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On forwarding techniques for stabilization and set-point

output regulation of semilinear infinite-dimensional systems∗

Nicolas Vanspranghe† Lucas Brivadis‡ Lassi Paunonen†

Abstract

A stabilizer based on the forwarding technique is proposed for semilinear infinite-dimen-

sional systems in cascade form. Sufficient conditions for local exponentially stability and

global asymptotic stability of the closed-loop are derived. Results for the problem of local

set-point output regulation are also obtained. Finally, an application to a system consisting

of a flexible beam attached to a rotating joint is proposed.

1 Introduction

The stabilization of infinite-dimensional systems presenting a cascade form is a modern challenge
in control theory and has been investigated by many researchers in recent years. In particular,
a strong focus has been made on cascades of partial differential equations (PDEs) with ordinary
differential equations (ODEs) [5, 11, 17], or of ODEs with PDEs [2, 18], or of PDEs with other
PDEs [3, 4]. Approaches known as “backstepping” or “forwarding” (each relying on a different
paradigm, and adapted to different cascade structures) have been developed to tackle the issue.
In this paper, we focus on the cascade of two infinite-dimensional systems where the first one
is semilinear and control-affine, and the second one is linear, neutrally stable (Lyapunov stable
but not asymptotically stable) and driven by a semilinear output of the first one. This type
of systems arises in two contexts in practice: in the stabilization of cascade systems where the
second system is linear and driven by an output of the first one, and in the output regulation by
means of integral action of semilinear infinite-dimensional systems with potentially semilinear
output.

Concerning the output regulation problem, many recent works have proposed to extend the
linear finite-dimensional theory of [10] to linear infinite-dimensional systems by means of an
infinite-dimensional internal model principle [7, 24–27, 29]. The extension of these works to the
infinite-dimensional abstract nonlinear context is still an open problem, although some recent
progress have been made in specific contexts [16, 22].

We propose to tackle the cascade stabilization problem by means of the forwarding approach
that was originally developed for cascades of nonlinear ODEs in [19, 28]. This approach is well-
suited for the class of cascades under consideration in the present paper, making use of the
internal stability of the first subsystem. It could also allow to extend our results to systems
with saturated input as in [18], and does not rely on any specific hyperbolic structure of the
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PDE (systems are considered in an abstract framework). The extension of this strategy to
infinite-dimensional systems is an active research area, especially for linear systems (or for linear
systems with saturated or cone-bounded nonlinearities applied to the input) [17, 18, 21, 30]. In
order to deal with nonlinear infinite-dimensional systems, the theory developed in [12] for finite-
dimensional systems by means of incremental stability is instrumental, and has recently been
adapted in the context of infinite-dimensional output regulation in [31].

The present paper is a continuation of the work proposed in [31]: while the class of systems
under consideration is less generic (here, we restrict ourselves to semilinear systems), the results
obtained here are stronger than the ones presented in [31] regarding the following points: the
input-to-state stability assumption on the first system is weaker; the input acts via a linear
operator that may depend on the state; the output of the first system may be nonlinear; the
dynamics of the first system is not assumed to be globally contracting; the dynamics of the second
system is more general than a pure integrator. These extensions require modifying the controller
designed by forwarding, and in particular improving the result of existence of an invariant graph.
Finally, we apply our results to a system which consists of a flexible beam attached to a rotating
joint.

Organization of the paper In Section 2, we tackle the cascade stabilization problem. The
controller we propose ensures local exponential stability and global asymptotic stability under
the assumption of existence of some invariant graph. Sufficient conditions for this are derived
in Section 3. We apply our results in the context of output regulation in Section 4, and to an
example of flexible structure in Section 5.

Notation The norm of a given normed vector space E is denoted by ‖·‖E . If x ∈ E and r > 0,
BE(x, r) denotes the open ball of E centered at x and of radius r. Let E1 and E2 be normed
vector spaces. Then, L(E1, E2) denotes the space of bounded (i.e., continuous) linear operators
from E1 to E2 equipped with the operator norm. We say that a map f : E1 → E2 is Fréchet
differentiable at x ∈ E1 if there exists a (necessarily unique) linear map df(x) ∈ L(E1, E2)
such that f(x + h) = f(x) + df(x)h + o(‖h‖E1

) as ‖h‖E1
→ 0. Also, C1(E1, E2) denotes the

space of continuously Fréchet differentiable maps from E1 to E2, i.e., those f for which the
Fréchet differential df is continuous from E1 to L(E1, E2). By a locally Lipschitz continuous
map f : E1 → E2, we mean a map that is Lipschitz continuous on every bounded subset of E1.
The scalar product of a given Hilbert space E is written 〈·, ·〉E . If E1 and E2 are Hilbert spaces,
each operator L ∈ L(E1, E2) possesses an adjoint L∗ ∈ L(E2, E1) that is uniquely defined by
〈Lx, y〉E2

= 〈x, L∗y〉E1
for all x ∈ E1 and y ∈ E2. Integrals of functions taking values in Banach

spaces are understood in the sense of Bochner.

2 Stabilization of cascade systems

Let A : D(A) → X be the infinitesimal generator of a strongly continuous semigroup {etA}t>0

on a real Hilbert space X . Its domain D(A) is equipped with the graph norm. Given input and
output spaces U and Y , both of which are assumed to be real Hilbert spaces as well, consider
the control system

ẋ = Ax+ f(x) + g(x)u, (1a)

ż = Sz + Cx+ h(x), (1b)

where:
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• f : X → X is locally Lipschitz continuous, f(0) = 0;

• g : X → L(U,X) is locally Lipschitz continuous;

• h : X → Y is locally Lipschitz continuous, h(0) = 0;

• C ∈ L(D(A), Y ), i.e., C is A-bounded;

• S ∈ L(Y ) is skew-adjoint, i.e., S∗ = −S.

The controlled x-subsystem is governed by a semilinear equation and has a (possibly nonlinear)
output that is fed to the linear z-subsystem, which we wish to stabilize. We further assume that
the x-component is stable or can be pre-stabilized in a way that ensures the following properties.

Assumption 1 (Semiglobal Input-to-State Stability (ISS) of the x-subsystem). There exists a
Lyapunov functional V ∈ C1(X,R) that is quadratic-like, i.e., there exist m1,m2 > 0 such that

m1‖x‖
2
X 6 V (x) 6 m2‖x‖

2
X , ∀x ∈ X, (2)

and there exists β > 0 such that for all x ∈ D(A) and all u ∈ U ,

dV (x)[Ax + f(x) + g(x)u] 6 β‖u‖2U (3)

Moreover, for any bounded open set B ⊂ X , there exist a quadratic-like Lyapunov functional
VB ∈ C1(X,R) and αB, βB > 0 such that for all x ∈ D(A) ∩ B and all u ∈ U ,

dVB(x)[Ax + f(x) + g(x)u] 6 −αBVB + βB‖u‖
2
U . (4)

Assumption 1 implies the following formal statements: along all solutions to (1a),

V̇ 6 β‖u‖2U , (5)

and, given an open bounded set B, if x remains in B then

V̇B 6 −αBVB + βB‖u‖
2
U , (6)

for some Lyapunov function VB. While this formulation may seem unusual, it will naturally arise
in our PDE application.

The next assumption connects the x- and z-subsystems and is instrumental in building a
forwarding-based controller.

Assumption 2 (Invariant graph). There exists a map M ∈ C1(X,Y ) with dM locally Lipschitz
continuous such that M(0) = 0 and for all x ∈ D(A),

dM(x)(A+ f)(x) = SM(x) + (C + h)(x). (7)

Its geometric interpretation is that, when u = 0, the graph of M is an invariant manifold for
the cascade (1). Under Assumption 2, we consider the nonlinear state feedback

u = g(x)∗dM(x)∗[z −M(x)], (8)

which can be modelled as a locally Lipschitz map on the extended state space X × Y .

Theorem 1 (Well-posedness). xz For any initial data [x0, z0] ∈ X × Y , there exists a unique
(global) mild solution [x, z] ∈ C(R+, X × Y ) to the closed-loop equations (1)-(8). If [x0, z0] ∈
D(A)× Y , then [x, z] is a classical solution and enjoys the regularity [x, z] ∈ C(R+,D(A)× Y )∩
C1(R+, X × Y ). Furthermore, for any τ > 0, the map [x0, z0] 7→ [x, y] is continuous from X × Y
to C([0, τ ], X × Y ) equipped with the uniform norm.
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Proof. Observe that (1) in closed-loop with (8) constitute a locally Lipschitz perturbation of
the linear equations ẋ = Ax, ż = Cx. Those generate a strongly continuous semigroup on
X × Y . Indeed, taking advantage of the A-boundedness of C, one can show txhat the operator
matrix [A 0

C 0 ] with domain D(A) × Y is closed and has nonempty resolvent set. In that case,
semigroup generation is equivalent to existence of unique classical solutions for all initial data in
the domain [1, Theorem 3.1.12], which is immediate. Then, existence and uniqueness of local mild
and classical solutions for the nonlinear problem together with uniform continuous dependence
on the initial data follow from [8, Theorem 11.1.5]. The proof that all closed-loop solutions are
global is postponed: our stability analysis will show that they cannot blow up in finite time –
see (14) below.x

Remark 1. All formal computation performed in the sequel can be justified by considering clas-
sical solutions and passing to the limit in suitable expressions for general initial data.

Theorem 2 (Local Exponential Stability). Suppose that

Range dM(0)g(0) = Y. (9)

Then the zero equilibrium is Locally Exponentially Stable for (1) in closed loop with (8).

Proof. Consider the Lyapunov candidate

W (x, z) , V (x) +
β

4
‖z −M(x)‖2Y (10)

with β as in (3). Along solutions to (1)-(8), we have

Ẇ = V̇ +
β

2
〈z −M(x), ż − dM(x)ẋ〉Y . (11)

Since S is skew-adjoint,

〈z −M(x), Sz〉Y = 〈z −M(x), SM(x)〉Y (12)

Therefore, plugging (1a), (7) and (8) leads to

〈z −M(x), ż − dM(x)ẋ〉U = 〈z −M(x),−dM(x)g(x)u〉U

= −‖g(x)∗dM(x)∗[z −M(x)]‖2U .
(13)

Using the (global) ISS property (3), we obtain

Ẇ 6 −
β

2
‖u‖2U 6 0. (14)

Equation (14) shows that the W -sublevel sets

Nc , {[x0, z0] ∈ X × Y : W (x0, z0) 6 c}, c > 0, (15)

are positively invariant under the flow of (1)-(8). Furthermore, since M is continuous and
vanishes at zero, using also (2), for any ε > 0 we can find c > 0 such that Nc ⊂ BX×Y (0, ε) and,
conversely, for any c > 0, there exists δ > 0 such that BX×Y (0, δ) ⊂ Nc. This combined with
positive invariance of each Nc proves that the origin is Lyapunov stable. On the other hand,
because of the range condition (9), a transposition argument – see, e.g., [6, Theorem 2.20] –
provides λ > 0 such that

‖g(0)∗dM(0)∗y‖2U > λ‖y‖2Y , ∀y ∈ Y. (16)
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Because x 7→ g(x)dM(x) is continuous, it is possible to find some ball O , BX(0, r), r > 0, such
that

‖g(x)∗dM(x)∗y‖2U >
λ

2
‖y‖2Y , ∀x ∈ O, ∀y ∈ Y. (17)

We are now ready to prove local exponential stability of the origin. Fix c > 0 such that Nc ⊂
O× Y and pick δ > 0 such that BX×Y (0, δ) ⊂ Nc. The x-coordinate of any closed-loop solution
originating from Nc remains in the V -sublevel set B , {x ∈ X : V (x) < 2c}, which is bounded.
Thus, by Assumption 1 there exists a Lyapunov functional VB and positive constants αB, βB

such that V̇B 6 −αBVB + βB‖u‖2U along all closed-loop solutions originating from Nc. We let

WB(x, z) , VB(x) +
βB

4
‖z −M(x)‖2Y (18)

and this time, similarly as in (11) to (14) but taking advantage of (17), we obtain

ẆB 6 −αBVB −
βBλ

4
‖z −M(x)‖2Y

6 −min{αB, λ}WB

(19)

along all solutions to (1)-(8) originating from Nc. It then follows from (19) and Grönwall’s lemma
that

WB(x(t), z(t)) 6 e−min{αB,λ}tWB(x0, z0) (20)

for all t > 0 and any closed-loop solution [x, z] with initial data [x0, z0] taken in Nc. To conclude,
we recall thatM is Lipschitz continuous on the bounded set B,M(0) = 0 and 0 ∈ B. On the other
hand, VB has quadratic upper and lower bounds. Thus, using a couple of triangular inequalities,
we deduce that there exist positive constants K1,K2 such that K1WB(x, z) 6 ‖x‖2X + ‖z‖2Y 6
K2WB(x, z) for all x ∈ B and z ∈ Y , which completes the proof.

Theorem 3 (Global Asymptotic Stability). In addition to (9), suppose that

(i) The linear semigroup {etA}t>0 is exponentially stable;

(ii) Y is finite-dimensional.

Then the zero equilibrium is Globally Asymptotically Stable for (1) in closed loop with (8).

Proof. Let the initial data [x0, z0] ∈ X × Y be fixed. If W (x0, z0) = 0, then x0 = 0 and z0 = 0.
Otherwise, it follows again from (14) that the x-coordinate of the closed-loop solution originating
from [x0, z0] remains in an open bounded set B of the form B = {x ∈ X : V (x) < 2W (x0, z0)}.
Thus, by Assumption 1, there exists a Lyapunov functional VB and positive constants αB, βB

such that WB constructed just as in (18) satisfies

ẆB 6 −αBVB −
βB

2
‖u‖2U (21)

along the closed-loop solution originating from [x0, z0]. Integrating (21) over (0,+∞) yields

∫ +∞

0

αBVB(x(t)) +
βB

2
‖u(t)‖2U dt 6 2WB(x0, z0). (22)

In particular, x ∈ L2(0,+∞;X) and u ∈ L2(0,+∞;U). Because x is bounded in X and f is
locally Lipschitz continuous, this also implies that f(x) ∈ L2(0,+∞;X). On the other hand,
because g is locally Lipschitz continuous as well and u ∈ L2(0,+∞;U), we must have g(x)u ∈
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L2(0,+∞;X). Let Ξ , f(x)+ g(x)u. Then Ξ ∈ L2(0,+∞;X) and x solves the Cauchy problem
ẋ = Ax + Ξ, x(0) = x0. Since {etA}t>0 is exponentially stable, it follows from [8, Lemma 5.2.2]
that x(t) → 0 in X as t → +∞. Another consequence of (14) is that z remains bounded in
Y , which is assumed to be finite-dimensional; hence relative compactness of {z(t), t > 0} in Y .
We are now in the position to carry out a standard LaSalle invariance argument [9, 15]. Indeed,
we now know that the ω-limit set ω(x0, z0) of the singleton [x0, z0] under the flow of (1)-(8) is
nonempty; it is in fact included in {0} × Y and thus compact, implying that, as t → +∞,

dist([x(t), z(t)], ω(x0, z0)) → 0. (23)

Given [x̃0, z̃0] ∈ ω(x0, z0), let [x̃, z̃] be the closed-loop solution originating from [x̃0, z̃0]. Since the
W -sublevel sets are all closed and invariant under (1)-(8), V (x̃) 6 W (x0, z0) < 2W (x0, z0) for
all t > 0; thus, (21) is valid for [x̃, z̃] as well. By (strict) invariance of ω(x0, z0), the continuous,
monotone decreasing and lower-bounded function t 7→ WB(x̃(t), z̃(t)) must in fact be constant.
We then infer from the [x̃, z̃]-version of (21) that

x̃(t) = 0, ũ(t) = 0, ∀t > 0, (24)

where ũ is the control for [x̃, z̃]. Equation (24) leads to

g(0)∗dM(0)∗z̃(t) = 0, t > 0, (25)

where we recall that M(0) = 0. Because dM(0)g(0) is assumed to be surjective, g(0)∗dM(0)∗ is
injective and we finally obtain ω(x0, z0) = {0}. By (23), this shows that 0 is globally attractive
for the closed-loop (1)-(8).

3 Solving the nonlinear Sylvester equation

In this section, we establish sufficient conditions under which a suitable solution M to (7) exists.
Consider the uncontrolled x-equation:

ẋ = Ax + f(x). (26)

It is clear from the arguments in the proof of Theorem 1 that (26) gives rise to a dynamical system
in X , with similar regularity and uniform approximation properties. We denote by {Tt}t>0 the
associated evolution semigroup: t 7→ Ttx0 is the unique solution x to (26) with initial condition
x(0) = x0. Let us now discuss the consequences of Assumption 1 (with u = 0) on the stability
of (26). The positive invariance of each V -sublevel set under the flow of (26) combined with
the existence of a strict Lyapunov functional VB on each bounded set B of X imply semiglobal
exponential stability: for each bounded set B there exist MB > 1 and µB > 0 such that

‖Ttx0‖X 6 MBe
−µBt‖x0‖X , ∀x0 ∈ B, ∀t > 0. (27)

In particular, the zero equilibrium uniformly attracts the bounded sets of X , i.e., for any ε-ball,
ε > 0, around the origin and any bounded set B, there exists a time T after which all solutions
originating from B remain in that ε-ball. The following additional assumptions are now in force.

Assumption 3. The maps f are Fréchet differentiable with locally Lipschitz continuous differen-
tials. Also, without loss of generality, df(0) = 0 and dh(0) = 0.

Assumption 4. There exist a coercive self-adjoint operator P ∈ L(X) and a positive constant µ
such that

〈Ax, Px〉X 6 −µ‖x‖2X , ∀x ∈ D(A). (28)
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Assumption 4 implies that {etA}t>0 is exponentially stable with a coercive quadratic Lya-
punov functional.

Theorem 4 (Existence ofM). Let M0 ∈ L(X,Y ) be the (unique) solution to the linear Sylvester
equation

M0A = SM0 + C. (29)

Then, the unique solution M to (7), M(0) = 0, is given by

M(x) = M0x+

∫ +∞

0

e−tS[M0f(Ttx)− h(Ttx)] dt. (30)

Furthermore, M ∈ C1(X,Y ) and dM is locally Lipschitz continuous.

Proof. First, since {etA}t>0 is exponentially stable, 0 lies in the resolvent set of A. On the other
hand, S is skew-adjoint and bounded, and thus generates a (uniformly continuous) group {etS}t∈R

of isometries on Y . With that in mind, it can be checked by following the proof of [23, Lemma
III.4] or using [14, Theorem 2.1] that the unique solution M0 ∈ L(X,Y ) to (29) is given by

M0x = CA−1x−

∫ +∞

0

Se−tSCA−1etAxdt (31)

for all x ∈ X . Now we look for a Fréchet differentiable solution M to (7) of the form M(x) =
M0x+ F(x). Since M0 solves (29), such a map M satisfies (7) if and only if

M0f(x) + dF(x)(A + f)(x) = SF(x) + h(x) (32)

for all x ∈ D(A), or equivalently,

dF(Ttx)
d

dt
Ttx− SF(Ttx) = −M0f(Ttx) + h(Ttx), ∀x ∈ D(A), ∀t > 0. (33)

By applying (the invertible operator) e−tS to (33), we see that M solves (7) if and only if for all
x ∈ D(A) and t > 0,

d

dt
e−tSF(Ttx) = −e−tS[M0f(Ttx)− h(Ttx)]. (34)

Since M (and thus F) is assumed to be continuous and vanish at 0, we can integrate (34) and
obtain that if M is indeed a solution to (7), it must be given by (30). Indeed, recall here that
M0 is unique and the integral in (30) is absolutely convergent because of (27) together with the
property that f and h are linearly bounded on bounded sets. Conversely, we have to prove that
the map M defined by (30) for any x ∈ X is Fréchet differentiable and solves (7) or, equivalently,
satisfies (34) for all x ∈ D(A) and t > 0, where we let F , M−M0. Assume for the moment
that M is Fréchet differentiable and let x ∈ D(A). For all t > 0,

e−tSF(Ttx)−F(x) = −

∫ t

0

e−sS [M0f(Tsx)− h(Tsx)] ds. (35)

Dividing (35) by t > 0 and letting t → 0 yield

d

dt
e−tSF(Ttx)

∣

∣

∣

∣

t=0

= h(x)−M0f(x), (36)

which implies (33). The differentiability of M (along with the Lipschitz continuity of the dif-
ferential) is a extension of the (lengthy) proof of [31, Theorem 3.4]. It is omitted here.1 In the
sequel, we shall use that dM(0) = M0, which follows from (30).

1See Appendix A for a sketch of the proof.
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We now know that Assumptions 3 and 4 imply Assumption 2 and the solution M to (7) is
unique. As a result, we can reformulate the hypothesis (9) of Theorem 2 in terms of the original
control system only and, in the case S = 0, recover the classical non-resonance condition [13].

Corollary 1 (Non-resonance condition). The range condition (9) reads as RangeM0g(0) = Y ,
where M0 is the unique solution to the Sylvester equation (29). In particular, if S = 0, (9) reads
as follows:

RangeCA−1g(0) = Y, (37)

Proof. This is a consequence of the uniqueness of M and the property that dM(0) = M0.

4 Local set-point output regulation

In this section, we present an application of the forwarding approach for stabilization of cascade
systems in the context of set-point output regulation. Let yref ∈ Y be a (small) deviation from
the output y = Cx + h(x) at the equilibrium (here, the origin). We wish to find a control u
steering y to yref while maintaining x bounded. In the spirit of [12,31], consider in place of (1b)

ż = Cx+ h(x)− yref . (38)

The crucial property of integral action is that at any equilibrium, the output must be at the
desired value yref . We assume that Assumptions 1, 3 and 4 are satisfied, which in turn means
that Assumption 2 is satisfied as well by Theorem 4. In particular, the unique solution M to
(7), M(0) = 0 is given by (30) – here, S = 0, and thus M0 = CA−1. We thus consider the
nonlinear feedback (8) of the state [x, z] governed by (1)-(38).

Theorem 5 (Set-point output regulation). Suppose that

RangeCA−1g(0) = Y. (39)

Then, there exists r > 0 such that for any yref ∈ BY (0, r), the following property holds: the x-
subsystem (1) supplemented with the output integrator (38) and in closed loop with (8) possesses
an equilibrium [x⋆, z⋆] ∈ D(A)×Y that is Locally Exponentially Stable, satisfies (C+h)(x⋆) = yref
and whose basin of attraction contains the origin.

Remark 2. That the closed-loop system in presence of the additional term yref is well-posed and
forward complete can be verified by following the proofs of Theorems 1 and 2.

Theorem 5 can be proved by following the strategy described in [31, Section 4.2.1].2

Remark 3. A similar result can be obtained in presence of small constant disturbance d in the
x-equation (1), as considered in [31]. However, this requires global Lipschitz continuity of M
and dM, which is much harder to obtain, and is not guaranteed a priori by Theorem 4.

5 Applications to flexible structures

We consider the planar motion of a flexible homogeneous Euler-Bernoulli beam of length L
attached to a rotating joint at one end and free at the other end. The deflection w(ξ, t) in the

2It is however quite lenghty, so we only sketch the differences with respect to [31, Theorem 3.2] in Appendix A.
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beam frame at the position ξ ∈ [0, L] and time t ∈ R
+ and the rotation angle θ(t) are governed

by the following set of equations:

ρ
∂2w

∂t2
+ λ

∂w

∂t
+ EI

∂4w

∂ξ4
+ ρξθ̈ − ρθ̇2w = 0, (40a)

IRθ̈(t) = EI
∂2w

∂ξ2
(0, t) + τ(t), (40b)

w(0, t) =
∂w

∂ξ
(0, t) = 0, (40c)

∂3w

∂ξ3
(L, t) =

∂2w

∂ξ2
(L, t) = 0, (40d)

where λ is a viscous damping coefficient, E is the Young modulus, I and ρ are the moment of
inertia and the density of the cross section, IR is the moment of inertia of the rotating joint, and
τ is the torque applied to the joint, which is our control input. We refer the reader to [20] for
more details on that model. For the sake of simplicity, we set all physical constants to 1, with
the exception of λ.3

A possible control objective is reference tracking of the angular position θ. Let θref ∈ R be
the desired angle. We start with some important observations. If we set the torque input as

τ = −θ + θref + τ̃ , (41)

then, in the new coordinate system [w, θ] 7→ [v, φ] where

φ(t) , θ(t) − θref , v(ξ, t) , w(ξ, t) + ξφ(t), (42)

the equations of motion (40) supplied with (41) become:

∂2v

∂t2
+ λ

∂v

∂t
+

∂4v

∂ξ4
− λξφ̇− φ̇2(v − ξφ) = 0, (43a)

φ̈(t) =
∂2v

∂ξ2
(0, t)− φ(t) + τ̃ (t), (43b)

∂3v

∂ξ3
(L, t) =

∂2v

∂ξ2
(L, t) = v(0, t) = 0, (43c)

∂v

∂ξ
(0, t) = φ(t). (43d)

Note in particular that the new equations (43) do not depend on the choice of θref . Now, in
order to pre-stabilize the plant, an energy approach suggests the following nonlinear feedback in
torque:

τ̃ = −φ̇

∫

Ω

v
∂v

∂t
dξ + (φφ̇− λ)

∫

Ω

ξ
∂v

∂t
dξ − φ̇+ u. (44)

Indeed, this yields

1

2

d

dt

(

∫

Ω

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂2v

∂ξ2

∣

∣

∣

∣

2

dξ + |φ̇|2 + |φ|2

)

= −λ

∫

Ω

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dξ − |φ̇|2 + uφ̇ (45)

along trajectories of (43) in closed loop with (44).

3This is to highlight the fact that, although we take advantage of viscous damping to considerably simplify
computations, λ > 0 can be taken small.
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Remark 4. The pre-stabilizer given in (44) is different from the control laws introduced in [20].

Let us introduce an operator model for the control system (43)-(44). Having set Ω , (0, L),
we define the spaces

H0 , L2(Ω)× R, (46a)

H1 ,







[

v
φ

]

∈ H2(Ω)× R

∣

∣

∣

∣

∣

∣

∂v

∂ξ
(0) = φ

v(0) = 0







, (46b)

which we equip with the following scalar products:

〈[

p1
ω1

]

,

[

p2
ω2

]〉

H0

, ω1ω2 +

∫

Ω

p1p2 dξ, (47a)

〈[

v1
φ1

]

,

[

v2
φ2

]〉

H1

, φ1φ2 +

∫

Ω

∂2v1
∂ξ2

∂2v2
∂ξ2

dξ. (47b)

Then, H0 and H1 are Hilbert spaces.4 Now, let X , H1 × H0 equipped with its product
Hilbertian structure. We define an unbounded operator A : D(A) → X by

D(A) ,



































v
φ
p
ω









∈ H1 ×H1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v ∈ H4(Ω),

∂3v

∂ξ3
(L) = 0,

∂2v

∂ξ2
(L) = 0



























, (48a)

A









v
φ
p
ω









,











p
ω

−∂4v
∂ξ4 − λp

∂2v
∂ξ2 (0)− ω − φ











, ∀









v
φ
p
ω









∈ D(A). (48b)

It follows from the Lumer-Phillips theorem and standard arguments that A is the generator of
a contraction semigroup on X . Here, as an input space we let U , R, and the control map
g is linear and given by g(x)u = Bu = [0, 0, 0, u] for all x ∈ X and u ∈ U . We then put all
the nonlinear terms from (43)-(44) into a locally Lipschitz map f : X → X that meets the
requirements of Section 2 and also Assumption 3.

Letting V , (1/2)‖ · ‖2X , the energy balance (45) reads as

V̇ = −λ

∫

Ω

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dξ − |φ̇|2 + uφ̇ 6
1

2
|u|2 (49)

along solutions to (43)-(44). Now, for Assumption 1 to be satisfied, we also need strict control
Lyapunov functionals on each (open) bounded subset of X . To that end, we can “strictify” the
total energy V . Let ε > 0 and define

Vε(v, φ, p, ω) , V (v, φ, p, ω) + ε

∫

Ω

vp dξ + εφω +
ελ

2

∫

Ω

|v|2 dξ +
ε

2
|φ|2 (50)

4One can proceed by showing that H1 is a closed subspace of H2(Ω) × R and therefore a Hilbert space if
equipped with the inherited scalar product. That (47b) defines an equivalent norm is obtained with standard
arguments.
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for all [v, φ, p, ω] ∈ X . Then, along solutions to (43)-(44),

V̇ε = (ε− λ)

∫

Ω

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dξ + (ε− 1)|φ̇|2 + uφ̇− ε

∫

Ω

∣

∣

∣

∣

∂2v

∂ξ2

∣

∣

∣

∣

2

dξ − ε|φ|2 + εuφ+ εR(v, φ, v̇, φ̇), (51)

where the term R is given by:

R(v, φ, v̇, φ̇) , −λφ̇

∫

Ω

ξv dξ − φ̇2

∫

Ω

(v − ξφ)v dξ − φφ̇

∫

Ω

v
∂v

∂t
dξ + (φφ̇ − λ)φ

∫

Ω

ξ
∂v

∂t
dξ. (52)

Let us deal with the first term in (52): we can estimate

∣

∣

∣

∣

λφ̇

∫

Ω

ξv dξ

∣

∣

∣

∣

6
1

4ε
|φ̇|2 + ελ2L3

∫

Ω

|v|2 dξ. (53)

Then, we get

ε

∣

∣

∣

∣

λφ̇

∫

Ω

ξv dξ

∣

∣

∣

∣

6
1

4
|φ̇|2 + ε2λ2L3K|φ|2 + ε2λ2L3K

∫

Ω

∣

∣

∣

∣

∂2v

∂ξ2

∣

∣

∣

∣

2

dξ, (54)

where K > 0 is some constant coming from the equivalence of the norms ‖ · ‖H1
and ‖ · ‖H2(Ω)×R

on H1. Thus, going back to (51), we see that all terms of (54) can be absorbed into the negative
part of the right-hand side of (51) – here, the ε2-prefactor is important. Next, let B be a fixed
open bounded subset of X . We then examine the remainder of (52), which we denote by R′, and
observe that it can be estimated as follows: there exists a positive constant KB such that

|R′(v, φ, p, ω)| 6 KB

∫

Ω

|p|2 dξ +KB|ω|
2 (55)

for all [v, φ, p, ω] ∈ B. Therefore, for any solution to (43)-(44) that remains in B, the term
R′, once multiplied by ε, can be absorbed into the “good” terms in (51), provided that ε is
chosen sufficiently small. Finally, we are left with the term uφ̇+ εuφ, which is readily dealt with
using Young’s inequality. At this point we have proved that for each (open) bounded subset B
of X , there exists ε > 0 such that the Lyapunov candidate Vε as defined in (50) satisfies the
requirements of Assumption 1. Note that with any Vε with ε sufficiently small, we can also prove
that the semigroup generated by A (i.e., the linear part of (43)-(44)) is exponentially stable and
possesses a coercive Lyapunov functional. Indeed, because the pre-stabilizing feedback (44) is
meant to cancel out the nonlinear terms in the energy balance, (49) holds for the linear problem
as well, and so does (51) with R replaced by 0.

Now that we have verified that the control system (43)-(44) satisfies Assumptions 1 and 3 (and
thus Assumption 2 as well by Theorem 4), we can put it in cascade with the output integrator

ż = φ = θ − θref (56)

and finally use the forwarding feedback law (8) to control the extended [v, φ, z]-system. This
is made possible by Theorem 4, which provides the (unique) solution M to (7) and guarantees
its required Lipschitz properties. Note again that M do not depend on the particular choice
of θref . In order to apply Theorems 2 and 3, it remains to check the non-resonance condition
(37). Here, this is done by computing the input-to-steady-state map: constant input u yields
a stationary solution [v, φ] given by v(ξ) = uξ, φ = u. Therefore, by Theorems 2 and 3,
the controller (8) achieves global asymptotic stabilization and local exponential stabilization in
X × Y = H1 × H0 × R of the nonlinear system (43)-(44) in cascade with (56). Coming back
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to the original [w, θ]-coordinates, we then see that the (unique) equilibrium at which θ = θref is
globally asymptotically stable and locally exponentially stable, and this holds for any choice of
θref . In summary, we have designed a dynamic feedback law for the original nonlinear plant (40)
that enables global set-point output tracking of the angular position θ at any reference θref .

Remark 5. In this analysis, we were able to derive global results in both initial data and reference
by applying Theorems 2 and 3 after a suitable change of variables and control input instead of
relying on the local Theorem 5. The underlying key property which we used here is that the
original equations (40), although nonlinear, are left invariant under constant inputs – of course,
up to a change of variable related to the resulting steady state. Theorem 5 is applicable to
systems lacking this feature but provides weaker results in comparison.

6 Concluding remarks

We have presented new results for stabilization of nonlinear systems consisting of a semilinear
component whose output is integrated by a neutrally stable linear subsystem. For this purpose,
we have introduced a new class of nonlinear Sylvester equations, which we demonstrated to be
solvable. Our approach also provides a solution for the local set-point output tracking problem.
As a case study, we have investigated the nonlinear dynamics of a flexible beam attached to a
rigid body.

Now, while the formula (30) completely determines the nonlinear map M and its Fréchet
differential, and thus the state feedback (8), the exact implementation in practice seems out of
reach in most cases. This is an issue even in the finite-dimensional context [28]. Nevertheless,
in view of (30), our control based on the nonlinear map M can be seen as a perturbation of the
linear solution M0 of (29). Hence, the additional integral containing the nonlinear perturbation
terms in (30) can be interpreted as compensation terms that improve the control brought by
M0. It is expected that taking into account even approximations of these compensation terms
should lead better closed-loop performances, as it should be investigated in future works.

A Additional material for the proofs of Theorems 4 and 5

This section contains additional technical details and is intended for reading along [31].

Proof of Theorem 4 (continued, sketch). It remains to prove that M is differentiable and dM is
locally Lipschitz continuous. First, the nonlinear semigroup {Tt}t>0 is Fréchet differentiable [31,
Lemma 4.5]. Furthermore, because df is locally Lipschitz continuous with df(0) = 0, it follows
from (28) that there exists an open neighborhood V of 0 in X such that for all x ∈ V and
δ ∈ D(A),

〈Aδ + df(x)δ, Pδ〉X 6 −
µ

2
‖δ‖2X . (57)

Equation (57) generalizes [31, Hypothesis 3.3, item (ii)], where the same property had to hold
globally in x and with P = id. It implies that, in the region V , the nonlinear semigroup {Tt}t>0

is strictly contractive with respect to the (equivalent) norm ‖P 1/2 · ‖X . This is enough for our
purpose: by the property of semiglobal exponential stability, for any bounded set B, there exists
TB > 0 such that TtB ⊂ V for all t > TB, and we then can obtain estimates of the form

‖Ttx1 − Ttx2‖X 6 Ke−µ̃t‖x1 − x2‖X (58)

holding for all t > TB and x1, x2 ∈ B, and also

‖[dTt(x1)− dTt(x2)]δ‖X 6 Ke−µ̃t‖δ‖X‖x1 − x2‖X (59)
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for all t > TB, x1, x2 ∈ B and δ ∈ X , where the positive constants K and µ̃ can be chosen
independent of B. On the other hand, by the local Lipschitz properties of the nonlinear terms
and the fact that there is a bounded set that contains all TtB, t > 0, we can also obtain
counterparts to (58) and (59) with exponential growth instead of decay and constants depending
on B, which is enough do deal with the finite time interval [0, TB]. Therefore, one can adapt the
arguments in the proof of [31, Theorem 3.4] by splitting in two the integral in (30) with the time
TB, where B is an arbitrary but fixed bounded set, “differentiate under the integral sign” in (30)
with Lebesgue’s dominated convergence theorem to obtain differentiability, and prove Lipschitz
continuity of the differential by taking advantage of (58) and (59). Note that [31, Theorem 3.4]
deals with the case S = 0, but “new” terms stemming from the presence of S in (28) are linear
and do not change much to the proof.

Proof of Theorem 5 (sketch). At the beginning of [31, Section 4.2.1], the proof of [31, Theorem
3.2] is outlined in five items. Let us describe the differences with Theorem 5 itemise. We work
in the new coordinate system [x, η] , [x, z −M(x)].

1. This corresponds to (17).

2. A similar property can be obtained by taking advantage of (17) and (57).

3. A counterpart to [31, Lemma 4.2] can be obtained by adapting our Lyapunov analysis from
(18) to (19) in presence of yref .

4. The same arguments are valid.

5. This is not required here.

References

[1] W. Arendt, C. J. Batty, M. Hieber, and F. Neubrander. Vector Valued Laplace Transforms
and Cauchy Problems, volume 96 of Monographs in Mathematics. Birkhaüser, 2001.
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[7] C. Bymes, I. G. Laukó, D. S. Gilliam, and V. I. Shubov. Output regulation for linear
distributed parameter systems. IEEE Transactions on Automatic Control, 45(12):2236–
2252, 2000.

13

https://hal.science/hal-04007322


[8] R. Curtain and H. Zwart. Introduction to infinite-dimensional systems theory, volume 71 of
Texts in Applied Mathematics. Springer, New York, 2020. A state-space approach.

[9] C. M. Dafermos. Asymptotic behavior of solutions of evolution equations. In Nonlinear
evolution equations, pages 103–123. Elsevier, 1978.

[10] E. Davison. A generalization of the output control of linear multivariable systems with
unmeasurable arbitrary disturbances. IEEE Transactions on Automatic Control, 20(6):788–
792, 1975.

[11] J. Deutscher and J. Gabriel. A backstepping approach to output regulation for coupled
linear wave–ODE systems. Automatica, 123:109338, 2021.

[12] M. Giaccagli, D. Astolfi, V. Andrieu, and L. Marconi. Sufficient conditions for global integral
action via incremental forwarding for input-affine nonlinear systems. IEEE Transactions on
Automatic Control, 67(12):6537–6551, 2022.

[13] A. Isidori, L. Marconi, and A. Serrani. Robust autonomous guidance: an internal model
approach. Springer Science & Business Media, 2003.

[14] N. T. Lan. On the operator equation AX −XB = C with unbounded operators A,B, and
C. Abstract and Applied Analysis, 6(6):317–328, 2001.

[15] J. P. LaSalle. Some extensions of Liapunov’s second method. IRE Transactions on Circuit
Theory, 7(4):520–527, 1960.

[16] H. Logemann and E. P. Ryan. Time-varying and adaptive integral control of infinite-
dimensional regular linear systems with input nonlinearities. SIAM Journal on Control
and Optimization, 38(4):1120–1144, 2000.

[17] S. Marx, D. Astolfi, and V. Andrieu. Forwarding-Lyapunov design for the stabilization
of coupled ODEs and exponentially stable PDEs. In 2022 European Control Conference
(ECC), pages 339–344, 2022.

[18] S. Marx, L. Brivadis, and D. Astolfi. Forwarding techniques for the global stabilization
of dissipative infinite-dimensional systems coupled with an ODE. Mathematics of Control,
Signals, and Systems, 33:755–774, 2021.

[19] F. Mazenc and L. Praly. Adding integrations, saturated controls, and stabilization for
feedforward systems. IEEE Transactions on Automatic Control, 41(11):1559–1578, 1996.

[20] O. Morgül. Orientation and stabilization of a flexible beam attached to a rigid body: Planar
motion. IEEE Transactions on Automatic Control, 36(8):953–962, 1991.

[21] V. Natarajan. Compensating PDE actuator and sensor dynamics using Sylvester equation.
Automatica, 123:109362, 2021.

[22] V. Natarajan and J. Bentsman. Approximate local output regulation for nonlinear dis-
tributed parameter systems. Mathematics of Control, Signals, and Systems, 28(3):1–44,
2016.

[23] V. Natarajan, D. S. Gilliam, and G. Weiss. The state feedback regulator problem for regular
linear systems. IEEE Transactions on Automatic Control, 59(10):2708–2723, 2014.

14



[24] L. Paunonen. Controller design for robust output regulation of regular linear systems. IEEE
Transactions on Automatic Control, 61(10):2974–2986, 2015.

[25] L. Paunonen. Stability and robust regulation of passive linear systems. SIAM Journal on
Control and Optimization, 57(6):3827–3856, 2019.

[26] L. Paunonen and S. Pohjolainen. Internal model theory for distributed parameter systems.
SIAM Journal on Control and Optimization, 48(7):4753–4775, 2010.

[27] S. Pohjolainen. Robust multivariable PI-controller for infinite dimensional systems. IEEE
Transactions on Automatic Control, 27(1):17–30, 1982.

[28] L. Praly, R. Ortega, and G. Kaliora. Stabilization of nonlinear systems via forwarding mod
{LgV }. IEEE Transactions on Automatic Control, 46(9):1461–1466, 2001.

[29] R. Rebarber and G. Weiss. Internal model based tracking and disturbance rejection for
stable well-posed systems. Automatica, 39(9):1555–1569, 2003.

[30] A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins, and C.-Z. Xu. Adding integral action
for open-loop exponentially stable semigroups and application to boundary control of PDE
systems. IEEE Transactions on Automatic Control, 2019.

[31] N. Vanspranghe and L. Brivadis. Output regulation of infinite-dimensional nonlinear sys-
tems: A forwarding approach for contraction semigroups. SIAM Journal on Control and
Optimization, 61(4):2571–2594, 2023.

15


	Introduction
	Stabilization of cascade systems
	Solving the nonlinear Sylvester equation
	Local set-point output regulation
	Applications to flexible structures
	Concluding remarks
	Additional material for the proofs of claim:sylvester,th:set-point

