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Abstract

We solve the particle-antiparticle and cosmological constant problems
proceeding from quantum theory, which postulates that: various states
of the system under consideration are elements of a Hilbert space H
with a positive definite metric; each physical quantity is defined by a
self-adjoint operator in H; symmetry at the quantum level is defined
by a representation of a real Lie algebra A in H such that the rep-
resentation operator of any basis element of A is self-adjoint. These
conditions guarantee the probabilistic interpretation of quantum the-
ory. We explain that in the approaches to solving these problems that
are described in the literature, not all of these conditions have been
met. We argue that fundamental objects in particle theory are not
elementary particles and antiparticles but objects described by irre-
ducible representations (IRs) of the de Sitter (dS) algebra. One might
ask why, then, experimental data give the impression that particles
and antiparticles are fundamental and there are conserved additive
quantum numbers (electric charge, baryon quantum number and oth-
ers). The matter is that, at the present stage of the universe, the
contraction parameter R from the dS to the Poincare algebra is very
large and, in the formal limit R→∞, one IR of the dS algebra splits
into two IRs of the Poincare algebra corresponding to a particle and
its antiparticle with the same masses. The problem why the quan-
tities (c, h̄, R) are as are does not arise because they are contraction
parameters for transitions from more general Lie algebras to less gen-
eral ones. Then the baryon asymmetry of the universe problem does
not arise. At the present stage of the universe, the phenomenon of
cosmological acceleration (PCA) is described without uncertainties as
an inevitable kinematical consequence of quantum theory in semiclas-
sical approximation. In particular, it is not necessary to involve dark
energy the physical meaning of which is a mystery. In our approach,
background space and its geometry are not used and R has nothing
to do with the radius of dS space. In semiclassical approximation, the
results for PCA are the same as in General Relativity if Λ = 3/R2,
i.e., Λ > 0 and there is no freedom in choosing the value of Λ.
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Chapter 1

General principles of
quantum theory

In this paper we solve the particle-antiparticle and cosmological con-
stant problems proceeding from quantum theory, which postulates:
H) Various states of the system under consideration are elements

of a Hilbert space H with a positive definite metric, that is, the norm
of any non-zero element of H is positive.
O) Each physical quantity is defined by a self-adjoint operator O

in H.
S) Symmetry at the quantum level is defined by a self-adjoint

representation of a real Lie algebra A inH such that the representation
operator of any basis element of A is self-adjoint.

These conditions guarantee the probabilistic interpretation of quan-
tum theory. We explain below that in the approaches to solving these
problems that are described in the literature, not all of these condi-
tions have been met.

1.1 Problems with space-time background

in quantum theory

Modern fundamental particle theories (QED, QCD and electroweak
theory) are based on the concept of particle-antiparticle. Historically,
this concept has arisen as a consequence of the fact that the Dirac
equation has solutions with positive and negative energies. The so-
lutions with positive energies are associated with particles, and the
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solutions with negative energies — with corresponding antiparticles.
And when the positron was found, it was a great success of the Dirac
equation. Another great success is that in the approximation (v/c)2,
the Dirac equation reproduces the fine structure of the hydrogen atom
with a very high accuracy.

However, now we know that there are problems with the physical
interpretation of the Dirac equation. For example, in higher order ap-
proximations, the probabilistic interpretation of non-quantized Dirac
spinors is lost because they are described by representations induced
from non-self-adjoined representations of the Lorenz algebra. More-
over, this problem exists for any functions described by local relativis-
tic covariant equations (Klein-Gordon, Dirac, Rarita-Schwinger and
others). So, a space of functions satisfying a local covariant equation
does not satisfy the conditions (H,O,S).

As shown by Pauli [1], in the case of fields with an integer spin
it is not possible to define a positive-definite charge operator while in
the case of fields with a half-integer spin it is not possible to define a
positive-definite energy operator.

Another fundamental problem in the interpretation of the Dirac
equation is as follows. One of the key principles of quantum theory
is the principle of superposition. This principle states that if ψ1 and
ψ2 are possible states of a physical system then c1ψ1 + c2ψ2, when c1
and c2 are complex coefficients, also is a possible state. The Dirac
equation is the linear equation, and, if ψ1(x) and ψ2(x) are solutions
of the equation, then c1ψ1(x) + c2ψ2(x) also is a solution. In the
spirit of the Dirac equation, there should be no separate particles the
electron and the positron. It should be only one particle such that
electron states are the states of this particle with positive energies,
positron states are the states of this particle with negative energies
and the superposition of electron and positron states should not be
prohibited. However, in view of charge conservation, baryon number
conservation and lepton numbers conservation, the superposition of a
particle and its antiparticle is prohibited.

Modern particle theories are based on Poincare symmetry which,
according to S), is defined by a self-adjoint representation of the
Poincare algebra. In these theories, elementary particles, by defini-
tion, are described by self-adjoined irreducible representations (IRs)
of the Poincare algebra. Such IRs have a property that energies in
them can be either strictly positive or strictly negative but there are
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no IRs where energies have different signs. The objects described
by positive-energy IRs are called particles, the objects described by
negative-energy IRs are called antiparticles, and their energies become
positive after second quantization. There are no elementary particles
which are superpositions of a particle and its antiparticle, and as noted
above, this is not in the spirit of the Dirac equation.

The problems in interpreting non-quantized solutions of the Dirac
equation are well known, but they are described to illustrate the prob-
lems that arise when trying to describe a particle and its antiparticle
within the framework of solutions of a non-quantized local covariant
equation.

In particle theories, only quantized Dirac spinors ψ(x) are used.
However, there are also problems in interpreting quantized solutions
of the Dirac equation. Here x is treated as a point in Minkowski space.
However, ψ(x) is an operator in the Fock space for an infinite number
of particles. Each particle in the Fock space can be described by
its own coordinates in the approximation when the position operator
exists [2]. Then the following question arises: why do we need an extra
coordinate x which does not have any physical meaning because it does
not belong to any particle and so is not measurable? If we accept that
physical quantities should be treated in the framework of O) then x
is not a physical quantity because there is no self-adjoint operator for
x.

A justification of the presence of x in quantized solutions of local
covariant equations is that in quantum field theories (QFT) the La-
grangian density depends on x, but this is only the integration param-
eter in the intermediate stage. The goal of the theory is to construct
the S-matrix, and, when the theory is already constructed, one can
forget about Minkowski space because no physical quantity depends
on x. This is in the spirit of the Heisenberg S-matrix program accord-
ing to which in relativistic quantum theory it is possible to describe
only transitions of states from the infinite past when t→ −∞ to the
distant future when t→∞.

The fact that the theory gives the S-matrix in momentum repre-
sentation does not mean that the coordinate description is excluded.
In typical situations, the position operator in momentum representa-
tion exists not only in the nonrelativistic case but in the relativistic
case as well. It is known as the Newton-Wigner position operator [3]
or its modifications. However, the coordinate description of elemen-
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tary particles can work only in some approximations. In particular,
even in most favorable scenarios, for a massive particle with the mass
m, its coordinates cannot be measured with the accuracy better than
the particle Compton wave length h̄/mc.

When there are many bodies, the impression may arise that they
are in some space but this is only an impression. Background space-
time (e.g., Minkowski space) is only a mathematical concept needed
in classical theory. For example, in QED we deal with electrons,
positrons and photons. When the position operator exists, each par-
ticle can be described by its own coordinates. In quantum theory the
coordinates of Minkowski space do not have a physical meaning be-
cause they are not described by self-adjoined operators, do not refer
to any particle and are not measurable. However, in classical electro-
dynamics we do not consider electrons, positrons and photons. Here
the concepts of the electric and magnetic fields (E(x),B(x)) have the
meaning of the mean contribution of all particles in the point x of
Minkowski space.

This situation is analogous to that in statistical physics. Here we
do not consider each particle separately but describe the mean contri-
bution of all particles by temperature, pressure etc. Those quantities
have a physical meaning not for each separate particle but for ensem-
bles of many particles.

Space-time background is the basic element of QFT. There is no
branch of science where so impressive agreements between theory and
experiment have been achieved. However, those successes have been
achieved only in perturbation theory while it is not known how the
theory works beyond that theory. Also, the level of mathematical
rigor in QFT is very poor and, as a result, QFT has several known
difficulties and inconsistencies.

One of the key inconsistencies of QFT is the following. It is known
(see e.g., the textbook [4]) that quantum interacting local fields can
be treated only as operatorial distributions. A known fact from the
theory of distributions is that the product of distributions at the same
point is not a correct mathematical operation. Physicists often ig-
nore this problem and use such products because, in their opinion,
it preserves locality (although the operator of x does not exist). As
a consequence, the representation operators of interacting systems in
QFT are not well defined and the theory contains anomalies and diver-
gences. While in renormalizable theories the problem of divergences
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can be circumvented at the level of perturbation theory, in quantum
gravity divergences cannot be excluded even in lowest orders of per-
turbation theory. As noted above, in spite of such mathematical prob-
lems, QFT is very popular since it has achieved successes in describing
many experimental data.

In the present paper, we consider particle-antiparticle and cosmo-
logical constant problems. In our approach, for solving those problems
there is no need to involve space-time background and the problems
can be solved using only rigorous mathematics.

1.2 Symmetry at quantum level

In the literature, symmetry in QFT is usually explained as follows.
Since Poincare group is the group of motions of Minkowski space, the
system under consideration should be described by unitary represen-
tations of this group. This implies that the representation genera-
tors commute according to the commutation relations of the Poincare
group Lie algebra:

[P µ, P ν ] = 0, [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ),

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1.1)

where µ, ν = 0, 1, 2, 3, ηµν = 0 if µ 6= ν, η00 = −η11 = −η22 =
−η33 = 1, P µ are the operators of the four-momentum and Mµν are
the operators of Lorentz angular momenta. This approach is in the
spirit of the Erlangen Program proposed by Felix Klein in 1872 when
quantum theory did not yet exist. However, although the Poincare
group is the group of motions of Minkowski space, the description
(1.1) does not involve this group and this space.

As noted in Sec. 1.1, background space is only a mathematical
concept: in quantum theory, each physical quantity should be de-
scribed by an operator but there are no operators for the coordinates
of background space. There is no law that every physical theory must
contain a background space. For example, it is not used in nonrelativis-
tic quantum mechanics and in IRs describing elementary particles. In
particle theory, transformations from the Poincare group are not used
because, according to the Heisenberg S-matrix program, it is possi-
ble to describe only transitions of states from the infinite past when
t→ −∞ to the distant future when t→ +∞. In this theory, systems
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are described by observable physical quantities — momenta and an-
gular momenta. So, symmetry at the quantum level is defined not by
a background space and its group of motions but by the condition S)
(see [2, 5] for more details). In particular, Eq. (1.1) can be treated as
the definition of relativistic invariance at the quantum level.

Then each elementary particle is described by a self-adjoined IR of
a real Lie algebra A and a system of N noninteracting particles is de-
scribed by the tensor product of the corresponding IRs. This implies
that, for the system as a whole, each momentum operator is a sum
of the corresponding single-particle momenta, each angular momen-
tum operator is a sum of the corresponding single-particle angular
momenta, and this is the most complete possible description of this
system. In particular, nonrelativistic symmetry implies that A is the
Galilei algebra, relativistic symmetry implies that A is the Poincare
algebra, de Sitter (dS) symmetry implies that A is the dS algebra
so(1,4) and anti-de Sitter (AdS) symmetry implies that A is the AdS
algebra so(2,3).

In his famous paper ”Missed Opportunities” [6] Dyson notes that:

• a) Relativistic quantum theories are more general than nonrela-
tivistic quantum theories even from purely mathematical consid-
erations because Poincare group is more symmetric than Galilei
one: the latter can be obtained from the former by contraction
c→∞.

• b) dS and AdS quantum theories are more general than relativis-
tic quantum theories even from purely mathematical consider-
ations because dS and AdS groups are more symmetric than
Poincare one: the latter can be obtained from the former by
contraction R→∞ where R is a parameter with the dimension
length, and the meaning of this parameter will be explained
below.

• c) At the same time, since dS and AdS groups are semisim-
ple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

As noted above, symmetry at the quantum level should be defined
in the framework of S), and in [2], the statements a)-c) have been
reformulated in terms of the corresponding Lie algebras. It has also
been shown that the fact that quantum theory is more general than

8



classical theory follows even from purely mathematical considerations
because formally the classical symmetry algebra can be obtained from
the symmetry algebra in quantum theory by contraction h̄ → 0. For
these reasons, the most general description in terms of ten-dimensional
Lie algebras should be carried out in terms of quantum dS or AdS sym-
metry. However, as explained below, in particle theory, dS symmetry
is more general than AdS one.

The definition of those symmetries is as follows. If Mab (a, b =
0, 1, 2, 3, 4, Mab = −M ba) are the angular momentum operators for
the system under consideration, they should satisfy the commutation
relations:

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1.2)

where ηab = 0 if a 6= b, η00 = −η11 = −η22 = −η33 = 1 and η44 = ∓1
for the dS and AdS symmetries, respectively.

Although the dS and AdS groups are the groups of motions of dS
and AdS spaces, respectively, the description in terms of (1.2) does
not involve those groups and spaces, and it is a definition of dS and
AdS symmetries in the framework of S) (see the discussion in [2, 5]).
In QFT, interacting particles are described by field functions defined
on Minkowski, dS and AdS spaces. However, since we consider only
noninteracting bodies and describe them in terms of IRs, at this level
we don’t need these fields and spaces.

The procedure of contraction from dS or AdS symmetry to Poincare
one is defined as follows. If we define the momentum operators P µ as
P µ = M4µ/R (µ = 0, 1, 2, 3) then in the formal limit when R → ∞,
M4µ → ∞ but the quantities P µ are finite, Eq. (1.2) become Eq.
(1.1). Here R is a parameter which has nothing to do with the dS and
AdS spaces. As seen from Eq. (1.2), quantum dS and AdS theories
do not involve the dimensional parameters (c, h̄, R) because (kg,m, s)
are meaningful only at the macroscopic level.

As noted by Berry [7], the reduction from more general theories to
less general ones involves a quantity δ which is not equal to zero in
more general theories and becomes zero in less general theories. This
reduction involves the study of limits and is often obstructed by the
fact that the limit is singular. In [7], several examples of such reduc-
tions are considered. However, at the quantum level, the reduction
(contraction) should be described in terms of relations between the
representation operations of more general and less general algebras.
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As explained in [2], in the limit when the contraction parameter goes
to zero or infinity, some original representation operators become sin-
gular (in agreement with the results of [7]). However, it is possible
to define a new set of operators such that they remain finite in this
limit. Then, in less general theories, some commutators become zero
while in more general theories they are non-zero. So, less general the-
ories contain more zero commutators then corresponding more general
theories.

Probably, the most known case is the reduction from relativistic
to nonrelativistic theory. In relativistic theory, the quantity c is not
needed, velocities v are dimensionless and, if v = |v| then v ≤ 1 if
tachyons are not taken into account. However, if people want to de-
scribe velocities in m/s then c also has the dimension m/s. Physicists
usually understand that physics cannot (and should not) derive that
c ≈ 3 · 108m/s. This value is purely kinematical (i.e., it does not
depend on gravity and other interactions) and is as is simply because
people want to describe velocities in m/s. Since the quantities (m, s)
have a physical meaning only at the macroscopic level, one can ex-
pect that the values of c in m/s are different at different stages of
the universe. In [7], the connection between relativistic and nonrel-
ativistic theories is described in the ”low-speed” series expansions in
δ = v/c. However, such expansions are well defined only in classical
(non-quantum) theory. At the quantum level, this reduction should be
described in terms of relations between the representation operations
of the Poincare and Galilei algebras. Then, in agreement with [7], the
transition from relativistic to nonrelativistic theory becomes singular
in the formal limit c → ∞. As described in [2, 8], the singularities
can be resolved by using the Galilei boost operators Gj = M0j/c,
(j = 1, 2, 3) instead of the Poincare boost operators M0j and by us-
ing the time translation operator E = P 0c instead of the Poincare
energy operator P 0. Then, as follows from Eq. (1.1), instead of the
relations [M0j,M0k] = −iM jk where j, k = 1, 2, 3, j 6= k, we have
[Gj, Gk] = −iM jk/c2.

So far, no approximations have been made. A question arises
whether the strong limits of the operators M jk/c2 are zero when
c → ∞. In general, not for all elements x of the Hilbert space under
consideration, y = (M jk/c2)x become zero when c → ∞. The mean-
ing of the nonrelativistic approximation at the operator level is that
only those elements x are important for which y → 0 when c → ∞.
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Therefore, in the nonrelativistic approximation, [Gj, Gk] = 0 and we
have a greater number of zero commutators because in the relativistic
case, [M0j,M0k] 6= 0. And, since M0j = Gjc, we conclude that, when
c → ∞, the operators M0j become singular in agreement with the
observation in [7].

Consider now the relation between classical and quantum theories.
In the latter, the quantity h̄ is not needed and angular momenta are
dimensionless. As shown even in textbooks, their projections can take
only the values multiple to ±1/2. However, when people want to de-
scribe angular momenta in kg ·m2/s, h̄ and all the operators in Eq.
(1.2) become dimensional and also have the dimension kg ·m2/s. Then
all nonzero commutators in the symmetry algebra become propor-
tional to h̄ and Eq. (1.2) can be represented as [Mab,Mcd] = ih̄Aabcd.

Physicists usually understand that physics cannot (and should not)
derive that h̄ ≈ 1.054 ·10−34kg ·m2/s. This value is purely kinematical
and is as is simply because people want to describe angular momenta
in kg ·m2/s. Since the quantities (kg,m, s) have a physical meaning
only at the macroscopic level, one can expect that the values of h̄ in
kg ·m2/s are different at different stages of the universe. If Aabcd 6= 0
then, in general, not for all elements x of the Hilbert space under
consideration, y = h̄Aabcdx become zero when h̄→ 0. The meaning of
the classical approximation is that only those elements x are important
for which y → 0 when h̄ → 0. Therefore, in this approximation, all
the commutators become zero and all physical quantities are defined
without uncertainties. So, even the description in terms of Hilbert
spaces becomes redundant.

Typically, in particle theories, the quantities c and h̄ are not in-
volved and it is said that the units c = h̄ = 1 are used.

At the quantum level, Eq. (1.2) is the most general description
of dS and AdS symmetries and all the operators in Eq. (1.2) are
dimensionless. At this level, the theory does not need the quantity R
and, in full analogy with the above discussion of the quantities c and
h̄, one can say R = 1 is a possible choice. The dimensional quantity R
arises if, instead of the dimensionless operators M4µ, physicists want
to deal with the 4-momenta P µ defined such that M4µ = RP µ. In full
analogy with the discussion of c and h̄, physics cannot (and should
not) derive the value of R. It is as is simply because people want to
measure distances in meters. This value is purely kinematical, i.e., it
does not depend on gravity and other interactions. As noted in Sec.
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3.4, at the present stage of the universe, R is of the order of 1026m
but, since the concept of meter has a physical meaning only at the
macroscopic level, one can expect that the values of R in meters are
different at different stages of the universe.

Although, at the level of contraction parameters, R has nothing
to do with the radius of the background space and is fundamental to
the same extent as c and h̄, physicists usually want to treat R as the
radius of the background space. In General Relativity (GR) which is
the non-quantum theory, the cosmological constant Λ equals ±3/R2

for the dS and AdS symmetries, respectively. Physicists usually believe
that physics should derive the value of Λ and that the solution to the
dark energy problem depends on this value. They also believe that
QFT of gravity should confirm the experimental result that, in units
c = h̄ = 1, Λ is of the order of 10−122/G where G is the gravitational
constant. We will discuss this problem in Sec. 3.4.

As follows from Eq. (1.2), [M4µ,M4ν ] = iMµν . Therefore [P µ, P ν ] =
iMµν/R2. A question arises whether the strong limits of the operators
Mµν/R2 are zero when R → ∞. In general, not for all elements x of
the Hilbert space under consideration, y = (Mµν/R2)x become zero
when R→∞. The meaning of the Poincare approximation at the op-
erator level is that only those elements x are important for which y → 0
when R→∞. Therefore, in the Poincare approximation, [P µ, P ν ] = 0
and we have a greater number of zero commutators because in the dS
and AdS cases, [M4µ,M4ν ] 6= 0. And, since M4µ = P µR, we conclude
that, when R→∞, the operators M4µ become singular in agreement
with the observation in [7].
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Chapter 2

Solving particle-antiparticle
problem

2.1 Particles and antiparticles in standard

quantum theory

Standard particle theories are based on Poincare symmetry, and here
the concepts of particles and antiparticles are considered from the
point of view of two approaches which we call Approach A and Ap-
proach B. We first recall the basic known facts about IRs of the
Poincare algebra. Their classification has been first given by Wigner
[9] and then repeated by many authors (see e.g., [10]).

We denote E = P 0 the energy operator and P = (P 1, P 2, P 3)
the spatial momentum operator. Then W = E2 − P2 is the Casimir
operator of the Poincare algebra, i.e., it commutes with all operators
of the algebra. As follows from the Schur lemma, W has only one
eigenvalue in every IR. We will not consider tachyons and then this
eigenvalue is ≥ 0 and can be denoted m2 where m ≥ 0 is called the
particle mass. We will consider massive IRs where m > 0 and the case
m = 0 will be mentioned below.

Let p be the particle four-momentum such that p2 = (p0)2 − p2 =
m2. We denote v = p/m the particle four-velocity such that v2 = 1.
Then v20 = 1 + v2 and we will always choose v0 such that v0 ≥ 1. Let
dρ(v) = d3v/v0 be Lorentz invariant volume element on the Lorentz
hyperboloid. If s is the spin of the particle under consideration, then
we use ||...|| to denote the norm in the space of unitary IR of the
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group SU(2) with the spin s. Then the space of a self-adjoned IR
of the Poincare algebra is the space of functions f(v) on the Lorentz
hyperboloid with the range in the space of IR of the group SU(2) with
the spin s and such that∫

||f(v)||2ρ(v) <∞

Then the operators of the IR are given by [9, 10]

J = l(v) + s, N = −iv0
∂

∂v
+

s× v

v0 + 1
, P = ±mv (2.1)

where J = {M23,M31,M12}, N = {M01,M02,M03}, s is the spin
operator, l(v) = −iv × ∂/∂v and ± refers to the IRs with positive
and negative energies, respectively.

Approach A is based on the fact that, as follows from Eq. (2.1),
in self-adjoined IRs of the Poincare algebra, the energy spectrum can
be either ≥ 0 or ≤ 0, and there are no IRs where the energy spectrum
contains both, positive and negative energies. In this approach, the
objects described by the corresponding IRs are called elementary par-
ticles and antiparticles, respectively. On the other hand, Approach
B proceeds from the assumptions that elementary particles are de-
scribed by local covariant equations. The solutions of these equations
with positive energies are called particles and solutions with negative
energies are called antiparticles

When we consider a system consisting of particles and antiparti-
cles, the energy signs for both of them should be the same. Indeed,
consider, for example a system of two particles with the same mass,
and let their momenta p1 and p2 be such that p1 + p2 = 0. Then,
if the energy of particle 1 is positive, and the energy of particle 2 is
negative then the total four-momentum of the system would be zero
what contradicts experimental data. By convention, the energy sign
of all particles and antiparticles in question is chosen to be positive.
For this purpose, the procedure of second quantization is defined such
that after this procedure the energies of antiparticles become positive.
Then the mass of any particle is the minimum value of its energy.

Suppose now that we have two particles such that particle 1 has the
mass m1, spin s1 and is characterized by some additive quantum num-
bers (e.g., electric charge, baryon quantum number etc.), and particle
2 has the mass m2, spin s2 = s1 and all additive quantum numbers
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characterizing particle 2 equal the corresponding quantum numbers
for particle 1 with the opposite sign. A question arises when particle
2 can be treated as an antiparticle for particle 1. Is it necessary that
m1 should be exactly equal m2 or m1 and m2 can slightly differ each
other? In particular, can we guarantee that the mass of the positron
exactly equals the mass of the electron, the mass of the proton exactly
equals the mass of the antiproton etc.? If we work only in the frame-
work of Approach A then we cannot answer this question because here
IRs for particles 1 and 2 are independent on each other and there are
no limitations on the relation between m1 and m2.

On the other hand, in Approach B, m1 = m2 but this has been
achieved at the expense of losing probabilistic interpretation. Indeed,
here, a particle and its antiparticle are elements of the same field
state ψ(x) with positive and negative energies, respectively, where
x is a vector from Minkowski space and ψ(x) satisfies a relativistic
covariant field equation (Dirac, Klein-Gordon, Rarita-Schwinger and
others). However, it has been already noted in Sec. 1.1 that, at the
quantum level, covariant fields and the quantity x are not defined in
the framework of (H,O,S). In particular, at the quantum level, the
physical meaning of x is unclear because there is no operator for x.

A usual phrase in the literature is that in QFT, the fact that
m1 = m2 follows from the CPT theorem. As shown e.g., in [11, 12], it
is a consequence of locality since, by construction, states described by
local covariant equations are direct sums of IRs for a particle and its
antiparticle with equal masses. However, since the concept of locality
is not formulated in the framework of (H,O,S), this concept does
not have a clear physical meaning, and this fact has been pointed out
even in known textbooks (see e.g., [4]). Therefore, QFT does not give
a rigorous proof that m1 = m2.

Also, can one pose the question what is happening if locality is
only an approximation: in that case the equality of masses is exact
or approximate? However, since, at the quantum level, the physical
meaning of the concept of locality is unclear, the physical meaning of
this question is also unclear. Consider a simple model when electro-
magnetic and weak interactions are absent. Then the fact that the
proton and the neutron have equal masses has nothing to do with
locality; it is only a consequence of the fact that they belong to the
same isotopic multiplet, i.e., they are simply different states of the
same object—the nucleon.
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Note that in Poincare invariant quantum theories, there can ex-
ist elementary particles for which all additive quantum numbers are
zero. Such particles are called neutral because they coincide with their
antiparticles.

2.2 Particles and antiparticles in AdS quan-

tum theories

In theories where the symmetry algebra is the AdS algebra, the struc-
ture of IRs is known (see e.g., [2, 13]). The operator M04 is the
AdS analog of the energy operator. Let W be the Casimir operator
W = 1

2

∑
MabMab where a sum over repeated indices is assumed. Here

lowering and raising indices are carried out using the tensor ηab de-
fined in Sec. 1.2 and, as noted after Eq. (1.2), η44 = 1 for the AdS
case. As follows from the Schur lemma, the operator W has only one
eigenvalue in every IR. By analogy with Poincare quantum theory, we
will not consider AdS tachyons and then one can define the AdS mass
µ such that µ ≥ 0 and µ2 is the eigenvalue of the operator W .

As noted in Sec. 1.2, the procedure of contraction from the AdS
algebra to the Poincare one is defined in terms of the parameter R
such that Mν4 = RP ν . This procedure has a physical meaning only
if R is rather large. In that case the AdS mass µ and the Poincare
mass m are related as µ = Rm, and the relation between the AdS
and Poincare energies is analogous. Since AdS symmetry is more
general then Poincare one then µ is more general than m. In contrast
to the Poincare masses and energies, the AdS masses and energies
are dimensionless. As noted in Sec. 3.4, at the present stage of the
universe R is of the order of 1026m. Then the AdS masses of the
electron, the Earth and the Sun are of the order of 1039, 1093 and 1099,
respectively. The fact that even the AdS mass of the electron is so
large might be an indication that the electron is not a true elementary
particle. In addition, the present upper level for the photon mass is
10−17ev. This value seems to be an extremely tiny quantity. However,
the corresponding AdS mass is of the order of 1016, and so, even the
mass which is treated as extremely small in Poincare invariant theory
might be very large in AdS invariant theory.

In the AdS case, there are IRs with positive and negative energies,
and they belong to the discrete series [2, 13]. Therefore, one can define
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particles and antiparticles. If µ1 is the AdS mass for a positive energy
IR, then the energy spectrum contains the eigenvalues µ1, µ1 + 1, µ1 +
2, ...∞, and, if µ2 is the AdS mass for a negative energy IR, then the
energy spectrum contains the eigenvalues−∞, ...−µ2−2,−µ2−1,−µ2.

Therefore, the situation is pretty much analogous to that in Poincare
invariant theories, and, without involving local AdS invariant equa-
tions there is no way to conclude whether the mass of a particle
equals the mass of the corresponding antiparticle. These equations
describe local fields in the AdS space. In view of what was said above
about the background space in QFT, these fields are not defined within
the framework of (H,O,S). Therefore, in AdS invariant theory, just
as in the case of Poincare invariant theory, within the framework of
(H,O,S) it is also impossible to prove that the mass of a particle
equals the mass of the corresponding antiparticle.

Since Poincare quantum theory is obtained from AdS quantum
theory by contraction R → ∞ and m = µ/R then Poincare massless
IRs are obtained from AdS IRs not only when µ = 0 but when µ is
any finite number. In Poincare quantum theories, massless particles
are characterized such that for them helicity is the conserved quan-
tum number. For this reason, as shown in [13] (see also [2]), the AdS
massless particles are described by IRs where µ = 2 + s. Before the
discovery of neutrino oscillations, neutrinos were treated as massless
with the left-handed helicity and antineutrinos — as massless with
the right-handed helicity, but now they are treated as massive par-
ticles. The photon is usually treated as massless although, as noted
in [14], QED will not be broken if the photon has a small nonzero
mass. In contrast to the neutrino case, it is described not by IRs of
the purely Poincare algebra but by IRs of the Poincare algebra with
spatial reflections added (see e.g., [10]). For this reason, the photon is
the neutral particle because it coincides with its own antiparticle.

2.3 Problems with the definition of parti-

cles and antiparticles in dS quantum

theories

In this section we explain why the description of particles and antipar-
ticles in the case of dS symmetry considerably differs from that in the
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cases of Poincare and AdS symmetries described in the preceding sec-
tions.

The Casimir operator W = 1
2

∑
MabMab is now defined in the same

way as in the AdS case but, as noted after Eq. (1.2), η44 = −1 for
the dS case. By analogy with the AdS case, it follows from the Schur
lemma that the operator W has only one eigenvalue in every IR, one
can define the dS mass µ such that µ ≥ 0 and µ2 is the eigenvalue of
the operator W .

In his book [15] Mensky describes the construction of unitary IRs
of the dS group using the theory of induced representations (see e.g.,
[16, 17]). In [2] we describe how this construction can be used for
constructing self-adjoined IRs of the dS algebra. Here we explicitly
describe two implementations of such a construction: when the repre-
sentation space is a space of functions on two Lorentz hyperboloids and
when it is a space of functions on the three-dimensional unit sphere
in the four-dimensional space.

In the first case, the space of IR is the space of functions
(f1(v), f2(v)) on two Lorentz hyperboloids with the range in the space
of unitary IR of the group SU(2) with the spin s and such that∫

[||f1(v)||2 + ||f2(v)||2]dρ(v) <∞

where, as in Sec. 2.1, s is the spin operator and ||...|| is the norm in
the space of unitary IR of the group SU(2) with the spin s.

In this case, the explicit calculation [2] shows that the action of
representation operators on functions with the support on the first
hyperboloid is

J = l(v) + s, N = −iv0
∂

∂v
+

s× v

v0 + 1

B = µv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] +

s× v

v0 + 1

E = µv0 + iv0(v
∂

∂v
+

3

2
) (2.2)

where µ > 0 is a parameter which can be called the dS mass, J,
N and l(v) are given by the same expressions as in Sec. 2.1, B =
{M41,M42,M43} and E = M40. At the same time, the action on
functions with the support on the second hyperboloid is given by

J = l(v) + s, N = −iv0
∂

∂v
+

s× v

v0 + 1
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B = −µv − i[ ∂
∂v

+ v(v
∂

∂v
) +

3

2
v]− s× v

v0 + 1

E = −µv0 − iv0(v
∂

∂v
+

3

2
) (2.3)

Note that the expressions for the action of the Lorentz algebra oper-
ators on the first and second hyperboloids are the same and coincide
with the corresponding expressions for IRs of the Poincare algebra in
Eq. (2.1). At the same time, the expressions for the action of the
operators M4µ on the first and second hyperboloids differ by sign.

In the second case, the representation space is the space of func-
tions on the group SU(2). Its elements can be represented by the
points u = (u, u4) of the three-dimensional sphere S3 in the four-
dimensional space as u4 + iσu where σ are the Pauli matrices and
u4 = ±(1 − u2)1/2 for the upper and lower hemispheres, respectively.
Then the Hilbert space of the IR is the space of functions ϕ(u) on S3

with the range in the space of the unitary IR of the su(2) algebra with
the spin s and such that ∫

||ϕ(u)||2du <∞

where du is the SO(4) invariant volume element on S3. The explicit
calculation [2] shows that the operators have the form

J = l(u) + s, B = iu4
∂

∂u
− s, E = (µ+ 3i/2)u4 + iu4u

∂

∂u

N = −i[ ∂
∂u
− u(u

∂

∂u
)] + (µ+ 3i/2)u− u× s + u4s (2.4)

Since Eqs. (2.2) and (2.3) on one hand and Eq. (2.4) on the other
are the different implementations of the same representation, there
exists a unitary operator transforming functions f(v) into ϕ(u) and
operators (2.2) and (2.3) into operators (2.4). For example, in the
spinless case the operators (2.2) and (2.4) are related to each other by
a unitary transformation

ϕ(u) = exp(−iµlnv0)v3/20 f(v) (2.5)

where the relation between the points of the upper hemisphere and
the first hyperboloid is u = v/v0 and u4 = (1 − u2)1/2. The relation
between the points of the lower hemisphere and the second hyperboloid
is u = −v/v0 and u4 = −(1− u2)1/2.
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The equator of S3 where u4 = 0 has measure zero with respect
to the upper and lower hemispheres. For this reason one might think
that it is of no interest for describing particles in dS theory. Never-
theless, while none of the components of u has the magnitude greater
than unity, the points of the equator in terms of velocities is character-
ized by the condition that |v| is infinitely large and therefore standard
Poincare momentum p = mv is infinitely large too. This poses a ques-
tion whether p always has a physical meaning. From mathematical
point of view, Eq. (2.4) might seem more convenient than Eqs. (2.2)
and (2.3) since S3 is compact and there is no need to break it into
the upper and lower hemispheres. However, Eqs. (2.2) and (2.3) are
convenient for investigating Poincare approximation while the expres-
sions (2.4) are not convenient for this purpose because the Lorentz
boost operators N in them depend on µ.

Indeed, if we define

E = P 0 = E/R, P = B/R, m = µ/R (2.6)

then in the formal limit when R → ∞, µ → ∞ but E, P and m
remain finite, Eqs. (2.2) and (2.3) become Eq. (2.1) for positive and
negative energy IRs of the Poincare algebra, respectively. Therefore,
dS symmetry is broken in the formal limit R→∞ because one IR of
the dS algebra splits into two IRs of the Poincare algebra with positive
and negative energies and with equal masses.

Since the number of states in dS IRs is twice as big as the number
of states in IRs of the Poincare algebra, one might think that each
IR describes a particle and its antiparticle simultaneously. But this is
not true even from the fact that when we talk about a particle and
its antiparticle, we mean that there are two different IRs, but in this
case there is only one IR. In addition, the question of what is the
mass difference between a particle and its antiparticle if R is finite
has no physical meaning because, according to the Schur lemma, the
operator W has only one eigenvalue in this IR and all states have the
same mass µ. Another argument that this is not true is as follows.

Let us call states with the support of their wave functions on the
first hyperboloid or on the northern hemisphere as particles and states
with the support on the second hyperboloid or on the southern hemi-
sphere as their antiparticles. The physical meaning of such definitions
is problematic since there is no guaranty that the energy of particles is
always positive and the energy of antiparticles is always negative. Nev-
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ertheless, even with such a definition, states which are superpositions
of a particle and its antiparticle obviously belong to the representation
space under consideration, i.e., they are not prohibited. However, this
contradicts the superselection rule that the wave function cannot be
a superposition of states with opposite electric charges, baryon and
lepton quantum numbers etc. Therefore, in the dS case, there are no
superselection rules which prohibit superpositions of states with op-
posite electric charges, baryon quantum numbers etc. In addition, in
this case it is not possible to define the concept of neutral particles,
i.e., particles which coincide with their antiparticles (e.g., the photon).
This question will be discussed in Chap. 4.

As noted in Sec. 1.2 and shown in the discussion of Eq. (2.6),
dS symmetry is more general than Poincare one, and the latter can
be treated as a special degenerate case of the former in the formal
limit R → ∞. This means that, with any desired accuracy, any phe-
nomenon described in the framework of Poincare symmetry can be
also described in the framework of dS symmetry if R is chosen to be
sufficiently large, but there also exist phenomena for explanation of
which it is important that R is finite and not infinitely large (see [2]).

The fact that dS symmetry is higher than Poincare one is clear
even from the fact that, in the framework of the latter symmetry, it is
not possible to describe states which are superpositions of states on the
upper and lower hemispheres. Therefore, breaking one dS IR into two
independent IRs defined on the northern and southern hemispheres
obviously breaks the initial symmetry of the problem. This fact is
in agreement with the Dyson observation (mentioned above) that dS
group is more symmetric than Poincare one.

When R → ∞, standard concepts of particle-antiparticle, electric
charge and baryon and lepton quantum numbers are restored, i.e.,
in this limit superpositions of particle and antiparticle states become
prohibited according to the superselection rules. Therefore, those con-
cepts have a rigorous physical meaning only as a result of symmetry
breaking at R → ∞, but if R is finite they can be only good approxi-
mations when R is rather large.

The observable equality of masses of particles and their correspond-
ing antiparticles can be now explained as a consequence of the fact that
observable properties of elementary particles can be described not by
exact Poincare symmetry but by dS symmetry with a very large but
finite value of R. In this approximation, for combining a particle and
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its antiparticle into one object, there in no need to assume locality
and involve local field functions because a particle and its antiparti-
cle already belong to the same IR of the dS algebra (compare with
the above remark about the isotopic symmetry in the proton-neutron
system). As noted above, in this approximation it is not correct to
pose the question about the mass difference between a particle and its
antiparticle because they have the same mass µ. However, it is correct
to pose the following problem.

When R is finite but very large, the concepts of electric charge
and baryon number are not precise, but make sense with very high
accuracy. Let us assume that our experiment shows that there are
particles with electric charge e and −e. In the formal limit R → ∞
there can be no particles which are superpositions of states with the
charges e and −e. However, in the approximation when R is very
large but finite and the concept of electric charge is meaningful with
very high accuracy, such superpositions are possible. In that case, if in
some experiment we observe protons then with a very small probability
we can observe antiprotons. For example, if in some experiment we
observe elastic scattering of protons on a neutral target T , p + T →
p + T then with a very small probability we will observe the process
p + T → p̄ + T . With the current value of R, the probability of such
a process is negligible, but in the early stages of the universe it can
be noticeable. But the calculation of the probability of such a process
can only be carried out when a particle theory based on dS symmetry
rather than Poincare symmetry, is constructed.

2.4 dS vs. AdS and baryon asymmetry

of the universe problem

In this chapter we have discussed how the concepts of particles
and antiparticles should be defined in the cases of Poincare, AdS and
dS symmetries. In the first two cases, the situations are similar: IRs
where the energies are ≥ 0 are treated as particles, and IRs where the
energies are ≤ 0 are treated as antiparticles. Then a problem arises
how to prove that the masses of a particle and the corresponding
antiparticle are the same. As noted in Secs. 2.1 and 2.2, without
involving local covariant equations there is no way to conclude whether
it is the case. Since the concept of locality is not formulated in the
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framework of (H,O,S), QFT does not give a rigorous proof that the
masses of a particle and the corresponding antiparticle are the same.

As described in Sec. 2.3, in the case of dS symmetry, the approach
to the concept of particle-antiparticle is radically different from the
approaches in the cases of Poincare and AdS symmetries. Here, the
fundamental objects are not particles and antiparticles, but objects
described by self-adjoined IRs of the dS algebra. One might ask why,
then, experimental data in particle physics give the impression that
particles and antiparticles are fundamental. As explained in Sec. 2.3,
the matter is that, at this stage of the universe, the contraction pa-
rameter R from the dS to Poincare algebra is very large and, in the
formal limit R → ∞, one IR of the dS algebra splits into two IRs
of the Poincare algebra corresponding to a particle and its antipar-
ticle with the same masses. In this case, for proving the equality of
masses there is no need to involve local covariant fields and the proof
is given fully in the framework of (H,O,S). As noted in Sec. 1.1, in
the spirit of the Dirac equation, there should not be separate particles
the electron and positron, but there should be one particle combining
them. In the case of dS symmetry, this idea is implemented exactly
in this way. It has been also noted that in this case there are no con-
servation laws for additive quantum numbers: from the experiment it
seems that such conservation laws take place, but in fact, these laws
are only approximate because, at the present stage of the universe the
parameter R is very large. Thus, we can conclude that dS symmetry
is more fundamental than Poincare and AdS symmetries.

We now discuss the dS vs. AdS problem from the point of view
whether standard gravity can be obtained in the framework of a free
theory. In standard nonrelativistic approximation, gravity is charac-
terized by the term −Gm1m2/r in the mean value of the mass oper-
ator. Here m1 and m2 are the particle masses and r is the distance
between the particles. Since the kinetic energy is always positive,
the free nonrelativistic mass operator is positive definite and therefore
there is no way to obtain gravity in the framework of a free theory.
Analogously, in Poincare invariant theory, the spectrum of the free
two-body mass operator belongs to the interval [m1 + m2,∞) while
the existence of gravity necessarily requires that the spectrum should
contain values less than m1 +m2.

As explained in Sec. 2.2, in theories where the symmetry algebra
is the AdS algebra, for positive energy IRs, the AdS Hamiltonian
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has the spectrum in the interval [µ,∞) and µ > 0 has the meaning
of the mass. Therefore the situation is pretty much analogous to
that in Poincare invariant theories. In particular, the free two-body
mass operator again has the spectrum in the interval [µ1 +µ2,∞) and
therefore there is no way to reproduce gravitational effects in the free
AdS invariant theory.

In contrast to the situation in Poincare and AdS invariant theories,
the free mass operator in dS theory is not bounded below by the value
of µ1 + µ2. The discussion in Sec. 2.3 shows that this property by no
means implies that the theory is unphysical. In the dS case, there is
no law prohibiting that in the nonrelativistic approximation, the mean
value of the mass operator contains the term −Gm1m2/r. Therefore
if one has a choice between Poincare, AdS and dS symmetries then
the only chance to describe gravity in a free theory is to choose dS
symmetry, and, as discussed in [2], a possible nature of gravity is
that gravity is a kinematical effect in a quantum theory based not on
complex numbers but on a finite ring or field. This is an additional
argument in favor of dS vs. AdS.

We now apply this conclusion to the known problem of baryon
asymmetry of the universe (BAU). This problem is formulated as fol-
lows. According to modern particle and cosmological theories, the
numbers of baryons and antibaryons in the early stages of the uni-
verse were the same. Then, since the baryon number is the conserved
quantum number, those numbers should be the same at the present
stage. However, at this stage, the number of baryons is much greater
than the number of antibaryons.

However, as noted above, it seems to us that the baryon quantum
number is conserved because at the present stage of the evolution of
the universe, the value of R is enormous. As noted in Sec. 1.2, it is
reasonable to expect that R changes over time, and as noted in Sec.
3.3, in semiclassical approximation, R coincides with the radius of the
universe. As noted in Sec. 2.3, even if R is very large but finite then
there is a non-zero probability of transitions particle↔antiparticle.
But, according to cosmological theories, at early stages of the universe,
R was much less that now. At such values of R, the very concepts
of particles, antiparticles and baryon number do not have a physical
meaning. So, the statement that at early stages of the universe the
numbers of baryons and antibaryons were the same, also does not have
a physical meaning, and, as a consequence, the BAU problem does not
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arise.
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Chapter 3

Solving cosmological
constant problem

3.1 Introduction

At the present stage of the universe (when semiclassical approximation
is valid), in the phenomenon of cosmological acceleration (PCA), only
nonrelativistic macroscopic bodies are involved, and one might think
that here there is no need to involve quantum theory. However, ideally,
the results for every classical (i.e., non-quantum) problem should be
obtained from quantum theory in semiclassical approximation. We
will see that, considering PCA from the point of view of quantum
theory sheds a new light on understanding this problem.

In PCA, it is assumed that the bodies are located at large (cos-
mological) distances from each other and sizes of the bodies are much
less than distances between them. Therefore, interactions between the
bodies can be neglected and, from the formal point of view, the de-
scription of our system is the same as the description of N free spinless
elementary particles.

However, in the literature, PCA is usually considered in the frame-
work of dark energy and other exotic concepts. In Sec. 3.2 we argue
that such considerations are not based on rigorous physical principles.
In Sec. 1.2 we have explained how symmetry should be defined at the
quantum level, and in Sec. 3.3 we describe PCA in the framework of
our approach.
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3.2 History of dark energy

This history is well-known. Immediately after the creation of GR,
Einstein believed that, since, in his opinion, the universe is stationary,
the cosmological constant Λ in his equations must be non-zero, and
this point of view has been described in his paper [18] written in 1917.
On the other hand, in 1922, Friedman found solutions of equations
of GR with Λ = 0 to provide theoretical evidence that the universe
is expanding [19]. The author of [20] states that Lundmark was the
first person to find observational evidence for expansion in 1924 —
three years before Lemâıtre and five years before Hubble, but, for
some reasons, Lundmark’s research was not adopted and his paper
was not published. In 1927, Lemâıtre independently reached a simi-
lar conclusion to Friedman on a theoretical basis, and also presented
observational evidence (based on the Doppler effect) for a linear re-
lationship between distance to galaxies and their recessional velocity
[21]. In paper [22] written in 1929, Hubble described his results which
observationally confirmed Lundmark’s and Lemâıtre’s findings.

According to Gamow’s memories, after Hubble showed Einstein the
results of observations at the Mount Wilson observatory, Einstein said
that introducing Λ 6= 0 was the biggest blunder of his life. After that,
the statement that Λ must be zero was advocated even in textbooks.

The explanation was that, according to the philosophy of GR,
matter creates a curvature of space-time, so when matter is absent,
there should be no curvature, i.e., space-time background should be
the flat Minkowski space. That is why when in 1998 it was realized
that the data on supernovae could be described only with Λ 6= 0,
the impression was that it was a shock of something fundamental.
However, the terms with Λ in the Einstein equations have been moved
from the left-hand side to the right-hand one, it was declared that
in fact Λ = 0, but the impression that Λ 6= 0 was the manifestation
of a hypothetical field which, depending on the model, was called
dark energy or quintessence. In spite of the fact that, as noted in
wide publications (see e.g., [23] and references therein), their physical
nature remains a mystery, the most publications on PCA involve those
concepts.

Several authors criticized this approach from the following consid-
erations. GR without the contribution of Λ has been confirmed with
a high accuracy in experiments in the Solar System. If Λ is as small
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as it has been observed, it can have a significant effect only at cosmo-
logical distances while for experiments in the Solar System, the role
of such a small value is negligible. The authors of [24] titled ”Why
All These Prejudices Against a Constant?” note that it is not clear
why we should think that only a special case Λ = 0 is allowed. If
we accept the theory containing the gravitational constant G which is
taken from outside, then why can’t we accept a theory containing two
independent constants?

Let us note that currently there is no physical theory which works
under all conditions. For example, it is not correct to extrapolate
nonrelativistic theory to cases when speeds are comparable to c and
to extrapolate classical physics for describing energy levels of the hy-
drogen atom. GR is a successful non-quantum theory for describing
macroscopic phenomena where large masses are present, but extrapo-
lation of GR to the case when matter disappears is not physical. One
of the principles of physics is that a definition of a physical quantity
is a description of how this quantity should be measured. As noted
in Sec. 2.1, the concepts of space and its curvature are purely math-
ematical. Their aim is to describe the motion of real bodies. But
the concepts of empty space and its curvature should not be used in
physics because nothing can be measured in a space which exists only
in our imagination. Indeed, in the limit of GR when matter disap-
pears, space remains and has a curvature (zero curvature when Λ = 0,
positive curvature when Λ > 0 and negative curvature when Λ < 0)
while, since space is only a mathematical concept for describing mat-
ter, a reasonable approach should be such that in this limit space
should disappear too.

A common principle of physics is that, when a new phenomenon
is discovered, physicists should try to first explain it proceeding from
the existing science. Only if all such efforts fail, something exotic can
be involved. But for PCA, an opposite approach was adopted: exotic
explanations with dark energy or quintessence were accepted without
serious efforts to explain the data in the framework of existing science.

Although the physical nature of dark energy and quintessence re-
mains a mystery, there exists a wide literature where the authors pro-
pose QFT models of them. For example, as noted in [25], there are an
almost endless number of explanations for dark energy. While in most
publications, only proposals about future discovery of dark energy are
considered, the authors of [23] argue that dark energy has already been

28



discovered by the XENON1T collaboration. In June 2020, this col-
laboration reported an excess of electron recoils: 285 events, 53 more
than expected 232 with a statistical significance of 3.5σ. However, in
July 2022, a new analysis by the XENONnT collaboration discarded
the excess [26].

Several authors (see e.g., [25, 27, 28]) proposed approaches where
some quantum fields manifest themselves as dark energy at early stages
of the universe, and some of them are active today. However, as shown
in our publications and in the present paper, at least at the present
stage of the universe (when semiclassical approximation is valid), PCA
can be explained without uncertainties proceeding from universally
recognized results of physics and without involving models and/or
assumptions the validity of which has not been unambiguously proved
yet.

3.3 Explanation of cosmological acceler-

ation

Standard particle theories involve self-adjoined IRs of the Poincare
algebra. They are described even in textbooks and do not involve
Minkowski space. Therefore, when Poincare symmetry is replaced by
more general dS or AdS one, dS and AdS particle theories should
be based on self-adjoined IRs of the dS or AdS algebras. However,
physicists usually are not familiar with such IRs because they believe
that dS and AdS quantum theories necessarily involve quantum fields
on dS or AdS spaces, respectively.

The mathematical literature on unitary IRs of the dS group is
wide but there are only a few papers where such IRs are described
for physicists. For example, the excellent Mensky’s book [15] exists
only in Russian. At the same time, to the best of our knowledge,
self-adjoint IRs of the dS algebra have been described from different
considerations only in [29, 30, 31, 32], and some of those results have
been mentioned in Sec. 2.3. It has been noted that the space of an
IR consists of functions defined on two hyperboloids and in the limit
R → ∞ one IR of the dS algebra splits into two IRs of the Poincare
algebra with positive and negative energies.

As noted in Sec. 3.1, the results on IRs can be applied not only
to elementary particles but even to macroscopic bodies when it suf-
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fices to consider their motion as a whole. We will consider this case
and will consider the operators M4µ not only in Poincare approxima-
tion but taking into account dS corrections. If those corrections are
small, it suffices to consider only states with the support on the upper
hyperboloid and describe the representation operators by Eq. (2.2).

We define the quantities E, P, m by Eq. (2.6) and consider the
non-relativistic approximation when |v| � 1. If we wish to work with
units where the dimension of velocity is m/s, we should replace v by
v/c. If p = mv then it is clear from the expressions for B in Eq. (2.2)
that p becomes the real momentum P only in the limit R→∞.

The operators in Eq. (2.2) act in momentum representation and
at this stage, we have no spatial coordinates yet. For describing the
motion of particles in terms of spatial coordinates, we must define the
position operator. A question: is there a law defining this operator?
The postulate that the coordinate and momentum representations are
related by the Fourier transform was taken at the dawn of quantum
theory by analogy with classical electrodynamics, where the coordi-
nate and wave vector representations are related by this transform.
But the postulate has not been derived from anywhere, and there
is no experimental confirmation of the postulate beyond the nonrel-
ativistic semiclassical approximation. Heisenberg, Dirac, and others
argued in favor of this postulate but, for example, in the problem of
describing photons from distant stars, the connection between the co-
ordinate and momentum representations should be not through the
Fourier transform, but as shown in [2]. However, since, PAC involves
only nonrelativistic bodies then the position operator in momentum
representation can be defined as usual, i.e., as r = ih̄∂/∂p, and in
semiclassical approximation, we can treat p and r as usual vectors.

Then as follows from Eq. (2.2)

P = p +mcr/R, H = p2/2m+ cpr/R, N = −mr (3.1)

where H = E −mc2 is the classical nonrelativistic Hamiltonian. As
follows from these expressions

H(P, r) =
P2

2m
− mc2r2

2R2
(3.2)

Here the last term is the dS correction to the non-relativistic Hamilto-
nian. Now it follows from the Hamilton equations that even one free
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particle is moving with the acceleration

a = rc2/R2 =
1

3
c2Λr (3.3)

where a is the acceleration, r is the radius vector and Λ = 3/R2.
The observed quantities are not absolute but relative with respect

to a body that is chosen as the reference frame. We can take into
account that the representation describing a free N-body system is
the tensor product of the corresponding single-particle IRs. It means
that every N-body operator Mab is a sum of the corresponding single-
particle operators.

Consider a system of two free particles described by the variables
Pj and rj (j = 1, 2). Define standard nonrelativistic variables

P12 = P1 + P2, q12 = (m2P1 −m1P2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2), r12 = r1 − r2 (3.4)

Then explicit calculations (see e.g., Eq. (61) in [29], Eq. (17) in [31]
or Eq. (17) in [32]) give that the two-body mass is

M(q12, r12) = m1 +m2 +Hnr(r12,q12), Hnr(r,q) =
q2

2m12

− m12c
2r2

2R2

(3.5)
where Hnr is the internal two-body Hamiltonian and m12 is the re-
duced two-particle mass. Then, as a consequence of the Hamilton
equations, in semiclassical approximation, the relative acceleration is
again given by Eq. (3.3) but now a is the relative acceleration and r
is the relative radius vector.

From a formal point of view, such a calculation must be carried out
to confirm mathematically that here standard non-relativistic concepts
work since, from the point of view of these concepts, if, for example,
the acceleration of the first particle is a1 and of the second is a2, then
their relative acceleration equals a1 − a2.

The fact that the relative acceleration of noninteracting bodies is
not zero does not contradict the law of inertia, because this law is
valid only in the case of Galilei and Poincare symmetries, and in the
formal limit R → ∞, a becomes zero as it should be. Since c is
the contraction parameter for the transition from Poincare invariant
theory to Galilei invariant one, the results of the latter can be obtained
from the former in the formal limit c → ∞, and Galilei invariant
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theories do not contain c. Then one might ask why Eq. (3.3) contains
c although we assume that the bodies in PCA are nonrelativistic. The
matter is that Poincare invariant theories do not contain R but we
work in dS invariant theory and assume that, although c and R are
very large, they are not infinitely large, and the quantity c2/R2 in Eq.
(3.3) is finite.

As noted in Sec. 2.4, dS symmetry is more general than AdS one.
Formally, an analogous calculation using the results of Chap. 8 of [2]
on IRs of the AdS algebra gives that, in the AdS case, a = −rc2/R2,
i.e., we have attraction instead of repulsion. The experimental facts
that the bodies repel each other confirm that dS symmetry is indeed
more general than AdS one.

The relative accelerations given by Eq. (3.3) are the same as those
derived from GR if the curvature of dS space equals Λ = 3/R2, where
R is the radius of this space. However, the crucial difference between
our results and the results of GR is as follows. While in GR, R is the
radius of the dS space and can be arbitrary, as explained in detail in
Sec. 1.2, in quantum theory, R has nothing to do with the radius of
the dS space, it is the coefficient of proportionality between M4µ and
P µ, it is fundamental to the same extent as c and h̄, and a question
why R is as is does not arise. Therefore, our approach gives a
clear explanation why Λ is as is.

The fact that two free particles have a relative acceleration is
known for cosmologists who consider dS symmetry at the classical
level. This effect is called the dS antigravity. The term antigravity
in this context means that particles repulse rather than attract each
other. In the case of the dS antigravity, the relative acceleration of
two free particles is proportional (not inversely proportional!) to the
distance between them. This classical result (which in our approach
has been obtained without involving dS space and Riemannian ge-
ometry) is a special case of dS symmetry at the quantum level when
semiclassical approximation works with a good accuracy.

As follows from Eq. (3.3), the dS antigravity is not important for
local physics when r � R. At the same time, at cosmological dis-
tances the dS antigravity is much stronger than any other interaction
(gravitational, electromagnetic etc.). One can consider the quantum
two-body problem with the Hamiltonian Hnr given by Eq. (3.5). Then
it is obvious that the spectrum of the operator Hnr is purely continu-
ous and belongs to the interval (−∞,∞) (see also [29, 33] for details).
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This does not mean that the theory is unphysical since stationary
bound states in standard theory become quasistationary with a very
large lifetime if R is large.

In the literature it is often stated that quantum theory of gravity
should become GR in classical approximation. In Sec.1.1 we argue that
this is probably not the case because at the quantum level the concept
of space-time background does not have a physical meaning. Our
results for the cosmological acceleration obtained from semiclassical
approximation to quantum theory are compatible with GR but in our
approach, space-time background is absent from the very beginning.

In GR, the result (3.3) does not depend on how Λ is interpreted, as
the curvature of empty space or as the manifestation of dark energy.
However, in quantum theory, there is no freedom of interpretation.
Here R is the parameter of contraction from the dS Lie algebra to the
Poincare one, it has nothing to do with the radius of the background
space and with dark energy and it must be finite because dS symmetry
is more general than Poincare one.

3.4 Discussion

We have shown that, at the present stage of the universe (when semi-
classical approximation is valid), the phenomenon of cosmological ac-
celeration is simply a kinematical consequence of quantum theory in
semiclassical approximation, and this conclusion has been made with-
out involving models and/or assumptions the validity of which has not
been unambiguously proved yet.

The concept of the cosmological constant Λ has been originally
defined in GR which is the purely classical (i.e., not quantum) theory.
Here Λ is the curvature of space-time background which, as noted in
Secs. 1.1 and 2.1, is a purely classical concept. Our consideration does
not involve GR, and, as explained in Sec. 1.2, the contraction param-
eter R from dS invariant to Poincare invariant theory has nothing to
do with the radius of dS space.

However, in QFT, Λ is interpreted as vacuum energy density, and
the cosmological constant problem is described in a wide literature (see
e.g. [34] and references therein). Usually, this problem is considered
in the framework of Poincare invariant QFT of gravity on Minkowski
space. This theory contains only one phenomenological parameter —
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the gravitational constant G, and Λ is defined by the vacuum expec-
tation value of the energy-momentum tensor. The theory contains
strong divergencies which cannot be eliminated because the theory is
not renormalizable. The results can be made finite only with a choice
of the cutoff parameter. Since G is the only parameter in the theory,
the usual choice of the cutoff parameter in momentum space is h̄/lP
where lP is the Plank length. Then, if h̄ = c = 1, G has the dimension
length2 and Λ is of the order of 1/G. This value is approximately
by 122 orders of magnitude greater than the experimental one, and
this situation is called vacuum catastrophe. It is discussed in a wide
literature how the discrepancy with experiment can be reduced, but
the problem remains.

The approach to finding Λ in terms of G cannot be fundamental
for several reasons. First of all, as noted in Sec. 1.2, fundamental
dS and AdS quantum theories originally do not contain dimensional
parameters. The dimensional quantities (c, h̄, R) can be introduced
to those theories only as contraction parameters for transions from
more general theories to less general ones. QFT of gravity is based
on Poincare symmetry which is a special degenerate case of dS and
AdS symmetries in the formal limit R→∞. This theory contains G,
but it is not explained how G is related to contraction from dS and
AdS symmetries to Poincare symmetry. Also, as noted in Sec. 1.1,
in quantum theories involving space-time background the conditions
(H,O,S) are not met and such theories contain mathematical incon-
sistencies. The problem of constructing quantum theory of gravity is
one of the most fundamental problems in modern theory and the as-
sumption that this theory will be Poincare invariant QFT is not based
on rigorous physical principles.

In any case, as follows from the very problem statement
about the cosmological acceleration, Λ should not depend on
G. Indeed, as noted in Sec. 3.1, in this problem, it is assumed that
the bodies are located at large (cosmological) distances from each
other and sizes of the bodies are much less than distances between
them. Therefore, all interactions between the bodies (including grav-
itational ones) can be neglected and, from the formal point of view,
the description of our system is the same as the description of N free
spinless elementary particles.

As explained in detail in Sec. 1.2, at the quantum level, the param-
eter R is fundamental to the same extent as c and h̄, it has nothing
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to do with the relation between Minkowski and dS spaces and the
problem why R is as is does not arise by analogy with the problem
why c and h̄ are as are. As noted in Sec. 3.3, the results for cosmo-
logical acceleration in our approach and in GR are given by the same
expression (3.3) but the crucial difference between our approach and
GR is as follows. While in GR, R is the radius of the dS space and
can be arbitrary, in our approach, R is defined uniquely because it is
a parameter of contraction from the dS algebra to the Poincare one.
Therefore, our approach explains why the cosmological constant is as.

Therefore, at the present stage of the universe (when semiclassical
approximation is valid), the phenomenon of cosmological acceleration
has nothing to do with dark energy or other artificial reasons. This
phenomenon is an inevitable kinematical consequence of quantum
theory in semiclassical approximation and the vacuum catastrophe and
the problem of cosmological constant do not arise.

Since 1998, it has been confirmed in several experiments [35] that
Λ > 0, and Λ = 1.3 · 10−52/m2 with the accuracy 5%. Therefore, at
the current stage of the universe, R is of the order of 1026m. Since Λ
is very small and the evolution of the universe is the complex process,
cosmological repulsion does not appear to be the main effect determin-
ing this process, and other effects (e.g., gravity, microwave background
and cosmological nucleosynthesis) may play a much larger role.
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Chapter 4

Open problems

As noted by Dyson in his fundamental paper [6], nonrelativistic theory
is a special degenerate case of relativistic theory in the formal limit
c → ∞ and relativistic theory is a special degenerate case of dS and
AdS theories in the formal limit R → ∞ and, as shown in Sec. 2.4,
dS symmetry is more general than AdS one.

The paper [6] appeared in 1972, i.e., more than 50 years ago, and,
in view of Dyson’s results, a question arises why general particle the-
ories (QED, electroweak theory and QCD) are still based on Poincare
symmetry and not dS one. Probably physicists believe that, since,
at least at the present stage of the universe, R is much greater than
even sizes of stars, dS symmetry can play an important role only in
cosmology and there is no need to use it for description of elementary
particles.

We believe that this argument is not consistent because usually
more general theories shed a new light on standard concepts. It is
clear from the discussion in Sec. 2.4 that the construction of dS the-
ory will be based on considerably new concepts than the construction
of standard quantum theory because in dS theory the concepts of par-
ticles, antiparticles and additive quantum numbers (electric charge,
baryon quantum number and others) can be only approximate.

Another problem discussed in a wide literature is that supersym-
metric generalization exists in the AdS case but does not exist in the
dS one. It may be a reason why supersymmetry has not been discov-
ered yet.

In [2] we have proposed a criterion when theory A is more general
(fundamental) than theory B:
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Definition: Let theory A contain a finite nonzero parameter and
theory B be obtained from theory A in the formal limit when the param-
eter goes to zero or infinity. Suppose that with any desired accuracy
theory A can reproduce any result of theory B by choosing a value of
the parameter. On the contrary, when the limit is already taken then
one cannot return back to theory A and theory B cannot reproduce all
results of theory A. Then theory A is more general than theory B and
theory B is a special degenerate case of theory A.

As shown in [2], by using this Definition one can prove that: a)
nonrelativistic theory is a special degenerate case of relativistic theory
in the formal limit c→∞; b) classical theory is a special degenerate
case of quantum theory in the formal limit h̄→ 0; c) relativistic theory
is a special degenerate case of dS and AdS theories in the formal
limit R →∞; d) standard quantum theory (SQT) based on complex
numbers is a special degenerate case of finite quantum theory (FQT)
based on finite mathematics with a ring or field of characteristic p in
the formal limit p→∞.

As noted in Sec. 1.2, the properties a)-c) take place in SQT, and
below we will discuss the property d). As described in Secs. 2.2 and
2.3, in IRs of the AdS algebra, the energy spectrum of the energy
operator can be either positive or negative while in the dS case, the
spectrum necessarily contains energies of both signs. As explained in
Sec. 2.4, for this reason, the dS case is more physical than the AdS
one. We now explain that in the FQT analog of the AdS symmetry the
situation is analogous to that in the dS case of SQT. For definiteness,
we consider the case when p is odd.

By analogy with the construction of positive energy IRs in SQT,
in FQT we start the construction from the rest state, where the AdS
energy is positive and equals µ. Then we act on this state by raising
operators and gradually get states with higher and higher energies, i.e.,
µ+1, µ+2, .... However, in contrast to the situation in SQT, we cannot
obtain infinitely large numbers. When we reach the state with the
energy (p−1)/2, the next state has the energy (p−1)/2+1 = (p+1)/2
and, since the operations are modulo p, this value also can be denoted
as −(p− 1)/2 i.e., it may be called negative. When this procedure is
continued, one gets the energies −(p− 1)/2 + 1 = −(p− 3)/2,−(p−
3)/2 + 1 = −(p− 5)/2, ... and, as shown in [2], the procedure finishes
when the energy −µ is reached.

Therefore the spectrum of energies contains the values (µ, µ +
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1, ..., (p − 1)/2) and (−µ,−(µ + 1), ...,−(p − 1)/2) and in the formal
limit p → ∞, this IR splits into two IRs of the AdS algebra in SQT
for a particle with the energies µ, µ + 1, µ + 2, ...∞ and antiparticle
with the energies −µ,−(µ + 1),−(µ + 2), ... − ∞ and both of them
have the same mass µ. We conclude that in FQT, all IRs necessarily
contain states with both, positive and negative energies and the mass
of a particle automatically equals the mass of the corresponding an-
tiparticle. This is an example when FQT can solve a problem which
standard quantum AdS theory cannot. By analogy with the situation
in the standard dS case, for combining a particle and its antiparticle
together, there is no need to involve additional coordinate fields be-
cause a particle and its antiparticle are already combined in the same
IR.

Since the AdS case in FQT satisfies all necessary physical condi-
tions, it is reasonable to investigate whether this case has a super-
symmetric generalization. We first note that representations of the
standard Poincare superalgebra are described by 14 operators. Ten of
them are the representation operators of the Poincare algebra—four
momentum operators and six operators of the Lorentz algebra, and
in addition, there are four fermionic operators. The anticommutators
of the fermionic operators are linear combinations of the Lorentz al-
gebra operators, the commutators of the fermionic operators with the
Lorentz algebra operators are linear combinations of the fermionic op-
erators and the fermionic operators commute with the momentum op-
erators. However, the latter are not bilinear combinations of fermionic
operators.

From the formal point of view, representations of the AdS super-
algebra osp(1,4) are also described by 14 operators — ten represen-
tation operators of the so(2,3) algebra and four fermionic operators.
There are three types of relations: the operators of the so(2,3) alge-
bra commute with each other as in Eqs. (1.2), anticommutators of
the fermionic operators are linear combinations of the so(2,3) opera-
tors and commutators of the latter with the fermionic operators are
their linear combinations. However, representations of the osp(1,4)
superalgebra can be described exclusively in terms of the fermionic
operators. The matter is that anticommutators of four operators form
ten independent linear combinations. Therefore, ten bosonic opera-
tors can be expressed in terms of fermionic ones. This is not the case
for the Poincare superalgebra since it is obtained from the so(2,3) one
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by contraction. One can say that the representations of the osp(1,4)
superalgebra is an implementation of the idea that supersymmetry is
the extraction of the square root from the usual symmetry (by analogy
with the treatment of the Dirac equation as a square root from the
Klein-Gordon one). From the point of view of the osp(1,4) supersym-
metry, only four fermionic operators are fundamental, in contrast to
the case when in dS and AdS symmetries there are ten fundamental
operators.

As noted in Sec. 2.3, in the approach when a particle and its
antiparticle belong to the same IR, it is not possible to define the
concept of neutral particles. For example, a problem arises whether
the photon is the elementary particle. In Standard Model (based on
Poincare invariance) only massless particles are treated as elementary.
However, as shown in the seminal paper by Flato and Fronsdal [36]
(see also [37]), in standard AdS theory, each massless IR can be con-
structed from the tensor product of two singleton IRs and, as noted in
[2], this property takes place also in FQT. The concept of singletons
has been proposed by Dirac in his paper [38] titled ”A Remarkable
Representation of the 3 + 2 de Sitter group”, and, as discussed in [2],
in FQT this concept is even more remarkable than in SQT. As noted
in Sec. 2.2, even the fact that the AdS mass of the electron is of the
order of 1039 poses a problem whether the known elementary particles
are indeed elementary. In [2] we discussed a possibility that only Dirac
singletons are true elementary particles.

As explained in [2], in FQT, physical quantities can be only finite,
divergences cannot exist in principle, and the concepts of particles,
antiparticles, probability and additive quantum numbers can be only
approximate if p is very large. The construction of FQT is one of the
most fundamental (if not the most fundamental) problems of quantum
theory.

The above discussion indicates that fundamental quantum theory
has a very long way ahead (in agreement with Weinberg’s opinion [39]
that a new theory may be centuries away).
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