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Abstract. In this paper, we address the problem of unsupervised do-
main adaptation in a regression setting considering that source data have
different representations (multiple views). In this work, we investigate an
original method which takes advantage of different representations us-
ing a discrepancy distance while using attention-based neural networks
mechanism to estimate feature importance in domain adaptation. For
this purpose, we will begin by introducing a novel formulation of the
optimization objective. Then, we will develop an adversarial network
domain adaptation algorithm adjusting weights given to each feature,
ensuring that those related to the target receive higher weights. Finally,
we will evaluate our method on public dataset and compare it to other
domain adaptation baselines to demonstrate the improvement for regres-
sion tasks.

Keywords: Domain Adaptation · Feature Selection · Multi-view · Re-
gression.

1 Introduction

In most predictive maintenance problems, data are collected from various pro-
duction lines, assembly lines, or are captured by different devices. Those in-
dustrial processes there define several domains each with different distribution.
In this context, an algorithm trained for predictive maintenance for a specific
domain (referred as source domain) cannot be correctly generalized to another
domain (referred as target domain). Therefore, it is common practice to retrain
the predictive maintenance models. However, this retraining leads to delayed
forecast actions until enough data are available for accurate prediction. To ad-
dress this issue, predictive models, trained with a specific domain, have to adapt
to data with different distributions and limited or non-existing fault information.
In machine learning, this situation is often referred to as domain adaptation or
covariate shift [28]. In general, domain adaptation methods attempt to solve the
learning problem when the main learning task is the same but the domains have
different feature spaces or different marginal conditional probabilities [22,35,25].
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On the other hand, data can be represented by several independent sets of fea-
tures. For instance, in the example of the aforementioned predictive maintenance,
data are collected from diverse sensors and exhibit heterogeneous properties.
Thus, data from different sensors can be naturally partitioned into independent
groups [37]. Each group is referred to as a particular view. Multi-view learning
[37,15] aims to improve predictors by taking advantage of the redundancy and
consistency between these multiple views.

In the domain adaptation context, views are generally concatenated into one
single view to adapt to the learning task. However, this concatenation might
cause negative transfer [39], (i.e. introduce source domain data/knowledge un-
desirably) because each view has a specific statistical property. This will result
in a decreased learning performance in the target domain. Furthermore, the risk
of negative transfer might also come from one or several features being prejudi-
cial to adaptation [35]. It is particularly true with adversarial methods trying to
match source and target domains. Therefore, to avoid negative transfer we want
to find a way to give high weights to features most related to the target domain.
We can find little research on multi-view domain adaptation [38,36] where con-
siderable attention has been given on the classification problem, while regression
task and selection features remains largely under-studied.

In this paper, we propose a novel approach for multi-view domain adaptation
using self-attention for regression tasks. This work makes two main contributions:
first, we propose to extend the measure between distributions Source-guided
Discrepancy [13] to multi-views learning concept, and we also adapt this measure
to Adversarial method. The second main contribution is the introduction of self-
attention to select important features to avoid negative transfer. We conduct
experiments on real-world datasets and improve on state-of-the-art results for
multi-view adversarial domain adaptation for regression.

2 Learning scenario

This section introduces the definitions and concepts needed for the following
sections. For the most part, we follow the definitions and notations of Cortes
and Mohri [5]. Let X ∈ Rp and Y ∈ R, denote respectively input and output
spaces. We define a domain as a pair formed by a distribution over X and a
target labeling function mapping from X to Y. Throughout the paper, (Q, fQ)
denotes the source domain and (P, fP ) the target domain with Q the source and
P the target distribution over X and with fQ, fP : X → Y the source and target
labeling functions, respectively. In the scenario of multi-view domain adaptation
the learning algorithm receives a labeled sample S of m points from the source
domain, and the data instances can be represented in M different views. More

formally, for v ∈ {1, ...,M}, Sv = {(x(v)
1 , y

(v)
1 ), ..., (x

(v)
m , y

(v)
m )} ∈ (X ×Y)m where

Sxv
= {x(v)

1 , ..., x
(v)
m } is supposed to be drawn i.i.d. according to distribution Q

and yi = fQ(xi) for all i ∈ [1,m]. In the same way, we define unlabeled samples
from the target domain, T = {x′

1, ..., x
′
n} ∈ Xn where Tx = {x′

1, ..., x
′
n} is as-

sumed drawn iid according to P and yi = fP (x
′
i) for all i ∈ [1, n]. We denote by
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Q̂ and P̂ the empirical distributions of the respective samples Sx and Tx. We con-
sider in the following that the covariate shift assumption holds, i.e. f = fQ = fP .

We also consider a loss function L : Y × Y → R+ jointly convex in its two
arguments. The Lp loss functions commonly used in regression and defined by
Lp(y, y

′) = |y − y′| for p > 1 are special instances of this definition. We define a
hypothesis class H of hypotheses h : X → Y .For any two functions h, h′ : X → Y
and any distribution D over X , we denote by LD(h, h′), the expected loss of h(x)
and h′(x) : LD(h, h′) = Ex∼D[L(h(x), h′(x))].

Objectif. The goal of Domain Adaptation is to minimize the target risk
LP (h, fp) = Ex∼P [L(h(x), fP (x))]. In unsupervised domain adaptation, no label
is available in the target task and we cannot directly estimate fP . Consequently
we want to leverage the information about the labels in the source domains fQ
to adapt to the target domain.

3 Adversarial algorithm for Multi-view Domain
Adaptation

3.1 Source-guided Discrepancy (S-disc)

The Source-guided Discrepancy (S-disc) introduced in [13], is defined as the
maximal difference between source and target risk over a set of hypotheses. We
recall below its definition.

Definition 1. (Source-guided discrepancy). Let H be a hypothesis class and
h, h∗ ∈ H. S-disc between two distributions Q and P is defined as:

ς lH(P,Q) = max
h∈H

|LP (h, h
∗
S)− LQ(h, h

∗
S)|. (1)

where h∗
Q = argminh∈H LQ(h, fQ) in the source domain. Here, note that the risk

minimizer h∗
Q is not necessarily equal to the labeling function fQ as we consider a

restricted hypothesis class. S-disc offers several advantages compared to existing
discrepancy measures [13], nevertheless in the context of multi-view learning
S-disc is not adapted. Consider M hypotheses, h∗

v ∈ Hv, for v ∈ {1...M} (for
reasons of simplification we abbreviate h1 ∈ H1, ..., hM ∈ HM with hv ∈ Hv),
such as h∗

v = argminhv∈Hv
LQv

(hv, fQv
), with

⋃
v∈M (Qv, fQv

) ⊆ (Q, fQ), where

the pair (Qv, fQv ) is the vth subset of (Q, fQ) (we note that fQv = fQ). In
our context a view is considered as a subset of source domain. In this case,
it is difficult to choose the appropriate predictor h∗

v to measure the difference
between the two domains with S-disc. To overcome this problem we define a
novel discrepancy measure Multi-Views-guided Discrepancy (MV-Disc):

Definition 2. (Multi-Views-guided Discrepancy) For any h∗
v ∈ Hv:

MV-Disc(P,Q) = max
h∈H

| 1
M

M∑
v=1

LP (h, h
∗
v)−

1

M

M∑
v=1

LQv
(h, h∗

v)| (2)
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3.2 Propositional Self-Attention Feature Importance

In this section we explore the use of attention-based neural networks mechanism
for estimating feature importance in domain adaptation. This section is inspired
from the seminal works on the attention mechanism [3,34,29]. We took inspira-
tion from [29] regarding feature importance, with a different implementation of
the attention mechanism, we defined it as follows:

Ω(X) =
1

k

⊕
k

[
softmax

(
f(qk(W kX + bk))

)]
(3)

Input vectors X ∈ X are first used as input to a softmax-activated layer
containing the number of neurons equal to the number of features p, where the
softmax function applied to the ji-th element of a weight vector v is defined as:

softmax(vji) =
exp(vji)∑p
j=1 exp(vj)

(4)

where v ∈ Rp. Note that k represents the number of attention heads distinct ma-
trices representing relations between the input features. The ⊗ sign corresponds
to the Hadamard product, the ⊕ refers to the Hadamard summation across in-
dividual heads and f corresponds to the activation function. For the activation
function f we use a tanh as proposed in [1]. We extend the idea of integrating a
weight vector q following the attention layer as proposed in [24]. The proposed
architecture maintains a bijection between the set of features p and the set of
weights in W , thereby the weights in the head can be understood as relations
between features [29]. Ω is a mapping from the feature space to the space of
non-negative real values, i.e. Ω : p → R+

0 , to obtain the pondered features we
multiply the output of Ω by the input space X, and we define ΩR = Ω(X)⊗X.

3.3 Propositional Algorithm

A min-max problem. Since the Multi-Views-guided Discrepancy is defined
as a maximum on a functional space, we propose to use adversarial training to
align domains. We introduce a feature extractor called generator G : X → Z,
typically a neural network parametrized by ϕ. The generator aims to produce
a latent space Z where domains are not distinguished by any predictor h ∈
HZ , such as HZ : Z → Y. Using the proposed attention mechanism ΩR and
the definition of MV-Disc, we formulate the following objective function for
our Adversarial Multi-Views Self Attention-guided Discrepancy (AMVSAD). For
any h∗

v ∈ Hv:

min
ΩRv∈Hv,gϕ∈H,ΩRT

∈H
max
h∈H

| 1
M

M∑
v=1

LP (h ◦Gϕ ◦ΩRT
, h∗

v ◦Gϕ ◦ΩRT
)

−
M∑
v=1

βvLQv
(h ◦Gϕ ◦ΩRv

, h∗
v ◦Gϕ ◦ΩRv

)|+ λ1σ(h) + λ2||β||2

(5)
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Where σ is the spectral norm, λ1 and λ2 are hyperparameters. We add spec-
tral normalization [20] to control the discriminator and avoid instability during
the training. We also propose to attribute weights to each view [26,16], β en-
suring that the most related views to the target receive higher weights. ΩRv is
the vth attention mechanism for the vth view and ΩRT

is the target attention
mechanism. For any given h ∈ H, h∗

v ∈ Hv the discrepancy term constrains all
three representations ϕθ,weights β and ΩR to align domains.

While computing the true solution of this min-max problem is still impos-
sible in practice, we derive an alternate optimization algorithm. Similarly to
most other adversarial methods, we sequentially optimize differents parameters
of our networks according to different objectives. At a given iteration, losses
are minimized/maximized sequentially (the general structure of our algorithm
is available at the following github repository3):

Step 1 First, we train the predictors and generator on labeled source data with
the different views. Our aim is for the vth predictor to predict correctly the vth

view to obtain h∗
v. For v ∈ {1, ...,M}:

min
hv∈Hv,ΩRv∈Hv,Gϕ∈H

LQv
(hv ◦Gϕ ◦ΩRv

, fQv
). (6)

Step 2 Thus, we update the predictor h as a discriminator to increase the
MV-Disc loss for a fixed generator:

max
h∈H

| 1
M

M∑
v=1

LP (h ◦Gϕ ◦ΩRT
, h∗

v ◦Gϕ ◦ΩRT
)

−
M∑
v=1

βvLQv
(h ◦Gϕ ◦ΩRv

, h∗
v ◦Gϕ ◦ΩRv

)|+ λ1σ(h)

(7)

Step 3 We train the generator, the attention mechanism, and β to minimize
the MV-Disc loss for fixed predictor h:

min
ΩRv∈Hv,ΩRT

∈H,gϕ∈H
| 1
M

M∑
v=1

LP (h ◦Gϕ ◦ΩRT
, h∗

v ◦Gϕ ◦ΩRT
)

−
M∑
v=1

βvLQv (h ◦Gϕ ◦ΩRv , h
∗
v ◦Gϕ ◦ΩRv )|+ λ2||β||2

(8)

3 https: // github. com/ HennequinMehdi/ Adversarial-Multi-View-Attention-guided-Discrepancy.

git

https://github.com/HennequinMehdi/Adversarial-Multi-View-Attention-guided-Discrepancy.git
https://github.com/HennequinMehdi/Adversarial-Multi-View-Attention-guided-Discrepancy.git
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4 Related work

Adversarial Domain Adaptation. Adversarial techniques, for Domain Adap-
tation was introduced in [8]. Based on the H∆H-divergence [2], authors found
a new representation of the input features where source and target instances
cannot be distinguished by any discriminative hypothesis. [32,40,27], follow a
similar idea. The above mentioned papers give considerable attention to clas-
sification setting, while regression task and selection features remains largely
under-studied. Nonetheless, the authors in [19,26] propose methods tailored for
regression task. Compared to above mentioned methods we add an attention
mechanism to assist the generator to find a subspace shared by domains select-
ing the most relevant features.

Discrepancy Minimization. The present work is in line with discrepancy min-
imization methods, which were first introduced in [17], and further developed in
[4,21,5,13,40,26]. More specifically, our algorithm aims at minimizing the empir-
ical S-disc introduced in [13]. Discrepancy is the key measure of the difference
between two distributions in the context of domain adaptation and has several
advantages over other common divergence measures such as the l1 distance. Be-
sides, several generalizations bound for adaptation in terms of discrepancy were
proposed [4,21,5,6]. In comparison to others methods, we introduce the concept
of subset in the source domain, in this way we can use different views to compare
two distribution.

Feature selection Domain Adaptation. Classical feature selection methods
[10] are not designed for domain adaptation. For instance, in [14], the authors
searched a latent subspace and deploys l2,1-norm to select common features
shared by the domains. Another example of feature selection methods in domain
adaptation are [33] and [9]. The contribution of the former paper consists in the
use of parametric maximum mean discrepancy distance in order to find a weight
matrix that allows to identify invariant and shifting features in the original space.
The method described in the latter paper proposes a similar idea using optimal
transport to find a shared feature representation. The biggest advantage using
our method over the above mentioned ones, is the search of domains shared
features during the training of the regression task.

5 Experiments

In this section, we evaluate our AMVSAD method. It should be noted that unsu-
pervised Domain Adaptation with multi-view for regression is hard to evaluate
as we have no real public database that corresponds entirely to the problem we
described in the introduction. Consequently, we build scenarios and, for each
one, we will describe the protocol. We report the results of the AMVSAD al-
gorithm compared to other domain adaptation methods. The experiments are
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Table 1. Superconductivity experiments MSE

Expe. l →ml l →mh l →h ml →l ml →mh ml→ h mh →l

WANN 0.0844 0.0469 0.0343 0.0404 0.0544 0.0276 0.0391
KLIEP 0.0619 0.0418 0.0446 0.0377 0.0400 0.0372 0.0268
KMM 0.0667 0.0694 0.0273 0.0513 0.0428 0.0282 0.0342
DANN 0.0885 0.0501 0.0333 0.0335 0.1134 0.3368 0.0578
ADDA 0.0450 0.0448 0.1155 0.0340 0.0310 0.1626 0.0478
DeepCORAL 0.0672 0.0431 0.0493 0.0502 0.0553 0.0324 0.0538
MDD 0.0691 0.0450 0.0446 0.0395 0.0483 0.0325 0.0343
TrAdaBoostR2 0.0627 0.0499 0.0417 0.0480 0.0538 0.0284 0.0410
AHD-MSDA 0.0801 0.0324 0.0264 0.0679 0.0559 0.0592 0.0259
AMVSAD 0.0281 0.0252 0.0275 0.0780 0.0570 0.0772 0.0496

Expe. mh →ml mh →h h →l h →ml h →mh Avg.

WANN 0.0630 0.0661 0.0300 0.0712 0.0395 0.0497
KLIEP 0.0685 0.0337 0.0273 0.0656 0.0429 0.0440
KMM 0.0587 0.0955 0.0350 0.0680 0.0410 0.0515
DANN 0.1052 0.0262 0.0498 0.1235 0.0472 0.0888
ADDA 0.0815 0.0256 0.0264 0.1877 0.0322 0,0695
DeepCORAL 0.0769 0.0642 0.0586 0.0694 0.0507 0.0559
MDD 0.0667 0.0499 0.0477 0.0762 0.0578 0.0510
TrAdaBoostR2 0.0654 0.0744 0.0427 0.0664 0.0466 0.0517
AHD-MSDA 0.0514 0.0386 0.0292 0.0662 0.0325 0.0471
AMVSAD 0.0204 0.0528 0.0368 0.0206 0.0299 0.0419

conducted on public dataset. The following competitors are selected to compare
the performance of our algorithm:

– Weighting Adversarial Neural Network (WANN) [19] is a semi-supervised
domain adaptation method based on the empirical Y-discrepancy [21]. It is
used for regression tasks.

– Discriminative Adversarial Neural Network (DANN) [8] is an unsupervised
domain adaptation method. It is used here for regression tasks by consider-
ing the mean squared error as task loss instead of the binary cross-entropy
proposed in the original algorithm.

– Adversarial Discriminative Domain Adaptation (ADDA) [32] performs a
DANN algorithm in two-stage: it first learns a source encoder and a task
hypothesis using labeled data and then learns the target encoder with ad-
versarial training.

– Deep Correlation Alignment (DeepCORAL) [31] is an unsupervised domain
adaptation method that aligns the second-order statistics of the source and
target distributions with a linear transformation.

– Margin Disparity Discrepancy (MDD) [?] is an unsupervised domain adap-
tation, it learns a new feature representation by minimizing the disparity
discrepancy.

– TrAdaBoostR2 [23] is a semi-supervised domain adaptation method for re-
gression tasks. The method is based on a reverse-boosting principle where the
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weight of source instances poorly predicted are decreased at each boosting
iteration.

– Kullback-Leibler Importance Estimation Procedure (KLIEP) [30] is a sample
bias correction method minimizing the KL-divergence between a reweighted
source and target distributions.

– Kernel Mean Matching (KMM) [12] reweights source instances in order to
minimize the MMD between domains.

– Adversarial Hypothesis-Discrepancy Multi-Source Domain Adaptation (AHD-
MSDA) [26] is a multi-source unsupervised domain adaptation.

We propose here to demonstrate the efficiency of AMVSAD on the UCI
dataset superconductivity [7,11]. The goal is to predict the critical temperature
of superconductors. This is a common regression problem in the industry, as
industrialists are particularly interested in modeling the relationship between
a material and its properties. The dataset contains two views: the first view
contains 81 features extracted from 21263 superconductors, while the second
view contains the chemical formula broken up for all the 21263 superconductors,
whose format is binary. We divide this dataset into separate domains as per the
setup of [23]. We select an input feature with a moderate correlation factor with
the output (0.3). We then sort the set according to this feature and split it into
four parts: low (l), midle-low (ml), midle-high (mh), high (h). Each part defines
a domain with around 5000 instances. We conduct an experiment for each pair
of domains which leads to 12 experiments. For each pair of domains we also
randomly select different features from the two views. Therefore, the source do-
main and the target domain do not have the same features. 10 target labeled
instances are used in the training except for our method, AHD-MSDA, which
benefit multi-view/multi-source learning method. The other target data are used
to compute the results. For the multi-source methods such as AHD-MSDA, we
consider a view to be a source, while for the other baseline methods that do not
consider multi-source learning, we merge the views. We reported the results in
tables, We also report the average MSE over the 12 experiments. For all base
line methods implementation except AHD-MSDA, the python library ADAPT
is used [?]. The optimization parameters used in the presented experiments for
baseline methods are lr = 0.01/0.001, and the loss function is the mean squared
error (MSE). The base hypothesis used to learn the task is a neural network with
two hidden fully-connected layers of 100 neurons each, ReLU activation func-
tions, weights clipping C = 1 and Adam optimizer; 250/350 epochs with a batch
size of 128 are performed. Cross-validation is also applied to select best param-
eters and best scores for each baseline method. Our method and AHD-MSDA
have been implemented using the Pytorch library, and the network architecture
in table. For more detail, the codes and experiments are available at the following
github repository4 .

4 https://github.com/HennequinMehdi/Adversarial-Multi-View-Attention-guided-Discrepancy.

git

https://github.com/HennequinMehdi/Adversarial-Multi-View-Attention-guided-Discrepancy.git
https://github.com/HennequinMehdi/Adversarial-Multi-View-Attention-guided-Discrepancy.git
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Table 2. Architectures AMVSAD

Generator Discriminator

Dense(size(features),50 , LeakyReLU) Spectral Norm(Dense(25,9 , ReLU))
Dropout(0.1) Spectral Norm(Dense(9,1,ReLU))
Dense(50,25,Tanh) λ1 = 0.001 for Spectral Norm

Predictors Optimization parameters

Dense(25,9,ReLU) Adam lr = 0.001, epochs = 100, λ2 = 0.01
Dense(9,1,ReLU) Attention Mechanism Head:

Dense(size(features), size(features))
Attention Mechanism q:
Dense(size(features), size(features))
Num Head and q = 2

Fig. 1. Features importance of experiments l → ml

Discussion Overall, we find that our method performs better than state-of-the-
art methods in the target domain. However, for a pair of domains our method
performs as well or less than some methods. The reason for this is that some
methods leverage information from a few target labeled instances during train-
ing, thus penalizing our performance. Nevertheless, the advantage of our method
is that we can access the attention level associated with each feature averaged
over predictions (see Fig. 1). Since we compute feature importance shared by
domains, we can visualize the feature’s ranking that contributes to adaptation.

6 Conclusion

In this work, we proposed an adversarial domain adaptation algorithm based on a
new discrepancy, MV-Disc, tailored for multi-view regression. We demonstrated
the efficiency of our method in real dataset especially with feature importance.
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For our future work, we aim to extend our MV-disc to classification problems. In
the future we hope to access to more real database in our problematic to perform
more exhaustive experiments. We also intend to investigate the self-supervised
learning and active learning settings, to try labeling target data with a high
degree of confidence.
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