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Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads

In the pore space of packed grain material, transport properties are characterized by macroscopic parameters. Some of them, porosity and tortuosity, are measured for random packing of glass beads and compared with evaluations made during previous studies. A simple method for measuring porosity and tortuosity for air-saturated granular media is given. This method is based on a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame. Viscous and thermal losses of the medium are described by temporal operators describing memory effects in a porous medium. Because of the high attenuation of acoustic waves in air-saturated packings of beads, the wave reflected by this medium is equivalent to the wave reflected by the first interface. Using this approximation, a simple relation between porosity, tortuosity, the angle of incidence, and the reflected wave is obtained. Porosity and tortuosity are thus measured via reflected waves in the porous medium at oblique incidence. Experimental and numerical validation results for this method are given for a sample of random packings of glass beads.

I. INTRODUCTION

The ultrasonic characterization of porous materials saturated by air, such as granular materials, 1 fibrous or plastic foams is of great interest for a wide range of industrial applications. These materials are frequently used in the automobile and aeronautics industries as well as the building trade.

Disorder granular media, including bead packings, have been studied using different approaches. [START_REF]Disorder and Granular Media[END_REF] A partial description of a granular medium at the macroscopic scale ͑over a large volume compared to grain size͒ can be produced by evaluating different macroscopic parameters, dependent only on the geometry of the granular structure. Some of them can be used to characterize sound propagation in air saturating the pore space, and, conversely, can be evaluated from acoustic measurements.

Attenborough [START_REF] Attenborough | [END_REF] has suggested an elegant model for obtaining the acoustical properties of air-saturated granular media. Random bead packing is replaced by a system of parallel slits with a log-normal distribution for the semithickness.

The macroscopic parameters relative to a similar model have been calculated by Lafarge et al. 4 Allard et al. 5 characterize the random packing of glass beads by measuring macroscopic acoustic parameters. A prediction of surface impedance at normal incidence for a layer of glass beads is given.

Two important parameters used in theories of sound propagation in porous materials 1,[START_REF] Attenborough | [END_REF][4][5][6][7][8][9][START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF][START_REF] Biot | [END_REF][12][13] are porosity and the tortuosity. Porosity is the relative fraction, by volume, of air contained within the material. Unlike other parameters involved in the description of different physical phenomena involved in the acoustic propagation of porous media at the high frequency range, such as tortuosity, [START_REF] Zwikker | Sound Absorbing Materials ͑Elsevier[END_REF] viscous characteristic length, 9 and thermal characteristic length, [START_REF] Champoux | [END_REF] or at the low frequency range, such as flow resistivity [START_REF] Champoux | [END_REF] and thermal permeability, 4 porosity is a key parameter playing an important part in propagation at all frequencies. As such, in studies of the acoustic properties of porous materials, it is highly desirable to be able to measure this parameter.

Beranek 16 described an apparatus ͑porosimeter͒ for measuring the porosity of porous materials. This device was based on the equation of state for ideal gases at constant temperature ͑i.e., Boyle's law͒. Measuring the change in air pressure, for a known change in volume of the chamber containing the sample, allows porosity to be determined. In the Beranek apparatus, both pressure change and volume change are monitored by using a U-shaped fluid-filled manometer. An alternative technique for measuring porosity is a dynamic method suggested by Leonard. 17 Techniques that use water rather than air as the pore-filling fluid, are common in geophysical studies. 18,19 Mercury has been used as the porefilling fluid in other applications. 20 However, for many materials, the introduction of liquids into the material is not appropriate. Recently, a similar device to that used by Beranek, with an electronic pressure transducer, has been introduced by Champoux et al., 21 where very small changes of pressure can be measured accurately, and the output recorded on a computer.

Tortuosity ␣ ϱ , named the structure factor k s by Zwikker and Kosten 14 or the parameter q 2 by Attenborough, 13 is an important parameter which is used in describing inertial interaction between fluid and structure in porous material at high frequency range. In the case of cylindrical pores at an angle to the direction of propagation, ␣ ϱ ϭ1/cos 2 . Tortuosity can be evaluated by electrical measurements, 19 or by using a superfluid 4 He as the pore fluid. 9 It can also be evaluated using acoustic techniques such as ultrasonic measurement of transmitted waves. 7,8,[START_REF] Leclaire | [END_REF][START_REF] Brown | Series IIb[END_REF] In this work, we present a simple method of measuring porosity and tortuosity by measuring the acoustic wave reflected by a slab of porous material at oblique incidence. This method is based on a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame, initially introduced by the authors in Refs. 6-8. The viscous and thermal losses of the medium are described by Johnson et al. 9 and Allard 10 model modified by a fractional calculus based method for use in the time domain. Reflection and transmission scattering operators for a slab of porous material are derived for an oblique incidence and the responses of the medium to an incident acoustic pulse are obtained.

The outline of this article is as follows. In Sec. II a time domain model is given, the connection between fractional derivatives and wave propagation in rigid porous media at the high frequency range is established, and the basic equations are written in the time domain. Section III is devoted to the direct problem and general expression of the acoustic field inside the porous medium, expression of reflection and transmission kernels in the time domain at oblique incidence are calculated and numerical results given. Finally, in Sec. IV an experimental validation using ultrasonic measurement is performed for random packings of glass beads. Porosity and tortuosity are measured via reflected waves for different incidence angles.

II. MODEL

In the acoustics of porous materials, a distinction can be made between two situations depending on whether the frame is moving or not. In the first case, the wave dynamics due to coupling between the solid frame and the fluid are clearly described by the Biot theory. [START_REF] Biot | [END_REF]12 In air-saturated porous media the structure is generally motionless and the waves propagate only in the fluid. This case is described by the equivalent fluid model which is a particular case in the Biot model, in which the interactions between fluid and structure are taken into account for two frequency response factors: dynamic tortuosity of the medium ␣() given by Johnson et al. 9 and dynamic compressibility of air in the porous material ␤() given by Allard. [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF] In the frequency domain, these factors multiply fluid density and compressibility respectively and represent the deviation from fluid behavior in free space as the frequency increases. In the time domain, they act as operators and in the asymptotic domain ͑high frequency approximation͒ their expressions are given [6][7][8] by

␣ ˜͑t ͒ϭ␣ ϱͫ ␦͑t͒ϩ 2 ⌳ ͩ f ͪ 1/2 t Ϫ1/2 ͬ , ͑1͒ ␤ ˜͑t ͒ϭ ͫ ␦͑t͒ϩ 2͑␥Ϫ1 ͒ ⌳Ј ͩ Pr f ͪ 1/2 t Ϫ1/2 ͬ . ͑2͒
In Eqs. ͑1͒ and ͑2͒, ␦(t) is the Dirac function; Pr is the Prandtl number; and f the fluid viscosity and fluid density, respectively; and ␥ is the adiabatic constant. The relevant physical parameters of the model are the tortuosity of the medium ␣ ϱ initially introduced by Zwikker and Kosten [START_REF] Zwikker | Sound Absorbing Materials ͑Elsevier[END_REF] and the viscous and thermal characteristic lengths ⌳ and ⌳Ј introduced by Johnson et al. 9 and Allard. [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF] In this model, the time convolution of t Ϫ1/2 with a function is interpreted as a semi derivative operator following definition of the fractional derivative of order given in Samko and Coll, 22

D ͓x͑ t ͔͒ϭ 1 ⌫͑Ϫ ͒ ͵ 0 t ͑ tϪu ͒ ϪϪ1 x͑u ͒du, ͑3͒
where ⌫(x) is the gamma function.

In this framework, the basic equations of our model can be expressed as follows:

f ␣ ˜͑t ͒* ץv i ץt ϭϪٌ i p and ␤ ˜͑t ͒ K a * ץp ץt ϭϪٌv, ͑4͒
where* denotes the time convolution operation, p is acoustic pressure, v is particle velocity, and K a is the bulk modulus of air. The first equation is the Euler equation, the second is a constitutive equation obtained from the equation of mass conservation associated with the behavior ͑or adiabatic͒ equation.

For a wave propagating at oblique incidence in plane (xoz) at an angle along the x axis, these equations become

f ␣ ϱ ץv x ͑ x,z,t ͒ ץt ϩ 2 f ␣ ϱ ⌳ ͩ f ͪ 1/2 ͵ 0 t ץv͑x,z,tЈ͒/ץtЈ ͱtϪt Ј dtЈ ϭϪ ץp͑x,z,t ͒ ץx , f ␣ ϱ ץv z ͑ x,z,t ͒ ץt ϩ 2 f ␣ ϱ ⌳ ͩ f ͪ 1/2 ͵ 0 t ץv͑x,z,tЈ͒/ץtЈ ͱtϪt Ј dtЈ ϭϪ ץp͑x,z,t ͒ ץz , ͑5͒ 1 K a ץp͑x,z,t ͒ ץt ϩ 2͑␥Ϫ1 ͒ K a ⌳Ј ͩ f Pr ͪ 1/2 ͵ 0 t ץp͑x,z,tЈ͒/ץtЈ ͱtϪt Ј dtЈ ϭϪ ץv͑x,z,t ͒ ץx Ϫ ץv͑x,z,t ͒ ץz ,
where v x , v z are the components of particle velocity along the ox and oz axes.

In theses equations, the convolutions express the dispersive nature of porous material. They take into account memory effects due to the fact that the medium's response to wave excitation is not instantaneous but needs more time to take effect. The retarding force is no longer proportional to the time derivative of the acoustic velocity but is found to be proportional to the fractional derivative of about 1 2 of this quantity. This occurs because the volume of fluid participating in the motion is not the same for all motion, as it is for a fully developed steady flow. The phenomenon may be understood by considering such a volume of fluid in a pore to be in harmonic motion. At high frequencies, only a thin layer of fluid is excited so that average shear stress is high. At a lower frequency, the same amplitude of fluid motion allows a thicker layer of fluid to take part in the motion and consequently the shear stress is lower. The penetration distance of viscous forces and therefore excitation of the fluid depends on frequency. In the time domain, such dependence is associated with a fractional derivative.

III. DIRECT PROBLEM

The direct scattering problem is that of determining the scattered field, as well as the internal field, that arises when a known incident field impinges on porous material with known physical properties. To compute the solution of the direct problem, it is necessary to know the reflection and/or transmission scattering operators which depend on the Green 7 function of the porous medium. In that case, the reflected field is given by the convolution of the reflection operator with the incident field and the transmitted field is given by the convolution of the transmission operator by the incident field.

Consider a homogeneous slab of porous material which occupies region 0рxрL. The problem geometry is shown in Fig. 1. This medium is assumed to be isotropic and to have a rigid frame. A short sound pulse impinges at oblique incidence on the medium from the left. It gives rise to an acoustic pressure field p(x,t) and an acoustic velocity field v(x,t) within the material, which satisfies the propagation equation 6 along the x axis:

ץ 2 p͑x,t ͒ ץx 2 ϪA ץ 2 p͑x,t ͒ ץt 2 ϪB ץ 3/2 p͑x,t ͒ ץt 3/2 ϪC ץp͑x,t ͒ ץt ϭ0,

͑6͒

where coefficients A, B, and C are constants, respectively, given by

Aϭ 1 c 0 2 ͑ ␣ ϱ Ϫsin 2 ͒, Bϭ 2␣ ϱ K a ͱ f ͩ 1 ⌳ ϩ ␥Ϫ1 ͱPr⌳ Ј ͪ , Cϭ 4␣ ϱ ͑ ␥Ϫ1͒ K a ⌳⌳ЈͱPr . ͑7͒
The first is related to projected wave velocity along the x-axis cϭc 0 /ͱ␣ ϱ Ϫsin 2 . The other coefficients are essentially dependent on the characteristic lengths ⌳ and ⌳Ј and express the viscous and thermal interactions between the fluid and the structure. Constant B governs the signal spreading while C is responsible for wave attenuation. Obviously, knowledge of these three coefficients means that parameters ␣ ϱ , ⌳, and ⌳Ј can be determined. One way of solving Eq. ͑6͒ with suitable initial and boundary conditions is by using the Laplace transform. The approach is quite simple although the inverse Laplace transform require tedious calculus. 7 A suitable setting for introducing the time domain solution of the modified wave propagation Eq. ͑6͒ is given in the following model.

To derive reflection and transmission scattering operators, it is assumed that the pressure field and flow velocity are continuous at the boundary of the material

p͑0 ϩ ,t ͒ϭ p͑0 Ϫ ,t ͒, p͑L Ϫ ,t ͒ϭ p͑L ϩ ,t ͒, ͑8͒ v͑ 0 Ϫ ,t ͒ϭv͑ 0 ϩ ,t ͒, v͑ L ϩ ,t ͒ϭv͑ L Ϫ ,t ͒,
where is the porosity of the medium and Ϯ superscript denotes the limit from left and right, respectively. Initial conditions are given by p͑x,t ͉͒ tϭ0 ϭ0 ץp ץt ͯ tϭ0 ϭ0, ͑9͒

which means that the medium is idle for tϭ0.

If the incident sound wave is launched in region xр0, then the general solution of Eq. ͑6͒ in the region to the left of the material is the sum of the incident and reflected fields: 

1 ͑ x,t ͒ϭ p i ͩ tϪ x cos c 0 ͪ ϩp r ͩ tϩ x cos c 0 ͪ , xϽ0,

͑10͒

here, p 1 (x,t) is the field in region xϽ0, p i and p r denotes the incident and reflected fields, respectively. In addition, a transmitted field is produced in the region to the right of the material. This takes the form

p 3 ͑ x,t ͒ϭ p t ͩ tϪ L c Ϫ ͑ xϪL ͒cos c 0 ͪ , xϾL, ͑11͒
where p 3 ͑x,t͒ is the field in region xϾL and p t is the transmitted field .

Incident and scattered fields are related by the scattering operators ͑i.e., reflection and transmission operators͒ for the material. These are integral operators represented by

p r ͑ x,t ͒ϭ ͵ 0 t R ˜͑ ͒p i ͩ tϪϩ x c 0 ͪ d ϭR ˜͑t ͒*p i ͑ t ͒*␦ ͩ tϩ x cos c 0 ͪ , ͑12͒ p t ͑ x,t ͒ϭ ͵ 0 t T ˜͑ ͒p i ͩ tϪϪ L c Ϫ ͑ xϪL ͒ c 0 ͪ d ϭT ˜͑t ͒*p i ͑ t ͒*␦ ͩ tϪ L c Ϫ ͑ xϪL ͒cos c 0 ͪ .
In Eqs. ͑12͒ functions R ˜and T ˜are the reflection and transmission kernels, respectively, for the incidence of waves from the left. Note that the lower limit of integration in Eq. ͑12͒ is set to 0, which is equivalent to assuming that the incident wave front first impinges on the material at tϭ0. The scattering operators given in Eqs. ͑12͒ are independent of the incident field used in the scattering experiment and depend only on the properties of the materials. Using the Eqs. ͑4͒, ͑6͒, ͑8͒, and ͑12͒ and Laplace transform calculus, we can derive the reflection and transmission scattering operators given by

R ˜͑t ͒ϭ ͩ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 ͪ ϫ ͚ nу0 ͩ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 ͪ 2n ϫ ͫ F ͩ t,2n L c ͪ ϪF ͩ t,͑2nϩ2 ͒ L c ͪͬ , ͑13͒ T ˜͑t ͒ϭ 4 cos ͱ ␣ ϱ Ϫsin 2 ͩ ͱ ␣ ϱ cos ϩͱ1Ϫ sin 2 ␣ ϱ ͪ 2 ϫ ͚ nу0 ͩ ␣ ϱ cos Ϫ ͱ ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩ ͱ ␣ ϱ Ϫsin 2 ͪ 2n ϫF ͩ tϩ L c 0 ,͑2nϩ1 ͒ L c ͪ ,

͑14͒

where cϭc 0 /ͱ␣ ϱ Ϫsin 2 . These expressions take into account n-multiple reflections in the material. In most cases, for air-saturated porous materials, multiple reflection effects are negligible because of the high attenuation of sound waves in this kind of medium. So, by taking into account only the reflections at the xϭ0 and x ϭL interfaces, the transmission kernel is given by

T ˜͑t ͒ϭ 4 cos ͱ ␣ ϱ Ϫsin 2 ͩ ͱ ␣ ϱ cos ϩͱ1Ϫ sin 2 ␣ ϱ ͪ 2 F ͩ tϩ L c , L c ͪ ,

͑15͒

and the reflection kernel by R ˜͑t ͒ϭr͑ t ͒ϩR͑ t ͒, ͑16͒

with

r͑t ͒ϭ ͩ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 ͪ , ͑17͒ and 
R͑t ͒ϭϪ 4 cos ͱ ␣ ϱ Ϫsin 2 ͩ ͱ ␣ ϱ cos Ϫͱ1Ϫ sin 2 ␣ ϱ ͪ ͩ ͱ ␣ ϱ cos ϩͱ1Ϫ sin 2 ␣ ϱ ͪ F ͩ t, 2L c ͪ ,

͑18͒

in the case of a semi-infinite medium when L→ϱ; F(t,2L/c)→0 and R ˜(t)→r(t) ͑the Appendix͒. This means that r(t) is equivalent to the reflection at interface xϭ0 and that R(t) is equivalent to reflection at interface xϭL, which is the bulk contribution to the reflection. The part of the wave corresponding to r(t) is not subject to dispersion but is simply multiplied by the factor ͩ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 ͪ . This shows that although tortuosity is a bulk parameter, it may be evaluated from the wave reflected at the first interface when the porosity is known and vice versa. Although generally speaking it is easy to evaluate tortuosity from transmitted waves, [START_REF] Attenborough | [END_REF]4,20,21 this is not the case for porosity because of its weak sensitivity in the transmitted mode.

Figure 2 shows two simulated transmitted signals for a sample of random packings of glass beads M1 at normal incidence, the first ͑solid line͒ corresponding to a porosity value of 1ϭ0.45 and the second ͑dashed line͒ to 2 ϭ0.58. The parameters used in the simulation are: diameter 0.5 mm, thickness 0.5 cm, ␣ ϱ ϭ1.4, ⌳ϭ20 m, and ⌳Ј ϭ60 m and were determined using conventional methods. 7,8,[START_REF] Leclaire | [END_REF][START_REF] Brown | Series IIb[END_REF] A slight difference can be seen between the two curves for a 30% difference in porosity values, due to the dispersion phenomenon governed by viscous, thermal and inertial effects provided by ␣ ϱ , ⌳ and ⌳Ј and plays a more important role in the Green function F(t,k) than . The input signal used in the simulation is given in Fig. 3.

Figure 4 shows the two contributions to reflection: r(t) and R(t) for sample M1 having porosity ϭ0.45. The contribution of R(t) to reflection is negligible when compared to the contribution of r(t). In Fig. 5 we show by numerical simulation, the difference between the reflected wave at the first interface, and the total reflected wave for the sample M1 having porosity ϭ0.45. The difference between the two curves is negligible. This means that the wave reflected by the sample may be approximated by the reflected wave at the first interface r(t) with a high level of accuracy.

IV. ULTRASONIC MEASUREMENT

In this section, we measure tortuosity and porosity knowing the reflection coefficient at the first interface for different values of angle of incidence . Expression of the reflection coefficient at the first interface is given by

r͑t ͒ϭ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 . ͑19͒
For two values of the angle of incidence 1 and 2 , it is easy to calculate the expression of the tortuosity function for reflection coefficients r1 and r2 corresponding, respectively, to angles 1 and 2 :

␣ ϱ ϭ ͩ ͑ 1Ϫr2 ͒͑ 1ϩr1 ͒cos 2 ͑ 1ϩr2 ͒͑ 1Ϫr1 ͒cos 1 ͪ 2 sin 2 1 Ϫsin 2 2 ͩ ͑ 1Ϫr2 ͒͑ 1ϩr1 ͒cos 2 ͑ 1ϩr2 ͒͑ 1Ϫr1 ͒cos 1 ͪ 2 Ϫ1 . ͑20͒
Knowing the value of tortuosity, we deduce the expression of the porosity function for 1 and r1 by the expression

ϭ ␣ ϱ ͑ 1Ϫr1 ͒cos 1 ͑ 1ϩr1 ͒ͱ␣ ϱ Ϫsin 2 1 , ͑21͒
or expression of the porosity function for 2 and r2:

ϭ ␣ ϱ ͑ 1Ϫr2 ͒cos 2 ͑ 1ϩr2 ͒ͱ␣ ϱ Ϫsin 2 2 . ͑22͒
In application of this model, some numerical simulations are compared with experimental results. Experiments are performed in air using two broadband Ultran NCT202 trans- The experimental setup is showed in Fig. 6. Signal duration is important as its spectrum must verify the condition of high frequency approximation referred to in the previous section.

Take a sample of random packings of glass beads, M2, with the following parameters: resistivity ϭ12 300 N m Ϫ4 s, diameter 0.1Ϯ0.02 mm, ⌳ϭ90 m, and ⌳Јϭ180 m. Figure 7 shows the sample of random packings of glass beads M2.

Figure 8 shows the incident signal generated by the transducer ͑solid line͒ and the signal reflected by the sample M2 ͑dashed line͒ at an angle of incidence ϭ25°. Figure 9 shows their spectra. From the spectra of the two signals, the reader can see that they have the same bandwidths, which means there is no dispersion.

Figure 10 shows the incident signal generated by the transducer ͑solid line͒ and the signal reflected by the sample M2 ͑dashed line͒ for an angle of incidence ϭ66°. Figure 11 shows their spectra. Here, again, we can conclude from the two spectra that there is no dispersion. This concurs with the theory below which predicts that the wave reflected from the first interface xϭ0 is measured and simply attenuated by the factor ͑ ␣ ϱ cos Ϫͱ␣ ϱ Ϫsin 2 ͒/͑␣ ϱ cos ϩͱ␣ ϱ Ϫsin 2 ͒.

Tables I and II give the tortuosity and porosity calculated using Eqs. ͑20͒ and ͑21͒ for each pair of the incidence angles 1 and 2 . It can be seen in Tables I and II that the calculated values of the porosity and tortuosity are nearly constant. Two pairs of angle 25.3°-27.5°and 27.5°-30°give unacceptable values of the tortuosity. This could be caused by the great sensitivity of the tortuosity to small variations of the incidence angle, and so these results can be explained by experimental errors. The average tortuosity obtained from these measurements is ␣ ϱ ϭ1.87 and the average porosity obtained is ϭ0.44. Figure 12 shows the experimental data for the reflection coefficient at different angles of incidence , and simulation of the variation in reflection coefficient with the angle of incidence at a tortuosity of ␣ ϱ ϭ1.7 and porosity ϭ0.44. The porosity of the glass bead, M2, given by the porosimeter 21 is ϭ0.4Ϯ0.1, and the tortuosity given by the classical method 7,8,[START_REF] Leclaire | [END_REF][START_REF] Brown | Series IIb[END_REF] is ␣ ϱ ϭ1.9Ϯ0.2,so it can be seen that the slight difference between the porosity and tortuosity measured using this method and the other classical methods. Figure 13 shows the comparison between the simulated reflected signal at the first interface calculated for ␣ ϱ ϭ1.87 and ϭ0.44, and the experimental reflected signal for ϭ25°. Figure 14 shows the same comparison for ϭ66°.

The difference between the simulated reflected signal and experimental reflected signal is slight, leading to the conclusion that the values of tortuosity and porosity obtained are good. To progress in this area, future work must improve experimental methods and inversion algorithms.

APPENDIX: GREEN FUNCTION OF THE MEDIUM

The Green function of the propagation Eq. ͑6͒ is given in Ref. 
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 5 FIG.5. Reflected wave at the interface xϭ0 ͑solid line͒ and total reflected wave ͑dashed line͒.

FIG. 7 .

 7 FIG. 7. Sample of random packings of glass beads M2.

FIG. 9 .
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TABLE I .

 I Values of the tortuosity and porosity calculated for each pair of incidence angles 1 and 2 .

	Angle of incidence 1 / 2 ͑deg͒	Tortuosity	Porosity
	0/25.3	1.817	0.435
	0/27.5	1.893	0.444
	0/30	1.815	0.435
	0/41.6	1.828	0.436
	0/44	1.828	0.436
	0/57.2	1.890	0.443
	0/66.6	1.886	0.443
	25.3/27.5	2.45	0.498
	25.3/30	1.81	0.434
	25.3/41.6	1.83	0.437
	25.3/44	1.833	0.436
	25.3/57.2	1.906	0.444
	25.3/66.6	1.897	0.443
	27.5/30	1.51	0.404

TABLE II .

 II Values of the tortuosity and porosity calculated for each pair of incidence angles 1 and 2 .

	Angle of incidence 1 / 2 ͑deg͒	Tortuosity	Porosity
	27.5/41.6	1.784	0.433
	27.5/44	1.792	0.433
	27.5/57.2	1.889	0.443
	27.5/66.6	1.884	0.443
	30/41.6	1.84	0.437
	30/44	1.838	0.437
	30/57.2	1.917	0.445
	30/66.6	1.903	0.443
	41.6/44	1.829	0.436
	41.6/57.2	1.94	0.446
	41.6/66.6	1.924	0.444
	44/57.2	1.983	0.448
	44/66.6	1.932	0.444
	57.2/66.6	1.885	0.443
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