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This paper provides a temporal model of the direct and inverse scattering problem for the
propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having
a rigid frame. This new time domain model of wave propagation takes into account the viscous and
thermal losses of the medium as described by the model of Johnsonet al. @D. L. Johnson, J. Koplik,
and R. Dashen, J. Fluid. Mech.176, 379 ~1987!# and Allard @J. F. Allard ~Chapman and Hall,
London, 1993!# modified by a fractional calculus based method applied in the time domain. This
paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main
result is the derivation of the expression of the scattering operators~reflection and transmission!
which are the responses of the medium to an incident acoustic pulse. In this model the reflection
operator is the sum of two contributions: the first interface and the bulk of the medium.
Experimental and numerical results are given as a validation of our model. ©2003 Acoustical
Society of America.@DOI: 10.1121/1.1528592#

PACS numbers: 43.20.Bi, 43.20.Hq@ANN#
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I. INTRODUCTION

The ultrasonic characterization of porous materials sa
rated by air is of a great interest for a large class of indust
applications. These materials are frequently used in the
tomotive and aeronautics industries or in the building tra
The determination of the properties of a medium from wa
that have been reflected by or transmitted through the
dium is a classical inverse scattering problem. Such pr
lems are often approached by taking a physical model of
scattering process, generating a synthetic response for s
assumed values of the parameters, adjusting these param
until reasonable agreement is obtained between the synt
response and the observed data. Some of the re
progresses in this area are reviewed in Allard1 and Lafarge.2

Many applications like medical imaging or inverse scatter
problems require the study of the behavior of pulses tra
ing into porous media,3 it is only recently that the respons
of these media to such excitations has been fully addre
in Fellahet al.4–7 for some elementary configurations in p
rous media. To efficiently cope with the specific problem
appearing in the transient acoustic field propagation, n
approaches are required.8 At present most analysis of signa
propagation are carried out in the frequency domain us
the Fourier transform to translate the results in the time
main and vice versa. This, however, has several limitatio
J. Acoust. Soc. Am. 113 (1), January 2003 0001-4966/2003/113(1)/
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The first is that the transformation is difficult to compu
numerically with sufficient accuracy for non analytical fun
tions. For example, using Fourier transform to obtain tim
domain results for a lossy material is a more complica
approach than using a true time domain analysis, and
numerical results are less accurate. The second disadvan
is that by working in the frequency domain some numeri
information is lost or hard to recover. For example, in case
noisy data it may be difficult to reconstruct the chronologic
events of a signal by phase unwrapping. Consequently,
difficult to obtain a deep understanding to transient sig
propagation using frequency domain method.

The time domain response of the material is describ
by an instantaneous response and a ‘‘susceptibility’’ ker
responsible of the memory effects. A time domain approa
differs from the frequency analysis in that the susceptibi
functions of the problem are convolution operators acting
the velocity and pressure fields, and therefore a different
gebraic formalism has to be applied to solve the wave eq
tion. In the past, many authors have used the fractional
culus as an empirical method to describe the properties
viscoelastic materials, e.g., in Caputo9 and Bagley.10 The ob-
servation that the asymptotic expressions of stiffness
damping in porous materials are proportional to fractio
powers of frequency suggests the fact that time derivative
6161/12/$19.00 © 2003 Acoustical Society of America
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fractional order might describe the behavior of sound wa
in this kind of materials, including relaxation and frequen
dependence.

The core of this paper is the analytical calculus in tim
domain of the acoustic field inside the porous material a
the derivation of the expression of the scattering opera
~reflection and transmission! which are the responses of th
medium to an incident acoustic pulse.

The outline of this paper is as follows. In Sec. II, a tim
domain model is given, the connection between the fr
tional derivatives and wave propagation in rigid porous m
dia in high frequency range is established, the basic eq
tions are written in the time domain. Section III is devoted
the direct problem and to the general solution of the pro
gation wave in this domain. Section IV contains the expr
sions of the reflection and transmission kernels in the t
domain. In Sec. V, a validation via ultrasonic measureme
for the direct problem is treated and finally in Sec. VI
approach to inverse problem given the physical parame
describing the propagation of ultrasonic waves in porous
terials is given.

II. MODEL

In the acoustics of porous materials, one distinguis
two situations according to whether the frame is moving
not. In the first case, the dynamics of the waves due to
coupling between the solid skeleton and the fluid is w
described by the Biot theory.11,12 In air-saturated porous me
dia the structure is generally motionless and the wa
propagate only in the fluid. This case is described by
model of equivalent fluid which is a particular case of t
Biot model, in which the interactions between the fluid a
the structure are taken into account in two frequency
sponse factors: the dynamic tortuosity of the mediuma~v!
given by Johnsonet al.13 and the dynamic compressibility o
the air included in the porous materialb~v! given by Allard.1

In the frequency domain, these factors multiply the dens
of the fluid and its compressibility respectively and repres
the deviation from the behavior of the fluid in free space
the frequency increases. In the time domain, they act as
erators and in the high frequency approximation their exp
sions are given by Fellah and Depollier4,5 and Fellahet al.6,7

as

ã~ t !5a`S d~ t !1
2

L S h

pr f
D 1/2

t21/2D , ~1!

b̃~ t !5S d~ t !1
2~g21!

L8 S h

p Prr f
D 1/2

t21/2D , ~2!

in these equations,d(t) is the Dirac function, Pr is the
Prandtl number,h andr f are, respectively, the fluid viscosit
and the fluid density andg is the adiabatic constant. Th
relevant physical parameters of the model are the tortuo
of the medium a` initially introduced by Zwikker and
Kosten,14 the viscous and thermal characteristic lengthsL
and L8 introduced by Johnsonet al.13 and Allard.1 In this
model the time convolution oft21/2 with a function is inter-
preted as a semi derivative operator following the definit
62 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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of the fractional derivative of ordern given in Samko and
colleagues15

Dn@x~ t !#5
1

G~2n!
E

0

t

~ t2u!2n21x~u!du, ~3!

whereG(x) is the gamma function.
In this framework, the basic equations of our model c

be written as

r f ã~ t !*
]v i

]t
52¹ip and

b̃~ t !

Ka
*

]p

]t
52¹•v, ~4!

where * denotes the time convolution operation,p is the
acoustic pressure,v is the particle velocity, andKa is the
bulk modulus of the air. The first equation is the Euler equ
tion, the second one is a constitutive equation obtained fr
the equation of mass conservation associated with the be
ior ~or adiabatic! equation.

For a wave propagating along thex-axis, these equation
become:

r fa`

]v
]t

12
r fa`

L S h

pr f
D 1/2E

0

t ]v/]t8

At2t8
dt852

]p

]x
, ~5!

1

Ka

]p

]t
12

g21

KaL8 S h

p Prr f
D 1/2E

0

t ]p/]t8

At2t8
dt852

]v
]x

,

~6!

in these equations the convolutions express the disper
nature of the porous material. They take into account
memory effects due the fact that the response of the med
to the wave excitation is not instantaneous but needs m
time to become effective. The retarding force is no long
proportional to the time derivative of the acoustic veloc
but is found to be proportional to the fractional derivative
order 1/2 of this quantity. This occurs because the volume
fluid participating to the motion is not the same during t
whole length of the signal as it is in the case of a fu
developed steady flow. The phenomena may be unders
by considering such a volume of fluid in a pore to be
harmonic motion. At high frequencies, only a thin layer
fluid is excited: the average shear stress is high. At a lo
frequency, the same amplitude of fluid motion allows
thicker layer of fluid to participate in the motion and cons
quently the shear stress is less. The penetration distanc
the viscous forces and therefore the excitation of the fl
depends on frequency. In the time domain, such a dep
dence is associated with a fractional derivative.

III. DIRECT PROBLEM

The direct scattering problem is that of determining t
scattered field as well as the internal field, that arises whe
known incident field impinges on the porous material w
known physical properties. To compute the solution of t
direct problem one need to know the Green’s function6 of the
modified wave equation in the porous medium. In that ca
the internal field is given by the time convolution of th
Fellah et al.: Pulse propagation in porous media
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Green’s function with the incident wave and the reflected a
transmitted fields are deduced from the internal field and
boundary conditions.

The generalized lossy wave equation in the time dom
is derived from the basic equations~4! by elementary calcu-
lation in the following form:

]2p

]x22A
]2p

]t2 2BE
0

t ]2p/]t82

At2t8
dt82C

]p

]t
50, ~7!

where the coefficientsA, B andC are constants, respectivel
given by;

A5
r fa`

Ka
, B5

2a`

Ka
Ar fh

p S 1

L
1

g21

APrL8
D ,

~8!

C5
4a`~g21!h

KaLL8APr
,

the first one is related to the velocityc51/Ar fa` /Ka of the
wave in the air included in the porous material.a` appears
as the refractive index of the medium which changes
wave velocity from c05AKa /r f in free space toc
5c0 /Aa` in the porous medium. The other coefficients a
essentially dependent of the characteristic lengthsL andL8
and express the viscous and thermal interactions betwee
fluid and the structure. The constantB governs the spreadin
of the signal whileC is responsible of the attenuation of th
wave. Obviously, a knowledge of these three coefficients
lows the determination of the parametersa` , L and L8.
One way to solve Eq.~7! with suitable initial and boundary
conditions is by using the Laplace transform. The appro
is quite simple although the inverse Laplace transform
quire tedious calculus.16 A suitable setting for the introduc
tion of the time domain solution of the modified wave prop
gation equation~7! is provided by the following model.

A. General solution of the propagation equation

In this section some notation is introduced. The geo
etry of the problem is shown in Fig. 1. An homogeneo
porous material occupies the region 0<x<L. This medium
is assumed to be isotropic and to have a rigid frame. A sh
sound pulse impinges normally on the medium from the l
It gives rise to an acoustic pressure fieldp(x,t) and an
acoustic velocity fieldv(x,t) within the material, which sat-
isfying the propagation equation~7! written also as:

]2p~x,t !

]x2 2S 1

c2 d~ t !1CH~ t !1
b

At
D *

]2p~x,t !

]t2 50, ~9!

whereH(t) is the Heaviside function:17 H(t)50 for t,0,
H(0)51/2 andH(t)51, for t.0.

FIG. 1. Geometry of the problem.
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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It is assumed that the pressure field is continuous at
boundary of the material

p~01,t !5p~02,t !, p~L2,t !5p~L1,t !, ~10!

~where6 superscript denotes the limit from the left and t
right, respectively! and to the initial conditions

p~x,t !u t5050
]p

]t U
t50

50, ~11!

which means that the medium is idle fort50.
If the incident sound wave is launched in the regionx

<0, then the general solution of Eq.~9! in the region to the
left of the material is the sum of the incident and reflect
fields

p1~x,t !5pi S t2
x

c0
D1pr S t1

x

c0
D , x,0, ~12!

here,p1(x,t) is the field in the regionx,0, pi andpr denote
the incident and the reflected field, respectively. In additi
a transmitted field is produced in the region at the right of
material. This has the form

p3~x,t !5ptS t2
L

c
2

~x2L !

c0
D , x.L. ~13!

@p3(x,t) is the field in the regionx.L and pt is the trans-
mitted field.#
The incident and scattered fields are related by the scatte
operators~i.e., reflection and transmission operators! for the
material. These are integral operators represented by

pr~x,t !5E
0

t

R̃~t!pi S t2t1
x

c0
Ddt

5R̃~ t !* pi~ t !* dS t1
x

c0
D , ~14!

pt~x,t !5E
0

t

T̃~t!pi S t2t2
L

c
2

~x2L !

c0
Ddt

5T̃~ t !* pi~ t !* dS t2
L

c
2

~x2L !

c0
D . ~15!

In Eqs.~14! and~15! the functionsR̃ andT̃ are the reflection
and the transmission kernels, respectively, for incidence fr
the left. Note that the lower limit of integration in Eqs.~14!,
~15! is chosen to be 0, which is equivalent to assuming t
the incident wave front first impinges on the material at
50.

The scattering operators given in Eqs.~14! and~15! are
independent of the incident field used in scattering exp
ment and depend only on the properties of the materials
the regionx<0, the fieldp1(x,t) is given by:

p1~x,t !5FdS t2
x

c0
D1R̃~ t !* dS t1

x

c0
D G* pi~ t !. ~16!

Equation ~9! are solved by the Laplace transfor
method by taking into account to the conditions~10! and
~11!. We noteP(x,z) the Laplace transform ofp(x,t) de-
fined by
63Fellah et al.: Pulse propagation in porous media
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P~x,z!5L@p~x,t !#5E
0

`

exp~2zt!p~x,t !dt. ~17!

Using the following relations

L@d~ t !#51, L@H~ t !#5
1

z
, and LF 1

At
G5Ap

z
, ~18!

the Laplace transform of the wave equation~9! satisfying the
initials conditions~11! becomes:

]2P2~x,z!

]x2 2
f ~z!

c2 P2~x,z!50, ~19!

whereP2(x,z) is the Laplace transform of the acoustic pre
sure p2(x,t) inside the porous material for 0<x<L and
f (z)5z21b8zAz1c8z, b85B•c2Ap, c85C•c2.

The Laplace transform of the field outside the materi
is given by

P1~x,z!5FexpS 2z
x

c0
D1R~z!expS z

x

c0
D Gw~z!, x<0,

~20!

P3~x,z!5T~z!expF2S L

c
1

~x2L !

c0
D zGw~z!, x>L.

~21!

Here P1(x,z) and P3(x,z) are, respectively, the Laplac
transform of the field at the left and the right of the materi
w(z) denotes the Laplace transform of the incident fie
pi(t) and finallyR(z) andT(z) are the Laplace transform o
the reflection and transmission kernels respectively. T
Laplace transform of the continuous conditions~10! are writ-
ten as

P2~01,z!5P1~02,z! and P2~L2,z!5P3~L1,z!,
~22!

whereP1(02,z) andP3(L1,z) are the Laplace transform o
p1(x,t) andp3(x,t), respectively, given by

P1~02,z!5~11R~z!!w~z!, ~23!

P3~L2,z!5T~z!expS 2
L

c D zw~z! ~24!

from Eqs. ~19! and ~22!, we deduce the expression of th
field inside the materialP2(x,z)
64 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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P2~x,z!5P1~02,z!

sinhS L2x

c
Af ~z! D

sinhS L

c
Af ~z! D

1P3~L1,z!

sinhS x

c
Af ~z! D

sinhS L

c
Af ~z! D , ~25!

where sinh is the hyperbolic sine function.
The inverse Laplace transform of exp(2kAf (z)), where

k is a positive constant, gives the Green function of t
medium:6

F~ t,k!5H 0 if 0<t<k

J~ t !1DE
0

t2k

h~ t,j!dj if t>k
, ~26!

with

J~ t !5
b8

4Ap

k

~ t2k!3/2expS 2
b82k2

16~ t2k! D , ~27!

whereh(t,j) has the following form:

h~j,t!52
1

4p3/2

1

A~t2j!22k2

1

j3/2

3E
21

1

expS 2
x~m,t,j!

2 D
3~x~m,t,j!21!

m dm

A12m2
, ~28!

and wherex(m,t,j)5(DmA(t2j)22k21b8(t2j))2/8j,
b85Bc0

2Ap, c85Cc0
2, and D5b8224c8. The inverse

Laplace transform ofP2(x,z) gives the complete solution o
the wave equation in time domain in the porous mate
taking into account the multiple reflections at the interfac
x50 andx5L. ~Appendix A!.

p2~x,t !5 (
n>0

FFS t,2n
L

c
1

x

cD2FS t,~2n12!
L

c
2

x

cD G
* p1~0,t !1 (

n>0
FFS t,~2n11!

L

c
2

x

cD
2FS t,~2n11!

L

c
1

x

cD G* p3~L,t !, ~29!

which can be written as:
Fellah et al.: Pulse propagation in porous media



p2~x,t !5 (
n>0

E
2nL/c1x/c

t

FS t,2n
L

c
1

x

cD p1~0,t2t!dt2 (
n>0

E
~2n12!L/c2x/c

t

FS t,~2n12!
L

c
2

x

cD p1~0,t2t!dt

1 (
n>0

E
~2n11!L/c2x/c

t

FS t,~2n11!
L

c
2

x

cD p3~L,t2t!dt

2 (
n>0

E
~2n11!L/c1x/c

t

FS t,~2n11!
L

c
1

x

cD p3~L,t2t!dt. ~30!
th

on

e

ries
he
IV. REFLECTION AND TRANSMISSION SCATTERING
OPERATORS

To derive the reflection and transmission coefficients
boundary conditions flow velocity at the interfacesx50 and
x5L̇ are needed. The Euler equation is written in the regi
~1! (x<0) and~2! (0<x<L) as:

r f

]v1~x,t !

]t U
x50

52
]p1~x,t !

]x U
x50

, x<0, ~31!

r f ã~ t !*
]v2~x,t !

]t U
x50

52
]p2~x,t !

]x U
x50

, 0<x<L,

~32!

wherev1(x,t) andv2(x,t) are the acoustic velocity field in
the regions~1! and~2!, respectively. In the free space@region
~1!#, the tortuosity operator is equal to 1.

The equation of the flow continuity atx50 is written as:

v1~x,t !5fv2~x,t !, ~33!

wheref is the porosity of the medium. From Eqs.~31!, ~32!,
and ~33! it is easy to write:

ã~ t !*
]p1~x,t !

]x U
x50

5f
]p2~x,t !

]x U
x50

, ~34!

with

]p1~x,t !

]x U
x50

5
1

c0
~2d~ t !1R̃~ t !!*

]pi~ t !

]t
. ~35!

The Laplace transform of Eq.~34! gives a relation be-
tween the reflection and transmission coefficient

~R~z!21!sinhS L

c
Af ~z! D5

fc0

c

Af ~z!

za~z! FT~z!expS 2Lz

c D
2~11R~z!!coshS L

c
Af ~z! D G ,

~36!

wherea(z) is the Laplace transform ofã(t).
At the interfacex5L, the Euler equation is written in

the two regions~2! and ~3! (x>L) as:
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
e
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r f ã~ t !*
]v2~x,t !

]t U
x5L2

52
]p2~x,t !

]x U
x5L2

,

~37!

r f

]v3~x,t !

]t U
x5L1

52
]p3~x,t !

]x U
x5L1

.

At x5L, the continuity of the flow velocity leads to th
relation

v3~L1,t !5fv2~L2,t !. ~38!

From Eqs.~37!–~38!, we have:

ã~ t !*
]p3~x,t !

]x U
x5L1

5f
]p2~x,t !

]x U
x5L2

, ~39!

with

]p3~x,t !

]x U
x5L1

52
1

c0
T̃~ t !*

]pi

]t U
t5L/c

, ~40!

the Laplace transform of Eq.~39! gives:

T~z!expS 2
L

c
zD sinhS L

c
Af ~z! D

5
fc0

c

Af ~z!

za~z! F2T~z!expS 2
L

c
zD

3coshS L

c
Af ~z! D111R~z!G . ~41!

The functionsR(z) andT(z) following from Eqs.~36! and
~41! are the reflection coefficient@R(z)# and the transmis-
sion coefficient (T(z)) given by:

R~z!5

S 2
f2

a`
11D sinhS L

c
Af ~z! D

2
f

Aa`

coshS L

c
Af ~z! D1S f2

a`
11D sinhS L

c
Af ~z! D ,

~42!

T~z!5

2
f

Aa`

expS L

c D z

2
f

Aa`

coshS L

c
Af ~z! D1S f2

a`
11D sinhS L

c
Af ~z! D .

~43!

The development of these expressions in exponential se
~Appendix B! and the inverse Laplace transform lead to t
reflection and transmission scattering kernels
65Fellah et al.: Pulse propagation in porous media



FIG. 2. Simulated contributions of the interfacex50
~solid line! and of the bulk material~dashed line! to the
reflected wave.
atu-
be
dia.

he
R̃~ t !5S 2f1Aa`

f1Aa`
D (

n>0
S f2Aa`

f1Aa`
D 2n

3FFS t,2n
L

c D2FS t,~2n12!
L

c D G , ~44!

T̃~ t !5
4fAa`

~Aa`1f!2 (
n>0

S f2Aa`

f1Aa`
D 2n

3FS t1
L

c0
,~2n11!

L

c D . ~45!
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These expressions takes into account then-multiple reflec-
tions in the material. In most cases, in porous materials s
rated by air, the multiply reflection effects are negligible
cause of the high attenuation of sound waves in these me
So, by taking into account only the first reflections at t
interfacesx50 andx5L, the pressurep2(x,t) in the mate-
rial becomes

p2~x,t !5FFS t,
x

cD2FS t,
2L

c
2

x

cD G* p1~0,t !

1FFS t,
L

c
2

x

cD2FS t,
L

c
1

x

cD G* p3~L,t !,

~46!
FIG. 3. Reflected wave at the interfacex50 ~solid line!
and the total reflected wave~dashed line!.
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FIG. 4. Experimental setup of the ultrasonic measu
ments in transmitted mode.
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and can also be written as

p2~x,t !5E
x/c

t

FS t,
x

cD p1~0,t2t!dt

2E
2L/c2x/c

t

FS t,
2L

c
2

x

cD
3p1~0,t2t!dt1E

L/c2x/c

t

FS t,
L

c
2

x

cD
3p3~L,t2t!dt2E

L/c1x/c

t

FS t,
L

c
1

x

cD
3p3~L,t2t!dt. ~47!

So, the kernels of reflection and transmission operators
given by

R̃~ t !5
Aa`2f

Aa`1f
d~ t !2

4fAa`~Aa`2f!

~Aa`1f!3
FS t,

2L

c D ,

~48!

T̃~ t !5
4fAa`

~f1Aa`!2
FS t1

L

c
,
L

c D . ~49!
.
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In Eq. ~48! the first term is equivalent to the reflection at th
interfacex50. The part of the wave corresponding to th
term is not subjected to the dispersion but it is just multipli
by the factor (Aa`2f)/(Aa`1f). This shows that al-
though the tortuosity is a bulk parameter, it may be evalua
from the wave reflected at the first interface when the por
ity is known. The second term: 2@4fAa`(Aa`

2f)/(Aa`1f)3#F(t,2L/c) in Eq. ~48! is the bulk contri-
bution to the reflection. Figure 2 shows each contribution
the reflected wave simulated from the expression~48! for a
plastic foam M1. The solid line curve corresponds to t
reflection at the first interfacex50 and the dashed line curv
corresponds to the reflected wave~bulk contribution! at the
second interfacex5L. The parameters used in the simul
tion namely thickness: 5 cm,f50.98, a`51.04, L
5200mm, andL85600mm have been determined by cla
sical methods.18–20 As we can see, the bulk contribution t
the reflected wave is negligible when it is compared to
first interface contribution. In Fig. 3 we show by numeric
simulation the difference between the reflected wave at
first interface@due to the term: (Aa`2f)/(Aa`1f) in Eq.
~48!# and the total reflected wave@all terms in Eq.~48!#. The
difference between the two curves is weak and the reflec
wave by the porous material may be approximated by
reflected wave by the first interface with a good accuracy
re-
FIG. 5. Experimental setup of the ultrasonic measu
ments in reflected mode.
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.
FIG. 6. Incident signal given out by the transducer
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V. ULTRASONIC MEASUREMENTS

As an application of this model, some numerical sim
lations are compared to experimental results. Experime
are done in air with two broadband Panametrics V389 pie
electric transducers having a 250 kHz central frequency
air and a bandwith at 6 dB extending from 60 kHz to 4
kHz. Pulses of 900 V are provided by a 5058 PR Paname
pulser/receiver. The received signals are amplified up to
dB and filtered above 1 MHz to avoid high frequency no
~energy is totally filtered by the sample in this upper fr
quency domain!. Electronics perturbations are removed
1000 acquisition averages. The experimental setup is sh
in Fig. 4.

Reflected waves are processed by an other experime
set up given in Fig. 5. One transducer is used alternativel
a transmitter and receiver in order to detect the reflec
wave.
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Measurements have been performed on plastic fo
M1. Figure 6 shows the incident signal generated by
transducer. Numerical simulation and experimental res
~transmitted signal! are presented in Fig. 7. The numeric
results are obtained from the convolution of the transmiss
operator with the signal generated by the transducer sh
in Fig. 6. A good agreement between experimental data
theory is observed, which allows the validation of our mod
and the expression of the kernel of the transmission opera

VI. INVERSE PROBLEM

A slab of porous material is characterized by four p
rameters, namely, the porosityf, the tortuositya` , the vis-
cous characteristic lengthL, and the thermal characteristi
lengthL8, the values of which are crucial for the behavior
the sound waves in such materials. So, it is of some imp
tance to work out new experimental methods and effici
FIG. 7. Direct problem: experimental~solid line! and
simulated transmitted signals~dashed line!.
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FIG. 8. Inverse problem: experimental~solid line! and
simulated transmitted signals~dashed line!.
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tools for their estimation. Therefore, a basic inverse prob
associated with the slab may be stated as follows: from
measurements of the transmitted and/or reflected signals
side the slab, find the values of the parameters of the
dium. As shown in Sec. III, the solution of the direct proble
is the system of two operators expressed as functions of,
a` , L andL8. The inversion algorithm for finding the val
ues of the parameters of the slab is based on a fitting pr
dure: find the values of the parametersf, a` , L and L8
such that the transmitted and reflected signal describes
scattering problem in the best possible way~e.g., in the least-
squares sense!. The inverse problem is to find values of p
rametersf, a` , L andL8 which minimize the functions

U1~f,a` ,L,L8!5E
0

t

~r ~ t !2pr~x,t !!2 dt,

U2~f,a` ,L,L8!5E
0

t

~s~ t !2pt~x,t !!2 dt,

wherer (t) is the experimentally determined reflected sign
pr(x,t) is reflected wave predicted from Eq.~14!, s(t) is the
experimentally determined transmitted signal andpt(x,t) is
the transmitted wave predicted from Eq.~15!. However, be-
cause of the nonlinearity of the equations, the analytical
lution of the inverse problem by the conventional lea
squares methods is tedious. In our case, one can see
numerical solution of the least-square method which m
mize theU1,2(f,a` ,L,L8) defined by

U1~f,a` ,L,L8!5 (
i 51

i 5N

~r i2pr~x,t i !!2,

U2~f,a` ,L,L8!5 (
i 51

i 5N

~si2pr~x,t i !!2,

where r i5r (t i) i 51,2,...,N @resp. si5s(t i) i 51,2,...,N] represents
the discrete set of values of the reflected~resp. transmitted!
experimental signal and pr(x,t i) i 51,2,...,N ~resp.
pt(x,t i) i 51,2,...,N) is the discrete set of values of the simulat
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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reflected~resp. transmitted! signal. Figure 8 shows a com
parison between experimental transmitted signal and si
lated signal obtained by optimization from the inverse pro
lem. The optimized parameters area`51.05, L5208mm,
and L85624mm. The comparison between Figs. 7 and
shows that the values of the acoustic parameters obtaine
solving the inverse problem in the time-domain method le
to better results than those given by classical methods.18–22

Now, we will try to estimate the porosity via the mea
surement of reflected waves knowing the value of the to

FIG. 9. Incident signal in reflected mode.
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osity ~optimized by solving the inverse problem for the tran
mitted wave! and using the fact that the measured reflec
wave is essentially due to the reflected wave at the first
terface. The experimental setup using is shown in Fig. 5

Figure 9 shows the incident signal generated by
transducer and Fig. 10 shows the comparison between
perimental reflected signal by the foam M1 and simula
signal obtained by optimization of the inverse problem,
optimized value of the porosity isf50.97.

In the future, one hopes to use this new method to m
sure the tortuosity and the porosity of plastic foams wh
are at the moment measured by a classical st
methods.20–22

VII. CONCLUSION

In this paper the propagation equation in time domain
a slab of porous material having a rigid frame is conside
in the high frequency range. A time domain model of wa
propagation in such material is worked out from the conc
of fractional calculus. The analytical general solution of t
wave propagation in the time domain is established for a s
of porous medium. The kernels of the reflection and tra
mission scattering operators are derived giving simple r
tions between these operators and the parameters of the
dium. Is is shown that the reflection scattering operato
equal to the sum of two contributions: the first interface a
the bulk of the porous medium.

An experimental validation of the theoretical expre
sions of the scattering operators illustrates the good ag

FIG. 10. Experimental reflected signal~solid line! and simulated reflected
signal ~dashed line!.
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ment between numerical and experimental results and sh
that this time domain model is well suited for the charact
ization of porous media via acoustic wave propagation.
progress in this area, coming works will must improve e
perimental methods and inversion algorithms.

APPENDIX A: EXPRESSION OF THE ACOUSTIC
FIELD INSIDE THE POROUS MATERIAL

The expression of the acoustic field inside the poro
material taking into account the multiple reflection at t
interfacesx50 andx5L is given from the Eq.~25!

P2~x,z!5P1~02,z!
sinh~aAf ~z!!

sinh~bAf ~z!!
,

1P3~L1,z!
sinh~uAf ~z!!

sinh~bAf ~z!!
,

with a5L2x/c, b5L/c and u5x/c by the following de-
velopment in series:

sinh~aAf ~z!!

sinh~bAf ~z!!
5

exp~aAf ~z!!2exp~2aAf ~z!!

exp~bAf ~z!!2exp~2bAf ~z!!

5
exp~aAf ~z!!2exp~2aAf ~z!!

exp~bAf ~z!!@12exp~22bAf ~z!!#

5
exp~aAf ~z!!2exp~2aAf ~z!!

exp~bAf ~z!!

3 (
n>0

exp~22nbAf ~z!!

5@exp~aAf ~z!!2exp~2aAf ~z!!#

3(
n>

exp~2~2n11!bAf ~z!!

5 (
n>0

@exp~2@~2n11!b2a#Af ~z!!

2exp~2@~2n11!b1a#Af ~z!!#,

and the inverse Laplace transform ofP2(x,z):

p2~x,t !5L21P2~x,z!

5p1~0,t !* L21Fsinh~aAf ~z!!

sinh~bAf ~z!!
G

1p3~L,t !* L21F sinh~uAf ~z!!

sinh~bAf ~z!!
G ,

where

L21Fsinh~aAf ~z!!

sinh~bAf ~z!!
G5 (

n>0
@F~ t,~2n11!b2a!

2F~ t,~2n11!b1a!#

and
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-

on
n

F~ t,k!5L21@exp~2kAf ~z!!#

is given by Eq.~26!. The field p2(x,t) inside the porous
medium is then given by:

p2~x,t !5p1~0,t !* (
n>0

@F~ t,~2n11!b2a!2F~ t,~2n11!b

1a!#1p3~L,t !* (
n>0

@F~ t,~2n11!b2u!

2F~ t,~2n11!b1u!#.

By substitutinga, b and u by their values, we find the ex
pression~29!.

APPENDIX B: EXPRESSION OF THE REFLECTION
AND TRANSMISSION OPERATORS

To write the time domain expressions of the reflecti
and transmission kernels we consider their Laplace tra
forms. In the domain of validity of this model,4 (c/fc0)
3@za(z)/Af (z)#'(Aa`/f). Putting a5(Aa`/f), from
Eq. ~36! and Eq.~41!, we get the system:

a~211R~z!!sinhS L

c
Af ~z! D

5T~z!expS 2
L

c
zD2~11R~z!!coshS L

c
Af ~z! D ,
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
s-

aT~z!expS 2
L

c
zD sinhS L

c
Af ~z! D

52T~z!expS 2
L

c
zD1R~z!11,

the solution of which is given by:

R~z!5

~a221!sinhS L

c
Af ~z! D

2a coshS L

c
Af ~z! D1~a211!sinhS L

c
Af ~z! D ,

T~z!5

2a expS L

c
zD

2a coshS L

c
Af ~z! D1~211!sinhS L

c
Af ~z! D ,

which corresponds to the expressions given in Eq.~42! and
Eq. ~43!. The reflection coefficientR(z) can be written as
R~z!5

~a221!FexpS L

c
Af ~z! D2expS 2

L

c
Af ~z! D G

2aFexpS L

c
Af ~z! D1expS 2

L

c
Af ~z! D G1~a211!FexpS L

c
Af ~z! D2expS 2

L

c
Af ~z! D G
e

and is equivalent to

R~z!5F a221

~a11!2G 12expS 22
L

c
Af ~z! D

12S a21

a11D 2

expS 22
L

c
Af ~z! D .

From the identity

1

12S a21

a11D 2

expS 22
L

c
Af ~z! D

5 (
n>0

S a21

a11D 2n

expS 22n
L

c
Af ~z! D

R(z) has the following form:
R~z!5S a21

a11D (
n>0

S a21

a11D 2nFexpS 22n
L

c
Af ~z! D

2expS 22~n11!
L

c
Af ~z! D G . ~50!

The kernel of the reflection scattering operatorR̃(t) is given
by the inverse Laplace transform of this equation

R̃~ t !5S a21

a11D (
n>0

S a21

a11D 2nFFS t,2n
L

c D
2FS t,2~n11!

L

c D G , ~51!

whereF(t,k) is given by Eq.~26!. In the same manner, th
transmission coefficient is given by:
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T~z!5

4a expS L

c
zD

,

2aFexpS L

c
Af ~z! D1expS 2

L

c
Af ~z! D G1~a211!FexpS L

c
Af ~z! D2expS 2

L
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Af ~z! D G
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which can be written as:

T~z!5

4a expS L

c
zDexpS 2

L

c
Af zD

~a11!22~a21!2 exp2S 2
L

c
Af ~z! D .

Expanding this relation in series, one gets

T~z!5
4a

~a11!2 expS L

c
zD (

n>0
S a21

a11D 2n

3expS 2~2n11!
L

c
Af ~z! D ,

which by inverse Laplace transform leads to the kernel of
transmission scattering operator:

T̃~ t !5
4a

~a11!2 (
n>0

S a21

a11D 2n

FS t1
L

c
,~2n11!

L

c D .

~52!

The reflection operator is obtained withn50 andx5L in
Eq. ~51!:

R̃~ t !5S a21

a11D Fd~ t !2
4a

~a11!2 FS t,2
L

c D G .
The transmission operator is obtained withn50 andx5L in
Eq. ~52!:

T̃~ t !5
4a

~a11!2 FS t1
L

c
,
L

c D .
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