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ΦAbstract -- The work presented in this paper proposes a 

method for rapidly evaluating electric machine performances 

on drive cycle based on kriging metamodel. The driving cycle is 

considered through the k-means method to reduce the number 

of operating points. Thus, a metamodel of the machine’s total 

losses is deduced on the centroids obtained by k-means. It is 

implemented after an evaluation of a finite element model in 

MotorCAD. This methodology is applied to design a buried 

permanent magnet synchronous machine. The optimization 

over the driving cycle is performed based on this metamodel. 

Finally, a comparison is made between the results obtained by 

optimization and the evaluation of these optimal solutions in 

MotorCAD. 

 
Index Terms-- drive cycle, experimental design, kriging, 

metamodeling, optimization, permanent magnet synchronous 

machine, total losses. 

 

I.   INTRODUCTION 

 N order to achieve energy-efficient electric powertrains, it 
is necessary to dimension all the components on driving 

cycles. Estimating losses on these cycles requires more or 
less expensive models in terms of computation time 
depending on the precision of the model. As an example, in 
the case of electric motor design, FEA coupled with circuit 
analysis allows an investigation of the transient motor 
behavior. It permits to calculate iron losses, AC and DC 
copper losses, but presents generally long execution time [1]. 
The complete sizing of the powertrain can therefore be 
particularly long and complex. In this paper, an approach 
based on a Kriging metamodel is proposed for the 
representation of electric machines on the driving cycle. The 
objective is to substitute a computationally expensive 
numerical model with a mathematical function that can be 
quickly evaluated [2]. 
 
Thanks to the development of metamodeling techniques such 
as kriging, polynomial chaos, or neural networks, 
metamodels have become an attractive solution [3], [4] in 
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different engineering fields. Several authors are interested in 
using these modeling methods for the design of electrical 
machines. The application of metamodels for the optimal 
design of electric machines is wide, for example, neural 
networks are used to represent the torque waveforms as a 
function of current amplitude and frequency [5], for the 
evaluation of electromagnetic performances [6], or as in [7] 
for the sizing of an induction machine for an automotive 
application. Although the formulation of the metamodel is 
complex [8], its use is straightforward and gives the system 
designer the possibility to exploit a trade-off between 
accuracy and computation time [9]. 
 

The first part of this paper is devoted to studying the 
reduction of the driving cycle to a certain number of 
representative operating points. Then, the metamodeling 
approach is introduced, followed by the application to the 
case study. This methodology is applied to design a buried 
PMSM on a WLTC driving cycle through an optimization 
process. The optimization results are compared with a finite 
element model to evaluate the accuracy of the metamodels. 

II.   DRIVE CYCLE REDUCTION 

The representation of the driving cycle in the torque-speed 
plane of the machine differs from one vehicle to another. 
Thus, to calculate the torque and speed required to complete 
a driving cycle, it is necessary to assess the forces acting on 
the vehicle (aerodynamic force, rolling resistance force, force 
related to the slope, force related to the acceleration) through 
the dynamic modeling of the vehicle [10]. After this, electric 
machine torque and speed can be calculated considering the 
reducer’s gear ratio. An example is shown in Fig. 1, for a 
WLTC cycle applied to an electric vehicle (the name of the 
vehicle is not given because of confidentiality matters). 

 
           Fig. 1 : Electric machine torque and speed for WLTC cycle 
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The driving cycles present a significant number of operating 
points. The difficulty encountered is finding a way to 
integrate these points in the optimization process of the 
machine without the prohibitive computation time. There are 
several driving cycle reduction approaches to reduce the 
number of operating points [11], [12]. The k-means data 
partitioning method is one of the most accurate methods to 
perform such a task [11]. It is used to group desired data 
according to a defined similarity criterion [13]. In our study 
case, this criterion is the distance between the different 
operating points of the torque-speed plane. 
In this method, the points in the torque-speed plane are 
grouped into k clusters. A centroid is defined for each cluster. 
The centroid of coordinates (torque, speed) represents the 
barycenter of all the points contained in this cluster. It is also 
the most representative of the cluster [14]. This method is 
applied to the WLTC cycle composed of 18000 operating 
points in the torque-speed plane of an electric machine. To 
ensure representative clusters, the cycle must first be 
normalized. At the initialization of the method, a number k of 
clusters is chosen, here k=6. At the first iteration, the 
centroids are randomly initialized, the operating points of the 
torque-speed plane are assigned to the nearest centroid 
cluster, and after the assignment, the mean and distances are 
recalculated. The centroid of each cluster is calculated by the 
following equations [14]. 
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Where ��  and �� represent the torque and speed values of 
centroid j, respectively, and �� is the number of points in 
cluster �. The process starts again and iterates until each 
operating point remains in the same cluster.  
The clusters obtained for the chosen example are shown in 
Fig. 2. In the rest of our study, the optimization over the 
driving cycle will be performed only on the six obtained 
centroids, thus reducing the number of objective function 
evaluations. 

 
Fig. 2: Clusters and centroids obtained by k-means applied to a WLTC 

cycle. 

The weight  � of each centroid represents the total number of 
operating points in the cluster [15].  

III.   KRIGING METAMODELING 

Metamodels are mathematical approximations of models. 
They are built from responses at sample sets of design 
parameters, they reduce the computation time associated with 
FE simulations. They can be used in different engineering 
applications due to their precision and fast computation time 
compared to classical methods like FEA. Here, we use a 
kriging metamodel [16] for its robustness and  accuracy. 
Kriging is a stochastic approximation which assumes that the 
output of the model �
�� is a realization of a Gaussian 
process (GP) [17]. A kriging metamodel can be described by 
the following equation [18]. 

 �
�� � �� . �
�� � ��. �
�, �� 
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Where �
�, �� is a Gaussian process of zero mean and unit 
variance. The first term �� . �
�� is the mean value of the 
Gaussian process and �� its variance. 
In practice, to build a kriging metamodel, the procedure is as 
follows: 
 
     - Select a method for the experimental design: this step is 
a sample allocation strategy in the design space that aims to 
maximize the amount of information acquired. The original 
model is evaluated at these sample points to create the 
training dataset, which is then used to build the metamodel 
[19]. These sample points can be created by different 
sampling methods such as Monte-Carlo, Latin Hypercube 
Sampling (LHS), and Sobol sequences.  
Sobol sequences allow the distribution of the different 
samples in space by minimizing the distance between each 
observation. Thus, allowing to keep a good distribution of 
these samples in space even in the case of high dimensional 
experimental designs [20]. Fig. 3, compares a two variables 
experimental design constructed by LHS and Sobol. 

 

 
          Fig. 3: Two variables experimental design created by LHS and Sobol 

     - Selecting a functional basis for the trend: the trend refers 
to the mean of the Gaussian process, i.e., the term �� . �
�� 
in (1). The kriging metamodel is thus named differently 
depending on the type of trend used: 
 

• Universal Kriging: assumes that the trend is a linear 
combination of arbitrary functions (e.g., polynomial 
functions). 
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• Simple kriging: the trend is given by (5), where ��  is 
an arbitrary function: 

�� . �
�� � � ��
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• Ordinary kriging: in this case, the trend has a 
constant value: 

���
�� � �! 
6� 
 
- Selecting a correlation function: the correlation function 

is of primary importance. It contains the assumptions about 
the approximation function used in the metamodel. It 
describes the degree of similarity between the sample points 
from the experimental design and the predicted points. In this 
sense, samples close to each other should have similar 
responses [18].  

In this paper, ordinary kriging will be used for the trend 
selection and Matérn function the correlation function as 
given in (7).  
 

%
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Where  ' is the correlation parameter, ( � 5/2, Γ is the 
Euler’s Gamma function and Ƙ1 is the Bessel function [18].  
 

There are also other steps necessary for implementing the 
kriging metamodel, such as determining the hyperparameters 
of the correlation function and the choice of the estimation 
methods necessary to evaluate the accuracy of the 
metamodel. 

IV.   ELECTRICAL MACHINE STUDY CASE 

A.   Geometry Description 

As mentioned in the previous section, the metamodel is a 
substitution model aiming to replace an expensive 
computational model with a mathematical approximation that 
allows predicting its behaviour. In our case, the model 
studied is a synchronous machine with buried permanent 
magnets (48 slots with eight poles) developed under Ansys 
MotorCAD; the machine is represented in Fig. 4.  

 

 
Fig. 4: Reference machine for the study 

A kriging metamodel is established to evaluate the total 
losses as a function of the machine's geometrical dimensions 

and control parameters. For this, the first step is to select the 
geometrical variables of the machine, which will serve as 
inputs for the metamodel. The selected variables and their 
range of variation are given in Table I.  

The range of variation of these variables is established 
with respect to a reference machine developed at Stellantis 
[21], whose dimensions are given in Table I. 

 
TABLE 1 

VARIATION RANGE FOR THE DIFFERENT VARIABLES OF THE 
METAMODEL 

Parameter Variation range (mm) Reference Machine 
(mm) ��: Slot width [4.5 - 7.5] 4.8 ��: Slot height [16 - 20] 17 �5: Stator outer 

diameter 
[180 - 210] 190 

�6: Magnet thickness [4 - 7] 5 �7: Active length [160 - 210] 160 

B.   Construction and validation of metamodels 

An experimental design is created with Sobol sequences. 
270 samples containing the five input parameters are used to 
cover the domains of variation of each parameter. The 
database needed to create the metamodel is then obtained by 
performing FE calculations on MotorCAD for the 6 centroids 
obtained by k-means.  
The outputs recovered from MotorCAD per centroid are the 
control parameters and the total losses. They include iron 
losses, copper losses (AC and DC losses), and mechanical 
losses (Fig. 5). MotorCAD simulation includes a black box 
control strategy. Thus, we propose to establish two 
metamodels. First one based on geometric parameters, 
permits the prediction of control parameters (89 and ψ) (Fig. 
6). The second is established as a function of the geometric 
and control parameters calculated by the first metamodel 
(Fig. 7). It is used for the prediction of the total losses.  
The input vectors :� and :� are described as :� �
��, ��, �5, �6, �7� and :� �  
89  , ;�. 

 

 
        Fig. 5:  First evaluation of MotorCAD 

 
Fig. 6 : Control parameters metamodel 

 
Fig. 7: Losses metamodel 

The created metamodels (Fig. 6, and Fig. 7) are validated by 
evaluating exact and predicted responses at a set of 50 test 
points that are different from sample points used to create the 



 

 

 

metamodels. The comparison between MotorCAD and 
metamodel calculations for one of the six centroids is shown 
in Fig 8, Fig. 9, and Fig. 10.  
In the case of the control parameter metamodel, the error 
does not exceed 2% for this centroid as shown in Fig. 8 and 
Fig. 9, and it is the same for other centroids. 

 
Fig. 8: Evaluation of the precision of stator phase current metamodel 

In Fig. 10, the error committed by the metamodel for losses 
evaluation does not exceed 2% for this centroid. For other 
centroids, the maximum error for losses prediction is 4%. 
This comparison thus validates the metamodeling approach 
used to evaluate the total losses in the machine on the 
different centroids. The next step is to use these metamodels 
to optimize the electric machine over the whole cycle 
considering only the centroids. 

 
Fig. 9: Evaluation of the precision of phase advance metamodel 

V.   OPTIMIZATION OVER DRIVE CYCLE 

The optimization problem formulated is multi-objective: 
we seek to minimize the machine's total losses on the driving 
cycle and mass. A single-objective reformulation treats the 
problem by minimizing the total losses of the machine on the 
driving cycle subject to a varying equality constraint on the 

mass. The Sequential Quadratic Programming (SQP) 
optimization algorithm [14] is adopted to solve the problem 
using the Matlab function fmincon. The optimization 
problem P is formulated as follow: 

 

Problem P: 
⎩⎪
⎨
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      Fig. 10: Evaluation of the precision of losses metamodel 

The total loss value is calculated on the centroids 
according to (9): 

 ST � �T . SGNNFNT     
9� 
 �T  is the weight of centroid A, equal to the number of points 
in cluster A, and SGNNFNT the value of losses at centroid A. In 
Table II, the optimization results obtained for different mass 
values are shown. 
 

TABLE II 
OPTIMIZATION PARAMETERS VARIATION FOR DIFFERENT 

MASSES 

Mass (kg) 41 43 44 46 ��: Slot width (mm) 7,46 7,5 7,47 7,49 ��: Slot height (mm) 19.9 18.9 19.3 19.5 �5: Stator outer diameter (mm) 180 199.2 208.2 210 �6: Magnet thickness (mm) 5.4 4.2 4 4 �7: Active length (mm) 160 160 160 168.5 

 
The multi-objective optimization elaborates a range of 
electrical machines with masses varying from 40 kg to 55 kg,  
In Fig. 11, the cumulative energy losses on driving cycle are 
given for the different motors size and compared with 
MotorCAD calculations. Metamodel error evaluation is 
shown in Fig. 12. 
The variation of the machine’s mass is due to the different 
values of the five optimization parameters as shown in Table 
II. We can see that some parameters varie more than others, 
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this gives an idea on each parameter importance in the 
optimization. Here, the stator outer diameter has the biggest 
impact on mass variation. Notice that the machines with 
masses higher than 44 kg present higher losses, this is due to 
the length of the machine which is the parameter having the 
most variation for these machines. 

 
Fig. 11: Optimization results and comparison with MotorCAD calculations 

 
Fig. 12: Metamodel error for the optimization results 

The compared results show less than 4% of error for the 
different machine masses. Thus, validating our proposed 
approach. The methodology permits a gain in computation 
time when it’s about optimization. Where, 5 minutes are 
needed to design an electrical machine on a driving cycle. 

VI.   CONCLUSION 
     
This paper presents the implementation of a driving cycle 
optimization methodology considering five design variables, 
based on metamodeling as well as the results for a WLTC 
application. The results obtained by this methodology have 
been compared with a computational model under Ansys 
MotorCAD and show satisfactory results.  This method is 
fast and much less expensive in terms of calculation time, 
allowing the designer to quickly evaluate the machine's 

performance according to its size/weight on a complete 
driving cycle and can therefore be helpful for the first design 
phases.  
 
The methodology was applied for a V-buried magnet 
synchronous machine. In future work a generalized approach 
will be presented for the design of a multirange powertrain. It 
will consider more design variables for the motor, different 
machine topologies, and further components as converters 
and reducers. 
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