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Abstract
Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially 
different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher 
degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility 
is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The 
multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability 
in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding 
the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of 
researchers and asked them to answer the same research question, resulting in substantial variability in reported effect 
sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed 
variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this 
idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the 
link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions.

Keywords
crowdsourcing science, data analysis, scientific transparency, speech, acoustic analysis
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To effectively accumulate knowledge, science needs to 
(a) produce data that can be replicated using the original 
methods and (b) arrive at robust conclusions substanti-
ated by such data. In recent coordinated efforts to rep-
licate published findings, scientific disciplines have 
uncovered surprisingly low success rates (e.g., Camerer 
et al., 2018; Open Science Collaboration, 2015), leading 
to what is now referred to as the replication crisis. 
Beyond the difficulties of replicating scientific findings, 
a growing body of evidence suggests that researchers’ 
conclusions often vary even when they have access to 
the same data. The latter situation has been referred to 
as the inference crisis (Rotello et al., 2015; Starns et al., 
2019) and is, among other things, rooted in the inherent 
flexibility of data analysis (often referred to as researcher 
degrees of freedom; Gelman & Loken, 2014; Simmons 
et al., 2011). Data analysis involves many different steps, 
such as inspecting, organizing, transforming, and model-
ing data, to name a few. Along the way, different meth-
odological and analytic choices need to be made, all of 
which may influence the final interpretation of the data.

These researcher degrees of freedom are both a bless-
ing and a curse. They are a blessing because they afford 
us the opportunity to look at nature from different 
angles, which, in turn, allows us to make important 
discoveries and generate new hypotheses (e.g., Box, 
1976; De Groot, 2014; Tukey, 1977). They are a curse 
because idiosyncratic choices can lead to categorically 
different interpretations that eventually find their way 
into the publication record, where they are taken for 
granted (Simmons et  al., 2011). Recent projects have 
shown that the variability between different data analysts 
is vast and can lead independent researchers to draw 
different conclusions from the same data set (e.g.,  
Botvinik-Nezer et al., 2020; Silberzahn et al., 2018; Starns 
et al., 2019). These studies, however, might still under-
estimate the extent to which analysts vary because data 
analysis is not restricted to the statistical analysis of 
ready-made numeric data. These data can in fact be the 
result of complex measurement processes that translate 
a phenomenon, such as human behavior, into numbers. 
This is particularly true for fields that draw conclusions 
about human behavior and cognition from multidimen-
sional data such as audio or video data. In fields working 
on speech production, for example, researchers need to 
make numerous decisions about what to measure and 
how to measure it (i.e., how to operationalize the phe-
nomenon under investigation). Given the temporal 
extension of the acoustic signal and its complex struc-
tural composition, this is not trivial.

In this article, we investigate the impact of analytic 
choices on research results when many analyst teams 
examine the same speech-production data set, a process 
that involves both decisions regarding the operational-
ization of linguistically relevant constructs and decisions 

regarding statistical analysis. Specifically, we discuss the 
degree of variability in research results obtained by 46 
teams who had to choose the operationalization and 
statistical procedures to answer the same research ques-
tion on the basis of the same set of raw data (here, 
speech recordings). Our study seeks to (a) conceptually 
replicate previous many-analysts projects by probing the 
effects of different statistical analyses and by assessing 
the generalizability of published findings to other disci-
plines (here, the speech sciences) and (b) extend the 
scope of inquiry to include flexibility in the operation-
alization of complex human behavior (here, speech). 
This is an important addition in that the increased num-
ber of “forking paths” in the “garden of analytic 
choices”—derived from the many decisions involved in 
quantification—might reveal a higher degree of vari-
ability across analysts than previously observed, thus 
giving us a more realistic estimate of variability.

Researcher Degrees of Freedom

Data analysis comes with many decisions, such as how 
to measure a given phenomenon or behavior, which data 
to submit to statistical modeling and which to exclude 
in the final analysis, or what inferential decision-making 
procedure to apply. This can be problematic because 
humans show cognitive biases that can lead to erroneous 
inferences (Tversky & Kahneman, 1974). For example, 
humans see coherent patterns in randomness (Brugger, 
2001), convince themselves of the validity of prior expec-
tations (“I knew it”; Nickerson, 1998), and perceive 
events as being plausible in hindsight (“I knew it all 
along”; Fischhoff, 1975). In conjunction with an academic 
incentive system that rewards certain discovery processes 
more than others (Koole & Lakens, 2012; Sterling, 1959), 
we often find ourselves exploring many possible analytic 
pipelines but reporting only a selected few.

This issue is particularly amplified in fields in which 
the raw data lend themselves to many possible ways of 
being measured (Roettger, 2019). Combined with a wide 
variety of methodological and theoretical traditions as 
well as varying levels of quantitative training across sub-
fields, the inherent flexibility of data analysis might lead 
to a vast plurality of analytic approaches that can lead to 
different scientific conclusions (Roettger et al., 2019). Ana-
lytic flexibility has been widely discussed from a concep-
tual point of view (Nosek & Lakens, 2014; Simmons et al., 
2011; Wagenmakers et al., 2012) and in regard to its appli-
cation in individual scientific fields (e.g., Charles et al., 
2019; Roettger, 2019; Wicherts et al., 2016). This notwith-
standing, there are still many unknowns regarding the 
extent of analytic plurality in practice.

Consequently, a substantial body of published articles 
likely present overconfident interpretations of data and 
statistical results based on idiosyncratic analytic strategies 
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(e.g., Gelman & Loken, 2014; Simmons et al., 2011). These 
interpretations, and the conclusions that derive from 
them, are thus associated with an unknown degree of 
uncertainty (dependent on the strength of evidence pro-
vided) and with an unknown degree of generalizability 
(dependent on the chosen analysis). Moreover, the same 
data could lead to very different conclusions depending 
on the analytic path taken by the researcher. However, 
instead of being critically evaluated, scientific results often 
remain unchallenged in the publication record. Despite 
recent efforts to improve transparency and reproducibility 
(e.g., Klein et al., 2018; Miguel et al., 2014) and the advent 
of freely available and accessible infrastructures, such as 
those provided by OSF, critical reanalyses of published 
analytic strategies are still uncommon because data shar-
ing remains rare (Wicherts et al., 2006).

Crowdsourcing Alternative Analyses

Recent collaborative attempts have started to shed light 
on how different analysts tackle the same data set and 
have revealed a large amount of variability. In a pioneer-
ing collaborative effort, Silberzahn et al. (2018) let 29 
independent analysis teams address the same research 
hypothesis: whether soccer referees are more likely to 
give red cards to dark-skin-toned players than to light-
skin-toned players. The analytic approaches, and thus the 
results, varied widely between teams. Twenty teams (69%) 
found support for the hypothesis, and nine (31%) did not. 
Of the 29 analytic strategies, there were 21 unique com-
binations of covariates. Importantly, the observed vari-
ability was neither predicted by the teams’ preconceptions 
about the phenomenon under investigation nor by peer 
ratings of the quality of their analyses. The authors’ results 
suggest that analytic plurality may be an inevitable by-
product of the scientific process and not necessarily 
driven by different levels of expertise or bias.

Several other recent studies have corroborated this 
analytic flexibility across different disciplines. Dutilh  
et al. (2019) and Starns et al. (2019) investigated analysts’ 
choices when inferring theoretical constructs based on 
the same data set using computational models. Both 
studies revealed vastly different modeling strategies, 
even though scientific conclusions were similar across 
analysis teams (for analytic flexibility in neuroimaging 
data and ecology, respectively, see also Botvinik-Nezer 
et al., 2020; Parker et al., 2020). Bastiaansen et al. (2020) 
crowdsourced clinical recommendations based on analy-
ses of an individual patient. Their results suggest that 
analysts differed substantially regarding decisions related 
to both the statistical analysis of the data and the theo-
retical rationale behind interpreting the statistical results.

Building on the many-analysts approach, Landy et al. 
(2020) asked 15 research teams to independently design 
studies to answer five different research questions 

related to moral judgments. Again, they found vast het-
erogeneity across researchers’ conclusions. The observed 
variation was not predicted by the researchers’ expertise 
but seem to vary for the five different research questions 
that might exhibit different degrees of theoretical under-
specification. This is in line with Auspurg and Brüderl 
(2021), who reanalyzed the red-card study mentioned 
above. The authors argued that some of the observed 
heterogeneity across analysts in Silberzahn et al. (2018) 
might have been driven by flexibility in statistically inter-
preting the research question.

Although these studies attested to a large degree of 
analytic flexibility with possibly impactful consequences, 
they focused on analytic decisions related to the study 
design, the statistical analysis, or the architecture of com-
putational models. In these studies the data sets were 
fixed, and neither data collection nor measurement 
could be changed. Thus, the estimates of variability 
found in the literature might reflect a lower bound only, 
ignoring large parts of the forking paths related to mea-
surement. However, in many fields the primary raw data 
are complex signals for which theoretical constructs 
need to be operationalized relative to a theoretically 
motivated research question. This is especially true in 
the social sciences, in which the phenomenon under 
investigation corresponds to both observable and unob-
servable human behavior.

Decisions about how to measure theoretical constructs 
related to human behavior and cognition might interact 
with downstream decisions about statistical modeling 
and vice versa. For instance, Flake and Fried (2020) dis-
cussed the cascading impact that different practices can 
have on psychometric research. The authors highlighted, 
for example, the following degrees of freedom in the 
choice and development of measures: definition of the 
theoretical construct, justification of the selected mea-
sure, description of the measure and how it maps onto 
the construct, response coding and related transforma-
tions, as well as post hoc modifications to the chosen 
measure. Taken together, these aspects alone dramati-
cally increase the combinations of possible analytic 
choices and hence flexibility in research outcomes.

In those disciplines concerned with communication, 
human behavior often corresponds to multidimensional 
visual and/or acoustic signals. The complex nature of 
these data exponentiates the number of possible analytic 
approaches, thus further increasing analytic flexibility. 
To estimate this increased flexibility, the current study 
looks at experimentally elicited speech production data.

Operationalizing Speech

Research on speech lies at the intersection of the cogni-
tive sciences, informing psychological models of lan-
guage, categorization, and memory; guiding methods for 
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the diagnosis and treatment of speech disorders; and 
facilitating advancement in automatic speech recognition 
and speech synthesis. One major challenge in the speech 
sciences is the mapping between communicative inten-
tions (the unobserved behavior) and their physical mani-
festation (the observed behavior).

Speech signals are complex because they are charac-
terized by structurally different acoustic parameters dis-
tributed throughout different temporal domains. Thus, 
choosing how to assess a communicative intention of 
interest is an important analytic step. Take, for example, 
the sentence in (1):

(1) “I can’t bear another meeting on Zoom.”

Depending on the speaker’s intention, this sentence 
can be said in different ways. For instance, if the speaker 
is exhausted by all their meetings, they might acousti-
cally highlight the word “another” or “meeting” to con-
trast it with more pleasant activities. If, on the other 
hand, the speaker is just tired of video conferences, as 
opposed to say face-to-face meetings, they might acous-
tically highlight the word “Zoom.”

If we decide to compare the speech signal associated 
with these two intentions, how can we quantify the dif-
ference between them? In other words, given their physi-
cal manifestation (speech), what do we measure and 
how do we measure it? Because of the continuous and 
transient nature of speech, identifying speech parame-
ters and temporal domains within which to measure 
those parameters becomes a nontrivial task. Utterances 
stretch over several thousand milliseconds and contain 
different levels of linguistically relevant units such as 
phrases, words, syllables, and individual sounds. The 
researcher is thus confronted with a considerable num-
ber of parameters and combinations thereof to choose 
from.

From a phonetic viewpoint, linguistically relevant 
units are inherently multidimensional and dynamic: They 
consist of clusters of parameters that are modulated over 
time. The acoustic parameters of units are usually asyn-
chronous; that is, they appear at different time points in 
the unfolding signal and overlap with parameters of 
other units (e.g., Jongman et  al., 2000; Lisker, 1986; 
Summerfield, 1981; Winter, 2014). A classic example is 
the distinction between voiced and voiceless stops in 
English (i.e., /b/ and /p/ in “bear” vs. “pear”). This con-
trast is manifested by many acoustic features that can 
differ depending on several factors, such as the position 
of the consonant in the word and context of surrounding 
sounds (Lisker, 1977). Furthermore, correlates of the 
contrast can even be found away from the consonant in 
temporally distant speech units. For example, the initial 
/l/ of the English words “led” and “let” is affected by the 

voicing of the final consonant (/d, t/; Hawkins & Nguyen, 
2004).

The multiplicity of phonetic measurements grows 
exponentially if we look at larger temporal domains, as 
is the case with suprasegmental aspects of speech. For 
example, studies investigating acoustic correlates of word 
stress (e.g., the difference between “ínsight” and “incíte”) 
use a wide variety of measurements, including temporal 
characteristics (duration of certain segments or subseg-
mental intervals), spectral characteristics (intensity, for-
mants, and spectral tilt), and measurements related to 
fundamental frequency ( f0; e.g., Gordon & Roettger, 
2017). Moving on to the expression of higher level com-
municative functions, such as information structure and 
discourse pragmatics, relevant acoustic cues can be dis-
tributed throughout even larger domains, such as phrases 
and whole utterances (e.g., Ladd, 2008). Differences in 
the position, shape, and alignment of f0 modulations over 
multiple locations within a sentence are correlated with 
differences in discourse functions (e.g., Niebuhr et al., 
2011). The latter can also be expressed by global versus 
local pitch modulations (Van Heuven et al., 2002), as well 
as acoustic information within the temporal or spectral 
domain (e.g., Van Heuven & Van Zanten, 2005). Extra-
linguistic information, such as the speaker’s intentions, 
levels of emotional arousal, or social identity, are also 
conveyed by broad domain parameters, such as voice 
quality, rhythm, and pitch (Foulkes & Docherty, 2006; 
Ogden, 2004; White et al., 2009).

In short, when testing hypotheses on speakers’ inten-
tions using speech production data, researchers are 
faced with many choices and possibilities. The larger the 
functional domain (e.g., segments vs. words vs. utter-
ances), the higher the number of conceivable operation-
alizations. For example, several decisions have to be 
made when comparing the two realizations of the sen-
tence in (1), one of which is intended to signal emphasis 
on “another” and one of which emphasizes “Zoom”:

(2a) I can’t bear another meeting on Zoom.

(2b) I can’t bear another meeting on Zoom.

Do we compare only the word “another” in (2a) and 
(2b) or also the word “Zoom”? Do we measure utterance-
wide acoustic profiles, whole words, or just stressed 
syllables? Do we average across the chosen time domain 
or do we measure a specific point in time? Do we mea-
sure f0, intensity, or something else (Stevens, 2000)?

When looking at phrase-level temporal domains, the 
number of possible alternative analytic pipelines 
increases substantially. Figure 1a shows a typical exam-
ple of a decision tree with which speech researchers are 
often confronted. Each of the four analytic decisions in 



Advances in Methods and Practices in Psychological Science 6(3)	 7

Fig. 1.  Illustration of the analytic flexibility associated with acoustic analyses. (a) Example of multiple possible and justifiable decisions 
when comparing two utterances. (b) Waveform and f0 track of the utterances “I can’t bear another meeting on Zoom” and “I can’t bear 
another meeting on Zoom.” The green boxes mark the word “another” in both sentences. (c) Spectrogram and f0 track of the word “another,” 
exemplifying possible operationalizations of differences in f0.

the example have different possible options. Here only 
one particular path has been taken. A different one 
would likely produce different results and might lead to 

different conclusions. Once we have decided to compare 
f0 of the word “another” across the two utterances, there 
are still many choices to be made, all of which need to 
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be justified. As Figures 1b and 1c illustrate, we could 
measure f0 at specific points in time such as the onset 
of the temporal window, the offset, or the midpoint. We 
could also measure the value or time of the f0 minimum 
or maximum. We could summarize f0 across the entire 
window and extract the mean, median, or standard devi-
ation of f0, all of which have been used to analyze 
speech data in previous work (see Gordon & Roettger, 
2017). But the journey in the garden of analytic paths 
goes on. Other important operationalization steps could 
involve filtering the audio signal, smoothing the extracted 
f0 track, removing values that substantially deviate from 
surrounding values or expectations, either manually or 
automatically, and so on.

These decisions are intended to be made prior to any 
statistical analysis but are at times revised a posteriori 
in light of unforeseen or surprising outcomes (i.e., after 
data collection and/or preliminary analyses). This mul-
titude of possible decisions is multiplied by those 
researcher degrees of freedom related to statistical analy-
sis (e.g., Wicherts et al., 2016).

In sum, speech data are made of complex physical 
signals that generate an as-of-yet unappreciated amount 
of analytic flexibility in the choice of measures and 
operationalizations. This article probes this garden of 
forking paths in the analysis of speech. To assess the 
variability in data-analysis pipelines, including both 
operationalization and statistical analysis, across inde-
pendent researchers, we provide analytic teams with an 
experimentally elicited speech-production data set. The 
data set derives from the unpublished research project 
“Prosodic Encoding of Redundant Referring Expressions,” 
which set out to investigate whether speakers acousti-
cally modify utterances to signal unexpected referring 
expressions.1 In the following section we introduce the 
research question and the experimental procedure of 
this project and describe the resulting data set as used 
in the current study.

The Data Set: Acoustic Properties  
of Atypical Modifiers

Referring is one of the most basic and prevalent uses of 
language and one of the most widely researched areas 
in language science. When trying to refer to a banana, 
what does a speaker say and how do they say it in a 
given context? The context within which an entity occurs 
(i.e., with other nonfruits, other fruits, or other bananas) 
plays a large part in determining the choice of referring 
expressions. Speakers generally aim to be as informative 
as possible to uniquely establish reference to the 
intended object, but they are also resource-efficient in 
that they avoid redundancy (Grice, 1975). Thus, one 
would expect the use of a modifier, for example, only 

if it is necessary for disambiguation. For instance, one 
might use the adjective “yellow” to describe a banana in 
a situation in which there are both a yellow and a less 
ripe green banana available, but not when there is only 
one banana.

Despite the coherent idea that speakers are both ratio-
nal and efficient, there is much evidence that speakers 
are often overinformative. Speakers use referring expres-
sions that are more specific than strictly necessary for 
the unambiguous identification of the intended referent 
(Rubio-Fernández, 2016; Sedivy, 2003), which has been 
argued to facilitate object identification and make com-
munication between speakers and listeners more efficient 
(Arts et al., 2011; Paraboni et al., 2007; Rubio-Fernández, 
2016). Recent findings suggest that the utility of referring 
expressions depends on how useful they are for a listener 
(compared with other referring expressions) to identify 
a target object. For example, Degen et al. (2020) showed 
that modifiers that are less typical for a given referent 
(e.g., a blue banana) are more likely to be used in an 
overinformative scenario (e.g., when there is just one 
banana; see also Westerbeek et al., 2015). This account, 
however, has mainly focused on content selection (Gatt 
et al., 2011), that is, what words to use.

Even when morphosyntactically identical expressions 
are involved, speakers can modulate utterances via 
acoustic properties such as temporal and spectral modi-
fications (e.g., Ladd, 2008). Most prominently, languages 
can use intonation to signal discourse relationships 
between referents. Intonation marks discourse-relevant 
referents for being new or given information to guide 
the listeners’ interpretation of incoming messages. 
Beyond structuring information relative to the discourse, 
a few studies have suggested that speakers might use 
intonation to signal atypical lexical combinations (e.g., 
Dimitrova et al., 2008, 2009). Referential expressions such 
as “blue banana” were produced with greater prosodic 
prominence than more typical referents such as “yellow 
banana.” These results are in line with the idea of 
resource-efficient, rational language users who modulate 
their speech to facilitate listeners’ comprehension. How-
ever, the above studies are based on a small sample size 
(10 participants) and on potentially anticonservative sta-
tistical analyses, leaving reason to doubt the generaliz-
ability of the studies’ conclusions.

To further illuminate the question of whether speak-
ers modify speech to signal atypical referents and over-
come some of the limitations of previous work, 30 native 
German speakers were recorded in a production study 
while interacting with a confederate (one of the experi-
menters) in a referential game, following experimental 
procedures typical of the field. The participants had to 
verbally instruct the confederate to select a specified 
target object out of four objects presented on a screen. 
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The subject and confederate were seated at opposite 
sides of a table, each facing one of two computer 
screens. The participant and the experimenter could not 
see each other or each others’ screens. Figure 2 shows 
the experimental-procedure time line. After a familiariza-
tion phase, the subject first saw four colored objects in 
the top-left, top-right, bottom-left, and bottom-right cor-
ners of the screen. One of the objects served as the 
target, another served as the competitor, and the remain-
ing two objects served as distractors. Objects were 
referred to using noun phrases consisting of an adjective 
modifier denoting color and a modified object (e.g., 
gelbe Zitrone, “yellow lemon”; rote Gurke, “red cucum-
ber”; rote Socken, “red socks”).

In the center of the screen, a black cube was dis-
played that could be moved by the experimenter. The 
participants read a sentence prompt out loud (Du sollst 
den Würfel auf der COLOR OBJECT ablegen; “You have 
to put the cube on top of the COLOR OBJECT”) to 
instruct the experimenter to drag the cube on top of one 
of the four depicted objects (the competitor) using the 
mouse. After the experimenter had moved the cube as 
instructed, the subject would read another sentence 
prompt (Und jetzt sollst du den Würfel auf der COLOR 
OBJECT ablegen; “And now, you have to put the cube 
on top of the COLOR OBJECT”), instructing the experi-
menter to move the cube on top of a different object 
(the target). The second utterance in the trial was the 
critical trial for analysis.

The two sentence prompts were used to create a focus 
contrast between the competitor and the target object. 
Focused units denote the set of all (contextually relevant) 
alternatives (e.g., Rooth, 1992). Concretely, a focus con-
trast marks one or more elements in a sentence as promi-
nent by different linguistic means depending on the 
language (Burdin et al., 2015; Mati’c & Wedgwood, 2013). 
For instance, if the competitor and target objects differ 
but their color does not (e.g., yellow banana vs. yellow 
tomato), the noun is said to be in focus (noun-focus, or 
NF, condition). If the objects are the same but differ in 
color (e.g., yellow banana vs. blue banana), the color 
adjective is in focus (adjective-focus, or AF, condition). 
If both the color and the object differ (e.g., yellow banana 
vs. blue tomato), then the whole noun phrase is in focus 
(adjective/noun-focus, or ANF, condition). The NF condi-
tion constituted the experimentally relevant condition, 
whereas the AF and ANF conditions acted as fillers. Cru-
cially, the color-object combinations in the NF condition 
were manipulated with respect to their typicality. The 
combinations were either typical (e.g., orange mandarin), 
medium typical (e.g., green tomato), or atypical (e.g., 
yellow cherry), as established by a norming study that 
was conducted prior to the production experiment just 

described.2 Each subject produced 15 critical trials (NF 
condition). Each trial was repeated twice, yielding a total 
of 30 trials per participant and a grand total of 900 
(15 2 30× ×  participants) spoken utterances.

For the current study, 46 analysis teams received 
access to the entire data set generated by the production 
study. The data set is constituted by audio recordings 
and annotation files in a format that is typical for the 
field. The teams were instructed to answer the following 
research question using the provided data set: Do speak-
ers acoustically modify utterances to signal atypical word 
combinations?

Method

As outlined in the Operationalizing Speech section, 
researchers are faced with a large number of analytic 
choices when analyzing a multidimensional signal such 
as speech. Analysts must identify and operationalize rel-
evant measurements, as well as the temporal domain(s) 
from which these measurements are to be taken, and 
then possibly transform these measurements before sub-
mitting them to statistical models, which must be chosen 
alongside inferential criteria. The complexity of speech 
data constitutes the ideal testing ground for assessing 
the upper bound of analytic flexibility that social scien-
tists might face across disciplines. We used a meta-ana-
lytic approach to assess (a) the variability of the reported 
effects and (b) how analytic and researcher-related 
predictors affect the final results (bold terms are defined 
in the Glossary in the Appendix).

In this study, we followed the procedures proposed 
by Parker et al. (2020) and Aczel et al. (2021). The proj-
ect comprised the following five phases:

1.	 Recruitment: We recruited independent groups of 
researchers to analyze the data and review others’ 
data analyses.

2.	 Team analysis: We gave researchers access to the 
speech corpus and let them analyze the data as 
they saw fit.

3.	 Review: We asked reviewers to generate peer-
review ratings of the analyses based on methods 
(not results).

4.	 Meta-analysis: We evaluated variability among the 
different analyses and how different predictors 
affected the outcomes.

5.	 Write-up: We collaboratively produced the final 
manuscript.

We initially estimated that this process, from the time 
of an in-principle acceptance of the Stage 1 registered 
report to the end of Phase 5, would take 9 months. Phase 
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4 (meta-analysis) took longer than initially anticipated, 
and the total duration of the project was approximately 
12 months.

The project OSF repository contains all the materials 
mentioned in this article and can be accessed at https://
osf.io/3bmcp. The following sections report the criteria 
for sample size, data exclusions, data manipulations, and 
all the measures in the study.

Phase 1: recruitment of analysts  
and initial survey

An online landing page provided a general description of 
the project, including a short prerecorded slide show that 
summarizes the data set and research question (https://
many-speech-analyses.github.io). The project was adver-
tised via social media using mailing lists for linguistic and 
psychological societies and via word of mouth. Social-
media advertising was accompanied by a short recruitment 
form. The target population comprised active speech-
science researchers with a graduate/doctoral degree (or 
currently studying for a graduate/doctoral degree) in rel-
evant disciplines. All individuals interested in participating 
were asked to complete a questionnaire detailing their 
familiarity with numerous analytic approaches common 
in the speech sciences. Researchers could choose to work 
independently or in small teams. For the sake of simplicity, 
we refer to a single researcher and teams both as analysis 
teams.3 Recruitment for this project commenced after 
having received in-principle acceptance.

As outlined above, our primary aim is to assess the 
variability of the reported effects rather than the meta-
analytic estimate of the investigated effect per se. To 
estimate the degree of uncertainty around effect vari-
ability as driven by number of teams, we ran a series of 
sample-size simulations with values of variability 
extracted from Silberzahn et al. (2018). The code is avail-
able at https://many-speech-analyses.github.io/many_
analyses/scripts/r/simulations/simulations.4 Variability 
among teams was operationalized as the standard devia-
tion of the teams’ reported effects from Silberzahn et al. 
(2018). We z-scored this variability prior to simulations 
to make it comparable to our study. For the mean of the 
teams’ true standard deviation (z score of 0.68), the simu-
lation indicates that the degree of uncertainty around the 
estimated teams’ standard deviation will be below 1 SD 
at any sample size greater than 10 teams. Thus, to achieve 
our main goal (i.e., estimating variability among teams), 
we considered a minimum sample size of 10 teams as 
sufficient. Given the exploratory nature of our study, 
however, we sampled as many analysts as possible. We 
received initial expressions of interest to participate from 
more than 200 analysts, although there was a substantial 
dropout rate (see Results section).

After analysts submitted their analyses, we asked 
them to also function as peer reviewers. Each team had 
to review four other analyses. All analysts involved are 
coauthors on this article and participated in the col-
laborative process of producing the final manuscript. 
Informed consent was obtained as part of the intake 
form.

Phase 2: primary data analyses

The analysis teams registered for participation, and each 
of the analysts individually answered a demographic and 
expertise questionnaire. A PDF version of this and all 
other questionnaires are available at https://osf.io/
h6z8w. The questionnaire collected information on the 
analysts’ current position and self-estimated breadth and 
level of statistical expertise and acoustic-analysis skills. 
We then requested that they answer the following 
research question: “Do speakers acoustically modify 
utterances to signal atypical word combinations?” To do 
so, they were given the data generated by the experi-
ment described in The Data Set section above. Data 
included the audio recordings with corresponding time-
aligned transcriptions in the form of Praat TextGrid files. 
These files can be found at https://osf.io/5agn9.

Once their analysis was complete, they answered a 
structured questionnaire that provided information about 
their analysis technique, an explanation of their analytic 
choices, their quantitative results, and a statement 
describing their conclusions. They also uploaded their 
analysis files (including the additionally derived data 
and text files that were used to extract and preprocess 
the acoustic data), their analysis code (if applicable), 
and a detailed journal-ready analysis section.

Phase 3: peer review of analyses

The analyses from each team were evaluated by four 
different teams who functioned as peer reviewers. Each 
peer reviewer was randomly assigned to analyses from 
at least four analysis teams. Reviewers evaluated the 
methods of each of their assigned analyses one at a time 
in a sequence determined by the initiating authors. The 
sequences were systematically assigned so that, if pos-
sible, each analysis was allocated to each position in the 
sequence for at least one reviewer.

The process for a single reviewer was as follows. First, 
the reviewer received a description of the methods of a 
single analysis. This included the narrative methods and 
results sections, the analysis team’s answers to the ques-
tionnaire regarding their methods, including the analysis 
code and data set. The reviewer was then asked in an 
online questionnaire to rate both the acoustic and sta-
tistical analyses and to provide an overall rating using a 

https://osf.io/3bmcp
https://osf.io/3bmcp
https://many-speech-analyses.github.io
https://many-speech-analyses.github.io
https://many-speech-analyses.github.io/many_analyses/scripts/r/simulations/simulations
https://many-speech-analyses.github.io/many_analyses/scripts/r/simulations/simulations
https://osf.io/h6z8w
https://osf.io/h6z8w
https://osf.io/5agn9
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scale of 0 to100. To help reviewers calibrate their rating, 
they were given the following guidelines:

•• 100 = perfect analysis with no conceivable 
improvements from the reviewer

•• 75 = imperfect analysis but the needed changes 
are unlikely to dramatically alter the final 
interpretation

•• 50 = flawed analysis likely to produce either an 
unreliable estimate of the relationship or an over-
precise estimate of uncertainty

•• 25 = flawed analysis likely to produce an unreli-
able estimate of the relationship and an overpre-
cise estimate of uncertainty

•• 0 = dangerously misleading analysis certain to pro-
duce both an estimate that is wrong and a sub-
stantially overprecise estimate of uncertainty  
that places undue confidence in the incorrect  
estimate 

The reviewers were also given the option to include 
further comments in a text box for each of the three 
ratings.

After submitting the review, a methods section from 
a second analysis was made available to the reviewer. 
This same sequence was followed until all analyses allo-
cated to a given reviewer were provided and reviewed.5

Phase 4: evaluating variation

The initiating authors (S. Coretta, J. V. Casillas, and T. B. 
Roettger) conducted the analyses outlined in this section. 
We did not conduct confirmatory tests of any a priori 
hypotheses. We consider our analyses exploratory.

Descriptive statistics.  We calculated summary statistics 
describing variation among analyses, including (a) the 
nature and number of acoustic measures (e.g., f0 or dura-
tion), (b) the operationalization and the temporal domain 
of measurement (e.g., mean of an interval or value at a 
specified point in time), (c) the nature and number of 
model parameters for both fixed and random effects (if 
applicable), (d) the nature and reasoning behind inferen-
tial assessments (e.g., dichotomous decision based on p 
values, ordinal decision based on a Bayes factor), as well 
as the (e) mean, (f) standard deviation, and (g) range of 
the standardized effect sizes (see the next section for the 
standardization procedure). These summary statistics are 
reported in the Results section.

Meta-analytic estimation.  We investigated the variabil-
ity in reported effect sizes using Bayesian meta-analytic 
techniques. As the measure of variability, we took the 
meta-analytic group-level standard deviation (σαt

; see 
below), where each analysis team represents a group. As 

we detail in the Results section, we have also run further 
nonpreregistered analyses. For these we refer the reader 
to that section, while we describe only the preregistered 
analyses in the following paragraphs.

On the basis of the common practices currently in 
place within the field, we anticipated that researchers 
would use multilevel regression models; thus, common 
measurements of effect size, such as Cohen’s d, might 
have been inappropriate. Furthermore, Aczel et al. (2021) 
suggested that directly asking analysts to report stan-
dardized effect sizes could bias the choice of analyses 
toward types that more straightforwardly return a stan-
dardized effect. Because the variables used by the analy-
sis teams might have substantially differed in their 
measurement scales (e.g., Hertz for frequency vs. mil-
liseconds for duration), which was indeed the case, we 
standardized all reported effects by refitting each 
reported model with centered and scaled continuous 
variables (z scores, i.e., the observed values subtracted 
from the mean divided by the standard deviation) and 
sum-coded factor variables. Each standardized model 
was fitted as a Bayesian regression model with Stan 
(Version 2.26.0; Stan Development Team, 2021), RStan 
(Version 2.21.2; Stan Development Team, 2020), and 
brms (Bürkner, 2017) in R (Version 4.2.1; R Core Team, 
2020). Model refitting also constituted a way of validating 
the reported analyses, a step recommended by Aczel  
et al. (2021). Details about the refitting procedure can be 
found at https://many-speech-analyses.github.io/many_
analyses/scripts/r/04_refit_workflow. Relative to the reg-
istered protocol, we made minor changes to the refitting 
procedure, specifically file and variable naming conven-
tions and the use of treatment contrasts instead of sum 
coding. All models converged (R  was approximately 1). 
Of the models with divergent transitions (n = 10), the 
number of divergences ranged from 1 to 156 (156 rep-
resents 3.9% of the total number of samples), which the 
authors deemed not to be problematic.

The coefficients of the critical predictors (i.e., critical 
according to the analysis teams’ self-reported inferential 
criteria) obtained from the standardized models were 
used as the standardized effect size (ηi ) of each 
reported model. Moreover, to account for the differing 
degree of uncertainty around each standardized effect 
size, we used the standard deviation of each standard-
ized effect size as the standardized standard error 
(sei). This enabled us to fit a so-called measurement-
error model, in which both the standardized effect sizes 
and their respective standard errors are entered in the 
meta-analytic model. As a desired consequence, effect 
sizes with a greater standard error are weighted less than 
those with a smaller standard error in the meta-analytic 
calculations.

After having obtained the standardized effect sizes ηi 
with related standard errors sei, for each critical predictor 

https://many-speech-analyses.github.io/many_analyses/scripts/r/04_refit_workflow
https://many-speech-analyses.github.io/many_analyses/scripts/r/04_refit_workflow
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in each reported model, we conducted a Bayesian  
random-effects meta-analysis using a multilevel 
(intercept-only) regression model. The outcome variable 
was the set of standardized effect sizes ηi. The likelihood 
of ηi was assumed to correspond to a normal distribution 
(Knight, 2000). The analysis teams were entered as a 
group-level effect (i.e., (1 | team), called “random 
effect” in the frequentist literature). The standard errors 
sei were included as the standard deviation of ηi to fit 
a measurement-error model, as discussed above. We 
used regularizing weakly informative priors for the inter-
cept α  ( ( , ))Normal 0 1  and for the group-level standard 
deviation σαt

 ( ( , ))HalfCauchy 0 1 . We fit this model with 
four chains of Hamiltonian Monte Carlo sampling for the 
estimation of the joint posterior distribution using the 
No U-Turn Sampler as implemented in Stan (Team, 
2021), and 4,000 iterations (2,000 for warm-up) per 
chain, distributed across eight processing cores and two 
threads in within-chain parallelization. The model did 
not incur any divergent transitions (R  was not greater 
than 1), and the estimated sample sizes were sufficient. 
The code used to run the model can be found at https://
many-speech-analyses.github.io/many_analyses/scripts/ 
r/06_meta-analysis_prereg.

The posterior distribution of the population-level 
intercept α allowed us to estimate the range of probable 
values of the standardized effect size η . The posterior 
distribution further allowed us to investigate the effect 
of a set of analytic and researcher-related predictors, as 
detailed in the next section. Crucially, the posterior dis-
tribution of the group-level standard deviation σαt

 (i.e., 
the standard deviation of the group-level effect of team) 
allowed us to quantify the degree of variation between 
the teams’ analyses on a standardized scale.

Analytic and researcher-related predictors affect-
ing effect sizes.  As a second step, we investigated the 
extent to which the individual standardized effect sizes  
are affected by a series of analytic and researcher-related 
predictors.

Analytic predictors.  We estimated the influence of the 
following predictors related to the analytic characteristics 
of each team’s reported analysis:

•• Measure of uniqueness of individual analyses for 
the set of predictors in each model (numeric)

•• Number of models the teams reported to have run 
[numeric]

•• Major dimension that has been measured to 
answer the research question [categorical]

•• Temporal window that the measurement is taken 
over [categorical]

•• Average peer-review rating, as the mean of the over-
all peer-review ratings for each analysis [numeric]

Following Parker et al. (2020), the measure of unique-
ness of predictors was assessed by the Sørensen-Dice 
Index (SDI; Dice, 1945; Sørensen, 1948). The SDI is an 
index typically used in ecology research to compare 
species composition across sites. It is a distance measure 
similar to Euclidean distance measures but is more sensi-
tive to more heterogeneous data sets and deemphasizes 
outliers. For our purposes, we treated predictors as spe-
cies and individual analyses as sites. For each pair of 
analyses ( ,X Y ; across and within teams), the SDI was 
obtained using the following formula:

SDI =
+

∩2| |

| | | |

X Y

X Y

where | |X Y∩  is the number of variables common to 
both models in the pair, and | | | |X Y+  is the sum of the 
number of variables that occur in each model. For exam-
ple, if two pairs of models differ in either only one 
predictor (e.g., DV ~ typicality vs. DV ~ typicality + trial) 
or in two predictors (e.g., DV ~ typicality vs. DV ~ typi-
cality + trial + speech rate), the latter model pair would 
exhibit a larger SDI than the former. To generate a 
unique SDI for each analysis team, we calculated the 
average of all pairwise SDIs for all pairs of analyses 
using the beta.pair() function in the betapart R 
package (Baselga et al., 2020).

The major measurement dimension of each analysis 
was categorized according to the following possible 
groups: duration, intensity, f0, other spectral properties 
(e.g., frequency, center of gravity, harmonics difference), 
and other measures (e.g., derived measures such as prin-
cipal components, vowel dispersion). The temporal win-
dow that the measurement is taken over is defined by 
the target linguistic unit. We assume the following rel-
evant linguistic units: segment, syllable, word, phrase, 
sentence. Because each analysis received more than one 
peer-review rating, we calculated the mean rating and 
its standard deviation for each. These were entered  
in the model formula as a measurement-error term 
(me(mean, sd) in brms).

Researcher-related factors.  We also included the fol-
lowing predictors:

•• Research experience as the elapsed time from 
receiving the PhD; negative values indicate that 
the person is a student or graduate student 
[numeric]

•• Initial belief in the presence of an effect of atypical 
noun-adjective pairs on acoustics, as answered 
during the intake questionnaire [numeric]

To obtain an aggregated research-experience score 
and initial-belief score for each team on the basis of 

https://many-speech-analyses.github.io/many_analyses/scripts/r/06_meta-analysis_prereg
https://many-speech-analyses.github.io/many_analyses/scripts/r/06_meta-analysis_prereg
https://many-speech-analyses.github.io/many_analyses/scripts/r/06_meta-analysis_prereg
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members’ individual scores, we calculated the mean  
and standard deviation of these predictors for each  
team. These were entered in the model formula as a 
measurement-error term (me(mean, sd) in brms). The 
expedient of using a measurement-error term (which 
includes the teams’ standard deviation) ensures informa-
tion about within-team variance is not lost (which would 
be the case if including the mean only).

We had initially planned to also include a measure of 
conservativeness of the model specification, as the num-
ber of random/group-level effects included and the num-
ber of post hoc changes to the acoustic measurements 
the teams reported to have carried out. When fitting the 
model, we realized that the measure of conservativeness 
is related to the standard error of the estimates (i.e., 
more group-level effects = higher standard error). More-
over, there was no team that declared to have made post 
hoc changes to the analyses; thus, we decided against 
including these two preregistered predictors in the 
model.

Model specification.  The model was fitted as a  
measurement-error model, with the predictors detailed in 
the preceding paragraphs. The outcome variables of the 
model were the standardized effect sizes and related stan-
dard deviation.

A normal distribution was used as the likelihood func-
tion of αt i[ ]. The mean of αt i[ ] was modeled on the basis 
of the overall intercept β  and on the coefficients of each 
predictor. The numeric predictors were centered and 
scaled and the categorical predictors were sum-coded. 
We used a normal distribution with M = 0 and SD = 1 as 
the prior for the intercept and the predictors. The model 
was run with the same settings as with the meta-analytic 
model. The code used to run the model can be found 
at https://many-speech-analyses.github.io/many_analy 
ses/scripts/r/06_meta-analysis_prereg.

Data management.  All relevant data, code, and materi-
als have been publicly archived on OSF (https://osf 
.io/3bmcp). Archived data include the original data set 
distributed to all analysts, any edited versions of the data 
analyzed by individual teams, and the data we analyzed 
with our meta-analyses, which include the standardized 
effect sizes, the statistics describing variation in model 
structure among analysis teams, and the anonymized 
answers to our questionnaires of analysts. Similarly, we 
archived both the analysis code used for each individual 
analysis and the code from our meta-analyses. We also 
archived copies of our survey instruments from analysts 
and peer reviewers. Further documents concerning the 
collaborative editing of the registered report can be found 
at https://drive.google.com/drive/folders/1-DOcj1qtEkvW 
fzu_FrsxkIGfPS0DyLXB?usp=sharing.

We excluded from our synthesis any individual analy-
sis submitted after peer review (Phase 3) or those unac-
companied by analysis files, without which it was not 
possible to follow the research protocol. We also 
excluded any individual analysis that did not produce 
an outcome that could be interpreted as an answer to 
our primary question. We also did not include analyses 
for which we could not extract standardized effect sizes. 
For a list of exclusion criteria, see the Descriptive Sta-
tistics section below.

Phase 5: collaborative write-up  
of manuscript

The initiating authors discussed the limitations, results, 
and implications of the study and collaborated with the 
analysts on writing the final manuscript for review as a 
Stage 2 registered report.6

Results

This section is divided into three parts. We first provide 
a statistical description of team composition, nature  
of acoustic analyses and statistical approaches, and  
peer-review ratings. Second, we report the results of the  
meta-analytic model, focusing on between-team and 
between-model variability. Finally, we present the analy-
sis of the effect of analytic and researcher-related predic-
tors on the meta-analytic effect. The research compendium 
of the study, containing all the code and data presented 
here, can be found at https://osf.io/3bmcp. An interac-
tive web application that allows the interested reader to 
explore the data set is available at https://many-speech-
analyses.github.io/shiny.

Descriptive statistics

In the following sections, we describe the characteristics 
of the analysis teams that participated in the study and 
the analytic approaches they adopted. An important 
aspect that emerges from the descriptive analysis is the 
large variation in analytic strategies.

Characteristics of analysis teams.  Eighty-four teams 
initially signed up to participate in the study, comprising 
211 analysts. Thirty-eight of the signed-up teams dropped 
out during the analysis phase.

Forty-six teams submitted their analyses by the estab-
lished deadline. Only analyses from which it was pos-
sible to extract an effect size were included in the 
meta-analysis. Of the analyses submitted by the 46 
teams, the initiating authors identified 33 teams with 
submissions meeting the criteria for inclusion in the 
meta-analytic model. Reasons for exclusion were use of 

https://many-speech-analyses.github.io/many_analyses/scripts/r/06_meta-analysis_prereg
https://many-speech-analyses.github.io/many_analyses/scripts/r/06_meta-analysis_prereg
https://osf.io/3bmcp
https://osf.io/3bmcp
https://drive.google.com/drive/folders/1-DOcj1qtEkvWfzu_FrsxkIGfPS0DyLXB?usp=sharing
https://drive.google.com/drive/folders/1-DOcj1qtEkvWfzu_FrsxkIGfPS0DyLXB?usp=sharing
https://osf.io/3bmcp
https://many-speech-analyses.github.io/shiny
https://many-speech-analyses.github.io/shiny
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generalized additive models (four teams), which do not 
lend themselves easily to the meta-analytic methods 
used in this study; use of machine-learning techniques 
(three teams); use of typicality as the outcome variable/
response (three teams); or use of other methods that 
returned statistics that could not be included in the meta-
analytic model. Note that due to the unforeseen vari-
ability across teams, the latter exclusion criteria were 
not preregistered and were applied after having seen all 
analytic strategies.

In what follows, we describe the characteristics of 
those teams whose analyses were included in the meta-
analytic model. A complete summary of all the analyses 
from the 46 submitting teams is available at https://
many-speech-analyses.github.io/many_analyses/RR_
manuscript/supplementary_materials.pdf.

The included analyses were provided by 33 teams, 
comprising 120 analysts, with a median of 3.0 individu-
als per team. Upon sign-up, we collected background 
information from each analyst through the intake form, 
which was administered during Phase 1 before the data 
were released to the teams. Analysts had a median of 
5.4 years of experience after completing their PhD, 
ranging from −3.8 years, that is, PhD students (or less 
experienced) to 12.4 years, suggesting that, on average, 
analysts were experienced researchers. The analysts’ 
prior belief in the effect under investigation, on a scale 
from 0 to 100, ranged from 46.4 to 92.0 with a median 
of 70.0. We take this to suggest that, overall, analysts 
had a rather high positive prior belief in the investigated 
relationship between acoustics and word-combination 
typicality.

At the end of Phase 2 (primary data analysis), the 
teams had submitted a total of 115 individual models 
(including 192 critical model coefficients, given that 
some models returned more than one critical coefficient) 
to answer the research question, with a median of three 
models per team. Table 1 provides a summary of the 
contributing teams and their analyses.

Acoustic analysis.  The analytic teams differed in their 
approach to the acoustic analysis of the speech signal, 
including choices related to specific acoustic measures, 
the temporal window used, and how the measures were 
transformed. Thirty-seven percent of the models used f0 
as the outcome variable, 33% used a measure of duration, 
13% used vowel formants, 15% intensity, and 3% other 
measures.

Forty-five percent of models used acoustic measures 
taken at the level of the segment (e.g., comparing the 
acoustic profile of a vowel), 45% from the word level 
(e.g., comparing the acoustic profile of Banane; 
“banana”), 3% at the level of the phrase (e.g., the noun 
phrase including determiner and adjective, e.g., “the 

green banana”), 3% from the whole sentence, and 3% 
used a different time window. On the basis of a coarse 
coding of how acoustic measures were operationalized, 
we found a total of 55 different measurement specifica-
tions. For example, if we considered those analyses that 
targeted f0, we found that it was operationalized in many 
different ways, including the minimum, maximum, mean, 
and median, as a range in an interval or a ratio between 
two intervals. The measurement was sometimes taken 
from the interval of a vowel in the article, adjective, or 
noun; it was sometimes taken from the word interval of 

Table 1.  Descriptive Statistics of Teams, Acoustic Analyses, 
and Statistical Analyses Included in the Meta-Analysis

Team characteristics, range (Mdn)  
  Team size 1.0–12.0 (3.0)
  Years after PhD −3.8–12.4 (5.4)
  Prior belief 46.4–92.0 (70.0)
  Acoustic analysis peer rating 41.2–88.3 (73.8)
  Statistical analysis peer rating 33.0–93.3 (73.2)
  Overall peer rating 39.0–88.7 (70.8)
Acoustic analyses, n (%)  
  Outcome  
    f0 44 (37)
    Duration 39 (33)
    Intensity 18 (15)
    Formants 15 (13)
    Other 3 (3)
  Temporal window  
    Segment 54 (46)
    Word 53 (45)
    Sentence 4 (3)
    Phrase 3 (3)
    Other 4 (3)
  Typicality operationalization  
    Categorical 82 (69)
    Continuous (mean) 33 (28)
    Continuous (median) 3 (3)
Statistical analyses  
  Framework  
    Frequentist 100 (84)
    Bayesian 19 (16)
  Model  
    Linear 117 (98)
    GAM 1 (1)
    Other 1 (1)
N, range (Mdn)  
  Models 1–16 (3)
  Predictors 1–5 (2)
  Random terms 1–10 (2)
  Intercept 1–10 (2)
  Slope 0–4 (0)

Note: The data set included analyses from 33 teams and 120 analysts.

https://many-speech-analyses.github.io/many_analyses/RR_manuscript/supplementary_materials.pdf
https://many-speech-analyses.github.io/many_analyses/RR_manuscript/supplementary_materials.pdf
https://many-speech-analyses.github.io/many_analyses/RR_manuscript/supplementary_materials.pdf
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the article, adjective, or noun; or it was taken from either 
the noun-phrase interval or the entire sentence. Some 
of these measures were normalized relative to other ele-
ments in the sentence or relative to the speaker.

Statistical analysis.  The large decision space related to 
how the acoustic signal was measured is further expanded 
by the choices in the statistical analysis, including the cho-
sen inferential framework, the type of model, and the 
model specification, including choice of predictors, inter-
actions, and group-level effects.

The mean of the number of different predictors 
included in teams’ models was 2 (defined as variables or 
columns in the data table). This means that, in addition 
to the critical predictor (typicality of the adjective-noun 
combinations), models had on average one additional 
predictor (range = 1–5). Possible information that was 
used as predictors included the information structure of 
the sentence, trial number, semantic dimensions of the 
referent, part of speech, and speaker gender.

The data given to the teams allowed them to opera-
tionalize the predictor of interest, word typicality, in 
different ways. Among the possible operationalizations, 
69% of models contained typicality as a categorical  
variable (e.g., atypical vs. typical), 28% used a continu-
ous typicality scale from 0 to 100 by calculating the  
mean typicality for each word combination as obtained 
from the norming study, whereas 3% of the models used 
the median typicality rating. Note that the design of the 
experiment alongside its description indicated that the 
experiment was designed to categorically operationalize 
typicality. This possibly explains the analysts’ strong 
preference.

The majority of the models were run within a frequen-
tist framework (84%). Sixteen percent were run within 
a Bayesian framework. Although teams almost exclu-
sively used linear models to analyze their data (98%), 
teams differed drastically in how they accounted for 
dependencies within the data.

The data contain several dependencies between data 
points, with multiple data points coming from the same 
subject and with multiple data points being associated 
with the same adjective or noun. An appropriate way to 
account for this nonindependence is by using models 
that include so-called random or group-level effects 
(e.g., Gelman & Hill, 2006; Schielzeth & Forstmeier, 
2009), variably known as mixed-effect, hierarchical, mul-
tilevel, or nested models (among other names). Nine 
percent of the linear models specified no random effects 
at all (without pooling their data), effectively ignoring 
these nonindependences (Hurlbert, 1984). Sixty-two per-
cent specified random intercepts only, and 29% specified 
both random intercepts and random slopes to account 
for the nonindependence. On average, teams that 

specified random effects included 2.5 random terms in 
their models. Based on statistical framework, type of 
model, distribution family, fixed terms, and not including 
random effects, there were a total of 52 different model 
specifications.

When considering both acoustic and statistical analy-
ses, we have found a total of 119 different analytic pipe-
lines. In other words, each individual analysis submitted 
was unique. A sankey diagram illustrating the relation-
ship between choices related to outcome, temporal win-
dow, and operationalization can be found at https://
many-speech-analyses.github.io/many_analyses/RR_
manuscript/supplementary_materials.pdf.

Our quantitative assessment did not include other 
degrees of freedom, all of which are additional sources 
of variation: Teams differed (a) with regard to how the 
acoustic signal was segmented, ranging from fully auto-
mated forced alignment with minimal manual correction 
to complete manual alignment performed by the ana-
lysts; (b) in whether the statistical analysis was based 
on a subset of the data or the whole data set; and (c) 
whether and if so how measurements were excluded on 
the basis of both qualitative (i.e., whether specific 
speech-production instances were excluded or not) and 
quantitative grounds (i.e., whether data were trimmed 
or not).

The question arises whether these unique analysis 
pipelines led to different conclusions. Thirteen of the 33 
teams (39.4%) reported to have found at least one sta-
tistically reliable effect (based on the inferential criteria 
they specified). Of the 192 critical model coefficients, 
45 were claimed to show a statistically reliable effect 
(23.4%).

Review ratings.  Teams reviewed each others’ acoustic 
and statistical analyses. The mean rating of the acoustic 
analyses, on a scale from 0 to 100, was 71.5 (SD = 13.5). The 
mean rating of the statistical analysis was 69.4 (SD = 15.9). 
For reference, as mentioned in the Method section, a score 
of 75 was defined as “an imperfect analysis but the needed 
changes are unlikely to dramatically alter the final interpre-
tation,” indicating that on average reviewers judged the pro-
vided analyses to be appropriate, although “imperfect.”

Meta-analytic estimation

This section deals with the meta-analytic analysis of the 
results submitted by the teams. As discussed above, the 
analyses of only 33 teams out of all the submitted analy-
sis were included in the meta-analytic model discussed 
here. First, we report on the between-team variability 
estimate (i.e., the meta-analytic group-level standard 
deviation σαt

), which is the focus of this study, followed 
by the meta-analytic estimate, that is, the intercept of 

https://many-speech-analyses.github.io/many_analyses/RR_manuscript/supplementary_materials.pdf
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the meta-analytic model (i.e., the estimated effect of 
typicality on the acoustic production of adjective-noun 
combinations).

Between-team variability.  The primary aim of this anal-
ysis was to assess the degree of between-team variability. 
As a measure of between-team variability, we chose to use 
the meta-analytic group-level standard deviation (σαt

).
According to the preregistered meta-analytic model, 

the group-level standard deviation for teams was 
between 0.03 and 0.07 standard units at 95% credibility. 
In other words, the estimated range of variation across 
teams lies somewhere between ±0 06.  (0.03 × 1.96) and 
±0 13.  (0.07 × 1.96) standard units with 95% credibility.

Non-preregistered.  However, in our preregistration we 
did not take into account that teams might submit multiple 
analyses/models that, if unaccounted for, violate the inde-
pendence assumption. Teams were explicitly instructed 
to submit only one effect size without enforcing it. As a 
result, some teams followed the instruction and submitted 
only one model, whereas others submitted multiple mod-
els. To account for this added layer of dependency, we ran 
a model with team and model ID nested within team as 
group-level effects ((1|team) + (1|team:model_id)), 
which allowed us to estimate both the between-team 
variation and the between-analysis variation. This analysis 
was not preregistered and should thus be interpreted with 
caution.7

The nested model yields a posterior 95% credible 
interval (CrI) for between-team variability of 0 to 0.04 
standard units (β = 0.02, SD = 0.01), corresponding to a 
mean deviation range of about ±0  to ±0 1.  standard units 
and 95% probability. The posterior 95% CrI for between-
analysis variability (nested within teams) is 0.11 to 0.14 
standard units (β = 0.132, SD = 0.01). For the sake of 
illustration, these would correspond to an estimate of 
between-model variability in segment and word dura-
tions that ranges between 7 to 14 ms for segments and 
between 7 and 33 ms for words at 95% credibility. We 
interpret these values in more detail in the Discussion 
section.

Taken together, the models suggest that the variability 
of reported effects between any model (within team or 
across) is substantially larger than the variability across 
individual teams. We return to this important observation 
later.

Meta-analytic intercept.  After having assessed the vari-
ation between teams and analyses, we now turn to the 
meta-analytic estimate of the effect of typicality on the 
acoustic realization of sentences with adjective-noun com-
binations. The meta-analytic model estimates the range of 

probable values of the standardized effect size to be 
between −0.026 and 0.016 standard units (95% CrI, mean = 
−0.005). In other words, our best guess is that speakers 
might not encode typicality in the acoustic signal (e.g., by 
duration, f0) or, if they do, they do so by a maximum of 
±0 03.  standard units.

Non-preregistered.  As mentioned in the previous sec-
tion, we ran an additional model using team and model 
ID nested within team as group-level effects. In this non-
preregistered model, the meta-analytic intercept estimate 
was between −0.016 and 0.03 standard units (95% CrI, β  = 
0.008). This suggests that the acoustic measures of typical 
word combinations are 0.02 standard units lower to 0.03 
standard units higher than the measures of atypical word 
combinations at 95% confidence. This result is qualitatively 
similar to the results obtained in the preregistered model.

The meta-analytic intercept conflates estimates from 
a variety of responses taken from very different places 
in the utterance (nouns, adjectives, determiners, entire 
phrases or sentences). This means that some of the 
effects on a particular response as observed in a specific 
location within the utterance might naturally be positive, 
whereas other might be negative, resulting in a meta-
analytic intercept of about zero. We want to stress, how-
ever, that our focus is not on the meta-analytic intercept 
per se, but on the fact that a seemingly straightforward 
research question led to so many possible outcomes. We 
report more on this topic in the Discussion section.

Figure 3 illustrates the individual intercepts for critical 
typicality coefficients across models and teams, sorted 
in ascending order based on their mean. Given the 
nature and wide variety of acoustic operationalizations, 
there is no natural interpretation of the scale, so we 
cannot interpret the direction of estimates. When looking 
at the raw estimates and their variance (gray triangles 
and lines), it is striking how much estimates differed. 
Estimates ranged from −0.7 to 1.01 standard units.

Although the majority of model estimates and their 
uncertainty after shrinkage yields inconclusive results 
(i.e., are compatible with a point null hypothesis), there 
are 27 model estimates for which the 95% CrI does not 
contain zero (14%).

Analytic and researcher-related  
predictors

After having assessed the variability across teams and 
models, we now turn to estimating the impact of a series 
of predictors on the reported standardized effects. There 
is a large amount of variation between and within teams, 
raising the question as to whether we can explain some 
of this variation or whether it is purely idiosyncratic 
(Breznau et al., 2021).
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We ran a model as described above. Figure 4c displays 
the coefficients for all predictors alongside their 80% 
and 95% CrIs. The model suggests that most team- 
specific predictors yielded very small deviations from 
the meta-analytic estimate, and their 95% CrIs included 
zero, leaving us highly uncertain about their direction. 
Neither analysts’ prior beliefs in the phenomenon, β = 
−0.01, 95% CrI = [−0.04, 0.01], nor their seniority in terms 
of years after completing their PhD, β = 0.01, 95% CrI = 
[−0.02, 0.04], seem to have affected model estimates. 
Likewise, the evaluation of the quality of the analysis 
from their peers yielded a rather small effect magnitude, 
again characterized by large uncertainty, β = 0.02, 95% 
CrI = [−0.01, 0.05]. Interestingly, the model uniqueness, 
that is, how unique the choice and combination of pre-
dictors are, affected the analysts’ estimate, with more 
unique models producing higher positive estimates, β = 
0.04, 95% CrI = [0.02, 0.07].

Looking at the most important choices during measure-
ment, both the acoustic parameter under investigation 
(e.g., f0 or duration) and the choice of measurement win-
dow affected the results. Figures 4a and b display the 
posterior estimates for the measurement outcome (i.e., 
what acoustic dimension was measured; a) and measure-
ment window (i.e., what is the unit over which the out-
come was measured; b). If, on the one hand, an acoustic 
dimension related to f0 was measured, estimates are lower 
than the meta-analytic estimate. If, on the other hand, 
duration was measured, estimates are higher than the 
meta-analytic estimate. Similarly, if acoustic parameters 

were measured across the entire sentence, estimates are 
lower than the meta-analytic estimate. In other words, 
depending on the choice of measurement and the mea-
surement window, analysts might have arrived at different 
conclusions about how and if typicality is expressed 
acoustically.

It is due to the latter patterns that we need to interpret 
the results of the model with great caution. Because 
there are combinations of analytic choices that appear 
to systematically result in lower or higher estimates and 
the fact that predictors are not fully crossed (i.e., we do 
not have the same amount of data for all combinations 
of, e.g., outcome and measurement window), the esti-
mates for certain predictors might be biased if predictors 
are collinear. This bias might be amplified by the fact 
that the scale has no natural way of being interpreted 
across all teams with different measurements cancelling 
each other out. We checked correlations between predic-
tors, and although predictors do not seem to be highly 
collinear, the estimates might still be biased.

Discussion

Summary

We gave 46 analyst teams the same speech data set to 
answer the same research question: Do speakers acousti-
cally modify utterances to signal atypical word combina-
tions? To answer this question, teams had to interpret 
the research question by operationalizing constructs 
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Fig. 3.  Standardized effect sizes across all critical coefficients provided by the teams. Raw estimates are displayed in gray. Estimates 
after shrinkage as provided by the meta-analytic model are displayed in black.
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within multidimensional signals, operationalizing and 
choosing appropriate model predictors, and constructing 
appropriate statistical models. This complex process has 
led to a vast garden of forking paths, that is, to a wide 
range of combinations of possible analytic decisions. 
The submitted analyses exhibited at least 52 unique ways 
of operationalizing the acoustic signal alongside 55 
unique ways of constructing the statistical model. By 
multiplying the numbers of acoustic and model specifi-
cations, there are in principle 2,860 possible unique 
combinations. Note that this is a conservative estimate 
of the number of possible analytic choices for our 
research question, ignoring many other degrees of free-
dom such as, for example, acoustic parameter extraction, 
outlier treatment, and transformations, all of which might 
have an impact on the final results (Breznau et al., 2021).

Different analysis paths led to different categorical 
conclusions with 39.4% of teams reported to have found 
at least one statistically reliable effect. To gain a better 
understanding of whether the observed quantitative 

variability can result in theoretically different claims, we 
will contextualize them in actual acoustic measures. We 
calculated the standard deviation of a selection of acous-
tic measurements, as submitted by the analysis teams: 
duration, f0, and intensity, taken from different time win-
dows. These standard deviations can be considered a 
coarse indication of the variability in the obtained acous-
tic measures. We can now use these values to interpret 
the meta-analytic estimates, which are in standardized 
units, by transforming the standardized units to measures 
of duration, f0, and intensity (see Table 2 for examples 
of acoustic values grounding the estimated meta-analytic 
variation).8

For example, for those analyses that investigated the 
duration of vowels (e.g., the duration of the stressed 
vowel in Banáne), the reported duration measures 
exhibit standard deviations that range from 33.4 to 51.4 
ms. These standard deviations allow us to convert the 
meta-analytic estimates into milliseconds by multiplying 
those values with the standard unit values of the 
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meta-analytic estimates. The reported effect estimates 
from teams varied between −0.7 and 1.01 standard units, 
which corresponds to estimated segment-duration dif-
ferences (for atypical vs. typical combinations) ranging 
from −23.34 to 33.84 ms. A more conservative approach 
is to convert the meta-analytic estimates of between-
model variation, thus obtaining an estimate of between-
model variability that ranges from 7.2 to 14.1 ms at 95% 
credibility. The calculation is thus: the minimum standard 
deviation of duration multiplied by the lower limit of the 
95% CrI of the between-model variability estimate, times 
1.96 to obtain a 95% CrI: 33.4 × 0.11 × 1.96 = 7.2 ms; the 
maximum standard deviation of duration multiplied by 
the upper limit of the 95% CrI of the between-model vari-
ability estimate, times 1.96: 51.4 × 0.14 × 1.96 = 14.1 ms.

Although this might not immediately strike one as 
highly variable, it crosses several theoretically relevant 
thresholds for perception and articulation: For example, 
the widely studied phenomenon of incomplete neutral-
ization involves vowel-duration effects ranging from 7 
to 15 ms (Nicenboim et al., 2018). This particular phe-
nomenon has sparked long-lasting methodological and 
theoretical debates about the very nature of linguistic 
representations (Port & Leary, 2005) and has been rep-
licated several times in both production and perception. 
Vowel duration differences within this range have also 
been reported across phenomena associated with seg-
mental contrasts (Coretta, 2019), reduction phenomena 
(Nowak, 2006), and biomechanical reflexes of promi-
nence (Mücke & Grice, 2014). Thus, variation between 
different analyst teams of 7.2 to 14.1 ms in one or the 
other direction can be theoretically relevant and might 
lead to opposing theoretical conclusions.

Although one might find it obvious that measuring 
different parts of the speech signal can lead to different 
results, the fact that analysts (and reviewers alike) con-
sidered all these data analytic pipelines valid ways of 
answering the same research question points to a lack 
of theoretical consensus on what parts of the speech 
signal correspond to what types of communicative func-
tions. Importantly, even if analysts chose to measure 
more or less the same acoustic property within the same 

measurement window, they arrived at different estimates: 
For example, five teams measured f0 in the noun and 
predicted f0 on the basis of typicality as a categorical 
predictor. Their standardized effect estimates ranged 
from −0.35 to 0.19 standard deviations. Although these 
teams in principle measured the same thing, they dif-
fered in the analytical details of how f0 was operational-
ized (i.e., mean, minimum, maximum, point or range) 
and how their statistical model was constructed (i.e., the 
number of predictors ranged from 1 to 2, and the num-
ber of random-effect terms ranged from 1 to 10). As 
shown by Breznau et al. (2021), even seemingly incon-
sequential analytical choices can affect conclusions in 
nontrivial ways.

The observed variation does not seem to be system-
atic. For example, variation between teams was not pre-
dicted by the analysts’ prior expectations about the 
phenomenon. In fact, teams on average rated the plau-
sibility of the effect as rather high before receiving 
access to the data. The observed variation was neither 
predicted by the analysts’ experience in the field nor by 
the perceived quality of the analysis as judged by other 
teams. Analyses received overall high peer ratings for 
both the acoustic and the statistical analysis, suggesting 
that reviewers were generally satisfied with the other 
teams’ approaches.

These findings are very much in line with previous 
crowdsourced projects that suggest variation between 
teams is neither driven by perceived quality of the analy-
sis nor by analysts’ biases or experience (e.g., Breznau 
et al., 2021; Silberzahn et al., 2018). Following Breznau 
et al. (2021), we are bound to conclude that “idiosyn-
cratic uncertainty is a fundamental feature of the scien-
tific process that is not easily explained by typically 
observed researcher characteristics or analytic decisions” 
(p. 9). Idiosyncratic variation across researchers might 
be a fact of life that we have to acknowledge and inte-
grate into how we evaluate and present evidence.

Although properties of the teams did not seem to 
systematically affect the results, teams’ estimates seem 
to highly depend on certain measurement choices. 
Human speech entails complex multidimensional 

Table 2.  Estimated 95% Credible Intervals of Deviation From the 
Meta-Analytic Effect in Acoustic Measures Based on the Lower 
and Upper Limits of the Between-Model Variation

Outcome Temporal window Lower Upper Unit

Duration Segment 7–10.8 9.3–14.4 ms
Duration Word 6.9–25.3 9.1–33.4 ms
f0 Segment 0.9–9.4 1.2–12.4 Hz
f0 Word 0.8–9.9 1.1–13.2 Hz
Intensity Segment 0.7–1.5 0.9–2 dB
Intensity Word 0.7–0.9 1–1.2 dB
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signals. Researchers need to make choices about what 
to measure, how to measure it, and which temporal unit 
to measure it in. Some of these choices seem to result 
in estimates in one direction, whereas others seem to 
result in estimates into another. For example, measure-
ments related to f0 tended to result in lower estimates, 
whereas measurements related to duration tended to 
yield higher estimates.

The asymmetry observed in the effect direction of dif-
ferent measurements can have several causes. First, there 
could be a true underlying relationship between typicality 
and the speech signal that manifests itself in some mea-
sures but not others and/or manifests itself negatively in 
one acoustic measure but positively in another.

Second and orthogonal to a possible true relationship, 
certain measurement choices might be associated with 
stronger expectations relative to the research question, 
which might lead to stronger researcher biases. Many 
analysts targeted measures related to f0, likely because 
similar functional relationships such as information 
structure and predictability can be expressed by f0 (e.g., 
Grice et al., 2017; Turnbull, 2017). Moreover, prior work 
has actually suggested a relationship between typicality 
and f0 (e.g., Dimitrova et al., 2008, 2009). Participating 
analysts could have been aware of those findings, which 
might have, subconsciously or otherwise, nudged their 
choices in one particular direction.

Regardless of the cause of these systematic effects, 
we have to conclude that depending on the choice of 
how the speech signal is operationalized, researchers 
might find evidence for or against a theoretically relevant 
prediction. This conclusion is further supported by the 
fact that between-team variability was lower than 
between-model variability. This is an important observa-
tion when put into context of the fact that most teams 
submitted many different models. Teams submitted up 
to 16 different models to test for a possible relationship 
between typicality and the speech signal. The complex-
ity of the speech signal lends itself to multiple approaches, 
but this plurality of hypothesis tests invites bias and can 
dramatically increase the rate of falsely claiming the 
presence of an effect (Roettger, 2019; Simmons et al., 
2011). We of course are not arguing that exploratory 
analyses should not be used. Rather, we simply want to 
point out that if the theoretical underpinnings of the 
field were much clearer, different teams would have 
converged toward a limited set of analyses despite a less 
specific research question.

In relation to this aspect, one team coordinator decided 
to drop out of the project because of its approach being 
too top-down. The coordinator also expressed a prefer-
ence to be able to explore and run a variety of descriptive 
analyses followed up with inferential statistics. We find 
that this attitude speaks to the main objective of the cur-
rent study: investigate researchers’ degrees of freedom 

in the speech sciences. Based on our personal experience 
with research in the field, it is common practice to test 
many different types of models, using many different 
types of measurements, to answer one research hypoth-
esis. Although this is a valid way to explore data and 
generate new hypotheses, it is not suitable for hypothesis 
testing. When operating within the frequentist inferential 
framework, testing the same hypothesis with different 
dependent variables is known to increase the false- 
positive (Type-I error) rate. The well-established solution 
to this problem is to apply a correction for family-wise 
error (i.e., alpha correction). However, less clear-cut 
degrees of freedom, such as those observed in the current 
study, can not be corrected in a straightforward way. If left 
uncorrected, these degrees of freedom can nevertheless 
drastically inflate the false-positive rate, even if different 
choices are highly correlated (Roettger, 2019). Another pos-
sible outcome of analytic flexibility as seen in this study is 
selective reporting of those tests that yield a desirable out-
come ( John et al., 2012; Kerr, 1998; Simmons et al., 2011), 
while null results remain unreported (Rosenthal, 1979; 
Sterling, 1959). Fields such as the speech sciences that 
make theoretical advances based on multidimensional data 
should be aware of this flexibility and calibrate their con-
fidence in empirical claims accordingly.

Looking at our results, one might argue (and this 
interpretation has been articulated by several teams dur-
ing the collaborative write-up) that our sample of speech 
scientists actually converged on a qualitative conclusion; 
that is, there is no evidence for a relationship. However, 
if there truly was no underlying relationship, our results 
would suggest a concerning false-positive rate with 
39.4% of teams reported to have found at least one sta-
tistically reliable effect. This rate is substantially higher 
than the conventionally accepted 5% false-positive rate 
in, for example, null-hypothesis significance testing 
frameworks. If, on the other hand, there actually was an 
underlying relationship, our results would suggest a con-
cerning false-negative rate of 61.6%, with the majority 
of teams not detecting the effect. If the latter was true, 
the fact that the majority of teams arrived at a null result 
might also simply be a consequence of the sample size 
in the data set being too small to reliably detect an effect 
(which is unknown to us). Thus, we do not think that 
our study provides convincing evidence that speech 
researchers converged on the same qualitative answer 
to a broad research question.

Lessons for the methodological-reform 
movement

The current results point to important barriers to the 
successful accumulation of knowledge. The replication 
crisis has brought attention to scientific practices that 
lead to unreliable and biased claims in the literature 
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(Fidler & Wilcox, 2018; Vazire, 2017). One of the sug-
gested paths forward is for researchers to directly rep-
licate previous studies more often (Camerer et al., 2018; 
Open Science Collaboration, 2015). Although we agree 
with the importance of direct replications, our study 
(and similar crowdsourced analyses before us) suggest 
that replicating more is simply not enough. There is only 
limited value in learning that a particular procedure is 
replicable if the idiosyncratic nature of the procedure 
itself might not yield a representative result relative to 
all possible procedures that could have been applied to 
the research question. Thus beyond a mere replication 
crisis, quantitative disciplines are going through an 
“inference crisis” (Rotello et al., 2015; Starns et al., 2019). 
As shown by the peer ratings of the analyses reported 
in this study, well-trained and experienced speech 
researchers not only applied completely different 
approaches to the same research question but also con-
sidered most of these alternative approaches acceptable. 
Being aware of this idiosyncratic variation between ana-
lysts should lead to more nuanced claims and a certain 
level of epistemic humility (for an overview of the con-
cept, see Campbell, 1975).

A desired outcome of knowing that different but rea-
sonable measurement choices or statistical approaches 
might lead to different interpretations of research data 
is to calibrate our (un)certainty in the strength of the 
collected evidence and, in turn, communicate that (un)
certainty appropriately. The fact that the choice of mea-
surement, measurement window, and predictor choice 
affect the answer to the research question further sug-
gests that research assumptions and hypotheses should 
be formulated in much greater detail, particularly so in 
regard to how measurement systems (here, the acoustic 
signal) and underlying conceptual constructs (here, the 
phonetic expression of typicality) relate to each other.

We should ideally specify the link between concep-
tual construct and quantitative system—the “derivation 
chain” (Dubin, 1970; Meehl, 1990)—before data collec-
tion and analysis, including defining constructs and their 
relationship within the quantitative system, specifying 
auxiliary assumptions and boundary conditions, and 
defining target measurements, statistical expectations, 
and possible (and impossible) effect magnitudes. With-
out well-defined derivation chains, we “are not even 
wrong” (Scheel, 2022) because falsified expectations 
cannot tell us much about the conceptual constructs they 
are based on when the relationship between the two is 
underspecified. Some of the analysis teams explicitly 
recognized and acknowledged the need to formulate a 
more precise version of the research question by pre-
registering their planned data analysis pipeline. Prereg-
istration, that is, a time-stamped document in which 
researchers specify how they plan to collect their data 
and/or how they plan to conduct their confirmatory 

analysis, can be a useful tool to safeguard researchers 
against the urge to explore many different analytical 
paths before choosing the one that, in hindsight, seems 
most justified. However, as long as the theoretical land-
scape does not allow for more precise hypotheses, the 
value of preregistration is limited and we need to find 
ways to appropriately calibrate the confidence in our 
claims.

Through sharing of materials, data, and statistical pro-
tocols, we can make our idiosyncratic choices transpar-
ent to others (Munafò et al. 2017; Vazire, 2017). Sharing 
further enables the evaluation and verification of under-
lying claims and allows for the evaluation of empirical, 
computational, and statistical reproducibility (LeBel 
et al., 2018). It allows for alternative analyses to establish 
analytic robustness (Steegen et al., 2016) and strengthens 
attempts to synthesize evidence via meta-analyses (e.g., 
Nicenboim et  al., 2018). Given that minor procedural 
changes can sometimes drastically affect the final inter-
pretation of the results (Breznau et al., 2021), we should 
ideally share a detailed documentation of the data- 
collection procedure, the measurement choices, the data 
extraction, and statistical analyses. Within fields that deal 
with speech data, open-source software that permits the 
extraction of acoustic parameters via reproducible scripts 
can help other researchers to trace back seemingly 
inconsequential choices during the measurement pro-
cess (e.g., Praat: Boersma & Weenink, 2021; EMU:  
Winkelmann et al., 2017; the Montreal Forced Aligner: 
McAuliffe et al., 2017).

Making analytic pathways completely retraceable and 
preregistering them in advance does not change the fact 
that different analysts might apply different analytic 
approaches (preregistered or not). Crowdsourced proj-
ects such as the current one can shed light on the range 
of degrees of freedom during analysis and could pos-
sibly help produce a consensual estimated effect if the 
research hypothesis is specific enough. Crowdsourcing 
analyses is obviously not always feasible in terms of 
required resources and time but could be a consider-
ation for claims that have large epistemological or practi-
cal consequences.

If we develop a good understanding of relevant analytic 
degrees of freedom, we could apply all conceivable ana-
lytic strategies and compare the results across all combina-
tions of these choices. Such an analysis can provide insight 
into how much the conclusions change due to analytic 
choices as well as which choices have neglible or large 
impact on the result. This approach is called a “multiverse 
analysis” (e.g., Harder, 2020; Steegen et al., 2016) and has 
recently gained popularity across disciplines.

Finally, neither crowdsourcing nor multiverse analyses 
will guarantee that all relevant pathways are explored. 
Crowdsourcing is limited by the sampled analysts and 
their biases. Multiverse analyses are limited even further 
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by the group of researchers who define possible analytic 
pathways. Eventually, a mature scientific discipline needs 
to develop a set of detailed quantitative hypotheses of 
how conceptual constructs manifest themselves in the 
measured system, that is, in the present case how com-
municative pressures of certain functions are expressed 
in the acoustic signal. Possible tools to strengthen theo-
retical development relate to mathematically formalizing 
verbal expectations or using computational models (e.g., 
Devezer et al., 2021; Guest & Martin, 2021; Scheel et al., 
2021; van Rooij & Blokpoel, 2020). Although conceptu-
ally promising, in their current state, such formalized 
models typically work in spaces that are much lower in 
dimensionality than the complex systems in which we 
measure. Thus, future research should spend resources 
on attempting to quantitatively relate the abstract theo-
retical space to the complex measurement space.

Caveats

Our study has several limitations that need to be con-
sidered when interpreting our results.

First, although the total number of analyses is larger 
than most earlier crowdsourcing projects, it is likely to 
be too small to reliably estimate the impact of certain 
predictors. Because predictors’ values were not system-
atically distributed across teams, our estimates are char-
acterized by large uncertainty.

Second, uncertainty is further inflated by the fact that 
the research question presented to the teams was vague, 
despite being of a kind normally found in the speech-
science literature: Do speakers acoustically modify utter-
ances to signal atypical word combinations? Interpreting 
the research question/hypothesis differently in terms of 
its statistical consequences has recently been shown to 
explain some variation between analysis teams in many-
analyses projects (Auspurg & Brüderl, 2021). The ana-
lysts might also have tried to answer different specific 
manifestations of the research question that was given 
to them, leading to different choices down the line (e.g., 
whether speakers modify f0 in atypical adjectives). It 
could be argued that some teams would have not speci-
fied such a vague research question to begin with, which 
would have reduced the possible degrees of freedom 
substantially. However, this very underspecification of 
research hypotheses in the field of speech science (and 
beyond; see Scheel, 2022) is very common. For example, 
researchers seem to have not yet agreed on how to 
acoustically measure cross-linguistically common phe-
nomena such as word stress (e.g., Gordon & Roettger, 
2017). Research on acoustic markers of clinical condi-
tions such as depression and schizophrenia are often 
difficult to compare because of the wide variety of dif-
ferent acoustic measures used (e.g., Cummins et  al., 
2015; Parola et al., 2022).

Third, the design of this crowdsourced study has arti-
ficially inflated the variability between teams by encour-
aging anticoordination strategies. Teams knew that there 
would be other analyst teams and therefore might have 
chosen a “less canonical” analysis. Because analysts were 
guaranteed to become coauthors of a (in principle) guar-
anteed publication, such an anticoordination approach 
was not explicitly disincentivized.

Forth, our sample is an opportunity sample. We have 
advertised the project through online platforms that 
might have led to the exclusion of certain potential 
researcher groups. The sampling strategy also might 
have given access to researchers who were less experi-
enced in particular aspects of the data analysis, possibly 
introducing uncommon analytic choices or poor-quality 
analyses. However, to our knowledge, neither the peer 
review among teams nor the information gathered 
through our questionnaires indicated any obvious cases 
of what one might consider incompetent analyses.

In light of both the observed large variability between 
teams, and possible sources of bias, a field can benefit 
from explicit positionality statements (e.g., Darwin 
Holmes, 2020; Fox et al., 2021; Jafar, 2018). Researchers 
do not analyze data in a vacuum. It is important to rec-
ognize and disclose one’s positionality (i.e., a reflection 
about how educational background, social identity, 
power, experience, and context might influence research-
ers’ approaches and interpretations). For example, the 
coordinating authors have engaged with meta-scientific 
research before and have been actively involved in meth-
odological debates about scientific practices, including 
transparency and statistical methods. They have in the 
past used the lack of standardized analytic approaches 
as an argument for proposing behavior and policy 
changes in the field. This might have biased their own 
judgment during the analysis, which itself came with 
many researcher degrees of freedom. We hope we were 
able to make these degrees of freedom as well as the 
timing and reasoning of these analytic choices at least 
detectable, and we invite other researchers to reanalyze 
our data and try to replicate our results using a different 
research question.

Finally, the current study focused on a particular phe-
nomenon within the speech sciences using a speech 
production data set with very specific properties. The 
generalizability of our findings to other disciplines, as 
well as to other subdisciplines of the language sciences 
specifically, is, of course, limited. We focused on quan-
titative analyses that require the operationalization of a 
multidimensional signal in an artificial elicitation situa-
tion (laboratory speech). Although we do believe that 
our qualitative conclusions hold across fields exhibiting 
similar methodologies, the detailed quantitative results 
will only be able to directly inform similar disciplines 
that work with speech or audio/video signals. This is an 
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important point to make because cognitive sciences in 
general, and the language sciences in particular, have 
many research areas that are based on qualitative meth-
ods (Haven & Van Grootel, 2019). It is conceivable that 
the discussed issues apply differently or not at all to 
qualitative data analyses.

Conclusion

Several recent studies have highlighted the large degree 
of analytic flexibility in data analysis. When many dif-
ferent analysts have to analyze the same data set to 
answer the same research question, analysts differ in 
how they approach this task, leading to both different 
qualitative answers (i.e., whether there is evidence for 
a relationship or not) and different effect magnitudes. 
This is concerning because it can lead to substantially 
different conclusions based on the same data set, a state 
of affairs that can generate biased inferential decisions 
and might weaken confidence in the published litera-
ture. More specifically, research commonly proceeds 
based on publications by one research team at a time. 
If we imagine a situation in which any of the 46 teams 
could have been the team publishing a study on this 
topic, it is immediately clear that that single study is just 
a very limited view. In light of this we want to stress that 
the field has to quickly move from one-off studies to 
collaborative approaches such as the one used here and 
to more frequent replication attempts, for example, by 
incentivizing replication through dedicated funding and 
editorial policies, among others.

Going beyond previous empirical studies, the current 
article looked at many analyses of speech data. Speech 
is a multidimensional signal that allows for great flexibil-
ity because it lends itself to a variety of possible opera-
tionalizations. In this study, 46 teams of speech scientists 
analyzed the same data set. Analytic approaches differed 
vastly in terms of their operationalization of key con-
structs, as well as their statistical analyses. Given the 
observed variability, conservative estimates of the sheer 
number of possible analytic paths for this research ques-
tion lies in the thousands. Quantitatively, the between-
team and between-model variation of estimates crosses 
important theoretical thresholds as to what constitutes 
communicative, cognitive, or biomechanical values.

In line with previous findings, neither the perceived 
quality of analyses nor the experience or prior beliefs 
of teams explained the observed variation. Importantly, 
however, we found some evidence for systematic effects 
on teams’ estimates based on what and how they mea-
sured the speech signal. This result, taken together with 
the meaningful between-model variation and the ten-
dency to test the research question on multiple outcome 
variables, suggests that a vast plurality of acceptable 
approaches is expected to frequently lead to different 

conclusions. We suggest that fields that use multidimen-
sional data need to acknowledge these degrees of free-
dom, consider crowdsourcing and multiverse analyses 
when evaluating epistemologically or practically impor-
tant phenomena, and strengthen the link between theo-
retical predictions and the measurement system by 
means of mathematical formalization and computational 
modeling.

Appendix

Glossary

•• Analysis team: team of analysts or single 
analyst

•• Reported effect sizes: effect sizes reported by 
each analysis team

•• Standardized model: Bayesian refit of the team’s 
model

•• Standardized effect sizes: (ηi ) effect sizes 
returned by the standardized models

•• Standardized standard error: (sei) standard 
deviation of the standardized effect sizes

•• Bayesian random-effects meta-analysis and 
meta-analytic model: multilevel intercept-only 
regression model for meta-analysis

•• Meta-analytic group-level standard deviation: 
(σαt

) standard deviation of the group-level effect 
of team returned by the meta-analytic model

•• Analytic and researcher-related predictors: 
predictors used in the model that assess the effect 
of analytic and researcher-related factors on the 
standardized effects

Transparency

Action Editor: Julia Strand
Editor: David A. Sbarra
Author Contribution(s)

Stefano Coretta, Joseph Casillas, and Timo Roettger concep-
tualized and managed the project, ran the meta-analyses, 
and drafted both the Registered Report and the final manu-
script. Simon Roessig, Michael Franke, and Timo Roettger 
collected the original data set. All other authors functioned 
as analysts of the data set and edited the final manuscript. 
Detailed author contributions are documented using the 
Contributor Roles Taxonomy (CRediT) and can be found 
here: https://github.com/many-speech-analyses/many_
analyses/blob/main/figs/credit-taxonomy-all.png.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this 
article.

Funding
S. Coretta was partially supported by European Research 
Council Grant No. 742289 (2017–2022; to J. Harrington); J. 
Al-Tamimi was partially supported by French Investisse-
ments d’Avenir - Labex EFL Grant ANR-10-LABX-0083,  

https://github.com/many-speech-analyses/many_analyses/blob/main/figs/credit-taxonomy-all.png
https://github.com/many-speech-analyses/many_analyses/blob/main/figs/credit-taxonomy-all.png


Advances in Methods and Practices in Psychological Science 6(3)	 25

contributing to IdEx Université Paris Cité Grant ANR-18-
IDEX-0001; G. Moroz and S. Carraturo received funding 
from the Basic Research Program at the National Research 
University Higher School of Economics; I. Urrestarazu-Porta 
received funding from French National Research Agency 
Grant ANR-20-CE27-0007 and Spanish Ministry of Science 
and Innovation Grant PID2020-118445GB-I00; C. Kaland, 
M. Grice, F. Cangemi, M. Lialiou, M. Spaniol, and S. Wehrle 
received funding from German Research Foundation Grant 
281511265-SFB 1252; and N. R. Benway was supported in 
part through computational resources provided by Syracuse 
University Grants NSF ACI-1341006 and NSF ACI-1541396.

ORCID iDs

Stefano Coretta  https://orcid.org/0000-0001-9627-5532

Ali H. Al-Hoorie  https://orcid.org/0000-0003-3810-5978

Najd E. Alotaibi  https://orcid.org/0000-0003-3306-5081

George Bailey  https://orcid.org/0000-0001-5137-8394

Nina R. Benway  https://orcid.org/0000-0003-0955-9495

Aaron Braver  https://orcid.org/0000-0001-8532-0473

Erin M. Buchanan  https://orcid.org/0000-0002-9689-4189

Andrés Buxó-Lugo  https://orcid.org/0000-0001-8274-035X

Francesco Cangemi  https://orcid.org/0000-0003-1016-5178

Carissa A. Diantoro  https://orcid.org/0000-0001-5286- 
0860

Shiloh Drake  https://orcid.org/0000-0003-2247-2052

Ander Egurtzegi  https://orcid.org/0000-0002-3451-323X

Mahmoud M. Elsherif  https://orcid.org/0000-0002-0540- 
3998

Sara Finley  https://orcid.org/0000-0002-7090-8108

Robert Fromont  https://orcid.org/0000-0001-5271-5487

Pia Greca  https://orcid.org/0000-0003-3491-1446

Amelia J. Gully  https://orcid.org/0000-0002-8600-121X

Matthew C. Kelley  https://orcid.org/0000-0002-7218-5599

Ghada Khattab  https://orcid.org/0000-0002-8451-8135

Tomas O. Lentz  https://orcid.org/0000-0001-8307-9639

Maria Lialiou  https://orcid.org/0000-0002-9788-1443

Justin J. H. Lo  https://orcid.org/0000-0003-0115-6982

Julio Cesar Lopez Otero  https://orcid.org/0000-0001-6678- 
722X

Mridhula Murali  https://orcid.org/0000-0001-5450-6419

Ladislas Nalborczyk  https://orcid.org/0000-0002-7419- 
9855

Heather M. Offerman  https://orcid.org/0000-0001-7535- 
2279

Maud Pélissier  https://orcid.org/0000-0001-6639-9665

Scott J. Perry  https://orcid.org/0000-0003-0400-0625

Michael Proctor  https://orcid.org/0000-0002-3083-6859

Erik Schleef  https://orcid.org/0000-0001-6636-1085

Joseph A. Stanley  https://orcid.org/0000-0002-9185-0048

Benjamin V. Tucker  https://orcid.org/0000-0001-8965- 
7890

Kingsley O. Ugwuanyi  https://orcid.org/0000-0002-6480- 
0352

Iñigo Urrestarazu-Porta  https://orcid.org/0000-0002-4606- 
3977

Emiel van Miltenburg  https://orcid.org/0000-0002-7143- 
8961

Simon Wehrle  https://orcid.org/0000-0001-9715-9541

Anna Wood  https://orcid.org/0000-0002-4423-8219

Chenzi Xu  https://orcid.org/0000-0001-6506-4513

Cong Zhang  https://orcid.org/0000-0002-2561-2113

Timo B. Roettger  https://orcid.org/0000-0003-1400-2739

Acknowledgments

We would like to thank the editors David Sbarra and Julia 
Strand, Matthew Goldrick, and two anonymous reviewers for 
their insightful comments and suggestions. The initiating 
authors (S. Coretta, J. V. Casillas, and T. B. Roettger) wish to 
express immense gratitude to all the other authors, without 
which this project would not have come to be.

Notes

1. Results of this research project were neither published nor 
publicly presented and are stored on a private OSF repository.
2. A detailed description of the norming and production studies 
from the Prosodic Encoding of Redundant Referring Expressions 
project, which was given to the analysts with the data set, can 
be found in methods_norm_prod.pdf at https://bit.ly/3Ahawc7.
3. Terms in bold are included with their definition in the glossary 
at the end of the paper for the reader’s convenience.
4. Cached model outputs can be found at https://osf.io/wds2m.
5. Initially we planned to present simultaneously all four (or 
more) methods sections to each reviewer after the fourth round, 
with the option to revise their original ratings and provide an 
explanation. Ultimately, we decided to skip this step because of 
time constraints.
6. The comment history can be found at https://docs.google 
.com/document/d/1CFgRo93mRgifpuFOuQE3vNBeMW-H7 
ps9eD--vxH-6CQ/edit?usp=sharing.
7. Note that before fitting this model, we fitted a separate one 
in which model ID was the only (nonnested) group-level effect. 
The estimated group-level effect of model ID is identical to that 
of the nested model, so we do not discuss it further.
8. Note that these categories necessarily refer to a variegated set 
of measures; for example, the domain “word” includes words 
that differed along several dimensions, including their length and 
metrical structure.
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