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This paper provides a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame. This new time domain model of wave propagation takes into account the viscous and thermal losses of the medium as described by the model of Johnson et al. ͓D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech. 176, 379 ͑1987͔͒ and Allard ͓J. F. Allard ͑Chapman and Hall, London, 1993͔͒ modified by a fractional calculus based method applied in the time domain. This paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main result is the derivation of the expression of the scattering operators ͑reflection and transmission͒ which are the responses of the medium to an incident acoustic pulse. In this model the reflection operator is the sum of two contributions: the first interface and the bulk of the medium. Experimental and numerical results are given as a validation of our model.

I. INTRODUCTION

The ultrasonic characterization of porous materials saturated by air is of a great interest for a large class of industrial applications. These materials are frequently used in the automotive and aeronautics industries or in the building trade. The determination of the properties of a medium from waves that have been reflected by or transmitted through the medium is a classical inverse scattering problem. Such problems are often approached by taking a physical model of the scattering process, generating a synthetic response for some assumed values of the parameters, adjusting these parameters until reasonable agreement is obtained between the synthetic response and the observed data. Some of the recent progresses in this area are reviewed in Allard [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF] and Lafarge. [START_REF] Lafarge | Sound propagation in porous materials having a rigid frame saturated by gas[END_REF] Many applications like medical imaging or inverse scattering problems require the study of the behavior of pulses traveling into porous media, [START_REF]Inverse Problems in Mathematical Physics ͑Springer[END_REF] it is only recently that the response of these media to such excitations has been fully addressed in Fellah et al. 4 -7 for some elementary configurations in porous media. To efficiently cope with the specific problems appearing in the transient acoustic field propagation, new approaches are required. [START_REF] Szabo | Time domain wave equations for lossy media obeying a frequency power law[END_REF] At present most analysis of signal propagation are carried out in the frequency domain using the Fourier transform to translate the results in the time domain and vice versa. This, however, has several limitations. The first is that the transformation is difficult to compute numerically with sufficient accuracy for non analytical functions. For example, using Fourier transform to obtain time domain results for a lossy material is a more complicated approach than using a true time domain analysis, and the numerical results are less accurate. The second disadvantage is that by working in the frequency domain some numerical information is lost or hard to recover. For example, in case of noisy data it may be difficult to reconstruct the chronological events of a signal by phase unwrapping. Consequently, it is difficult to obtain a deep understanding to transient signal propagation using frequency domain method.

The time domain response of the material is described by an instantaneous response and a ''susceptibility'' kernel responsible of the memory effects. A time domain approach differs from the frequency analysis in that the susceptibility functions of the problem are convolution operators acting on the velocity and pressure fields, and therefore a different algebraic formalism has to be applied to solve the wave equation. In the past, many authors have used the fractional calculus as an empirical method to describe the properties of viscoelastic materials, e.g., in Caputo [START_REF] Caputo | Vibrations of an infinite plate with a frequency independent Q[END_REF] and Bagley. [START_REF] Bagley | On the fractional calculus Model of Viscoelastic Behavior[END_REF] The observation that the asymptotic expressions of stiffness and damping in porous materials are proportional to fractional powers of frequency suggests the fact that time derivatives of fractional order might describe the behavior of sound waves in this kind of materials, including relaxation and frequency dependence.

The core of this paper is the analytical calculus in time domain of the acoustic field inside the porous material and the derivation of the expression of the scattering operators ͑reflection and transmission͒ which are the responses of the medium to an incident acoustic pulse.

The outline of this paper is as follows. In Sec. II, a time domain model is given, the connection between the fractional derivatives and wave propagation in rigid porous media in high frequency range is established, the basic equations are written in the time domain. Section III is devoted to the direct problem and to the general solution of the propagation wave in this domain. Section IV contains the expressions of the reflection and transmission kernels in the time domain. In Sec. V, a validation via ultrasonic measurements for the direct problem is treated and finally in Sec. VI an approach to inverse problem given the physical parameters describing the propagation of ultrasonic waves in porous materials is given.

II. MODEL

In the acoustics of porous materials, one distinguishes two situations according to whether the frame is moving or not. In the first case, the dynamics of the waves due to the coupling between the solid skeleton and the fluid is well described by the Biot theory. [START_REF] Biot | The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range[END_REF][START_REF] Biot | The theory of propagation of elastic waves in fluid-saturated porous solid. I. Higher frequency range[END_REF] In air-saturated porous media the structure is generally motionless and the waves propagate only in the fluid. This case is described by the model of equivalent fluid which is a particular case of the Biot model, in which the interactions between the fluid and the structure are taken into account in two frequency response factors: the dynamic tortuosity of the medium ␣͑͒ given by Johnson et al. [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF] and the dynamic compressibility of the air included in the porous material ␤͑͒ given by Allard. [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF] In the frequency domain, these factors multiply the density of the fluid and its compressibility respectively and represent the deviation from the behavior of the fluid in free space as the frequency increases. In the time domain, they act as operators and in the high frequency approximation their expressions are given by Fellah and Depollier 4,5 and Fellah et al. [START_REF] Fellah | An approach to direct and inverse time-domain scattering of acoustic waves from rigid porous materials by a fractional calculus based method[END_REF][START_REF] Fellah | Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements[END_REF] as

␣ ˜͑t ͒ϭ␣ ϱ ͩ ␦͑t͒ϩ 2 ⌳ ͩ f ͪ 1/2 t Ϫ1/2 ͪ , ͑1͒ ␤ ˜͑t ͒ϭ ͩ ␦͑t͒ϩ 2͑␥Ϫ1 ͒ ⌳Ј ͩ Pr f ͪ 1/2 t Ϫ1/2 ͪ , ͑2͒
in these equations, ␦(t) is the Dirac function, Pr is the Prandtl number, and f are, respectively, the fluid viscosity and the fluid density and ␥ is the adiabatic constant. The relevant physical parameters of the model are the tortuosity of the medium ␣ ϱ initially introduced by Zwikker and Kosten, [START_REF] Zwikker | Sound Absorbing Materials ͑Elsevier[END_REF] the viscous and thermal characteristic lengths ⌳ and ⌳Ј introduced by Johnson et al. [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF] and Allard. [START_REF] Allard | Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials ͑Chapman and Hall[END_REF] In this model the time convolution of t Ϫ1/2 with a function is interpreted as a semi derivative operator following the definition of the fractional derivative of order given in Samko and colleagues 15

D ͓x͑ t ͔͒ϭ 1 ⌫͑Ϫ ͒ ͵ 0 t ͑ tϪu ͒ ϪϪ1 x͑u ͒du, ͑3͒
where ⌫(x) is the gamma function.

In this framework, the basic equations of our model can be written as

f ␣ ˜͑t ͒ * ץv i ץt ϭϪٌ ip and ␤ ˜͑t ͒ K a * ץp ץt ϭϪٌ•v, ͑4͒
where * denotes the time convolution operation, p is the acoustic pressure, v is the particle velocity, and K a is the bulk modulus of the air. The first equation is the Euler equation, the second one is a constitutive equation obtained from the equation of mass conservation associated with the behavior ͑or adiabatic͒ equation. For a wave propagating along the x-axis, these equations become:

f ␣ ϱ ץv ץt ϩ2 f ␣ ϱ ⌳ ͩ f ͪ 1/2 ͵ 0 t ץv/ץtЈ ͱtϪt Ј dtЈϭϪ ץp ץx , ͑5͒ 1 K a ץp ץt ϩ2 ␥Ϫ1 K a ⌳Ј ͩ Pr f ͪ 1/2 ͵ 0 t ץp/ץtЈ ͱtϪt Ј dtЈϭϪ ץv ץx ,

͑6͒

in these equations the convolutions express the dispersive nature of the porous material. They take into account the memory effects due the fact that the response of the medium to the wave excitation is not instantaneous but needs more time to become effective. The retarding force is no longer proportional to the time derivative of the acoustic velocity but is found to be proportional to the fractional derivative of order 1/2 of this quantity. This occurs because the volume of fluid participating to the motion is not the same during the whole length of the signal as it is in the case of a fully developed steady flow. The phenomena may be understood by considering such a volume of fluid in a pore to be in harmonic motion. At high frequencies, only a thin layer of fluid is excited: the average shear stress is high. At a lower frequency, the same amplitude of fluid motion allows a thicker layer of fluid to participate in the motion and consequently the shear stress is less. The penetration distance of the viscous forces and therefore the excitation of the fluid depends on frequency. In the time domain, such a dependence is associated with a fractional derivative.

III. DIRECT PROBLEM

The direct scattering problem is that of determining the scattered field as well as the internal field, that arises when a known incident field impinges on the porous material with known physical properties. To compute the solution of the direct problem one need to know the Green's function [START_REF] Fellah | An approach to direct and inverse time-domain scattering of acoustic waves from rigid porous materials by a fractional calculus based method[END_REF] of the modified wave equation in the porous medium. In that case, the internal field is given by the time convolution of the Green's function with the incident wave and the reflected and transmitted fields are deduced from the internal field and the boundary conditions.

The generalized lossy wave equation in the time domain is derived from the basic equations ͑4͒ by elementary calculation in the following form:

ץ 2 p ץx 2 ϪA ץ 2 p ץt 2 ϪB ͵ 0 t ץ 2 p/ץtЈ 2 ͱtϪt Ј dtЈϪC ץp ץt ϭ0, ͑7͒
where the coefficients A, B and C are constants, respectively, given by;

Aϭ f ␣ ϱ K a , Bϭ 2␣ ϱ K a ͱ f ͩ 1 ⌳ ϩ ␥Ϫ1 ͱPr⌳ Ј ͪ , ͑8͒ Cϭ 4␣ ϱ ͑ ␥Ϫ1͒ K a ⌳⌳ЈͱPr ,
the first one is related to the velocity cϭ1/ͱ f ␣ ϱ /K a of the wave in the air included in the porous material. ␣ ϱ appears as the refractive index of the medium which changes the wave velocity from c 0 ϭͱK a / f in free space to c ϭc 0 /ͱ␣ ϱ in the porous medium. The other coefficients are essentially dependent of the characteristic lengths ⌳ and ⌳Ј and express the viscous and thermal interactions between the fluid and the structure. The constant B governs the spreading of the signal while C is responsible of the attenuation of the wave. Obviously, a knowledge of these three coefficients allows the determination of the parameters ␣ ϱ , ⌳ and ⌳Ј.

One way to solve Eq. ͑7͒ with suitable initial and boundary conditions is by using the Laplace transform. The approach is quite simple although the inverse Laplace transform require tedious calculus. [START_REF] Fellah | Propagation of acoustics waves in porous media: Temporal approach[END_REF] A suitable setting for the introduction of the time domain solution of the modified wave propagation equation ͑7͒ is provided by the following model.

A. General solution of the propagation equation

In this section some notation is introduced. The geometry of the problem is shown in Fig. 1. An homogeneous porous material occupies the region 0рxрL. This medium is assumed to be isotropic and to have a rigid frame. A short sound pulse impinges normally on the medium from the left. It gives rise to an acoustic pressure field p(x,t) and an acoustic velocity field v(x,t) within the material, which satisfying the propagation equation ͑7͒ written also as:

ץ 2 p͑x,t ͒ ץx 2 Ϫ ͩ 1 c 2 ␦͑t͒ϩCH͑t͒ϩ ␤ ͱt ͪ* ץ 2 p͑x,t ͒ ץt 2 ϭ0, ͑9͒
where H(t) is the Heaviside function: 17 H(t)ϭ0 for tϽ0, H(0)ϭ1/2 and H(t)ϭ1, for tϾ0.

It is assumed that the pressure field is continuous at the boundary of the material p͑0 ϩ ,t ͒ϭ p͑0 Ϫ ,t ͒, p͑L Ϫ ,t ͒ϭ p͑L ϩ ,t ͒, ͑10͒ ͑where Ϯ superscript denotes the limit from the left and the right, respectively͒ and to the initial conditions

p͑x,t ͉͒ tϭ0 ϭ0 ץp ץt ͯ tϭ0 ϭ0, ͑11͒
which means that the medium is idle for tϭ0.

If the incident sound wave is launched in the region x р0, then the general solution of Eq. ͑9͒ in the region to the left of the material is the sum of the incident and reflected fields

p 1 ͑ x,t ͒ϭ p i ͩ tϪ x c 0 ͪ ϩ p r ͩ tϩ x c 0 ͪ , xϽ0, ͑12͒
here, p 1 (x,t) is the field in the region xϽ0, p i and p r denote the incident and the reflected field, respectively. In addition, a transmitted field is produced in the region at the right of the material. This has the form

p 3 ͑ x,t ͒ϭ p t ͩ tϪ L c Ϫ ͑ xϪL ͒ c 0 ͪ , xϾL. ͑13͒ ͓ p 3 (x,t
) is the field in the region xϾL and p t is the transmitted field.͔ The incident and scattered fields are related by the scattering operators ͑i.e., reflection and transmission operators͒ for the material. These are integral operators represented by

p r ͑ x,t ͒ϭ ͵ 0 t R ˜͑ ͒p i ͩ tϪϩ x c 0 ͪ d ϭR ˜͑t ͒ * p i ͑ t ͒ * ␦ ͩ tϩ x c 0 ͪ , ͑14͒ p t ͑ x,t ͒ϭ ͵ 0 t T ˜͑ ͒p i ͩ tϪϪ L c Ϫ ͑ xϪL ͒ c 0 ͪ d ϭT ˜͑t ͒ * p i ͑ t ͒ * ␦ ͩ tϪ L c Ϫ ͑ xϪL ͒ c 0 ͪ .

͑15͒

In Eqs. ͑14͒ and ͑15͒ the functions R ˜and T ˜are the reflection and the transmission kernels, respectively, for incidence from the left. Note that the lower limit of integration in Eqs. ͑14͒, ͑15͒ is chosen to be 0, which is equivalent to assuming that the incident wave front first impinges on the material at t ϭ0.

The scattering operators given in Eqs. ͑14͒ and ͑15͒ are independent of the incident field used in scattering experiment and depend only on the properties of the materials. In the region xр0, the field p 1 (x,t) is given by:

p 1 ͑ x,t ͒ϭ ͫ ␦ ͩ tϪ x c 0 ͪ ϩR ˜͑t ͒ * ␦ ͩ tϩ x c 0 ͪͬ* p i ͑ t ͒. ͑16͒
Equation ͑9͒ are solved by the Laplace transform method by taking into account to the conditions ͑10͒ and ͑11͒. We note P(x,z) the Laplace transform of p(x,t) defined by P͑x,z ͒ϭL͓ p͑x,t ͔͒ϭ ͵ 0 ϱ exp͑Ϫzt͒p͑x,t ͒dt. ͑17͒

Using the following relations L͓␦͑t ͔͒ϭ1, L͓H͑t ͔͒ϭ 1 z

, and

L ͫ 1 ͱt ͬ ϭͱ z , ͑18͒
the Laplace transform of the wave equation ͑9͒ satisfying the initials conditions ͑11͒ becomes:

ץ 2 P 2 ͑ x,z ͒ ץx 2 Ϫ f ͑ z ͒ c 2 P 2 ͑ x,z ͒ϭ0, ͑19͒
where P 2 (x,z) is the Laplace transform of the acoustic pressure p 2 (x,t) inside the porous material for 0рxрL and

f (z)ϭz 2 ϩbЈzͱzϩcЈz, bЈϭB•c 2 ͱ, cЈϭC•c 2 .
The Laplace transform of the field outside the materials is given by

P 1 ͑ x,z ͒ϭ ͫ exp ͩ Ϫz x c 0 ͪ ϩR͑z ͒exp ͩ z x c 0 ͪͬ ͑z ͒, xр0, ͑20͒ P 3 ͑ x,z ͒ϭT͑ z ͒exp ͫ Ϫ ͩ L c ϩ ͑ xϪL ͒ c 0 ͪ z ͬ ͑z ͒, xуL.

͑21͒

Here P 1 (x,z) and P 3 (x,z) are, respectively, the Laplace transform of the field at the left and the right of the material, (z) denotes the Laplace transform of the incident field p i (t) and finally R(z) and T(z) are the Laplace transform of the reflection and transmission kernels respectively. The Laplace transform of the continuous conditions ͑10͒ are written as

P 2 ͑ 0 ϩ ,z ͒ϭ P 1 ͑ 0 Ϫ ,z ͒ and P 2 ͑ L Ϫ ,z ͒ϭ P 3 ͑ L ϩ ,z ͒, ͑22͒
where P 1 (0 Ϫ ,z) and P 3 (L ϩ ,z) are the Laplace transform of p 1 (x,t) and p 3 (x,t), respectively, given by

P 1 ͑ 0 Ϫ ,z ͒ϭ͑ 1ϩR͑z ͒͒͑ z ͒, ͑23͒ P 3 ͑ L Ϫ ,z ͒ϭT͑ z ͒exp ͩ Ϫ L c ͪ z͑z ͒ ͑24͒
from Eqs. ͑19͒ and ͑22͒, we deduce the expression of the field inside the material P 2 (x,z)

P 2 ͑ x,z ͒ϭ P 1 ͑ 0 Ϫ ,z ͒ sinh ͩ LϪx c ͱf ͑ z ͒ ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ ϩ P 3 ͑ L ϩ ,z ͒ sinh ͩ x c ͱf ͑ z ͒ ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ , ͑25͒
where sinh is the hyperbolic sine function.

The inverse Laplace transform of exp(Ϫkͱf (z)), where k is a positive constant, gives the Green function of the medium: [START_REF] Fellah | An approach to direct and inverse time-domain scattering of acoustic waves from rigid porous materials by a fractional calculus based method[END_REF] F͑t,k ͒ϭ ͭ 0 if 0рtрk

⌶͑t ͒ϩ⌬ ͵ 0 tϪk h͑t, ͒d if tуk , ͑26͒ with ⌶͑t ͒ϭ bЈ 4ͱ k ͑ tϪk ͒ 3/2 exp ͩ Ϫ bЈ 2 k 2 16͑tϪk ͒ ͪ ,

͑27͒

where h(,) has the following form:

h͑, ͒ϭϪ 1 4 3/2 1 ͱ ͑ Ϫ͒ 2 Ϫk 2 1 3/2 ϫ ͵ Ϫ1 1 exp ͩ Ϫ ͑,, ͒ 2 ͪ ϫ͑͑,, ͒Ϫ1 ͒ d ͱ1Ϫ 2 ,

͑28͒

and where (,,)ϭ(⌬ͱ(Ϫ) 2 Ϫk 2 ϩbЈ(Ϫ)) 2 /8, bЈϭBc 0 2 ͱ, cЈϭCc 0 2 , and ⌬ϭbЈ 2 Ϫ4cЈ. The inverse Laplace transform of P 2 (x,z) gives the complete solution of the wave equation in time domain in the porous material taking into account the multiple reflections at the interfaces xϭ0 and xϭL. ͑Appendix A͒.

p 2 ͑ x,t ͒ϭ ͚ nу0 ͫ F ͩ t,2n L c ϩ x c ͪ ϪF ͩ t,͑2nϩ2 ͒ L c Ϫ x c ͪͬ * p 1 ͑ 0,t ͒ϩ ͚ nу0 ͫ F ͩ t,͑2nϩ1 ͒ L c Ϫ x c ͪ ϪF ͩ t,͑2nϩ1 ͒ L c ϩ x c ͪͬ* p 3 ͑ L,t ͒, ͑29͒
which can be written as:

p 2 ͑ x,t ͒ϭ ͚ nу0 ͵ 2nL/cϩx/c t F ͩ ,2n L c ϩ x c ͪ p 1 ͑ 0,tϪ ͒dϪ ͚ nу0 ͵ ͑ 2nϩ2 ͒L/cϪx/c t F ͩ ,͑2nϩ2͒ L c Ϫ x c ͪ p 1 ͑ 0,tϪ ͒d ϩ ͚ nу0 ͵ ͑ 2nϩ1 ͒L/cϪx/c t F ͩ ,͑2nϩ1͒ L c Ϫ x c ͪ p 3 ͑ L,tϪ ͒d Ϫ ͚ nу0 ͵ ͑ 2nϩ1 ͒L/cϩx/c t F ͩ ,͑2nϩ1͒ L c ϩ x c ͪ p 3 ͑ L,tϪ ͒d.

͑30͒

IV. REFLECTION AND TRANSMISSION SCATTERING OPERATORS

To derive the reflection and transmission coefficients the boundary conditions flow velocity at the interfaces xϭ0 and xϭL ˙are needed. The Euler equation is written in the regions ͑1͒ (xр0) and ͑2͒ (0рxрL) as:

f ץv 1 ͑ x,t ͒ ץt ͯ xϭ0 ϭϪ ץp 1 ͑ x,t ͒ ץx ͯ xϭ0 , xр0, ͑31͒ f ␣ ˜͑t ͒ * ץv 2 ͑ x,t ͒ ץt ͯ xϭ0 ϭϪ ץp 2 ͑ x,t ͒ ץx ͯ xϭ0 , 0рxрL,

͑32͒

where v 1 (x,t) and v 2 (x,t) are the acoustic velocity field in the regions ͑1͒ and ͑2͒, respectively. In the free space ͓region ͑1͔͒, the tortuosity operator is equal to 1.

The equation of the flow continuity at xϭ0 is written as:

v 1 ͑ x,t ͒ϭv 2 ͑ x,t ͒, ͑33͒
where is the porosity of the medium. From Eqs. ͑31͒, ͑32͒, and ͑33͒ it is easy to write:

␣ ˜͑t ͒ * ץp 1 ͑ x,t ͒ ץx ͯ xϭ0 ϭ ץp 2 ͑ x,t ͒ ץx ͯ xϭ0 , ͑34͒ with ץp 1 ͑ x,t ͒ ץx ͯ xϭ0 ϭ 1 c 0 ͑ Ϫ␦͑t ͒ϩR ˜͑t ͒͒ * ץp i ͑ t ͒ ץt . ͑35͒
The Laplace transform of Eq. ͑34͒ gives a relation between the reflection and transmission coefficient

͑ R͑z ͒Ϫ1 ͒sinh ͩ L c ͱf ͑ z ͒ ͪ ϭ c 0 c ͱf ͑ z ͒ z␣͑z ͒ ͫ T͑z ͒exp ͩ ϪLz c ͪ Ϫ͑1ϩR͑z ͒͒cosh ͩ L c ͱf ͑ z ͒ ͪͬ ,

͑36͒

where ␣(z) is the Laplace transform of ␣ ˜(t). At the interface xϭL, the Euler equation is written in the two regions ͑2͒ and ͑3͒ (xуL) as:

f ␣ ˜͑t ͒ * ץv 2 ͑ x,t ͒ ץt ͯ xϭL Ϫ ϭϪ ץp 2 ͑ x,t ͒ ץx ͯ xϭL Ϫ , ͑37͒ f ץv 3 ͑ x,t ͒ ץt ͯ xϭL ϩ ϭϪ ץp 3 ͑ x,t ͒ ץx ͯ xϭL ϩ .
At xϭL, the continuity of the flow velocity leads to the relation

v 3 ͑ L ϩ ,t ͒ϭv 2 ͑ L Ϫ ,t ͒. ͑38͒
From Eqs. ͑37͒-͑38͒, we have:

␣ ˜͑t ͒ * ץp 3 ͑ x,t ͒ ץx ͯ xϭL ϩ ϭ ץp 2 ͑ x,t ͒ ץx ͯ xϭL Ϫ , ͑39͒ with ץp 3 ͑ x,t ͒ ץx ͯ xϭL ϩ ϭϪ 1 c 0 T ˜͑t ͒ * ץp i ץt ͯ tϭL/c , ͑40͒
the Laplace transform of Eq. ͑39͒ gives:

T͑z ͒exp ͩ Ϫ L c z ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ ϭ c 0 c ͱf ͑ z ͒ z␣͑z ͒ ͫ ϪT͑z ͒exp ͩ Ϫ L c z ͪ ϫcosh ͩ L c ͱf ͑ z ͒ ͪ ϩ1ϩR͑z ͒ ͬ .

͑41͒

The functions R(z) and T(z) following from Eqs. ͑36͒ and ͑41͒ are the reflection coefficient ͓R(z)͔ and the transmission coefficient (T(z)) given by:

R͑z ͒ϭ ͩ Ϫ 2 ␣ ϱ ϩ1 ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ 2 ͱ␣ ϱ cosh ͩ L c ͱf ͑ z ͒ ͪ ϩ ͩ 2 ␣ ϱ ϩ1 ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ , ͑42͒ T͑z ͒ϭ 2 ͱ␣ ϱ exp ͩ L c ͪ z 2 ͱ␣ ϱ cosh ͩ L c ͱf ͑ z ͒ ͪ ϩ ͩ 2 ␣ ϱ ϩ1 ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ .

͑43͒

The development of these expressions in exponential series ͑Appendix B͒ and the inverse Laplace transform lead to the reflection and transmission scattering kernels

R ˜͑t ͒ϭ ͩ Ϫϩͱ␣ ϱ ϩͱ␣ ϱ ͚ͪ nу0 ͩ Ϫͱ␣ ϱ ϩͱ␣ ϱ ͪ 2n ϫ ͫ F ͩ t,2n L c ͪ ϪF ͩ t,͑2nϩ2 ͒ L c ͪͬ , ͑44͒ T ˜͑t ͒ϭ 4ͱ␣ ϱ ͑ ͱ␣ ϱ ϩ ͒ 2 ͚ nу0 ͩ Ϫͱ␣ ϱ ϩͱ␣ ϱ ͪ 2n ϫF ͩ tϩ L c 0 ,͑2nϩ1 ͒ L c ͪ .

͑45͒

These expressions takes into account the n-multiple reflections in the material. In most cases, in porous materials saturated by air, the multiply reflection effects are negligible be cause of the high attenuation of sound waves in these media. So, by taking into account only the first reflections at the interfaces xϭ0 and xϭL, the pressure p 2 (x,t) in the material becomes and can also be written as

p 2 ͑ x,t ͒ϭ ͫ F ͩ t, x c ͪ ϪF ͩ t, 2L c Ϫ x c ͪͬ* p 1 ͑ 0,t ͒ ϩ ͫ F ͩ t, L c Ϫ x c ͪ ϪF ͩ t, L c ϩ x c ͪͬ* p 3 ͑ L,t ͒,
p 2 ͑ x,t ͒ϭ ͵ x/c t F ͩ , x c ͪ p 1 ͑ 0,tϪ ͒d Ϫ ͵ 2L/cϪx/c t F ͩ , 2L c Ϫ x c ͪ ϫp 1 ͑ 0,tϪ ͒dϩ ͵ L/cϪx/c t F ͩ , L c Ϫ x c ͪ ϫp 3 ͑ L,tϪ ͒dϪ ͵ L/cϩx/c t F ͩ , L c ϩ x c ͪ ϫp 3 ͑ L,tϪ ͒d. ͑47͒
So, the kernels of reflection and transmission operators are given by

R ˜͑t ͒ϭ ͱ␣ ϱ Ϫ ͱ␣ ϱ ϩ ␦͑t͒Ϫ 4ͱ␣ ϱ ͑ ͱ␣ ϱ Ϫ ͒ ͑ ͱ␣ ϱ ϩ ͒ 3 F ͩ t, 2L c ͪ , ͑48͒ T ˜͑t ͒ϭ 4ͱ␣ ϱ ͑ ϩͱ␣ ϱ ͒ 2 F ͩ tϩ L c , L c ͪ .

͑49͒

In Eq. ͑48͒ the first term is equivalent to the reflection at the interface xϭ0. The part of the wave corresponding to this term is not subjected to the dispersion but it is just multiplied by the factor (ͱ␣ ϱ Ϫ)/(ͱ␣ ϱ ϩ). This shows that although the tortuosity is a bulk parameter, it may be evaluated from the wave reflected at the first interface when the porosity is known. The second term: Ϫ͓4ͱ␣ ϱ (ͱ␣ ϱ Ϫ)/(ͱ␣ ϱ ϩ) 3 ͔F(t,2L/c) in Eq. ͑48͒ is the bulk contribution to the reflection. Figure 2 shows each contribution to the reflected wave simulated from the expression ͑48͒ for a plastic foam M1. The solid line curve corresponds to the reflection at the first interface xϭ0 and the dashed line curve corresponds to the reflected wave ͑bulk contribution͒ at the second interface xϭL. The parameters used in the simulation namely thickness: 5 cm, ϭ0.98, ␣ ϱ ϭ1.04, ⌳ ϭ200 m, and ⌳Јϭ600 m have been determined by classical methods. 18 -20 As we can see, the bulk contribution to the reflected wave is negligible when it is compared to the first interface contribution. In Fig. 3 we show by numerical simulation the difference between the reflected wave at the first interface ͓due to the term: (ͱ␣ ϱ Ϫ)/(ͱ␣ ϱ ϩ) in Eq. ͑48͔͒ and the total reflected wave ͓all terms in Eq. ͑48͔͒. The difference between the two curves is weak and the reflected wave by the porous material may be approximated by the reflected wave by the first interface with a good accuracy. 

V. ULTRASONIC MEASUREMENTS

As an application of this model, some numerical simulations are compared to experimental results. Experiments are done in air with two broadband Panametrics V389 piezoelectric transducers having a 250 kHz central frequency in air and a bandwith at 6 dB extending from 60 kHz to 420 kHz. Pulses of 900 V are provided by a 5058 PR Panametrics pulser/receiver. The received signals are amplified up to 90 dB and filtered above 1 MHz to avoid high frequency noise ͑energy is totally filtered by the sample in this upper frequency domain͒. Electronics perturbations are removed by 1000 acquisition averages. The experimental setup is shown in Fig. 4.

Reflected waves are processed by an other experimental set up given in Fig. 5. One transducer is used alternatively as a transmitter and receiver in order to detect the reflected wave.

Measurements have been performed on plastic foam M1. Figure 6 shows the incident signal generated by the transducer. Numerical simulation and experimental results ͑transmitted signal͒ are presented in Fig. 7. The numerical results are obtained from the convolution of the transmission operator with the signal generated by the transducer shown in Fig. 6. A good agreement between experimental data and theory is observed, which allows the validation of our model and the expression of the kernel of the transmission operator.

VI. INVERSE PROBLEM

A slab of porous material is characterized by four parameters, namely, the porosity , the tortuosity ␣ ϱ , the viscous characteristic length ⌳, and the thermal characteristic length ⌳Ј, the values of which are crucial for the behavior of the sound waves in such materials. So, it is of some importance to work out new experimental methods and efficient tools for their estimation. Therefore, a basic inverse problem associated with the slab may be stated as follows: from the measurements of the transmitted and/or reflected signals outside the slab, find the values of the parameters of the medium. As shown in Sec. III, the solution of the direct problem is the system of two operators expressed as functions on , ␣ ϱ , ⌳ and ⌳Ј. The inversion algorithm for finding the values of the parameters of the slab is based on a fitting procedure: find the values of the parameters , ␣ ϱ , ⌳ and ⌳Ј such that the transmitted and reflected signal describes the scattering problem in the best possible way ͑e.g., in the leastsquares sense͒. The inverse problem is to find values of parameters , ␣ ϱ , ⌳ and ⌳Ј which minimize the functions

U 1 ͑ ,␣ ϱ ,⌳,⌳Ј͒ϭ ͵ 0 t ͑ r͑t ͒Ϫ p r ͑ x,t ͒͒ 2 dt, U 2 ͑ ,␣ ϱ ,⌳,⌳Ј͒ϭ ͵ 0 t ͑ s͑t ͒Ϫ p t ͑ x,t ͒͒ 2 dt,
where r(t) is the experimentally determined reflected signal, p r (x,t) is reflected wave predicted from Eq. ͑14͒, s(t) is the experimentally determined transmitted signal and p t (x,t) is the transmitted wave predicted from Eq. ͑15͒. However, because of the nonlinearity of the equations, the analytical solution of the inverse problem by the conventional leastsquares methods is tedious. In our case, one can seek the numerical solution of the least-square method which minimize the U 1,2 (,␣ ϱ ,⌳,⌳Ј) defined by

U 1 ͑ ,␣ ϱ ,⌳,⌳Ј͒ϭ ͚ iϭ1 iϭN ͑ r i Ϫp r ͑ x,t i ͒͒ 2 , U 2 ͑ ,␣ ϱ ,⌳,⌳Ј͒ϭ ͚ iϭ1 iϭN ͑ s i Ϫp r ͑ x,t i ͒͒ 2 ,
where r i ϭr(t i ) iϭ1,2,...,N ͓resp. s i ϭs(t i ) iϭ1,2,...,N ] represents the discrete set of values of the reflected ͑resp. transmitted͒ experimental signal and p r (x,t i ) iϭ1,2,...,N ͑resp. p t (x,t i ) iϭ1,2,...,N ) is the discrete set of values of the simulated reflected ͑resp. transmitted͒ signal. Figure 8 shows a comparison between experimental transmitted signal and simulated signal obtained by optimization from the inverse problem. The optimized parameters are ␣ ϱ ϭ1.05, ⌳ϭ208 m, and ⌳Јϭ624 m. The comparison between Figs. 7 and8 shows that the values of the acoustic parameters obtained by solving the inverse problem in the time-domain method leads to better results than those given by classical methods. 18 -22 Now, we will try to estimate the porosity via the measurement of reflected waves knowing the value of the tortu- osity ͑optimized by solving the inverse problem for the transmitted wave͒ and using the fact that the measured reflected wave is essentially due to the reflected wave at the first interface. The experimental setup using is shown in Fig. 5.

Figure 9 shows the incident signal generated by the transducer and Fig. 10 shows the comparison between experimental reflected signal by the foam M1 and simulated signal obtained by optimization of the inverse problem, the optimized value of the porosity is ϭ0.97.

In the future, one hopes to use this new method to measure the tortuosity and the porosity of plastic foams which are at the moment measured by a classical static methods. [START_REF] Henry | Measurement of porous media parameters. Experimental study of acoustic behavior of plastic foams at low frequency range[END_REF][START_REF] Beranek | Acoustic impedance of porous materials[END_REF][START_REF] Champoux | Air-based system for the measurements of the porosity[END_REF] 

VII. CONCLUSION

In this paper the propagation equation in time domain in a slab of porous material having a rigid frame is considered in the high frequency range. A time domain model of wave propagation in such material is worked out from the concept of fractional calculus. The analytical general solution of the wave propagation in the time domain is established for a slab of porous medium. The kernels of the reflection and transmission scattering operators are derived giving simple relations between these operators and the parameters of the medium. Is is shown that the reflection scattering operator is equal to the sum of two contributions: the first interface and the bulk of the porous medium.

An experimental validation of the theoretical expressions of the scattering operators illustrates the good agree-ment between numerical and experimental results and shows that this time domain model is well suited for the characterization of porous media via acoustic wave propagation. To progress in this area, coming works will must improve experimental methods and inversion algorithms.

APPENDIX A: EXPRESSION OF THE ACOUSTIC FIELD INSIDE THE POROUS MATERIAL

The expression of the acoustic field inside the porous material taking into account the multiple reflection at the interfaces xϭ0 and xϭL is given from the Eq. ͑25͒

P 2 ͑ x,z ͒ϭ P 1 ͑ 0 Ϫ ,z ͒ sinh͑␣ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ , ϩ P 3 ͑ L ϩ ,z ͒ sinh͑ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ ,
with ␣ϭLϪx/c, ␤ϭL/c and ϭx/c by the following development in series:

sinh͑␣ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ ϭ exp͑␣ͱf ͑ z ͒͒Ϫexp͑ Ϫ␣ͱf ͑ z ͒͒ exp͑␤ͱf ͑ z ͒͒Ϫexp͑ Ϫ␤ͱf ͑ z ͒͒ ϭ exp͑␣ͱf ͑ z ͒͒Ϫexp͑ Ϫ␣ͱf ͑ z ͒͒ exp͑␤ͱf ͑ z ͓͒͒1Ϫexp͑ Ϫ2␤ͱf ͑ z ͔͒͒ ϭ exp͑␣ͱf ͑ z ͒͒Ϫexp͑ Ϫ␣ͱf ͑ z ͒͒ exp͑␤ͱf ͑ z ͒͒ ϫ ͚ nу0 exp͑Ϫ2n␤ͱf ͑ z ͒͒ ϭ͓exp͑␣ͱf ͑ z ͒͒Ϫexp͑ Ϫ␣ͱf ͑ z ͔͒͒ ϫ ͚ nу exp͑Ϫ͑2nϩ1 ͒␤ͱf ͑ z ͒͒ ϭ ͚ nу0 ͓exp͑ Ϫ͓͑2nϩ1 ͒␤Ϫ␣͔ͱf ͑ z ͒͒ Ϫexp͑Ϫ͓͑2nϩ1 ͒␤ϩ␣͔ͱf ͑ z ͔͒͒,
and the inverse Laplace transform of P 2 (x,z):

p 2 ͑ x,t ͒ϭL Ϫ1 P 2 ͑ x,z ͒ ϭ p 1 ͑ 0,t ͒ * L Ϫ1 ͫ sinh͑␣ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ ͬ ϩ p 3 ͑ L,t ͒ * L Ϫ1 ͫ sinh͑ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ ͬ ,
where F͑t,k ͒ϭL Ϫ1 ͓exp͑ Ϫkͱf ͑ z ͔͒͒ is given by Eq. ͑26͒. The field p 2 (x,t) inside the porous medium is then given by:

L Ϫ1 ͫ sinh͑␣ͱf ͑ z ͒͒ sinh͑␤ͱf ͑ z ͒͒ ͬ ϭ ͚ nу0 ͓F͑ t,
p 2 ͑ x,t ͒ϭ p 1 ͑ 0,t ͒ * ͚ nу0 ͓F͑ t,͑2nϩ1 ͒␤Ϫ␣ ͒ϪF͑ t,͑2nϩ1 ͒␤ ϩ␣ ͔͒ϩ p 3 ͑ L,t ͒ * ͚ nу0 ͓F͑ t,͑2nϩ1 ͒␤Ϫ ͒ ϪF͑t,͑2nϩ1 ͒␤ϩ ͔͒.
By substituting ␣, ␤ and by their values, we find the expression ͑29͒.

APPENDIX B: EXPRESSION OF THE REFLECTION AND TRANSMISSION OPERATORS

To write the time domain expressions of the reflection and transmission kernels we consider their Laplace transforms. In the domain of validity of this model, [START_REF] Fellah | Transient acoustic wave propagation in rigid porous media: A time-domain approach[END_REF] (c/c 0 ) ϫ͓z␣(z)/ͱf (z)͔Ϸ(ͱ␣ ϱ /). Putting aϭ(ͱ␣ ϱ /), from Eq. ͑36͒ and Eq. ͑41͒, we get the system:

a͑Ϫ1ϩR͑z ͒͒sinh ͩ L c ͱf ͑ z ͒ ͪ ϭT͑z ͒exp ͩ Ϫ L c z ͪ Ϫ͑1ϩR͑z ͒͒cosh ͩ L c ͱf ͑ z ͒ ͪ , aT͑z ͒exp ͩ Ϫ L c z ͪ sinh ͩ L c ͱf ͑ z ͒ ͪ ϭϪT͑z ͒exp ͩ Ϫ L c z ͪ ϩR͑z ͒ϩ1,
the solution of which is given by:

R͑z ͒ϭ ͑ a 2 Ϫ1 ͒sinh ͩ L c ͱf ͑ z ͒ ͪ 2a cosh ͩ L c ͱf ͑ z ͒ ͪ ϩ͑a 2 ϩ1 ͒sinh ͩ L c ͱf ͑ z ͒ ͪ , T͑z ͒ϭ 2a exp ͩ L c z ͪ 2a cosh ͩ L c ͱf ͑ z ͒ ͪ ϩ͑2ϩ1 ͒sinh ͩ L c ͱf ͑ z ͒ ͪ
, which corresponds to the expressions given in Eq. ͑42͒ and Eq. ͑43͒. The reflection coefficient R(z) can be written as

R͑z ͒ϭ ͑ a 2 Ϫ1 ͒ ͫ exp ͩ L c ͱf ͑ z ͒ ͪ Ϫexp ͩ Ϫ L c ͱf ͑ z ͒ ͪͬ 2a ͫ exp ͩ L c ͱf ͑ z ͒ ͪ ϩexp ͩ Ϫ L c ͱf ͑ z ͒ ͪͬ ϩ͑a 2 ϩ1 ͒ ͫ exp ͩ L c ͱf ͑ z ͒ ͪ Ϫexp ͩ Ϫ L c ͱf ͑ z ͒ ͪͬ
and is equivalent to

R͑z ͒ϭ ͫ a 2 Ϫ1 ͑ aϩ1 ͒ 2ͬ 1Ϫexp ͩ Ϫ2 L c ͱf ͑ z ͒ ͪ 1Ϫ ͩ aϪ1 aϩ1 ͪ 2 exp ͩ Ϫ2 L c ͱf ͑ z ͒ ͪ . From the identity 1 1Ϫ ͩ aϪ1 aϩ1 ͪ 2 exp ͩ Ϫ2 L c ͱf ͑ z ͒ ͪ ϭ ͚ nу0 ͩ aϪ1 aϩ1 ͪ 2n exp ͩ Ϫ2n L c ͱf ͑ z ͒ ͪ R(z)
has the following form:

R͑z ͒ϭ ͩ aϪ1 aϩ1 ͚ͪ nу0 ͩ aϪ1 aϩ1 ͪ 2n ͫ exp ͩ Ϫ2n L c ͱf ͑ z ͒ ͪ Ϫexp ͩ Ϫ2͑nϩ1 ͒ L c ͱf ͑ z ͒ ͪͬ .

͑50͒

The kernel of the reflection scattering operator R ˜(t) is given by the inverse Laplace transform of this equation

R ˜͑t ͒ϭ ͩ aϪ1 aϩ1 ͚ͪ nу0 ͩ aϪ1 aϩ1 ͪ 2n ͫ F ͩ t,2n L c ͪ ϪF ͩ t,2͑nϩ1 ͒ L c ͪͬ ,

͑51͒

where F(t,k) is given by Eq. ͑26͒. In the same manner, the transmission coefficient is given by: 

T͑z ͒ϭ 4a exp ͩ L c z ͪ 2a ͫ exp ͩ L c ͱf ͑ z ͒ ͪ ϩexp ͩ Ϫ L c ͱf ͑ z ͒ ͪͬ ϩ͑a 2 ϩ1 ͒ ͫ exp ͩ L c ͱf ͑ z ͒ ͪ Ϫexp ͩ Ϫ L c ͱf ͑ z ͒ ͪͬ
T ˜͑t ͒ϭ 4a ͑ aϩ1 ͒ 2 ͚ nу0 ͩ aϪ1 aϩ1 ͪ 2n F ͩ tϩ L c ,͑2nϩ1 ͒ L c ͪ .

͑52͒

The reflection operator is obtained with nϭ0 and xϭL in Eq. ͑51͒:

R ˜͑t ͒ϭ ͩ aϪ1 aϩ1 ͪͫ ␦͑t͒Ϫ 4a ͑ aϩ1 ͒ 2 F ͩ t,2 L c ͪͬ .

The transmission operator is obtained with nϭ0 and xϭL in Eq. ͑52͒:

T ˜͑t ͒ϭ 4a ͑ aϩ1 ͒ 2 F ͩ tϩ L c , L c ͪ .

FIG. 1 .

 1 FIG. 1. Geometry of the problem.

͑46͒FIG. 2 .FIG. 3 .

 23 FIG. 2. Simulated contributions of the interface xϭ0͑solid line͒ and of the bulk material ͑dashed line͒ to the reflected wave.

FIG. 4 .FIG. 5 .

 45 FIG. 4. Experimental setup of the ultrasonic measurements in transmitted mode.

FIG. 6 .FIG. 7 .

 67 FIG.6. Incident signal given out by the transducer.

FIG. 8 .

 8 FIG. 8. Inverse problem: experimental ͑solid line͒ and simulated transmitted signals ͑dashed line͒.

  FIG. 10. Experimental reflected signal ͑solid line͒ and simulated reflected signal ͑dashed line͒.

,

  which can be written as:T͑z ͒ϭ 4a exp ͩ L c z ͪ exp ͩ Ϫ L c ͱfz ͪ ͑ aϩ1 ͒ 2 Ϫ͑aϪ1 ͒ 2 expϪ ͩ 2 L c ͱf ͑ z ͒ ͪ .Expanding this relation in series, one getsT͑z ͒ϭ 4a͑ aϩ1 ͒ 2 exp ͩ L c z ͚ͪ nу0 ͩ aϪ1 aϩ1 ͪ 2n ϫexp ͩ Ϫ͑2nϩ1 ͒ L c ͱf ͑ z ͒ ͪ ,which by inverse Laplace transform leads to the kernel of the transmission scattering operator:
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