-hyper-core
increase with k and m. This implies that the SIS process
is more localized in the (k,m)-hyper-cores with large k
(which favors connectedness, hence mutual reachability)
and m (i.e., large hyperedges where large values of i can
be obtained yielding large infection rates). The insets
show how the dependency on the connectivity k is non-
trivially affected bym, the minimal group size considered.
Moreover, Figure 3b and 3d show that the final epidemic
size 〈R∞(j)〉 of SIR processes, averaged over all nodes
of each (k,m)-hyper-core, increases both with k and m,
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FIG. 4. Centralities performance in identifying nodes
with highest importance in higher-order non-linear
contagion processes. Panels a,c give the average Jaccard
similarity 〈Jτ 〉 between the nodes in the top fN positions of
the rankings based either on the fraction of time τ/T spent
in the I state during the SIS process, or on each of the cen-
tralities considered (see legend), vs. f . The insets represent,
as a function of f , the fraction 〈τ/T 〉f averaged over the first
fN nodes according to the different coreness rankings. Panels
b,d show the average Jaccard similarity 〈JR∞〉 between the
nodes in the top fN positions of the rankings based either on
R∞, i.e. the average epidemic final-size produced by seeding
the SIR process in each node, and each of the centralities con-
sidered, vs. f . The insets give the average epidemic final-size
〈R∞〉f , averaged over the first fN nodes according to coreness
rankings, as a function of f . Panels a,b refer to the music-
review data set, panels c,d refer to the house-committees data
set. The parameters and simulation conditions are fixed as in
Fig. 3.

with the insets emphasizing how the minimal connectivity
k impacts the dependency on the group-size m.

Many centrality measures have been defined for nodes
in a network. Among them, the coreness centrality is par-
ticularly suited to identify important nodes in spreading
processes on networks [13]. Moreover, it has been shown
that nodes belonging to hyperedges of large size are
important in non-linear spreading on hypergraphs [41].
These earlier results, together with the results of Fig. 3,
prompt us to investigate whether the hyper-coreness cen-
trality measures are able to identify the nodes with the
most important role in the higher-order non-linear con-
tagion process, and to compare their performance with
coreness concepts based on a network representation that
does not take group sizes explicitly into account. We
thus rank the nodes according to the fraction of time
τ/T spent in the I state during the SIS process. Figure
4a and c show the Jaccard coefficient between the first
fN nodes according to this ranking and the first fN
nodes according to a ranking based on one of the consid-
ered centralities: the size-independent hyper-coreness R,
the frequency-based hyper-coreness Rw, the s-coreness S,

and the k-coreness (unweighted version of the s-coreness).
The larger the Jaccard coefficient is, the better the cen-
trality identifies nodes on which the SIS process tends to
be localized. The results show that both R and Rw are
more able to uncover the 10% of nodes where the process
is most localized, with especially good performances ob-
tained by the frequency-based hypercoreness in some data
sets. The insets of panels a and c present similar results
under a different angle: namely, they display the average
of τ/T over the fN nodes with the highest hyper-coreness
R orRw, or the highest k- or s-coreness. Nodes with high-
est coreness tend to be more often in the infectious state,
and this tendency is stronger for the hyper-coreness cen-
tralities than for the k and s-coreness: among the nodes
with the largest values of k- or s-coreness, the hyper-
coreness centralities allow to distinguish which ones are
the most involved in the higher-order spreading processes.
Overall, the hyper-coreness centralities thus perform bet-
ter at identifying nodes on which the spreading gets more
localized than coreness measures that ignore the size of
hyperedges, i.e., are based on a network representation.

The panels b and d of Fig. 4 convey similar results
for the SIR case: hyper-coreness centralities better iden-
tify the nodes with highest spreading power than core-
ness centralities which do not take group sizes into ac-
count, and the nodes with higher hyper-coreness lead to
larger epidemics (insets), determining a hierarchy even
among the nodes with the highest k- or s-coreness; nodes
with higher connectedness along groups of larger sizes
can seed more efficiently the contagion process, and the
hyper-coreness centralities identify well the nodes with
the highest spreading power.

In the SI we show that a similar phenomenology is
obtained with a different model of contagion involving
higher-order mechanisms [42, 64], for both SIS and SIR.

Hypercore seeding facilitates systemic takeover by
minority norms

Group interactions can also play an important role in
the formation of consensus and the emergence of shared
conventions in a population. In the context of address-
ing societal challenges, critical mass theory predicts that
regular individuals might benefit from the presence of a
committed minority that aims at overturning the status
quo [66]. Recently, it has been shown that group inter-
actions can influence this takeover [32]. An important
issue in this respect concerns the best “seeding” strat-
egy –where should the committed minority start from in
order to best achieve the takeover? Here we show how
hyper-coreness centralities can provide an answer.

We consider the well-known naming-game (NG) model
[43], which describes how a shared convention can emerge
in a population of interacting agents [62, 67, 68], in its
minimal version modified to take group interactions into
account [32]. Individuals are represented by the N nodes
of a hypergraph, and each node is endowed with a dictio-
nary that can contain at most two names (representing
conventions or norms), A and B. At each time-step a
hyperedge is chosen randomly and a speaker is randomly
selected within it. The speaker randomly chooses a name
from its dictionary and communicates it to the other hy-
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FIG. 5. Comparison of seeding strategies for committed minorities in a naming-game process. The stationary
fraction n∗A of nodes supporting only the name A is shown as a function of the fraction of committed nodes p and the agreement
probability β. a-e: congress-bills data set with unanimity rule. f-j: email-EU data set with union rule. Committed nodes are
selected through random seeding (a,f), top k-coreness (b,g), top s-coreness (c,h), top frequency-based Rw hyper-coreness (d,i)
and top size-independent R hyper-coreness (e,j) strategies. With the top R hyper-coreness strategy, a fraction p = 1.51× 10−2

in the congress-bills data set with unanimity rule is enough to allow the minority takeover over a range of β values whose
extension is ∆β & 0.5. This cannot be achieved with the other strategies, for which below p = 2.8 × 10−2 only ∆β ∼ 0.4 can
be reached (see panels a-e). In the email-EU data set with the union rule, a fraction p = 4.1 × 10−3 is enough to obtain the
minority dominance over ∆β & 0.5 when seeded according to the top size-independent R hyper-coreness strategy. With the
top s-coreness and the random strategies the same result is obtained only for p = 1.33× 10−2 and p = 1.74× 10−2 respectively
(panels f-j). The minority takeover, i.e. n∗A = 1, takes place for 7.9% of the explored parameter space in panel a, 13.8% in b,
16.3% in c, 23.0% in d, 41.5% in e, 37.0% in panel f, 51.9% in g, 45.9% in h, 45.2% in i and 56.4% in j. All simulations are run
until the absorbing state n∗A = 1 is reached or the dynamics has evolved for tmax = 5× 105 time steps. The stationary fraction
n∗A is obtained by averaging over 100 values sampled in the last T = 5 × 104 time-steps. Results refer to the median values
obtained over 200 simulations for each pair of parameter values. Cross markers indicate the (β, p) values considered for Fig. 6.

peredge members (the listeners), who can agree or not
on the proposed name. To determine the possibility of
an agreement within the hyperedge, we consider two al-
ternatives [32]: (i) the union rule, for which an agreement
can be reached if at least one of the listeners has the pro-
posed name in its dictionary; (ii) the unanimity rule, for
which the agreement can be reached only if all nodes in
the group have the proposed name in their dictionary.
A parameter β ∈ [0, 1] modulates the social influence by
controlling the propensity of the listeners to accept the
local consensus: the group agreement becomes effective
only with probability β. In this case, all nodes in the hy-
peredge add the accepted name to their dictionary, if it
was not already present, deleting all others. If instead no
agreement is reached, the listeners simply add the name
given by the speaker to their dictionaries.

The population includes a committed minority of Np
individuals who do not obey these rules whenever they
are listeners, but instead stick to their norm, a single
name A (their dictionary is never updated). Such indi-
viduals have also been called “zealots” in various models
of opinion dynamics [69–71]. We initiate the process with
the rest of the population, i.e. the majority, having only
the name B. The system can evolve towards different
regimes of co-existence of the two names or of dominance
of one name, depending on β, on the considered rule, and
on the relative size of the minority p = Np/N . In partic-

ular, the committed minority can overcome the majority,
with the whole population converging on A, for a range
of intermediate values of β and for large enough p. When
committed individuals are chosen at random in the popu-
lation, this range increases when the hypergraph contains
hyperedges of larger sizes [32]. This naturally raises the
question of whether the committed minority might also
benefit from belonging to specific substructures, such as
hyper-cores with large connectedness and group sizes.

We investigate this issue through numerical simulations
of the higher-order NG process on empirical static hy-
pergraphs, selecting committed individuals with different
seeding strategies: (i) at random from the entire popula-
tion (random); (ii) as the Np ones with the highest size-
independent hyper-coreness R or frequency-based hyper-
coreness Rw (top hyper-coreness); (iii) as the Np ones
with the highest s-coreness (top s-coreness) or k-coreness
(top k-coreness) in the projected graph. In each case,
we measure the fraction nA of nodes holding only A in
their dictionary (both committed or not), and focus on
its large time limit n∗A. Figure 5 reports the simulation
results for two empirical data sets, congress-bills (a-e)
and the email-EU (f-j) (see SI for the other data sets).
For the random strategy, we recover the results of [32]:
for low values of β, a co-existence state of A and B is ob-
served; at a low fraction of committed and large β values,
the majority remains B. At intermediate β, the minority
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FIG. 6. Temporal dynamics of minority takeover with
different seeding strategies for committed minorities
in the naming-game process. Panels a,b show the tempo-
ral evolution of the fraction of nodes supporting only the name
A, nA(t), for the different seeding strategies for the committed
minority and for fixed values of the agreement probability β
and of the fraction of committed nodes p (see the cross mark-
ers in the heatmaps of Fig. 5), (a): congress-bills data set with
unanimity rule and (β, p) = (0.48, 2.3× 10−2); (b): email-EU
data set with union rule and (β, p) = (0.55, 9.2 × 10−3). All
results are obtained in the same simulation conditions of Fig.
5.

takes over and the whole population converges on A.

To go further, we consider non-random strategies, in
which the committed individuals are selected according
to a centrality criterion. In particular, we consider differ-
ent scenarios in which committed individuals are placed
on the most central nodes according either to their k- or s-
coreness, i.e., without taking group sizes into account, or
according to one of the considered hyper-coreness central-
ities. Figure 5 shows, for two data sets, that even if differ-
ent scenarios yield the same phenomenology, the choice
of the seeding strategy can strongly enhance the range of
parameters in which the minority overturns the majority
(black-coloured regions). Results on the other data sets
are reported in the SI. We note that the size-independent
hyper-coreness R tends to be globally more effective at
enabling the minority takeover than the frequency-based
one Rw. This might be due to the fact that seeding and
convincing very large groups can have an enormous ef-
fect in the NG dynamics, even if they are rare in the
data (and thus belonging to such large groups is less em-
phasized in Rw than in R). In general, a tiny fraction of
committed individuals, selected according to their hyper-

coreness centrality, is able to take over on a wide range
of β values (for low β values, a co-existence regime is ob-
served whatever the seeding strategy –due to the small
propensity to accept a local consensus [32]). The value of
critical mass pc necessary to bring the system to the tip-
ping point at fixed β is also strongly lowered for the top
R hyper-coreness strategy. For instance, in the congress-
bills data set with unanimity rule and β = 0.62, the
critical mass for the top size-independent hyper-coreness
strategy is pRc = 6.4×10−3 (pRwc = 7.0×10−3 for the top
frequency-based hyper-coreness strategy), as compared to
prc = 2.68× 10−2, pkc = 2.2× 10−2 and psc = 2.04× 10−2

obtained with the random, the top k-coreness and top
s-coreness strategies respectively (see Fig. 5a-e); sim-
ilarly, in the email-EU data set with union rule and
β = 0.83, these values are respectively pRc = 3.1 × 10−3,
pRwc = 1.3 × 10−2, prc = 1.53 × 10−2, pkc = 6.1 × 10−3,
psc = 9.2× 10−3 (see Fig. 5f-j).

The hyper-coreness centralities are overall particularly
effective in identifying nodes with a crucial role in higher-
order NG processes. Indeed, nodes belonging to (k,m)-
hyper-cores with large values of k and m, if commit-
ted, can convince many others through their simultane-
ous presence in several large groups. This is efficiently
sustained by their large connectedness, favouring conver-
gence on their convention even outside of the committed
minority. In addition, Fig. 6 illustrates how, even when
all seeding strategies lead to the agreement on the con-
vention initially supported by the minority, the hyper-
coreness seeding strategies lead to particularly fast con-
vergence. As also shown for other data sets in the SI,
the convergence processes obtained using seeding strate-
gies based on hypercoreness are always among the fastest
explored.

DISCUSSION

Here we have considered a systematic procedure to ex-
tract, from a given hypergraph, structures of increasing
connectedness along increasing group sizes: the (k,m)-
hyper-cores, in which each node is connected to the other
by at least k hyperedges of sizes at least m. We have de-
fined a new family of centralities in hypergraphs: a node
hyper-coreness summarizes its relative depth in the hier-
archies of hyper-cores at all orders. We have specifically
considered two among the arguably most natural choices
in this family, the size-independent hyper-coreness, which
does not put any bias towards a specific size, and the
frequency-based hyper-coreness, which directly takes into
account the distribution of group sizes in each data set.
Using empirical data describing a variety of higher-order
systems, and using a comparison with a null model, we
have illustrated how the (k,m)-hyper-cores provide a
(statistically significant) fingerprint of empirical hyper-
graphs. Crucially, we have also highlighted how hyper-
cores with increasing k and m play important roles in
several dynamic processes with higher-order mechanisms
unfolding upon hypergraphs, such as contagion processes
and consensus formation. The hyper-coreness centrality
identifies nodes with high spreading power and on which
stationary contagion processes tend to localize; moreover
nodes with high hyper-coreness centralities, if belonging
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to a committed minority, can be particularly efficient at
overturning a majority convention. As the coreness mea-
sures defined on the network representation of each data
set are known to also provide indication on a node’s im-
portance for several dynamical processes, we have per-
formed a comparison between coreness centralities that
do not take into account group sizes and hyper-coreness
centralities. We have shown how the hyper-coreness de-
termines a hierachy among nodes with the same coreness
in the projected graph, how it better identifies the most
important nodes in several higher-order spreading pro-
cesses and also provides powerful seeding strategies for
committed individuals in the emergence of social conven-
tions.

Our work opens the door to several research directions
in the expanding field of hypergraphs structure and dy-
namics. It can provide an additional systematic char-
acterization of both empirical and model hypergraphs,
and thus a model validation tool as well as a comparison
method between hypergraphs (e.g. by computing dis-
tances between the (k,m)-hypercore profiles of Fig. 2).
For systems where additional properties of the nodes
are known, the shell indices and hyper-coreness values
of nodes could be compared in more detail to provide in-
sights into their relative positions and roles in the system.
Moreover, two limitations of our study can be noted: (i)
the fact that our results rely on numerical investigations,
and (ii) the range of types of dynamical processes we
have considered, namely spreading processes (although
we considered two different higher-order infection mech-
anisms, and both SIS and SIR models in each case) and
consensus formation. On the one hand, obtaining ana-
lytical insights on the role of various centrality measures
on the spreading power of nodes in hypergraphs would
be an important achievement. However, understanding
which nodes are the most influential spreaders is a chal-
lenging task with very few analytical results even in usual
networks (typically limited to mean-field approaches and
the role of the degree centrality), while most approaches
are heuristic and numerical [72–75]. On the other hand,
further works should investigate the interplay between
hypercores and hyper-coreness and other dynamical pro-
cesses on hypergraphs [24, 33], ranging from other opinion
formation models [76–78], to cooperation [79] and syn-
chronisation [80, 81]. Relevant questions could include
e.g., whether nodes with higher hyper-coreness can drive
cooperation more efficiently, or whether synchronisation
occurs preferentially, and more rapidly, in more central
hypercores.

Moreover, while here we focused on static hypergraphs,
many such systems evolve in time [82–84]. Hyper-cores
and hyper-coreness could be used to investigate the evo-
lution of the higher-order interactions at multiple scales,
from the global evolution of the structure described by
hyper-core sizes, to the changes in shell indices and hyper-
coreness of individual nodes [8]. An interesting case study
in this direction could be for instance the evolution of the
hyper-core positions of scientists in co-authorship “net-
works”, which are indeed evolving hypergraphs [82].

METHODS

Data description and preprocessing

Several data sets we considered are publicly available in
the form of static hypergraphs, thus they do not require
any preprocessing. These data sets describe:

• email communications: within a European institu-
tion (email-EU [50]), and within Enron, between
a core-set of workers (email-Enron [51, 52]). Each
node corresponds to an email address and a hy-
peredge includes the sender and all receivers of an
email. Note that the original data is directed from
the sender to the receivers, but the direction is dis-
carded when building the hyperedges.

• interactions in legislative bills in the U.S. Congress
(congress-bills) and in the U.S. Senate (senate-bills)
[52, 55, 57, 58]: each node corresponds to a member
of the U.S. Congress or Senate and a hyperedge
involves sponsors and co-sponsors of legislative bills
discussed in the Congress or Senate.

• interactions in committees in the U.S. House of
Representatives (house-committees) and in the U.S.
Senate (senate-committees) [52, 55, 56]: each node
corresponds to a member of the U.S. House of Rep-
resentatives or Senate and each hyperedge involves
nodes that share membership in a committee.

• online interactions (3 data sets): exchanges be-
tween users of MathOverflow on algebra top-
ics (algebra-questions) or on geometry topics
(geometry-questions), in which each node corre-
sponds to a user of MathOverflow and each hyper-
edge involves those users who have answered a spe-
cific question belonging to the topic of algebra or ge-
ometry [52, 54]; interactions between Amazon users
on music (music-review [52, 53]), in which each node
corresponds to an Amazon user and each hyperedge
involves users who have reviewed a specific product
belonging to the category of blues music.

Moreover, we built static hypergraphs from several
data sets of time-resolved face-to-face human interac-
tions, as in [30, 32]. The data sets are provided by the
SocioPatterns collaboration [46–48] and by the Contacts
among Utah’s School-age Population (CUSP) project
[49] and describe interactions between individuals in
several contexts: a hospital (LH10 [85]), a workplace
(InVS15 [47, 86]), a conference (SFHH [47]), a high-school
(Thiers13 [87]), two primary-schools (LyonSchool [88],
Elem1 [49]) and a middle-school (Mid1 [49]). For these
data sets we carried out an aggregation procedure to ob-
tain static hypergraphs: (i) we aggregate the data over
time windows of 15 minutes; (ii) we identify the cliques
in each time window, i.e. groups of nodes forming a fully
connected cluster, (iii) we identify in each temporal win-
dow the maximum cliques, i.e. cliques not completely
contained in a larger clique, and promote them to a hy-
peredge status.

Finally, we consider hypergraphs built from ecological
data sets provided by the Web of life: ecological net-
works database [59]. The data are in the form of bipar-
tite graphs, where the nodes represent insect species or
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plants and the links connecting them represent a polli-
nation relationship. Starting from these bipartite graphs
we built two types of projected hypergraphs, obtained
respectively by considering insect species as nodes and
hyperedges connecting species that pollinate the same
plant, or by considering plants as nodes and hyperedges
connecting plants that are pollinated by the same insect
species. Here we use two bipartite networks: M PL 015
[59, 61] and M PL 062 [59, 60], yielding the hypergraphs
M PL 015 ins and M PL 062 ins with insects as nodes,
and the hypergraphs M PL 015 pl and M PL 062 pl with
plants as nodes.

Overall, the data sets considered describe interactions
in several different environments, mediated by different
mechanisms. They correspond to a wide variety of sta-
tistical properties (e.g. data set size, hyperedges size dis-
tributions), as shown in the SI where these statistical
properties of the data sets are reported in detail.

Hypergraph randomization procedure

Given a hypergraph H, we generate a randomized re-
alization H′ with the same number of nodes N , the same
number of hyperedges of each size m, ∀m ∈ [2,M ], and
that also preserves the degree vector d(i) of each node i.
Each realization is obtained through a hypergraph shuf-
fling procedure analogous to those used in Refs. [12, 89],
which works as follows. At the beginning of the shuf-
fling procedure H′ = H; then we randomly select two
hyperedges of the same size m, e = {i1, i2, ..., i, ..., im}
and f = {j1, j2, ..., j, ..., jm}. We then randomly draw a
node from each of the two hyperedges, let us say respec-
tively i and j, and replace e → e′ = {i1, i2, ..., j, ..., im}
and f → f ′ = {j1, j2, ..., i, ..., jm}. The hyperedge swap
is accepted if neither e′ nor f ′ already existed in H′. Note
that the other hyperedges to which i and j belongs are
not changed. The procedure is repeated ∀m ∈ [2,M ]
until 105 hyperedge swaps are performed for each m (if
there are at least 4 hyperedges of size m, otherwise the
shuffling procedure is not applied for that m). The results
presented in the manuscript following this procedure cor-
respond to 103 independent realizations of the shuffled
hypergraphs.

Models and stochastic simulations

Higher-order non-linear contagion

We performed stochastic numerical simulations of the
higher-order non-linear contagion model on each empir-
ical static hypergraph. The simulations are performed
with discrete time-steps. The S → I infection mecha-
nism is the same for the SIR and the SIS models: for
each time-step ∆t, given a hyperedge of size m contain-
ing i infected nodes, each of the susceptible nodes in it
can be infected with probability (1 − e−λiν ). Therefore,

the probability that a node j is infected in a time-step
∆t is:

pj = 1−
∏

e∈E(j)

e−λi
ν
e , (3)

where E(j) denotes the set of hyperedges in which the
node j is involved and ie is the number of infected nodes
in the hyperedge e. Each infected node heals (return-
ing susceptible in SIS or gaining immunity in SIR) with
probability µ in each time-step.

In the SIS process, the population is initialized with a
single infectious seed randomly selected in the population
and the process is iterated until the system reaches a
steady state with a fluctuating number of infectious. An
observation time window T is then considered and the
time τ spent in the infectious state is estimated for all
nodes over that time-window. The results are averaged
over 103 simulations.

In the SIR process the population is initialized with a
single infectious seed j and the dynamic process is iter-
ated until no more infectious nodes are present: the final
epidemic size R∞(j) obtained by seeding the infection in
j is defined as the final number of nodes in the R state.
The results are averaged over 300 simulations for each
infection seed j.

Higher-order NG process

We also performed numerical simulations of the higher-
order NG process on the empirical hypergraphs. The
system with N nodes is initialized by fixing Np nodes as
belonging to the committed minority (equivalently, with
a fraction p = Np/N of committed nodes), with only the
name A in their dictionary, and setting the dictionaries
of all the other nodes of the majority with only the name
B. The committed nodes are selected following one of
the three seeding strategies, i.e. randomly from the whole
population or as the Np nodes with highest s-coreness or
hyper-coreness. If several nodes have the same coreness
value, the committed nodes are randomly selected within
the coreness class.

The simulations are performed in discrete time-steps:
at each time-step a hyperedge is randomly selected (ac-
tivation of the group) and within it a node is randomly
chosen as the speaker, while the other nodes behave as
listeners. The speaker randomly selects a name in their
dictionary and all nodes in the group update their dictio-
nary according to the chosen agreement rule (except for
the committed nodes). The process is iterated until the
system reaches the absorbing state where all nodes have
only the name A in their dictionary, i.e. nA(t) = n∗A = 1,
or until the system has evolved for tmax time-steps: in
this last case the stationary fraction of nodes with the
name A in their dictionary n∗A is obtained by averaging
nA(t) over 100 values sampled in the last T = 50, 000
time-steps. The results refer to the median values ob-
tained over 200 simulations.
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DATA AVAILABILITY STATEMENT

The data that support the findings of this study are publicly available. The SocioPatterns data sets at
http://www.sociopatterns.org/; the Contacts among Utah’s School-age Population data sets at https://
royalsocietypublishing.org/doi/suppl/10.1098/rsif.2015.0279; the online and political interactions data sets
at https://www.cs.cornell.edu/~arb/data/; the Web of life ecological data sets at https://www.web-of-life.es.

CODE AVAILABILITY STATEMENT

The code is available at https://github.com/marco-mancastroppa/hypercore-decomposition/ and on Zenodo
[90] at https://doi.org/10.5281/zenodo.8345106. The code uses the CompleX Group Interactions, XGI, Python
library [91].
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FIGURE CAPTIONS

FIG. 1. Sketch of the (k,m)-hyper-core decomposition. We show a hypergraph and highlight some of its (k,m)-hyper-
cores. Note the inclusions as k or m increase: the (1, 2)-hyper-core contains the (1, 3)-hyper-core, which contains the (2, 3)-
hyper-core; similarly the (1, 2)-hyper-core contains the (2, 2)-hyper-core which contains the (2, 3)-hyper-core. On the other
hand, the (1, 3)-hyper-core and the (2, 2)-hyper-core share some nodes but neither is included in the other. The green nodes
belong to the (1, 2)-hyper-core but neither to the (1, 3)- nor the (2, 2)- ones. The blue nodes belong to the (1, 3)-hyper-core but
are excluded from the (2, 3) one. Orange nodes belong to the (2, 2)-hyper-core but are excluded from the (2, 3) one because
they belong only to hyperedges of size 2. The (1, 4)-core and (1, 5)-core contain all the nodes involved respectively in at least
one interaction with m ≥ 4 and m ≥ 5 (for simplicity these cores are not highlighted). The (k, 2)-cores and (k, 3)-cores with
k ≥ 3, and the (k, 4)-cores and (k, 5)-cores with k ≥ 2 are all empty. Notice that the node i does not belong to the (2, 3)-core
even if D3(i) = 2 because of the recursive and interaction downgrading mechanisms of the decomposition; in the (1, 3)-core and
(2, 3)-core the pairwise interactions ei ∀i ∈ [1, 5] are excluded, thus the (1, 3)-core is composed of two disjoint subhypergraphs.

FIG. 2. Hyper-core decomposition of empirical hypergraphs. Panels a,e show colormaps giving the relative size n(k,m)

(number of nodes in the hyper-core, divided by the total number of nodes N) of the (k,m)-hyper-core as a function of k and
m (white regions correspond to n(k,m) = 0). In the insets, n(k,m) is shown as a function of k at fixed values of m. Panels b,f

show colormaps giving the z-score z(k,m) of the (k,m)-hyper-core relative size, with respect to 103 shuffled realizations of the
hypergraph, as a function of k and m (values of z(k,m) ∈ (−1.96, 1.96) are shown in white). In panels c,g the size-independent
hyper-coreness R(i) is plotted as a function of the corresponding node rank; the insets give scatterplots of R(i) vs. the s-
coreness, S(i), for all nodes. Panels d,h are the same as c,g, but for the frequency-based hyper-coreness Rw(i). In panels a-d
we consider the email-EU data set: R(i) and S(i) have a Pearson correlation coefficient of ρ = 0.90 (p-value p� 0.001) and the
corresponding rankings have a Kendall’s τ coefficient of τ = 0.85 (p� 0.001), while Rw(i) and S(i) have ρ = 0.90 (p� 0.001)
and τ = 0.85 (p � 0.001); in panels e-h we consider the music-review data set: R(i) and S(i) have ρ = 0.74 (p � 0.001) and
τ = 0.58 (p� 0.001), while Rw(i) and S(i) have ρ = 0.98 (p� 0.001) and τ = 0.89 (p� 0.001).

FIG. 3. Hyper-cores for seeding and localization in higher-order non-linear contagion processes. For the SIS
model, panels a and c give the heatmap of the average fraction of time 〈τ/T 〉 of infected nodes in the steady state as a function
of k and m. Averages are computed over all the nodes of each (k,m)-hyper-core. The insets represent 〈τ/T 〉 as a function
of k for fixed values of m. All results are obtained by averaging the results of 103 numerical simulations, with an observation
window T = 103. For the SIR model, panels b and d show the heatmap of the average final size of the epidemic 〈R∞〉 as a
function of k and m, where the process is seeded in a single node belonging to the (k,m)-hyper-core (averaged over all nodes of
the hyper-core). The insets represent 〈R∞〉 as a function of m for fixed values of k. All results are obtained by averaging the
results of 300 numerical simulations for each seed. Panels a and b: music-review data set with ν = 1.25, λ = 5× 10−4 (a) and
ν = 3, λ = 5× 10−4 (b). Panels c and d: house-committees data set with ν = 1.25, λ = 5× 10−4 (c) and ν = 4, λ = 5× 10−5

(d). In all panels µ = 0.1.

FIG. 4. Centralities performance in identifying nodes with highest importance in higher-order non-linear conta-
gion processes. Panels a,c give the average Jaccard similarity 〈Jτ 〉 between the nodes in the top fN positions of the rankings
based either on the fraction of time τ/T spent in the I state during the SIS process, or on each of the centralities considered (see
legend), vs. f . The insets represent, as a function of f , the fraction 〈τ/T 〉f averaged over the first fN nodes according to the
different coreness rankings. Panels b,d show the average Jaccard similarity 〈JR∞〉 between the nodes in the top fN positions
of the rankings based either on R∞, i.e. the average epidemic final-size produced by seeding the SIR process in each node, and
each of the centralities considered, vs. f . The insets give the average epidemic final-size 〈R∞〉f , averaged over the first fN
nodes according to coreness rankings, as a function of f . Panels a,b refer to the music-review data set, panels c,d refer to the
house-committees data set. The parameters and simulation conditions are fixed as in Fig. 3.
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FIG. 5. Comparison of seeding strategies for committed minorities in a naming-game process. The stationary
fraction n∗A of nodes supporting only the name A is shown as a function of the fraction of committed nodes p and the agreement
probability β. a-e: congress-bills data set with unanimity rule. f-j: email-EU data set with union rule. Committed nodes are
selected through random seeding (a,f), top k-coreness (b,g), top s-coreness (c,h), top frequency-based Rw hyper-coreness (d,i)
and top size-independent R hyper-coreness (e,j) strategies. With the top R hyper-coreness strategy, a fraction p = 1.51× 10−2

in the congress-bills data set with unanimity rule is enough to allow the minority takeover over a range of β values whose
extension is ∆β & 0.5. This cannot be achieved with the other strategies, for which below p = 2.8 × 10−2 only ∆β ∼ 0.4 can
be reached (see panels a-e). In the email-EU data set with the union rule, a fraction p = 4.1 × 10−3 is enough to obtain the
minority dominance over ∆β & 0.5 when seeded according to the top size-independent R hyper-coreness strategy. With the
top s-coreness and the random strategies the same result is obtained only for p = 1.33× 10−2 and p = 1.74× 10−2 respectively
(panels f-j). The minority takeover, i.e. n∗A = 1, takes place for 7.9% of the explored parameter space in panel a, 13.8% in b,
16.3% in c, 23.0% in d, 41.5% in e, 37.0% in panel f, 51.9% in g, 45.9% in h, 45.2% in i and 56.4% in j. All simulations are run
until the absorbing state n∗A = 1 is reached or the dynamics has evolved for tmax = 5× 105 time steps. The stationary fraction
n∗A is obtained by averaging over 100 values sampled in the last T = 5 × 104 time-steps. Results refer to the median values
obtained over 200 simulations for each pair of parameter values. Cross markers indicate the (β, p) values considered for Fig. 6.

FIG. 6. Temporal dynamics of minority takeover with different seeding strategies for committed minorities in
the naming-game process. Panels a,b show the temporal evolution of the fraction of nodes supporting only the name A,
nA(t), for the different seeding strategies for the committed minority and for fixed values of the agreement probability β and of
the fraction of committed nodes p (see the cross markers in the heatmaps of Fig. 5), (a): congress-bills data set with unanimity
rule and (β, p) = (0.48, 2.3 × 10−2); (b): email-EU data set with union rule and (β, p) = (0.55, 9.2 × 10−3). All results are
obtained in the same simulation conditions of Fig. 5.


