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Abstract

Following the results of our publications, we argue that fundamental
objects in particle theory are not elementary particles and antiparti-
cles but objects described by irreducible representations (IRs) of the
de Sitter (dS) algebra. One might ask why, then, experimental data
give the impression that particles and antiparticles are fundamental
and there are conserved additive quantum numbers (electric charge,
baryon quantum number and others). The matter is that, at the
present stage of the universe, the contraction parameter R from the
dS to Poincare algebra is very large and, in the formal limit R→∞,
one IR of the dS algebra splits into two IRs of the Poincare algebra
corresponding to a particle and its antiparticle with the same masses.
The problem why the quantities (c, h̄, R) are as are does not arise
because they are contraction parameters for transitions from more
general Lie algebras to less general ones. Then the baryon asymmetry
of the universe problem does not arise and the phenomenon of cos-
mological acceleration (PCA) is described without uncertainties as an
inevitable kinematical consequence of quantum theory in semiclassi-
cal approximation. In particular, it is not necessary to involve dark
energy the physical meaning of which is a mystery. In our approach,
background space and its geometry (metric and connection) are not
used, R has nothing to do with the radius of dS space, but, in semiclas-
sical approximation, the results for PCA are the same as in General
Relativity if Λ = 3/R2, i.e., Λ > 0 and there is no freedom in choosing
the value of Λ.
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Chapter 1

General principles of
quantum theory

1.1 Problems with the physical interpre-

tation of the Dirac equation

Modern fundamental particle theories (QED, QCD and electroweak
theory) are based on the concept of particle-antiparticle. Historically,
this concept has arisen as a consequence of the fact that the Dirac
equation has solutions with both, positive and negative energies. The
solutions with positive energies are associated with particles, and the
solutions with negative energies - with corresponding antiparticles.
And when the positron was found, it was treated as a great success of
the Dirac equation. Another great success is that in the approximation
(v/c)2 the Dirac equation reproduces the fine structure of the hydrogen
atom with a very high accuracy.

However, now we know that there are problems with the physical
interpretation of the Dirac equation. For example, in higher order ap-
proximations, the probabilistic interpretation of non-quantized Dirac
spinors is lost because the coordinate description implies that they
are described by representations induced from non-unitary represen-
tations of the Lorenz algebra. Moreover, this problem exists not only
for Dirac spinors but for any functions described by relativistic covari-
ant equations (Klein-Gordon, Dirac, Rarita-Schwinger and others). In
general, as shown by Pauli [1], in the case of fields with an integer spin
there is no invariant subspace where the spectrum of the charge oper-
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ator has a definite sign while in the case of fields with a half-integer
spin there is no invariant subspace where the spectrum of the energy
operator has a definite sign. It is also known that the description of
the electron in the external field by the Dirac spinor is not accurate
(e.g., it does not take into account the Lamb shift).

Another fundamental problem in the interpretation of the Dirac
equation is as follows. One of the key principles of quantum theory
is the principle of superposition. This principle states that if ψ1 and
ψ2 are possible states of a physical system then c1ψ1 + c2ψ2, when c1
and c2 are complex coefficients, also is a possible state. The Dirac
equation is the linear equation, and, if ψ1(x) and ψ2(x) are solutions
of the equation, then c1ψ1(x)+c2ψ2(x) also is a solution, in agreement
with the principle of superposition. In the spirit of the Dirac equation,
there should be no separate particles the electron and the positron.
It should be only one particle which can be called electron-positron
such that electron states are the states of this particle with positive
energies, positron states are the states of this particle with negative
energies and, in general, the superposition of electron and positron
states should not be prohibited. However, in view of charge conserva-
tion, baryon number conservation and lepton numbers conservation,
the superposition of a particle and its antiparticle is prohibited.

Modern particle theories are based on Poincare (relativistic) sym-
metry. In these theories, elementary particles are described by irre-
ducible representations (IRs) of the Poincare algebra. Such IRs have a
property that energies in them can be either strictly positive or strictly
negative but there are no IRs where energies have different signs. The
objects described by positive-energy IRs are called particles, and ob-
jects described by negative-energy IRs are called antiparticles, and
energies of both, particles and antiparticles become positive after sec-
ond quantization. In this situation, there are no elementary particles
which are superpositions of a particle and its antiparticle, and as ex-
plained above, this is not in the spirit of the Dirac equation.

In particle theories, only quantized Dirac spinors ψ(x) are used.
Here, by analogy with non-quantized spinors, x is treated as a point
in Minkowski space. However, ψ(x) is an operator in the Fock space
for an infinite number of particles. Each particle in the Fock space
can be described by its own coordinates (in the approximation when
the position operator exists — see e.g., [2]). In view of this fact,
the following natural question arises: why do we need an
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extra coordinate x which does not have any physical mean-
ing because it does not belong to any particle and so is not
measurable? Moreover, I can ask the following seditious question:
in quantum theory, do we need Minkowski space at all?

When there are many bodies, the impression may arise that they
are in some space but this is only an impression. In fact, a back-
ground space-time (e.g., Minkowski space) is only a mathematical
concept needed in classical theory. For illustration, consider quantum
electromagnetic theory. Here we deal with electrons, positrons and
photons. As noted above, in the approximation when the position
operator exists, each particle can be described by its own coordinates.
The coordinates of the background Minkowski space do not have a
physical meaning because they do not refer to any particle and there-
fore are not measurable. However, in classical electrodynamics we do
not consider electrons, positrons and photons. Here the concepts of
the electric and magnetic fields (E(x),B(x)) have the meaning of the
mean contribution of all particles in the point x of Minkowski space.

This situation is analogous to that in statistical physics. Here we
do not consider each particle separately but describe the mean contri-
bution of all particles by temperature, pressure etc. Those quantities
have a physical meaning not for each separate particle but for ensem-
bles of many particles.

A justification of the presence of x in quantized Dirac spinors ψ(x)
is that in quantum field theories (QFT) the Lagrangian density de-
pends on the four-vector x, but this is only the integration parameter
which is used in the intermediate stage. The goal of the theory is to
construct the S-matrix, and, when the theory is already constructed,
one can forget about Minkowski space because no physical quantity
depends on x. This is in the spirit of the Heisenberg S-matrix program
according to which in relativistic quantum theory it is possible to de-
scribe only transitions of states from the infinite past when t → −∞
to the distant future when t→∞.

The fact that the theory gives the S-matrix in momentum represen-
tation does not mean that the coordinate description is excluded. In
typical situations, the position operator in momentum representation
exists not only in the nonrelativistic case but in the relativistic case
as well. In the latter case, it is known, for example, as the Newton-
Wigner position operator [3] or its modifications. However, as pointed
out even in textbooks on quantum theory, the coordinate description
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of elementary particles can work only in some approximations. In
particular, even in most favorable scenarios, for a massive particle
with the mass m its coordinate cannot be measured with the accuracy
better than the particle Compton wave length h̄/mc.

1.2 Symmetry at quantum level

In the literature, symmetry in QFT is usually explained as follows.
Since Poincare group is the group of motions of Minkowski space, the
system under consideration should be described by unitary represen-
tations of this group. This approach is in the spirit of the Erlangen
Program proposed by Felix Klein in 1872 when quantum theory did
not yet exist.

However, as noted in Sec. 1.1, background space is only a math-
ematical concept: in quantum theory, each physical quantity should
be described by an operator but there are no operators for the co-
ordinates of background space. There is no law that every physical
theory must contain a background space. For example, it is not used in
nonrelativistic quantum mechanics and in irreducible representations
(IRs) describing elementary particles. In particle theory, transforma-
tions from the Poincare group are not used because, according to the
Heisenberg S-matrix program, it is possible to describe only transi-
tions of states from the infinite past when t → −∞ to the distant
future when t → +∞. In this theory, systems are described by ob-
servable physical quantities — momenta and angular momenta. So,
symmetry at the quantum level is defined not by a background space
and its group of motions but by a representation of a Lie algebra A
by self-adjoint operators (see [2, 4] for more details).

Then each elementary particle is described by an IR of A and a
system of N noninteracting particles is described by the tensor prod-
uct of the corresponding IRs. This implies that, for the system as a
whole, each momentum operator is a sum of the corresponding single-
particle momenta, each angular momentum operator is a sum of the
corresponding single-particle angular momenta, and this is the most
complete possible description of this system. In particular, nonrela-
tivistic symmetry implies that A is the Galilei algebra, relativistic
symmetry implies that A is the Poincare algebra, de Sitter (dS) sym-
metry implies that A is the dS algebra so(1,4) and anti-de Sitter (AdS)
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symmetry implies that A is the AdS algebra so(2,3).
In his famous paper ”Missed Opportunities” [5] Dyson notes that:

• a) Relativistic quantum theories are more general (fundamental)
than nonrelativistic quantum theories even from pure mathemat-
ical considerations because Poincare group is more symmetric
than Galilei one: the latter can be obtained from the former by
contraction c→∞.

• b) dS and AdS quantum theories are more general (fundamental)
than relativistic quantum theories even from pure mathematical
considerations because dS and AdS groups are more symmetric
than Poincare one: the latter can be obtained from the former by
contraction R→∞ where R is a parameter with the dimension
length, and the meaning of this parameter will be explained
below.

• c) At the same time, since dS and AdS groups are semisim-
ple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

As noted above, symmetry at the quantum level should be de-
fined by a Lie algebra, and in [2], the statements a)-c) have been
reformulated in terms of the corresponding Lie algebras. It has also
been shown that the fact that quantum theory is more general (fun-
damental) than classical theory follows even from pure mathematical
considerations because formally the classical symmetry algebra can
be obtained from the symmetry algebra in quantum theory by con-
traction h̄ → 0. For these reasons, the most general description in
terms of ten-dimensional Lie algebras should be carried out in terms
of quantum dS or AdS symmetry. However, as explained below, in
particle theory, dS symmetry is more general than AdS one.

The definition of those symmetries is as follows. If Mab (a, b =
0, 1, 2, 3, 4, Mab = −M ba) are the angular momentum operators for
the system under consideration, they should satisfy the commutation
relations:

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1.1)

where ηab = 0 if a 6= b, η00 = −η11 = −η22 = −η33 = 1 and η44 = ∓1
for the dS and AdS symmetries, respectively.
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Although the dS and AdS groups are the groups of motions of dS
and AdS spaces, respectively, the description in terms of relations (1.1)
does not involve those groups and spaces at all, and those relations can
be treated as a definition of dS and AdS symmetries at the quantum
level (see the discussion in [2, 4]). In QFT, interacting particles are
described by field functions defined on Minkowski, dS and AdS spaces.
However, since we consider only noninteracting bodies and describe
them in terms of IRs, at this level we don’t need these fields and
spaces.

The procedure of contraction from dS or AdS symmetry to Poincare
one is defined as follows. If we define the momentum operators P µ as
P µ = M4µ/R (µ = 0, 1, 2, 3) then in the formal limit when R → ∞,
M4µ → ∞ but the quantities P µ are finite, Eqs. (1.1) become the
commutation relations for the Poincare algebra (see e.g., [2, 4]). Here
R is a parameter which has nothing to do with the dS and AdS spaces.
As seen from Eqs. (1.1), quantum dS and AdS theories do not in-
volve the dimensionful parameters (c, h̄, R) at all because (kg,m, s)
are meaningful only at the macroscopic level.

In particle theories, the quantities c and h̄ typically are not involved
and it is said that the units c = h̄ = 1 are used. Physicists usually
understand that physics cannot (and should not) derive that c ≈ 3 ·
108m/s and h̄ ≈ 1.054·10−34kg·m2/s and those values are as are simply
because, mainly due to historical reasons, people want to describe
velocities in m/s and angular momenta in kg · m2/s. At the same
time, physicists usually believe that physics should derive the value of
Λ and that the solution to the dark energy problem depends on this
value.

At the classical level, Λ is the curvature of the background space
and equals ±3/R2 for the dS and AdS spaces, respectively, where R
is the radius of those spaces. As noted below, in semiclassical approx-
imation, R is the same as the parameter R in quantum theory where
this parameter is only the coefficient of proportionality between M4µ

and P µ. As follows from the above discussion, at the level of contrac-
tion parameters, the quantity R is fundamental to the same extents
as c and h̄. Here the question why R is as is does not arise simply
because the answer is: because people want to describe distances in
meters. There is no guaranty that the values of (c, h̄, R) in (kg,m, s)
will be the same during the whole history of the universe.
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Chapter 2

Solving particle-antiparticle
problem

2.1 Concepts of particles and antiparti-

cles in standard quantum theory

Standard particle theories are based on Poincare symmetry, and here
the concepts of particles and antiparticles are considered from the
point of view of two approaches which we call ApproachA and Ap-
proachB.

ApproachA is based on the fact that in irreducible representations
(IRs) of the Poincare algebra by self-adjoined operators in Hilbert
spaces, the energy spectrum can be either ≥ 0 or ≤ 0, and there are
no IRs where the energy spectrum contains both, positive and negative
energies. The objects described by the corresponding IRs are called
elementary particles and antiparticles, respectively.

When we consider a system consisting of particles and antiparti-
cles, the energy signs for both of them should be the same. Indeed,
consider, for example a system of two particles with the same mass,
and let their momenta p1 and p2 be such that p1 + p2 = 0. Then,
if the energy of particle 1 is positive, and the energy of particle 2 is
negative then the total four-momentum of the system would be zero
what contradicts experimental data. By convention, the energy sign
of all particles and antiparticles in question is chosen to be positive.
For this purpose, the procedure of second quantization is defined such
that after the second quantization the energies of antiparticles become
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positive. Then the mass of any particle is the minimum value of its
energy in the case when the momentum equals zero.

Suppose now that we have two particles such that particle 1 has the
mass m1, spin s1 and is characterized by some additive quantum num-
bers (e.g., electric charge, baryon quantum number etc.), and particle
2 has the mass m2, spin s2 = s1 and all additive quantum numbers
characterizing particle 2 equal the corresponding quantum numbers
for particle 1 with the opposite sign. A question arises when particle
2 can be treated as an antiparticle for particle 1. Is it necessary that
m1 should be exactly equal m2 or m1 and m2 can slightly differ each
other? In particular, can we guarantee that the mass of the positron
exactly equals the mass of the electron, the mass of the proton exactly
equals the mass of the antiproton etc.? If we work only in the frame-
work of ApproachA then we cannot answer this question because here,
IRs for particles 1 and 2 are independent on each other and there are
no limitations on the relation between m1 and m2.

On the other hand, in ApproachB, m1 = m2 but, as explained
below, this is achived at the expense of losing probabilistic interpre-
tation. Here, a particle and its antiparticle are elements of the same
field state ψ(x) with positive and negative energies, respectively, where
x is a vector from Minkowski space and ψ(x) satisfies a relativistic
covariant field equation (Dirac, Clein-Gordon, Rarita-Schwinger and
others).

As noted in Sec. 1.1, historically, the particle-antiparticle concept
has arisen as a consequence of the fact that the Dirac equation has
solutions with both, positive and negative energies. In this section, we
have also described problems with the physical interpretation of this
equation, and noted that similar problems exist in the interpretation
of any local relativistic covariant equation.

A usual phrase in the literature is that in QFT, the fact that m1 =
m2 follows from the CPT theorem which is a consequence of locality
since, by construction, states described by local covariant equations
are direct sums of IRs for a particle and its antiparticle with equal
masses. However, as noted above, since at the quantum level there
are problems with the physical interpretation of covariant fields and
the quantity x, the very meaning of locality at the quantum level is
problematic.

Also, a question arises what happens if locality is only an approx-
imation: in that case the equality of masses is exact or approximate?
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Consider a simple model when electromagnetic and weak interactions
are absent. Then the fact that the proton and the neutron have equal
masses has nothing to do with locality; it is only a consequence of
the fact that the proton and the neutron belong to the same isotopic
multiplet. In other words, they are simply different states of the same
object—the nucleon.

Since the concept of locality is not formulated in terms of selfad-
joint operators, this concept does not have a clear physical meaning,
and this fact has been pointed out even in known textbooks (see e.g.,
[6]). Therefore, QFT does not give a rigorous physical proof that
m1 = m2. Note also that in Poincare invariant quantum theories,
there can exist elementary particles for which all additive quantum
numbers are zero. Such particles are called neutral because they co-
incide with their antiparticles.

2.2 Problems with the definition of parti-

cles and antiparticles in dS invariant

theories

As noted in Sec. 1.2, dS and AdS symmetries are more general than
Poincare symmetry. For this reason, it is necessary to investigate how
particles and antiparticles are described in the framework of those
symmetries for which the descriptions are considerably different, and
in this section we consider the case of dS symmetry.

In this case, all the operators Mν4 (ν = 0, 1, 2, 3) are on equal
footing. Therefore, M04 can be treated as the Poincare analog of
the energy only in the approximation when R is rather large. In the
general case, the sign of M04 cannot be used for the classification of
IRs.

In his book [7] Mensky describes the implementation of dS IRs
when the representation space is the three-dimensional unit sphere in
the four-dimensional space. In this implementation, there exist one-to-
one relations between the northern hemisphere and the upper Lorentz
hyperboloid with positive Poincare energies and between the southern
hemisphere and the lower Lorentz hyperboloid with negative Poincare
energies, while points on the equator correspond to infinite Poincare
energies. However, the operators of IRs are not singular in the vicinity
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of the equator and, since the equator has measure zero, the properties
of wave functions on the equator are not important.

Since the number of states in dS IRs is twice as big as the number of
states in IRs of the Poincare algebras, one might think that each IR of
the dS algebra describes a particle and its antiparticle simultaneously.
However, a detailed analysis in [2] shows that states described by dS
IRs cannot be characterized as particles or antiparticles in the usual
meaning.

For example, let us call states with the support of their wave func-
tions on the northern hemisphere as particles and states with the sup-
port on the southern hemisphere as their antiparticles. Then states
which are superpositions of a particle and its antiparticle obviously
belong to the representation space under consideration, i.e., they are
not prohibited. However, this contradicts the superselection rule that
the wave function cannot be a superposition of states with opposite
electric charges, baryon and lepton quantum numbers etc. Therefore,
in the dS case there are no superselection rules which prohibit su-
perpositions of states with opposite electric charges, baryon quantum
numbers etc. In addition, in this case it is not possible to define the
notion of neutral particles.

As noted in Sec. 1.2, dS symmetry is more general than Poincare
one, and the latter can be treated as a special degenerate case of the
former in the formal limit R→∞. This means that, with any desired
accuracy, any phenomenon described in the framework of Poincare
symmetry can be also described in the framework of dS symmetry if
R is chosen to be sufficiently large, but there also exist phenomena for
explanation of which it is important that R is finite and not infinitely
large (see [2]).

As shown in [2, 8], dS symmetry is broken in the formal limit
R → ∞ because one IR of the dS algebra splits into two IRs of the
Poincare algebra with positive and negative energies and with equal
masses. Therefore, the fact that the masses of particles and their
corresponding antiparticles are equal to each other, can be explained
as a consequence of the fact that observable properties of elementary
particles can be described not by exact Poincare symmetry but by
dS symmetry with a very large (but finite) value of R. In contrast
to QFT, for combining a particle and its antiparticle into one object,
there in no need to assume locality and involve local field functions
because a particle and its antiparticle already belong to the same IR
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of the dS algebra (compare with the above remark about the isotopic
symmetry in the proton-neutron system).

The fact that dS symmetry is higher than Poincare one is clear
even from the fact that, in the framework of the latter symmetry, it
is not possible to describe states which are superpositions of states on
the upper and lower hemispheres. Therefore, breaking the IR into two
independent IRs defined on the northern and southern hemispheres
obviously breaks the initial symmetry of the problem. This fact is
in agreement with the Dyson observation (mentioned above) that dS
group is more symmetric than Poincare one.

When R → ∞, standard concepts of particle-antiparticle, electric
charge and baryon and lepton quantum numbers are restored, i.e.,
in this limit superpositions of particle and antiparticle states become
prohibited according to the superselection rules. Therefore, those con-
cepts arise as a result of symmetry breaking at R→∞, i.e., they are
not universal.

2.3 Particles and antiparticles in AdS in-

variant theories

In theories where the symmetry algebra is the AdS algebra, the struc-
ture of IRs is known (see e.g., [2, 9]). The operator M04 is the
AdS analog of the energy operator. Let W be the Casimir opera-
tor W = 1

2

∑
MabMab where a sum over repeated indices is assumed.

As follows from the Schur lemma, the operator W has only one eigen-
value in every IR. By analogy with Poincare invariant theory, we will
not consider AdS tachyons and then one can define the AdS mass µ
such that µ ≥ 0 and µ2 is the eigenvalue of the operator W .

As noted in Sec. 1.2, the procedure of contraction from the AdS
algebra to the Poincare one is defined such that if R is a parameter
with the dimension length then Mν4 = RP ν . This procedure has a
physical meaning only if R is rather large. In that case the AdS mass
µ and the Poincare mass m are related as µ = Rm, and the relation
between the AdS and Poincare energies is analogous. Since AdS sym-
metry is more general (fundamental) then Poincare one then µ is more
general (fundamental) than m. In contrast to the Poincare masses and
energies, the AdS masses and energies are dimensionless. As noted in
Sec. 3.4, at the present stage of the universe R is of the order of
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1026m. Then the AdS masses of the electron, the Earth and the Sun
are of the order of 1039, 1093 and 1099, respectively. The fact that even
the AdS mass of the electron is so large might be an indication that
the electron is not a true elementary particle. In addition, the present
accepted upper level for the photon mass is 10−17ev. This value seems
to be an extremely tiny quantity. However, the corresponding AdS
mass is of the order of 1016, and so, even the mass which is treated as
extremely small in Poincare invariant theory might be very large in
AdS invariant theory.

In the AdS case, there are IRs with positive and negative energies,
and they belong to the discrete series [2, 9]. Therefore, one can define
particles and antiparticles. If µ1 is the AdS mass for a positive energy
IR, then the energy spectrum contains the eigenvalues µ1, µ1 + 1, µ1 +
2, ...∞, and, if µ2 is the AdS mass for a negative energy IR, then
the energy spectrum contains the eigenvalues −∞, ...− µ2 − 2,−µ2 −
1,−µ2. Therefore, the situation is pretty much analogous to that in
Poincare invariant theories, and, without involving local AdS invariant
equations there is no way to conclude whether the mass of a particle
equals the mass of the corresponding antiparticle.

2.4 Baryon asymmetry of the universe

problem

In this chapter we have discussed how the concepts of particles and
antiparticles should be defined in the cases of Poincare, dS and AdS
symmetries. In the first and third cases, the situations are similar: IRs
where the energies are ≥ 0 are treated as particles, and IRs where the
energies are ≤ 0 are treated as antiparticles. Then a problem arises
how to prove that the masses of a particle and the corresponding
antiparticle are the same. As noted in Secs. 2.1 and 2.3, without
involving local covariant equations there is no way to conclude whether
the masses are the same. Since the concept of locality is not formulated
in terms of selfadjoint operators, in the framework of Poincare and AdS
symmetries, QFT does not give a rigorous proof that the masses of a
particle and the corresponding antiparticle are the same.

As described in Sec. 2.2, in the case of dS symmetry, the approach
to the concept of particle-antiparticle is radically different from the
approaches in the cases of Poincare and AdS symmetries. Here, the
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fundamental objects are not particles and antiparticles, but the ob-
jects that are described by IRs of the dS algebra. One might ask why,
then, experimental data in particle physics give the impression that
particles and antiparticles are fundamental. As explained in Sec. 2.2,
the matter is that, at this stage of the universe, the contraction pa-
rameter R from the dS to Poincare algebra is very large and, in the
formal limit R → ∞, one IR of the dS algebra splits into two IRs of
the Poincare algebra corresponding to a particle and its antiparticle
with the same masses. In this case, for proving the equality of masses
there is no need to involve local covariant fields and the proof is given
fully in terms of well defined selfadjoint operators. As noted in Sec.
2.1, in the spirit of the Dirac equation, there should not be separate
particles, the electron and positron but there should be one particle
which can be called electron-positron. In the case of dS symmetry,
this idea is implemented exactly in this way. It has been also noted
that in the case of dS symmetry there are no conservation laws for
additive quantum numbers: from the experiment it seems that such
conservation laws take place, but in fact, these laws are only approxi-
mate because, at the present stage of the universe the parameter R is
very large. Thus, we can conclude that dS symmetry is more
fundamental than Poincare and AdS symmetries.

We now apply this conclusion to the known problem of baryon
asymmetry of the universe. This problem is formulated as follows.
According to modern particle and cosmological theories, the numbers
of baryons and antibaryons in the early stages of the universe were the
same. Then, since the baryon number is the conserved quantum num-
ber, those numbers should be the same at the present stage. However,
at this stage, the number of baryons is much greater than the number
of antibaryons.

However, as noted above, it seems to us that the baryon quan-
tum number is conserved because at this stage of the evolution of
the universe, the value of R is enormous. As noted in Sec. 1.2, it is
reasonable to expect that R changes over time, and as noted in Sec.
3.3, in semiclassical approximation, R coincides with the radius of the
universe. However, according to cosmological theories, at early stages
of the Universe, R was much less that now. At such values of R, the
concepts of particles, antiparticles and baryon number do not have
a physical meaning. So, the statement that at early stages of
the universe the numbers of baryons and antibaryons were
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the same, also does not have a physical meaning, and, as a
consequence, the baryon asymmetry problem does not arise.
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Chapter 3

Solving cosmological
constant problem

3.1 Introduction

In the phenomenon of cosmological acceleration (PCA), only nonrel-
ativistic macroscopic bodies are involved, and one might think that
here there is no need to involve quantum theory. However, ideally, the
results for every classical (i.e., non-quantum) problem should be ob-
tained from quantum theory in semiclassical approximation. We will
see that, considering PCA from the point of view of quantum theory
sheds a new light on understanding this problem.

In PCA, it is assumed that the bodies are located at large (cos-
mological) distances from each other and sizes of the bodies are much
less than distances between them. Therefore, interactions between the
bodies can be neglected and, from the formal point of view, the de-
scription of our system is the same as the description of N free spinless
elementary particles.

However, in the literature, in view of mainly historical reasons,
PCA is usually considered in the framework of dark energy and other
exotic concepts. In Sec. 3.2 we argue that such considerations are
not based on rigorous physical principles. In Sec. 1.2 we explain how
symmetry should be defined at the quantum level. In Sec. 3.3 we
describe PCA in the framework of our approach.
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3.2 History of dark energy

This history is well-known. First Einstein introduced the cosmological
constant Λ because he believed that the universe was stationary and
his equations can ensure this only if Λ 6= 0. But when Friedman
found his solutions of equations of General Relativity (GR) with Λ =
0 and Hubble found that the universe was expanding, Einstein said
(according to Gamow’s memories) that introducing Λ 6= 0 was the
biggest blunder of his life. After that, the statement that Λ must be
zero was advocated even in textbooks.

The explanation was that, according to the philosophy of GR, mat-
ter creates a curvature of space-time, so when matter is absent, there
should be no curvature, i.e., space-time should be the flat Minkowski
space. That is why when in 1998 it was realized that the data on su-
pernovae could be described only with Λ 6= 0, the impression was that
it was a shock of something fundamental. However, the terms with Λ
in the Einstein equations have been moved from the left-hand side to
the right-hand one, it was declared that in fact Λ = 0, but the impres-
sion that Λ 6= 0 was the manifestation of a hypothetical field which,
depending on the model, was called dark energy or quintessence. In
spite of the fact that, as noted in wide publications (see e.g., [10] and
references therein), their physical nature remains a mystery, the most
publications on PCA involve those concepts.

Several authors criticized this approach from the following consid-
erations. GR without the contribution of Λ has been confirmed with
a high accuracy in experiments in the Solar System. If Λ is as small
as it has been observed, it can have a significant effect only at cos-
mological distances while for experiments in the Solar System the role
of such a small value is negligible. The authors of [11] titled ”Why
All These Prejudices Against a Constant?” note that it is not clear
why we should think that only a special case Λ = 0 is allowed. If
we accept the theory containing the gravitational constant G which is
taken from outside, then why can’t we accept a theory containing two
independent constants?

Let us note that currently there is no physical theory which works
under all conditions. For example, it is not correct to extrapolate
nonrelativistic theory to cases when speeds are comparable to c, and
it is not correct to extrapolate classical physics for describing energy
levels of the hydrogen atom. GR is a successful classical (i.e., non-
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quantum) theory for describing macroscopic phenomena where large
masses are present, but extrapolation of GR to the case when matter
disappears is not physical. One of the principles of physics is that a
definition of a physical quantity is a description of how this quantity
should be measured. As noted in Sec. 2.1, the concepts of space and its
curvature are pure mathematical. Their aim is to describe the motion
of real bodies. But the concepts of empty space and its curvature
should not be used in physics because nothing can be measured in a
space which exists only in our imagination. Indeed, in the limit of
GR when matter disappears, space remains and has a curvature (zero
curvature when Λ = 0, positive curvature when Λ > 0 and negative
curvature when Λ < 0) while, since space is only a mathematical
concept for describing matter, a reasonable approach should be such
that in this limit space should disappear too.

A common principle of physics is that when a new phenomenon
is discovered, physicists should try to first explain it proceeding from
the existing science. Only if all such efforts fail, something exotic can
be involved. But for PCA, an opposite approach was adopted: exotic
explanations with dark energy or quintessence were accepted without
serious efforts to explain the data in the framework of existing science.

Although the physical nature of dark energy remains a mystery,
there exists a wide literature where the authors propose quantum field
theory (QFT) models of dark energy. While in most publications, only
proposals about future discovery of dark energy are considered, the au-
thors of [10] argue that dark energy has already been discovered by the
XENON1T collaboration. In June 2020, this collaboration reported
an excess of electron recoils: 285 events, 53 more than expected 232
with a statistical significance of 3.5σ. However, in July 2022, a new
analysis by the XENONnT collaboration discarded the excess [12].

As shown in our publications and in the present paper, PCA can
be explained without uncertainties proceeding from universally rec-
ognized results of physics and without involving models and/or as-
sumptions the validity of which has not been unambiguously proved
yet.
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3.3 Explanation of cosmological acceler-

ation

Standard particle theories involve IRs of the Poincare algebra by self-
adjoint operators. They are described even in textbooks and do not
involve Minkowski space. Therefore, when Poincare symmetry is re-
placed by more general dS or AdS one, dS and AdS particle theories
should be based on IRs of the dS or AdS algebras by self-adjoint oper-
ators, respectively. However, physicists usually are not familiar with
such IRs because they believe that dS and AdS quantum theories nec-
essarily involve quantum fields on dS or AdS spaces, respectively.

The mathematical literature on unitary IRs of the dS group is
wide but there are only a few papers where such IRs are described for
physicists. For example, the excellent Mensky’s book [7] exists only in
Russian. At the same time, to the best of our knowledge, IRs of the dS
algebras by self-adjoint operators have been described from different
considerations only in [2, 8, 13, 14].

In the framework of our approach, the explanation of cosmological
acceleration consists of the following steps. First, instead of the angu-
lar momentum operators M4µ we work with the momentum operators
P µ = M4µ/R, and, in the approximation when R is very large, dif-
ferent components of P µ commute with each other. Then we use the
explicit expressions for the operators Mab of IRs of the dS algebra —
see e.g., Eqs. (3.16) in [2], Eqs. (17) in [8] or Eqs. (3) in [14]. Those
operators act in momentum representation and at this stage, we have
no spatial coordinates yet. For describing the motion of particles in
terms of spatial coordinates, we must define the position operator. A
question: is there a law defining this operator?

The postulate that the coordinate and momentum representations
are related by the Fourier transform was taken at the dawn of quantum
theory by analogy with classical electrodynamics, where the coordi-
nate and wave vector representations are related by this transform.
But the postulate has not been derived from anywhere, and there
is no experimental confirmation of the postulate beyond the nonrel-
ativistic semiclassical approximation. Heisenberg, Dirac, and others
argued in favor of this postulate but, for example, in the problem of
describing photons from distant stars, the connection between the co-
ordinate and momentum representations should be not through the
Fourier transform, but as shown in [2]. However, since, PAC involves
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only nonrelativistic bodies then, as follows from the above remarks,
the position operator in momentum representation can be defined as
usual, i.e., as r = ih̄∂/∂p where p is the momentum. Then in semi-
classical approximation, we can treat p and r as usual vectors.

The next step is to take into account that the representation de-
scribing a free N-body system is the tensor product of the correspond-
ing single-particle IRs. It means that every N-body operator Mab is a
sum of the corresponding single-particle operators. Then one can cal-
culate the internal mass operator for any two-body subsystem of the
N-body system, and the result is given by Eq. (3.68) in [2], Eq. (61)
in [8] or Eq. (17) in [14]. Now, as follows from the Hamilton equa-
tions, in any two-body subsystem of the N-body system, the relative
acceleration in semiclassical approximation is given by

a = rc2/R2 =
1

3
c2Λr (3.1)

where a and r are the relative acceleration and relative radius vector
of the bodies, respectively, and Λ = 3/R2. The fact that the relative
acceleration of noninteracting bodies is not zero does not contradict
the law of inertia, because this law is valid only in the case of Galilei
and Poincare symmetries, and in the formal limit R→∞, a becomes
zero as it should be.

Let us note the following. Since c is the contraction parameter for
the transition from Poincare invariant theory to Galilei invariant one,
the results of the latter can be obtained from the former in the formal
limit c→∞, and Galilei invariant theories do not contain c. Then one
might ask why Eq. (3.1) contains c although we assume that the bodies
in PCA are nonrelativistic. The matter is that Poincare invariant
theories do not contain R but we work in dS invariant theory and
assume that, although c and R are very large, they are not infinitely
large, and the quantity c2/R2 in Eq. (3.1) is finite.

As noted in Sec. 2.4, dS symmetry is more fundamental than AdS
one. Formally, an analogous calculation using the results of Chap. 8 of
[2] on IRs of the AdS algebra gives that, in the AdS case, a = −rc2/R2,
i.e., we have attraction instead of repulsion. The experimental facts
that the bodies repel each other confirm that dS symmetry is indeed
more fundamental than AdS one.

The relative accelerations given by Eq. (3.1) are the same as those
derived from GR if the curvature of dS space equals Λ = 3/R2, where
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R is the radius of this space. However, the crucial difference between
our results and the results of GR is as follows. While in GR, R is the
radius of the dS space and can be arbitrary, in quantum theory, R is
the coefficient of proportionality between M4µ and P µ, this coefficient
is fundamental to the same extent as c and h̄, and a question why R
is as is does not arise. Therefore, our approach gives a clear
explanation why Λ is as is.

In GR, the result (3.1) does not depend on how Λ is interpreted, as
the curvature of empty space or as the manifestation of dark energy.
However, in quantum theory, there is no freedom of interpretation.
Here R is the parameter of contraction from the dS Lie algebra to the
Poincare one, it has nothing to do with the radius of the background
space and with dark energy and it must be finite because dS symmetry
is more general than Poincare one.

3.4 Discussion

We have shown that the phenomenon of cosmological acceleration is
simply a consequence of quantum theory in semiclassical approxima-
tion, and this conclusion has been made without involving models
and/or assumptions the validity of which has not been unambiguously
proved yet. From our consideration, it is clear that the cosmological
constant Λ has a physical meaning only in semiclassical approxima-
tion.

In the literature, the cosmological constant problem is usually de-
scribed in the framework of Poincare invariant QFT of gravity on
Minkowski space. This theory contains only one phenomenological
parameter — the gravitational constant G, and Λ is defined by the
vacuum expectation value of the energy-momentum tensor. The the-
ory contains strong divergencies which cannot be eliminated because
the theory is not renormalizable. The results can be made finite only
with a choice of the cutoff parameter. Since G is the only parameter
in the theory, the usual choice of the cutoff parameter in momentum
space is h̄/lP where lP is the Plank length. Then, if h̄ = c = 1, G has
the dimension length2 and Λ is of the order of 1/G. However, this
value is more than 120 orders of magnitude greater than the experi-
mental one.

As explained above, in quantum theory, Poincare symmetry is a
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special degenerate case of dS symmetry in the formal limit R → ∞
where R is a parameter of contraction from the dS algebra to the
Poincare one. This parameter is fundamental to the same extent as c
and h̄, it has nothing to do with the relation between Minkowski and
dS spaces and the problem why R is as is does not arise by analogy
with the problem why c and h̄ are as are. As noted in Sec. 3.3,
the result for cosmological acceleration in our approach and in GR is
given by the same expression (3.1) but the crucial difference between
our approach and GR is as follows. While in GR, R is the radius
of the dS space and can be arbitrary, in our approach, R is defined
uniquely because it is a parameter of contraction from the dS algebra
to the Poincare one. Therefore, in our approach, the problem why the
cosmological constant is as is does not arise.

Therefore, the phenomenon of cosmological acceleration has noth-
ing to do with dark energy or other artificial reasons. This phe-
nomenon is an inevitable kinematical consequence of quantum theory
in semiclassical approximation and the problem of cosmological con-
stant does not arise.

Since 1998, the fact that Λ > 0 has been confirmed in several ex-
periments, and it is now accepted [15] that Λ = 1.3·10−52/m2 with the
accuracy 5%. Therefore, at the current stage of the universe, R is of
the order of 1026m. Since Λ is very small and the evolution of the uni-
verse is the complex process, cosmological repulsion does not appear
to be the main effect determining this process, and other effects (e.g.,
gravity, microwave background and cosmological nucleosynthesis) may
play a much larger role.
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Chapter 4

Open problems

As noted by Dyson in his fundamental paper [5], nonrelativistic theory
is a special degenerate case of relativistic theory in the formal limit
c → ∞ and relativistic theory is a special degenerate case of dS and
AdS theories in the formal limit R → ∞ and, as shown in Sec. 2.4,
dS symmetry is more general than AdS one.

The paper [5] appeared in 1972, i.e., more than 50 years ago, and,
in view of Dyson’s results, a question arises why general particle the-
ories (QED, electroweak theory and QCD) are still based on Poincare
symmetry and not dS one. Probably physicists believe that, since,
at least at the present stage of the universe, R is much greater than
even sizes of stars, dS symmetry can play an important role only in
cosmology and there is no need to use it for description of elementary
particles.

We believe that this argument is not consistent because usually
more general theories shed a new light on standard concepts. It is
clear from the discussion in Sec. 2.4 that the construction of dS theory
will be based on considerably new concepts than the construction of
standard quantum theory because in dS theory, the concepts of par-
ticles, antiparticles and additive quantum numbers (electric charge,
baryon quantum number and others) can be only approximate.

Another problem discussed in a wide literature is that supersym-
metric generalization exists in the AdS case but does not exist in the
dS one. It may be a reason why supersymmetry has not been discov-
ered yet.

In [2] we have proposed a criterion when theory A is more general
(fundamental) than theory B:

24



Let theory A contain a finite nonzero parameter and theory B be
obtained from theory A in the formal limit when the parameter goes to
zero or infinity. Suppose that with any desired accuracy theory A can
reproduce any result of theory B by choosing a value of the parameter.
On the contrary, when the limit is already taken then one cannot return
back to theory A and theory B cannot reproduce all results of theory
A. Then theory A is more general than theory B and theory B is a
special degenerate case of theory A.

We have shown that finite quantum theory (FQT) based on finite
mathematics with a ring or field of characteristic p is more general than
quantum theory based on complex numbers: the latter is a special
degenerate case of the former in the formal limit p→∞.

As explained in [2], in FQT, supersymmetry is always possible,
physical quantities can be only finite, divergences cannot exist in prin-
ciple, and the concepts of particles, antiparticles, probability and ad-
ditive quantum numbers can be only approximate if p is very large.
The construction of FQT is one of the most fundamental (if not the
most fundamental) problems of quantum theory.
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