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This paper provides a temporal model of the direct and inverse scattering problem for the
propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having
a rigid frame. This new time domain model of wave propagation takes into account the viscous and
thermal losses of the medium as described by the model of JoletsdriD. L. Johnson, J. Koplik,

and R. Dashen, J. Fluid. Mecli76, 379 (1987] and Allard [J. F. Allard (Chapman and Hall,
London, 1993] modified by a fractional calculus based method applied in the time domain. This
paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main
result is the derivation of the expression of the scattering operéteftection and transmission
which are the responses of the medium to an incident acoustic pulse. In this model the reflection
operator is the sum of two contributions: the first interface and the bulk of the medium.
Experimental and numerical results are given as a validation of our modeR0G3 Acoustical
Society of America.[DOI: 10.1121/1.1528592

PACS numbers: 43.20.Bi, 43.20.HANN]

I. INTRODUCTION The first is that the transformation is difficult to compute
. L . numerically with sufficient accuracy for non analytical func-

The ultrasonic characterization of porous materials satu-. . . o
rated by air is of a great interest for a large class of industria}'ons'.':Or example, using Founer' tra'msform o obtalr! time
applications. These materials are frequently used in the aljj_omam results for a lossy material is a more complicated

tomotive and aeronautics industries or in the building trade‘."‘pproaCh than using a true time domain analysis, and the

The determination of the properties of a medium from Wavegumerical resu!ts are less accurate. The ;econd disadvgntage
that have been reflected by or transmitted through the mdS that by working in the frequency domain some numerical
dium is a classical inverse scattering problem. Such propinformation is lost or hard to recover. For example, in case of
lems are often approached by taking a physical model of th8°!SY data it may be difficult to recons'Fruct the chronologlc_a!
scattering process, generating a synthetic response for sorf¥ents of a signal by phase unwrapping. Consequently, it is
assumed values of the parameters, adjusting these paramet@fi§icult to obtain a deep understanding to transient signal
until reasonable agreement is obtained between the synthefopagation using frequency domain method.

response and the observed data. Some of the recent The time domain response of the material is described
progresses in this area are reviewed in Alfaadd Lafargé. Py an instantaneous response and a “susceptibility” kernel
Many applications like medical imaging or inverse scatteringresponsible of the memory effects. A time domain approach
problems require the study of the behavior of pulses traveldiffers from the frequency analysis in that the susceptibility
ing into porous medid,it is only recently that the response functions of the problem are convolution operators acting on
of these media to such excitations has been fully addressétie velocity and pressure fields, and therefore a different al-
in Fellahet al?~" for some elementary configurations in po- gebraic formalism has to be applied to solve the wave equa-
rous media. To efficiently cope with the specific problemstion. In the past, many authors have used the fractional cal-
appearing in the transient acoustic field propagation, newulus as an empirical method to describe the properties of
approaches are requirdit present most analysis of signal viscoelastic materials, e.g., in Capttnd Bagley? The ob-
propagation are carried out in the frequency domain usingervation that the asymptotic expressions of stiffness and
the Fourier transform to translate the results in the time dodamping in porous materials are proportional to fractional
main and vice versa. This, however, has several limitationgpowers of frequency suggests the fact that time derivatives of
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fractional order might describe the behavior of sound wavesf the fractional derivative of order given in Samko and
in this kind of materials, including relaxation and frequencycolleague¥
dependence.
The core of this paper is the analytical calculus in time D'[x(t)]= 1 ft(t—u)‘V‘lx(u)du 3)
domain of the acoustic field inside the porous material and I'(=v) Jo ’
the derivation of the expression of the scattering operators . .
(reflection and transmissipnvhich are the responses of the wherel‘(_x) is the gamma func_t|on. .
medium to an incident acoustic pulse. In_ this framework, the basic equations of our model can
The outline of this paper is as follows. In Sec. Il, a time be written as
domain model is given, the connection between the frac- 9o B(t) ap
tional derivatives and wave propagation in rigid porous me-  p @(t)* = -V, and ——* —=
dia in high frequency range is established, the basic equa- Jt Ka
tions are written in the time domain. Section Il is devoted toyyhere * denotes the time convolution operatiom,is the
the direct problem and to the general solution of the propazcoustic pressure; is the particle velocity, and, is the
gation wave in this domain. Section IV contains the exprestylk modulus of the air. The first equation is the Euler equa-
sions of the reflection and transmission kernels in the timgjon, the second one is a constitutive equation obtained from
domain. In Sec. V, a validation via ultrasonic measurementgne equation of mass conservation associated with the behav-
for the direct problem is treated and finally in Sec. VI anjor (or adiabati¢ equation.
approach to inverse problem given the physical parameters For 3 wave propagating along teaxis, these equations
describing the propagation of ultrasonic waves in porous mapecome:
terials is given.

-V-v, (4)

v . V2 rt gyl at! P
pfascﬁ‘l' pfA (Wi) f =dt'=— 0.,—2, (5)
II. MODEL Pt oNt—t
In the acoustics of porous materials, one distinguishes 1 dJp vy—1 n \Y2rtaplat’ dt/ = dv
two situations according to whether the frame is moving or K_anL KA\ 7 Prp; oVt t=- X
not. In the first case, the dynamics of the waves due to the ©)

coupling between the solid skeleton and the fluid is well

described by the Biot theo:*2In air-saturated porous me- in these equations the convolutions express the dispersive
dia the structure is generally motionless and the wavegature of the porous material. They take into account the
propagate only in the fluid. This case is described by thénemory effects due the fact that the response of the medium
model of equivalent fluid which is a particular case of thet0 the wave excitation is not instantaneous but needs more
Biot model, in which the interactions between the fluid andtime to become effective. The retarding force is no longer
the structure are taken into account in two frequency reProportional to the time derivative of the acoustic velocity
sponse factors: the dynamic tortuosity of the mediafw)  Put is found to be proportional to the fractional derivative of
given by Johnsoet al 2 and the dynamic compressibility of order 1/2 of this quantity. This occurs because the volume of
the air included in the porous materjg(w) given by Allard?  fluid participating to the motion is not the same during the
In the frequency domain, these factors multiply the densitpvhole length of the signal as it is in the case of a fully
of the fluid and its compressibility respectively and represenfléveloped steady flow. The phenomena may be understood
the deviation from the behavior of the fluid in free space ay considering such a volume of fluid in a pore to be in
the frequency increases. In the time domain, they act as oflarmonic motion. At high frequencies, only a thin layer of
erators and in the high frequency approximation their expresfiuid is excited: the average shear stress is high. At a lower
sions are given by Fellah and Depolfiémand Fellatet al®’  frequency, the same amplitude of fluid motion allows a

as thicker layer of fluid to participate in the motion and conse-
" quently the shear stress is less. The penetration distance of
~ E 7 —1/2 the viscous forces and therefore the excitation of the fluid
a(t)=a..| 8(t)+ t 1
- A\ mpg ’ depends on frequency. In the time domain, such a depen-
12 dence is associated with a fractional derivative.
_— 20y-1)( 7 1
B(t)=| o(t)+ A\ 7P , 2

in these equationsg(t) is the Dirac function, Pr is the | piRECT PROBLEM

Prandtl numbery andp; are, respectively, the fluid viscosity

and the fluid density and is the adiabatic constant. The The direct scattering problem is that of determining the
relevant physical parameters of the model are the tortuositgcattered field as well as the internal field, that arises when a
of the medium «,, initially introduced by Zwikker and known incident field impinges on the porous material with
Kosten!* the viscous and thermal characteristic lengths known physical properties. To compute the solution of the
and A’ introduced by Johnsoet al*® and Allard! In this  direct problem one need to know the Green’s funétiofithe
model the time convolution df Y2 with a function is inter- modified wave equation in the porous medium. In that case,
preted as a semi derivative operator following the definitionthe internal field is given by the time convolution of the
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p It is assumed that the pressure field is continuous at the
—_— p' boundary of the material
________% B B
- p(0",)=p(07,t), p(L",t)=p(L",1), (10)
(where = superscript denotes the limit from the left and the
X=0 X=L right, respectively and to the initial conditions
FIG. 1. Geometry of the problem. ap
p(X,t)];=0=0 ot =0, (11
t=0

Green’s function with the incident wave and the reflected and

transmitted fields are deduced from the internal field and thahich means that the medium is idle fo 0.

boundary conditions. If the incident sound wave is launched in the region
The generalized lossy wave equation in the time domair<0, then the general solution of E(Q) in the region to the

is derived from the basic equatiof® by elementary calcu- left of the material is the sum of the incident and reflected

lation in the following form: fields
2p  Ip t92plat’? ap ( X ( X)
r_efF x,t)=p'lt——]|+p/|t+—], x<O, 12
~2 A7 B R dt'—=C—-=0, (7) piX,t)=p o) TPt G (12)
where the coefficienta, B andC are constants, respectively, here.pi(x,t) is the field in the regiox<0, p' andp" denote
given by: the incident and the reflected field, respectively. In addition,
a transmitted field is produced in the region at the right of the
Pilo, 2a,, [psm|[ 1 y—1 material. This has the form
A= , B= \—| =+ =/,
Ka Ka ¥ m A JPAY I( L (x—L))
Xt =p'lt——=— , Xx>L. 13
. bt (y—1)7 (8) ps(X,t)=p ¢ o (13)
 KLAA P [ ps(x,t) is the field in the regionx>L andp' is the trans-

mitted field]

The incident and scattered fields are related by the scattering
é)perators(i.e., reflection and transmission operajdia the
material. These are integral operators represented by

the first one is related to the velocity= 1/\/p;a.. /K, of the
wave in the air included in the porous material, appears
as the refractive index of the medium which changes th
wave velocity from co=+K,/p; in free space toc
=co/\a., in the porous medium. The other coefficients are

essentially dependent of the characteristic lengttend A’ p’(x,t):f
and express the viscous and thermal interactions between the

dr

t_ ) X
R(T)p'(t—7'+ —
0 Co

fluid and the structure. The constdgoverns the spreading ~ : X

of the signal whileC is responsible of the attenuation of the =RO*p'()* 5| t+ o)’ (14
wave. Obviously, a knowledge of these three coefficients al-

lows the determination of the parameters, A and A’. N LS L (x—L)

One way to solve Eq(7) with suitable initial and boundary pxt)= joT(T)p (t_ T T ¢ )dT

conditions is by using the Laplace transform. The approach

is quite simple although the inverse Laplace transform re- . i(t)*é(t— E_ (x—L) (15
quire tedious calculu¥® A suitable setting for the introduc- P c Co |’

tion of the time domain solution of the modified wave propa-

gation equatior(7) is provided by the following model. In Egs.(14) and(15) the functionsk andT are the reflection

and the transmission kernels, respectively, for incidence from
the left. Note that the lower limit of integration in Eq4.4),

(15) is chosen to be 0, which is equivalent to assuming that

In this section some notation is introduced. The geom+ne incident wave front first impinges on the materialt at

etry of the problem is shown in Fig. 1. An homogeneous—

porous material occupies the regioss®<L. This medium The scattering operators given in Eqs4) and (15) are

is assumed to be isotropic and to have a rigid frame. A shofi,dependent of the incident field used in scattering experi-
sound pulse impinges normally on the medium from the leftment and depend only on the properties of the materials. In

It gives rise to an acoustic pressure fighdx,t) and an  the regionx<0, the fieldp,(x,t) is given by:
acoustic velocity field) (x,t) within the material, which sat-

isfying the propagation equatigi@) written also as:

Ppx.t) [ 1 B\ #p(xt)
T_ ?5(t)+CH(t)+$ * It2 =0,

A. General solution of the propagation equation

xp'(t).  (16)

pl(x,t)=[5(t— cio +R(t)* 5(t+ %)

C) Equation (9) are solved by the Laplace transform

method by taking into account to the conditio(i) and
whereH(t) is the Heaviside functioh H(t)=0 for t<0,  (11). We noteP(x,z) the Laplace transform o(x,t) de-
H(0)=1/2 andH(t)=1, for t>0. fined by
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P(x,z)=£[p(x,t)]=J: exp—zt)p(x,t)dt. (17) sink(?df(z))

P,(x,2)=P4(07,2) L
sinI’(E \/f(z))

Using the following relations

sinl’(g\/f(z))
+Pg(LY,z) ——— (25

L[6(t)]=1 ﬁ[H(t)]—1 anolc{i]—\/E (18) :
' z’ Vt z sint‘(%\/f(z))

the Laplace transform of the wave equati®nsatisfying the

initials conditions(11) becomes: where sinh is the hyperbolic sine function.

The inverse Laplace transform of exg\/f(z)), where

k is a positive constant, gives the Green function of the

PPy(x,2) f(2) medium®
oz & PAx2)=0, (19
0 if Ostsk

whereP,(x,z) is the Laplace transform of the acoustic pres-  F(t,K)=4 N ft_k o (26)
sure p,(x,t) inside the porous material forsOx<L and EO+A 0 ht.ode it t=k
f(z)=22+b'z\z+c'z, b'=B-c?|m, ¢'=C-c?,

The Laplace transform of the field outside the materialsWith
is given by

« « _ oo b’ k b/2k2 )
P.(x,2)= exp{—zc—o +R(z)exp<zc—0”go(z), x<0, 2l )_4\/;(t—k)3’2ex 16(t—k) |’ @7

(20)
whereh(r,£) has the following form:

p T L, &b L

= - = =L.
3(X,2)=T(z)ex c & )2 ¢(2), X e 1 1 1

17- =
(21 473 (—2—K 5_31?
Here P4(x,z) and P3(x,z) are, respectively, the Laplace le ex;{—M)
transform of the field at the left and the right of the material, -1 2
¢(2) denotes the Laplace transform of the incident field
p'(t) and finallyR(z) andT(z) are the Laplace transform of X (x(o7,6)—1) pdu 28)
the reflection and transmission kernels respectively. The Y Ji—p?
Laplace transform of the continuous conditidt) are writ-
en as and wherex(u,7.£)=(Au (7= H2—K2+b' (7 £)%I8E,
b'=Bc3\m, c¢’=Cc5, and A=b’?-4c’. The inverse
P,(0",2)=P4(07,z) and P,(L™,z)=P3(L",2), Laplace transform oP,(x,z) gives the complete solution of

(22)  the wave equation in time domain in the porous material
taking into account the multiple reflections at the interfaces

_ 4 x=0 andx=L. (Appendix A).
whereP,(07,z) andP5(L™,z) are the Laplace transform of

p1(x,t) andps(x,t), respectively, given by
L x L Xx
pa(x, )=, [F(t,2n6+ E) —F(t,(2n+2) - E”
P1(07,2)=(1+R(2))¢(2), (23 e

«py(0)+ > {F(t,(2n+ 1) L 5)
L n=0 C Cc
Ps(LTZ):T(z)em(—E) z¢(2) (24)

Spstn, @9

L x
-F t,(2n+1)E+

from Egs. (19 and (22), we deduce the expression of the
field inside the materiaP,(x,z) which can be written as:
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t L x
p2(X,t)= 2, f F(T,Zn—+— py(Ot—7)dr— >
n=0 J2nL/c+x/c c C

n=0 f(2n+2)L/cx/c

L x
F( T,(2n+2) E_ E) pl(o,t—T)dT

L x
+ J F(T,(2n+l)—— —)pg(L,t_T)dT
n=0 J(2n+1)L/c—x/c c c

ps(L,t—7)dr. (30

L x
— f Fl,(2n+1) =+ —
n=0 J(2n+1)L/c+x/c c cC

IV. REFLECTION AND TRANSMISSION SCATTERING v (X,t) p(X,1)
OPERATORS pra(t)* - ,
a |- S
To derive the reflection and transmission coefficients the p i g i (37)
boundary conditions flow velocity at the interfaces 0 and prX') =_ Pa(x.1
x=L are needed. The Euler equation is written in the regions CL P 2 N
(1) (x<0) and(2) (0=x=<L) as: At x=L, the continuity of the flow velocity leads to the
) xt) relation
dv (Xt ap(x,t
pf% - x=o, (31) va(L7 )= dua(L ). (38)
X0 X0 From Egs.(37)—(38), we have:
v a(X,t) apa(x,t) apa(x,t) pa(X,t)
pra(t)* =— " ,  O0=x=L, w(t)yx ——— =p——— , (39
a X | _o X | . S
(32 :
with
wherewv 1(Xx,t) andv,(x,t) are the acoustic velocity field in apa(X,t) 1. ap'
the regiong1) and(2), respectively. In the free spapegion X =- C—T(t)* a5 : (40
(1)], the tortuosity operator is equal to 1. x=L* 0 t=L/c
The equation of the flow continuity at=0 is written as:  the Laplace transform of E¢39) gives:
L L
v1(X,t) = dva(X,t), (33 T(z)ex;{—gz sini-(E \/f(z))
wheredg is the porosity of the medium. From Ed81), (32), bc \/f(_z) L
and(33) it is easy to write: =2 —T(z)exp — =z
c za(2z) Cc
o IPa(X 1) Ipa(Xx,t) L
a(t)r — | =¢— - (34) xcosh—f(z)| +1+R(2)|. (41)
X \X: o X ’x:O c
, The functionsR(z) andT(z) following from Egs.(36) and
with (41) are the reflection coefficieitR(z)] and the transmis-
_ sion coefficient T(z)) given by:
P L R @9 ) ));2 o,
X |—o Co a - (—a—+1 sinl’(E \/f(z))
The Laplace transform of Eq34) gives a relation be- R(2)= L - »? L '
tween the reflection and transmission coefficient 2 WCOS*(E Vf(z)) ot Si”*(g Vf(z))
@ (42)
L Co Vf(z —Lz
(R(z)—1)sinH = f(2) | = P V12 T(z)exg — & L
C c za(2) C 2 ex;{— 7
L o T(2) .
z)= .
—(1+ R(z))cosf(— f(Z)) : L 2 L
¢ Zicosl{—\/f(z)) +(¢;+1)sim—<—\/f(z))
Ja., c a, c
(36) *
(43)
where a(z) is the Laplace transform a(t). The development of these expressions in exponential series
At the interfacex=L, the Euler equation is written in (Appendix B and the inverse Laplace transform lead to the
the two regiong?2) and(3) (x=L) as: reflection and transmission scattering kernels
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on These expressions takes into account rikraultiple reflec-
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b+ Ja, 10\ p+ Ja.. rated by air, the multiply reflection effects are negligible be
cause of the high attenuation of sound waves in these media.
L L So, by taking into account only the first reflections at the
X[ Fltan c) —F(t,(2n+2) c” (44) interfacesx=0 andx=L, the pressur@,(x,t) in the mate-
rial becomes
X
)= A8 ¢ o | pz(X,t)_[F<t,C) —F(t,c— ) *p1(01)
(Vaet ¢)?i50 | ¢+ Va.. L ]
X
o ETR A
X F t+C,(2n+1)C). (45) ©° ¢
° (46)
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Transducers

pulse generator

|

High frequency filtering
Pre-amplifier
FIG. 4. Experimental setup of the ultrasonic measure-

ments in transmitted mode.

Sample ( Digital oscilloscope
\

Triggering

and can also be written as

t

X
p2(X,t)=f/cF<T, E) p1(0t—7)dr

X

Jt ( 2L x)
_ Fl 7, — —
2L/c—xlc c C

t

0t d +J F X
Xpl( ’_T) T L/c—x/c T' E_E

t L x
><p3(L,t—7')d7'—j Flr,—+—
L/c+x/c c C

X p3(L,t—7)d7. (47)

In Eq. (48) the first term is equivalent to the reflection at the
interfacex=0. The part of the wave corresponding to this
term is not subjected to the dispersion but it is just multiplied
by the factor (/a..— @)/(\a.+¢). This shows that al-
though the tortuosity is a bulk parameter, it may be evaluated
from the wave reflected at the first interface when the poros-
ity is known. The second term:—[4¢a.(Va.

— ) (Nas+ @)3]F(t,2L/c) in Eq. (48) is the bulk contri-
bution to the reflection. Figure 2 shows each contribution to
the reflected wave simulated from the expressid®) for a
plastic foam M1. The solid line curve corresponds to the
reflection at the first interface=0 and the dashed line curve
corresponds to the reflected wagmulk contribution at the
second interfac&=L. The parameters used in the simula-
tion namely thickness: 5 cm@=0.98, «,.=1.04, A

So, the kernels of reflection and transmission operators are 200xm, andA’=600um have been determined by clas-

given by sical method$®-?°As we can see, the bulk contribution to
\/a—_¢ 4¢\/a—(\/a—_ b) oL the reflected wave is negligible when it is compared to the
R(t)= —— 8(t) — ARt . F(t, —) first interface contribution. In Fig. 3 we show by numerical
Vast¢ (Waxt ) ¢ simulation the difference between the reflected wave at the
(48)  first interface[due to the term: (a..— ¢)/(Va..+ ¢) in Eq.
4 Ja LL (48)] and the total reflected wayall terms in Eq.(48)]. The
T(t)= —°°2F t+ —, —), (49)  difference between the two curves is weak and the reflected
(p+Va) cc wave by the porous material may be approximated by the
reflected wave by the first interface with a good accuracy.
Transducer
pulse generator - l
l FIG. 5. Experimental setup of the ultrasonic measure-
ments in reflected mode.
High frequency filtering Sample
Pre-amplifier
-——>[ Digital oscilloscope J - { Computer ]
Triggering
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FIG. 6. Incident signal given out by the transducer.

Wave amplitude (V)
(=]
i

-0.5F b

B Y — 15 2 25 3 35 4 45 5
Time(s) x107°
V. ULTRASONIC MEASUREMENTS Measurements have been performed on plastic foam

M1. Figure 6 shows the incident signal generated by the

As an application of this model, some numerical simu- : : . .
. . : transducer. Numerical simulation and experimental results
lations are compared to experimental results. Experiment

are done in air with two broadband Panametrics V389 piezo-aramsmltted S|g_nalare presented in F.'g' /. The numer 'C‘?‘l
. : -results are obtained from the convolution of the transmission
electric transducers having a 250 kHz central frequency in : .
: . . operator with the signal generated by the transducer shown
air and a bandwith at 6 dB extending from 60 kHz to 420. " ". .
i —in Fig. 6. A good agreement between experimental data and
kHz. Pulses of 900 V are provided by a 5058 PR Panametric . : o
. ) ) o eory is observed, which allows the validation of our model
pulser/receiver. The received signals are amplified up to 9and the expression of the kernel of the transmission operator
dB and filtered above 1 MHz to avoid high frequency noise P P '
(energy is totglly flltered. by the sample in this upper fre—VL INVERSE PROBLEM
qguency domain Electronics perturbations are removed by
1000 acquisition averages. The experimental setup is shown A slab of porous material is characterized by four pa-
in Fig. 4. rameters, namely, the porosity, the tortuositya., , the vis-
Reflected waves are processed by an other experimentabus characteristic length, and the thermal characteristic
set up given in Fig. 5. One transducer is used alternatively aengthA’, the values of which are crucial for the behavior of

a transmitter and receiver in order to detect the reflectethe sound waves in such materials. So, it is of some impor-

wave. tance to work out new experimental methods and efficient
0.12 T T
0.1 4
0.08 i
o 0.06 i
°
=
g
& 0.04 ] FIG. 7. Direct problem: experimentgsolid line) and
% simulated transmitted signaldashed ling
= 4

0.02

-0.02

-0.04 s
Time (s) x10™
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0.12 T T

0.1+

0.08-

0.06

0.04F FIG. 8. Inverse problem: experimentglolid line) and

simulated transmitted signaldashed ling

Wave amplitude

0.02

~0.02

-0.04 P

Time (s) x10~°

tools for their estimation. Therefore, a basic inverse problenteflected(resp. transmittedsignal. Figure 8 shows a com-
associated with the slab may be stated as follows: from thearison between experimental transmitted signal and simu-
measurements of the transmitted and/or reflected signals ouated signal obtained by optimization from the inverse prob-
side the slab, find the values of the parameters of the mdem. The optimized parameters ase =1.05, A =208 um,
dium. As shown in Sec. Ill, the solution of the direct problemand A’ =624 um. The comparison between Figs. 7 and 8
is the system of two operators expressed as functiong,on shows that the values of the acoustic parameters obtained by
a,, A andA’. The inversion algorithm for finding the val- solving the inverse problem in the time-domain method leads
ues of the parameters of the slab is based on a fitting procée better results than those given by classical meth&d.

dure: find the values of the parametefs a.,, A and A’ Now, we will try to estimate the porosity via the mea-
such that the transmitted and reflected signal describes ttmirement of reflected waves knowing the value of the tortu-
scattering problem in the best possible wayg., in the least-
squares seng€eThe inverse problem is to find values of pa-
rametersey, «,,, A and A’ which minimize the functions

t
u1<¢,aw,A,A'>=fou(t)—pf(x,t))zdt,

t
U2(¢!a30 iAiAI): fo(s(t)_ pt(x1t))2 dtn

wherer (1) is the experimentally determined reflected signal,
p'(x,t) is reflected wave predicted from E@.4), s(t) is the
experimentally determined transmitted signal aoitk,t) is
the transmitted wave predicted from EG5). However, be-
cause of the nonlinearity of the equations, the analytical so-
lution of the inverse problem by the conventional least-
squares methods is tedious. In our case, one can seek thi =
numerical solution of the least-square method which mini- = 02 -
mize theU ¢, a..,A,A") defined by

i=N

u1<¢,aw,A,A'>=i§1 (ri—p'(x,1))?,

\/\/

e amplitude (V)

i=N

Uz(d"awaA,A’):iZl (si—p"(x,1))2,

wherer;=r(t;)i—12.n [resp.si=s(t;)i=12,.n] represents 0 1.e-05
the discrete set of values of the reflectegsp. transmitted Ti
. . p ime (s)
experimental ~ signal  and p'(X,t)i-1, N  (resp.
p'(X,t;)i=12..n) is the discrete set of values of the simulated FIG. 9. Incident signal in reflected mode.
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ment between numerical and experimental results and shows
that this time domain model is well suited for the character-
ization of porous media via acoustic wave propagation. To
progress in this area, coming works will must improve ex-
perimental methods and inversion algorithms.
; APPENDIX A: EXPRESSION OF THE ACOUSTIC
~ FIELD INSIDE THE POROUS MATERIAL
Q
E The expression of the acoustic field inside the porous
ﬁ material taking into account the multiple reflection at the
g interfacesx=0 andx=L is given from the Eq(25)
4 _ sin(avf(2))
> Pa(x,2)=P1(07,2) ————=—,
5 003 sinh( 81(2))
sinh(0/f(z))
+Pg(LY,2) —————,
sinh(BV1(2))
with a=L—x/c, B=L/c and #=x/c by the following de-
1 velopment in series:
. sinh(aVf(z)) explayf(z))—exp—aVf(2))
0 1.e-05 sinh(BVT(2)  exp(BVT(2) —exp(—BVf(2))
Time (s) _explaVf(z)) —exp—ayf(z))
FIG. 10. Experimental reflected sign@olid line) and simulated reflected - / _ _ /
signal (dashed ling eXF('B f(Z))[l exq 2'8 f(z))]
expaf(z))—exp —aVf(z))
osity (optimized by solving the inverse problem for the trans- - exp(ﬁ\/ﬁ)
mitted wave and using the fact that the measured reflected
wave is essentially due to the reflected wave at the first in- —
terface. The experimental setup using is shown in Fig. 5. Xgo exp(—2nBVi(2))
Figure 9 shows the incident signal generated by the
transducer and Fig. 10 shows the comparison between ex- =[explaVf(z)) —exp(—aVf(2))]
perimental reflected signal by the foam M1 and simulated
signal obtained by optimization of the inverse problem, the XE exp(—(2n+1)BVf(2))
optimized value of the porosity i=0.97. n=
In the future, one hopes to use this new method to mea-
sure the tortuosity and the porosity of plastic foams which = E [exp —[(2n+1)B— a]Vf(2))
are at the moment measured by a classical static n=0
0-22
methods: —exp(—[(2n+1)8+al\F@)],

and the inverse Laplace transform B§(x,z):

VIl. CONCLUSION
P2(X,t) =L *Py(x,2)
In this paper the propagation equation in time domain in _
a slab of porous material having a rigid frame is considered ~py(0tye Lt sinh(af(2))
in the high frequency range. A time domain model of wave 1 sinh 8\ (2))

propagation in such material is worked out from the concept

of fractional calculus. The analytical general solution of the _,| sinh(6Vf(2))
wave propagation in the time domain is established for a slab +pa(L,t)*L S BT |

of porous medium. The kernels of the reflection and trans-
mission scattering operators are derived giving simple relawhere
tions between these operators and the parameters of the me- .
dium. Is is shown that the reflection scattering operator is —{M
equal to the sum of two contributions: the first interface and sinf(ﬁ\/ﬁ)
the bulk of the porous medium.

An experimental validation of the theoretical expres-
sions of the scattering operators illustrates the good agreend

l= A [F(t,(2n+1)B—a)

—F(t,(2n+1)B+ a)]
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_ -1
F(t,k)=L {exp —kvf(2)] aT(z)exy{—Ez)sinr(E\/ﬁ)
is given by Eq.(26). The field p,(x,t) inside the porous ¢ ¢
medium is then given by: L
(z)exr{ - =z

+R(2)+1,

|02<x,t>=|ol(o,t>*n§O [F(t,(2n+1)B—a)—F(t,(2n+1)B

+a)]+pa(L,t)* 2 [F(t,(2n+1)B—6) the solution of which is given by:

—F(t,(2n+1)B+ 6)].

By substitutinge, B and 6 by their values, we find the ex-
pression(29).

(az—l)sinr(%\/f(z))
+(a’+ 1)sinl‘(%\/f(z)) |

R(z)=

L
APPENDIX B: EXPRESSION OF THE REFLECTION 2a COS*{E Vi(2)
AND TRANSMISSION OPERATORS

To write the time domain expressions of the reflection
and transmission kernels we consider their Laplace trans- L
forms. In the domain of validity of this mod&l(c/¢co) 2a exp{ )
X[za(2)/\f(2)]~(Ja.l¢). Puting a=(Va./¢), from T(2)=
Eq. (36) and Eq.(41), we get the system: L

2acos c Vi(2)

a(—1+ R(z))sinf(% Vi(2)

+(2+ 1)sin|—(%\/f(z)) |

which corresponds to the expressions given in @§) and
Eq. (43). The reflection coefficienR(z) can be written as

=T(z)ex;< — %z) —(1+ R(z))cos)‘( - \/f(z))

L L
(a®—1)| ex E\/ 7)| —ex —E\/f(z))
R(2)= L L L L
a ex;{gx/f(z) +ex —E\/ (z)) +(a?+1) exp(gx/f(z)> —exp( —E\/f(z))
|
and is equivalent to - a—1\2" L
R(z)= m n;o m exp{—ZnE\/f(z))
L = L
a2—1 1-ex _ZE f(2) —exp{ —2(n+1)€ f(z)) . (50
R(Z): 2 .
(a+1) a—-1 L
1- arl exr{ —ZE\/f(z))
The kernel of the reflection scattering opera®gt) is given
From the identity by the inverse Laplace transform of this equation
1 -1 2 a—1\2" elt s L
a_l 2 L (t) a+1 n=0 a.+1 t, nE
- m GX%—ZE\/f(Z)) .
= m ex —2n6\/f(z))

R(z) has the following form:
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whereF(t,k) is given by Eq.(26). In the same manner, the
transmission coefficient is given by:
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p(L )
4aexp —z
c

T(2)=

a ex;{%\/f(z)

+ex —%\/f(z)

+(a%+1)

which can be written as:
L L
4aex;<gz ex —E\/E)

3 .
(a+1)°—(a—1)2exp— ( 22 \/f(z))
Expanding this relation in series, one gets

a—1
a+1

T(2)=

2n

4a L
T(z)= m—l)zex%—z) 2

C /n>o0

Xexr{ —(2n+ 1)%\/f(z)),

exp{%\/f(z))—ex —%M)
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